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Summary 
 

The study is focused on convective heat transfer in the processing of solid foods, specifically with the scope 
to develop simple analytical calculation tools that can be incorporated into spreadsheet solutions. In areas of 
food engineering such as equipment manufacture the use of predictive calculations, modelling activities and 
simulations for improved design is employed to a high degree.  

In food manufacture the use process calculations are seldom applied. Even though, the calculation of thermal 
processes is not a challenging task in academia; this is not the case for food manufacture. However; the 
calculations need fundamental validation and a generality that ensures a wide application, thus also the 
development of simplified approximations and engineering equations have to be conducted in academia. The 
focus group for the utilization of the presented work is; food manufacture, authorities ensuring food safety 
standards and students pursuing a food engineering career but lacks full engineering training.  

The approach in this study is to identify possible simplifications to the complete Fourier series expansion 
[Fo-exp]. This is done through; a new method to non-iteratively find the Fourier exponents and lag factors 
needed in a 1st term approximation, expanding the use of the 1st term approximation to also cover low 
Fourier numbers [Fo], and investigating the input in the series expansion in terms of the determination of 
convective heat transfer coefficients. For the investigation it was crucial to establish a thorough 
understanding of the origin of both the standard [Fo-exp] solution and the criteria coupled with standard 
simplified solutions. 

A new description of the internal and external resistance to heat transfer has been suggested in form of a 
normalization of the Biot number [Bi]. The normalized Biot number [Binorm] enables a simple, monotonically 
increasing expression, used to determine the Fourier exponents and lag factors needed in the [Fo-exp] 
solution to the heat equation. The proposed method has a low prediction error and can be used as an 
alternative to iterative methods or the use of charts. Additionally, [Binorm] provides a rational investigation of 
the sensitivity of important parameters such as the thermal conductivity and the heat transfer coefficients [h].  

For the calculation of the thermal history during convective heating and cooling of solids, a solution is 
proposed that can also handle the initial heating/cooling period (Fo<0.2). In the construction of the new 
procedure the residual between a 1st term [Fo-exp] and the complete [Fo-exp] was modelled without 
introducing new parameters, except one experimental constant.  

The combined procedure of the determination of Fourier exponents and lag factors have been used in excel 
calculations for the calculation of finite bodies. The developed method is validated with numerical solutions 
with comparable accuracy in two representative cases; cooling of packaged cream cheese and a three step 
processing of ham. 

In the study, three investigations into the measurement methods for convective heat transfer coefficients [hc] 
have been conducted.  

The [hc] for separate boundaries have been measured for a cooling operation, where also the influence of a 
present headspace was investigated. The contribution of the phenomena of boiling in the overall [h] to 
suspended particles was investigated in a new experimental setup. Experiments conducted at a comparison 
level emphasize that process control of vessel cooking should also include boiling rate instead of only using 
temperature. 
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A study in fluid to particle heat transfer coefficients [hfp] have been conducted, where it is shown that 
potatoes can be used as a model food device for temperature measurements, in otherwise challenging 
environments. The method utilizes an observed gelatinization front in potatoes and inverse calculations of 
the thermal curve.  

Based on a literature search it has been experienced that the common rules acknowledged in all textbooks 
and papers on the subject have not been properly investigated in terms of induced uncertainties coupled with 
the common rules. This includes the use of the lumped capacitance method for [Bi<0.1], and the criteria that 
a 1st term approximation is adequate for [Fo>0.2].  

Whereas it was possible to trace the origin of the [Fo>0.2] criterion, the [Bi<0.1] criterion for the lumped 
capacitance method were unsuccessful. However, the error accompanied by this assumption is now 
documented and I believe it should be stated along with the criteria in future textbooks. The analysis shows 
that for elementary geometries the criteria [Fo>0.2], in worst case, generate calculation errors of up to 1.8%. 
The most troubling is that the worst case is for infinite slabs, which are used in the construction of general 
geometries, such as the shape of a box, increasing the induced error to almost 6%. The highest errors were 
observed at [Bi] around 2. For food manufacture [Bi] around 2 are extremely common.  

The thesis presents an analysis and description of the [Fo-exp] to the heat equation, and also presents 
solutions to common challenges when calculations are conducted in food manufacture. The study provides a 
method where traditional processes can be calculated with a high precision by using an expanded 1st term 
approximation to the series expansion. This is an advantageous in terms of application in the industry where 
the solution can be incorporated into spreadsheet solutions. This feature is important in conducting process 
planning and scheduling, handling changes in products and processes and it is valuable in debottlenecking 
operations.  

It is wished that the proposed work could help facilitate that the use of rational engineering calculations are 
performed in food manufacture. It is also hoped that the solutions provided and the insight to the [Fo-exp] 
will become a part of the engineering training for food science students. And most important, that the study 
will find application in the food industry. 
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Resumé 
 

Dette studie omhandler konvektiv varmetransmission under produktion af faste fødevarer, med det 
specifikke fokus at udvikle nye beregningsværktøjer, der kan indbygges i regnearksløsninger. I nogle 
områder indenfor ”Food Engineering”, såsom produktion af procesudstyr, er brugen af prædikative 
beregninger, modelleringsaktiviteter og computersimuleringer meget anvendte værktøjer i forbindelse med 
design og optimering af udstyr. I den fødevare producerende industri er procesberegninger dog sjældnere 
anvendt. Selvom beregninger på simple termiske processer ikke er en stor udfordring i forskningsverdenen er 
situationen noget anderledes i dele af fødevareindustrien. Udviklingen af nye værktøjer, der kan højne 
anvendelsen af procesberegninger er dog en akademisk opgave, da de omhyggeligt skal valideres og 
udbredelsen skal sikres i form af generelle løsningsmetoder. Mens målgruppen for det præsenterede studie 
som helhed er forskningsverdenen er målgruppen for de udviklede ligninger fødevareproduktion, 
fødevarekontrolmyndigheder og studerende på de fødevarevidenskabelige uddannelser. 

Formålet med studiet er at undersøge mulighederne for at udvikle nye analytiske metoder til beregning af 
opvarmning og nedkøling af faste fødevarer. Det primære mål er at muliggøre simplificering af Fourier´s 
serie ekspansion [Fo-exp] til Fourier’s ligning til varmetransport. Dette indeholder en non-iterativ metode til 
bestemmelse af nødvendige faktorer og eksponenter til [Fo-exp], og en udvidelse af en simplificeret 
rækkeudvikling til også at muliggøre beregninger i starten af varmeprocesser hvor Fourier-tallet [Fo] er lavt. 
Til denne undersøgelse er det nødvendigt med en tilbundsgående undersøgelse af oprindelsen af den 
analytiske løsning til Fourier’s ligning og de antagelser som danner grund for generelt accepterede antagelser 
for de simplificerede løsninger. 

En ny beskrivelse af den eksterne og interne modstand imod varmetransport er blevet formuleret i form af en 
normalisering af Biot-tallet [Bi]. Det normaliserede Biot-tal [Binorm] muliggør en non-iterativ bestemmelse af 
Fourier-eksponenter og lag-faktorer som er nødvendige til beregning af [Fo-exp]. Den foreslåede metode har 
stor præcision i bestemmelsen af disse faktorer og eksponenter. Derudover muliggør [Binorm] en mere 
gennemsigtig bestemmelse af følsomheden i de vigtigste input i [Fo-exp]; varmeovergangstallet [h] og den 
termiske konduktivitet [k]. 

En simplificeret løsning til beregninger af temperaturhistorien under opvarmning/nedkøling af fødevarer er 
blevet formuleret som også omfatter startforløbet, hvor [Fo] er lavt. Ligningerne er gældende ved konvektiv 
varmeovergang i situationer hvor varmetransport er det eneste primære fænomen. Udviklingen af de nye 
beregninger er muliggjort ved modellering af residualet imellem en første terms [Fo-exp] og den komplette 
løsning til [Fo-exp]. Beregningerne introducerer ingen nye variable, og kun en enkelt empirisk bestemt 
konstant. Løsningen kan bruges til beregninger af uendelige legemer og sammensatte legemer. 

Beregningsmetoden, som inkluderer både bestemmelsen af de nødvendige faktorer og eksponenter samt 
residual-modelleringen, er præsenteret og implementeret i regneark, hvor beregningen af to case studier er 
valideret med numerisk modellering. Det udviklede værktøj viste sammenlignelig præcision med en 
numerisk løsning for nedkøling af smøreost i en pakke med headspace (isolerende luftlag i toppen af 
pakken), og tretrins produktion af hamburgerryg indeholdende to opvarmningstrin og et nedkølingstrin. 

I studiet er også bestemmelse af varmeovergangstal[h] behandlet, da dette er en central udfordring i 
forbindelse med beregninger på termiske processer. Fokus har været på det konvektive varmeovergangstal 
[hc] og der er udviklet metoder indenfor tre områder:  



v 
 

Bestemmelse af [hc] under blæstkøling for individuelle grænseflader ved at isolere en modelfødevare 
konstrueret i aluminium. Under bestemmelsen blev også indflydelsen af et isolerende luftlag i emballerede 
fødevarer undersøgt. 

Bestemmelse af varmeovergangstal fra væsker til partiker [hfp] under grydekogning er blevet udviklet, hvor 
en observeret gelatineringsfront i kartofler blev udnyttet som en non-invasiv temperatur måling til 
bestemmelse af [hfp], i processer hvor det ikke ellers er muligt at måle temperaturen i partikler på normal vis. 

Derudover er det blevet undersøgt, hvilken indflydelse kogningsgraden har på varmeovergangen fra ikke 
newtonske væsker til partikler under grydekogning. Resultatet af undersøgelsen indikerer, at også 
kogningsgraden bør indføres som proceskontrolparameter i disse processer. 

På baggrund af gennemgang af litteratur er det ikke lykkedes at dokumentere oprindelsen af kriteriet for 
brugen af ”lumped capacitance” modellen for [Bi<0.1]. Dog har en matematisk analyse af rækkeudviklingen 
resulteret i en dokumentation af usikkerheden, når dette kriterium anvendes. Oprindelsen til kriteriet for at 
bruge simplificerede [Fo-exp] til beregning, hvor [Fo>0.2] er dokumenteret. En analyse af de implicerede 
usikkerheder viste, at en fejl på op til 1.8% ville fremkomme i værste tilfælde. Dog er det tankevækkende, at 
den maksimale fejl er for uendelige plader, som udnyttes i beregningerne af endelige simple legemer (såsom 
kasser), hvor fejlen i disse tilfælde vil være op til 6%. Dette er problematisk specielt fordi de største fejl 
observeres ved [Bi=2], som er yderst normalt under produktion af fødevarer. 

Denne afhandling dokumenterer en analyse og beskrivelse af [Fo-exp] til beregning af opvarmning og 
nedkøling af faste stoffer, og præsenterer en løsning til generelle problemstillinger under opvarmning og 
nedkøling af fødevarer. Den præsenterede løsning har en generel anvendelse og er i et format, der kan 
implementeres direkte i regnearksløsninger. Dette er en fordel i forbindelse med den industrielle anvendelse, 
specielt i form af udførelsen af rationel produktionsplanlægning, samt til at håndtere ændringer i proces eller 
produkt, og er et værdifuldt værktøj til identifikation af flaskehalse.  

Det er et håb, at denne afhandling kan være en assistance til, at flere beregninger udføres i forbindelse med 
produktion af fødevarer. Det er også et ønske, at indsigten fra dette studie og de udviklede ligninger kan 
blive en del af undervisningen i fødevareteknologi for studerende i fødevarevidenskab.  Og mest af alt er der 
ønske om at de udviklede løsninger vil finde anvendelse i fødevareindustrien. 
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Structure of the Thesis 
This Thesis consists of 9 chapters and 8 appendices. The appendices to this thesis consist of both scientific 
papers (appendix 1-5) and extra material (appendix 6-8). The thesis can be read chronologically without 
referring to the appendices, hence there are similar sections in the papers (appendix 1-5) and in the thesis.  A 
special note when reading this thesis is that chapter 7 (a synthesis chapter) which presents a thorough 
analysis of the Fourier series expansion, and thus also serves as central argumentation for deducing the 
simplified equation presented in chapter 3 and 4.  
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Nomenclature, definitions and abbreviations 
 

Biot number (Bi): Is the ratio between internal and external resistance to heat transfer and is the 
dimensionless description of a bodies thermal characteristics used in analytical calculation of non-stationary 
heat transfer 

Fourier number (Fo): Is the dimensionless time which describes the process duration. Fo is mathematically 
convenient to enable the analytical description of the series expansion in a simple format not dependent of 
the geometry and size. 

Dimensionless temperature difference (Ω): The dimensionless temperature difference is a normalization of 
the thermal response inside a body compared to the surrounding temperature. The normalization enables the 
mathematical representation of the series expansion to be independent of the temperatures involved in a 
given process. 

Fourier exponent (b, λ2): The Fourier exponent is a characteristic variable used in the series expansion 
which is dependent of the geometry, the size and the heat transfer coefficient in a given process lumped in 
the Biot number. For elementary geometries the Fourier exponents can be calculated based on given root 
equations.  

Lag factor (ax): The lag factor is a characteristic variable used in the series expansion, and is the intercept in 
a semi logarithmic regression of the dimensionless process scheme (Ω, Fo). Each term in the series 
expansion has a specific lag factor depending on the geometry and the given eigenvalue to the geometries 
given root function. 

Elementary geometry: 3 elementary geometries exists corresponding to the 3 simple coordinate systems; 
Cartesian coordinates used for infinite slabs, Cylindrical coordinates used for infinite cylinders and spherical 
coordinates used for spheres. 

General geometry: A general geometry is any geometry that can be expressed as cross-products of 
elementary geometries, where the most important are the finite box and the finite cylinder and infinite 
prisms. 

Volume to Area ratio (V/A): The volume of any geometry divided by its corresponding surface area will in 
all cases correspond to the average distance from the surface to the centre of the geometry. Thus in some 
situations it is beneficial to use V/A for presenting the characteristic dimension 

Heat transfer coefficient (h): The heat transfer coefficient is the rate of energy [J] transferred pr. [m2] pr. 
temperature difference [K]. Several types of heat transfer can be observed in processing, but in this thesis 
only convective heat transfer is covered. Convective heat transfer is the transfer of energy between a moving 
fluid (gas or liquid) and a solid 

 

  



6 
 

 

Symbol Description Unit 

A Surface area [m2] 

ai Lag factor used in the Fourier series expansion, general form [-] 

ac Lag factor used for centre temperature in the series expansion [-] 

ax/l Lag factor used for positional temperatures in the series expansion [-] 

bi The Fourier exponent used in the Fourier series expansion [-] 

Bi Biot number [-] 

Binorm Normalized Biot number [-] 

C Empirical constant used in chapter 4 [-] 

CVRMSD Coefficient Variation of the Root Mean Squared Difference  [-] 

cp Specific heat capacity [J/kg.K] 

Fo Fourier number [-] 

h Heat transfer coefficient [W/m2K] 

H Enthalpy [J/kg] 

k Thermal conductivity [W/m.K] 

K Consistency index in the power-law model [Pa.sN] 

L Length (characteristic dimension) ½ height or radius [m] 

m mass [kg] 

n Number of dimensions  [-] 

N Power law exponent [-] 

R Radius (characteristic dimension) [m] 

RMSE Root mean squared difference [-] 

t Time  [s] 

T temperature [°C] 

Tgel Gelatinization temperature of potatoes [°C] 

V/A Volume to surface area ratio [m] 
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V Volume [m3] 

x/R Relative characteristic dimension relative to the geometric centre [-] 

Greeks   

αslope Slope of regression curve [depends] 

α Thermal diffusivity [W/m.K] 

β Intercept of regression curves [depends] 

ε Residual (ΔΩ) [-] 

λ Eigenvalues for given root functions [-] 

ρ Density [kg/m3] 

Ω Dimensionless temperature difference [-] 

Subscripts   

aluminium   

cyl Infinite Cylinder in cylindrical coordinates  

evap evaporation  

fp Fluid-to-particle  

slab Slab infinite slab in Cartesian coordinates  

sphere Sphere in spherical coordinates  

c Centre  

m volume average temperature  

x/R Normalized point distance 1=surface 0=centre  

R radius  

norm Normalised  
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1. Introduction 
 

Heating and cooling of solid foods are central operations in food manufacture. These processes are often 
dominated by non-stationary heat transfer. This thesis is focus on processes where convective non-stationary 
heat transfer dominates. Examples of such processes are: 

a) Cooling of packaged foods (for example ready-made meals, processed meat and cheese)  
b) Sterilization of canned foods (solid or high-viscous liquid foods) 
c) Heating of particles in a liquid food (soups and sauces) 
d) Low temperature heating <100°C (for example processing of ham, sous-vide, blanching) 

The overall goal of this thesis is to develop analytical engineering equations that can be implemented directly 
into the routines in food manufacturing. This, to increase productivity in food manufacture through a better 
quantitative understanding of the thermal processes.  

 

1.1 Optimization and calculation of thermal processes in food manufacture 
 

A key driver in industrial production is a continuous optimization of processes to improve productivity; in 
terms of optimal use of raw materials, workforce, machinery and energy etc. For the food industry, 
additional focus is on food safety and sensory quality products. Thermal processes play a key role in assuring 
food safety, and the sensory quality is also often critically influenced by the thermal treatment. Therefore, 
quantitative understanding of thermal processes is a cornerstone in striving for improved productivity 
without compromising on the demands for food safety and sensory quality.  

To ensure an environment where continuous optimization of processes can flourish, it is important that 
knowledge on processes and products are documented and embedded in the companies. This was described 
more than a century ago in Frederick Winslow Taylor’s classic Scientific Management (1911) which initiated 
an industrial culture of manufacturing goods and conducting operational tasks in a manner inspired by 
science and not only by traditional practices. The approach by Winslow Taylor was a systematic 
documentation of systems and use of best practice in order to optimize tasks and operations.  

Traditionally, process changes in the food industry are performed by trial and error investigations; the 
changes can be in form of changes in recipes, introduction of new products or unit operations, or a general 
optimization of the process lines. Many of the operational specifications are thus based on experience and 
tacit knowledge among workforce, making the company knowledge fragile and less capable of process 
transition when changes in the production environment occur. Like other manufacturing industries, the food 
industry is therefore facing a need to change the procedures from trial and error based decisions into more 
rational and knowledge based documentation. The calculations performed in food manufacture needs 
simplicity for fast evaluation. Simplicity is an advantage because a crude answer before deadline is infinitely 
better than a detailed accurate one after the deadline (Chwif and Baretto 2000).  

A more rational and knowledge based approach to food manufacture facilitate continuous optimization and 
allow knowledge to be anchored in the organizations and not bound to specific employees. Predictive 
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calculations and modelling of processes plays an important role for this change in production culture to take 
place.  

The literature review in chapter 2, shows that change in manufacturing philosophy from empiricism to 
predictive calculations was implemented for heat sterilization in the canning industry already in the first 
decades of the 20th century. In a wider context, however, predictive calculations of thermal processes appear 
not to be used to the extent they deserve, probably because the mathematical-physical models for many 
predictive calculations of many thermal processes are rather complex. This statement, which will be 
elaborated on later, has motivated the present thesis and its title, Formulation and validation of applied 
engineering equations for the calculation of heat transfer processes in the food industry.    

 

1.1.2 The role of modelling and predictive calculations 
 

Modelling in the context of this work, is defined as the development of a mathematical-physical process 
model that can mimic the process settings, the product characteristics and subsequently solved numerically, 
so that the process can be reproduced as a simulation on a computer. Modelling is thus a way to conduct 
experiments on a computer to achieve knowledge of the physical phenomena in the products during 
processing. Modelling serves as a platform for deeper understanding in the same way as traditional 
experiments. Furthermore, modelling activities provide a setup where responses to a process impact can be 
investigated in situations where it is otherwise difficult to conduct experimental measurements (such as 
assessing volume average temperature or temperature gradients during a thermal process). Additionally, 
mathematical-physical models are powerful tools for validation of more simple predictive calculations. 

Mathematical-physical models are based on an understanding and description of the physics of the process. 
Ideally, the model is based on combining fundamental physical laws, but in many situations, the modelling 
must also incorporate one or more empirical parameters to obtain a realistic prediction of the process. This is 
characteristic of many predictive engineering models, which are formulated as analytical equations.  

A typical predictive engineering equation which immediately can be solved analytically is the well-known 
Nusselt relation describing the convective heat transfer for fluid flow through a pipe. For turbulent flow of 
Newtonian liquids it is usually presented as the following empirical equation (Singh and Heldman 2014: p. 
309): 

ݑܰ ൌ 0.023 ∙ ܴ݁଴.଼ ∙ ଴.ଷଷݎܲ ∙ ൬
௕ߤ
௪ߤ
൰
଴.ଵସ

 

Re is the Reynolds number and Pr is the Prandtl number: they are both calculated based on measured or 
assumed inputs, namely viscosity, thermo-physical properties, fluid velocity and dimensions of the pipe. μb 
and μw are the viscosity in the bulk liquid and the viscosity at the wall of the pipe respectively – for low-
viscous liquids like water, this viscosity correction term is often omitted, and other versions of the above 
equation are also found (Mills 1995: pp. 269-272). The factor 0.023 and the two exponents results from 
empirical investigations of fluid flow under controlled circumstances (Singh and Heldman 2014: pp. 306-
307).The Nusselt relation and a multitude of other predictive engineering equations are fundamental in 
textbooks in the fields of chemical, mechanical, and food engineering. 
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Where the Nusselt relation is empirically determined the Fourier series expansion solution in non-stationary 
heat transfer is an exact theoretically derived equation (theory section 1.2). The Fourier series exapnsion 
needs an empirical input in form of the thermo-physical properties and the convective heat transfer 
coefficient associated with the Biot number and describes an ideal geometry. In context of this thesis a 
simplified solution that approximates the series expansion solution is also considered an engineering 
equation if it includes an empirically determined constant or parameter.  

The central equation in this thesis is the Fourier heat equation. It is a second order differential equation, 
which is presented and discussed in section 1.2. The equation can be solved in two principally different 
ways:  

1. Numerically, which is very versatile because a broad number of phenomena can be included in the 
calculation and the solution is not limited to for example specific elementary geometries. Numerical 
solutions are often very specific to the modelled interactions between process and product. Numerical 
solutions require dedicated software or programming and for more complex problems also considerable 
computing power. The use of numerical solutions to the heat equation is discussed more in section 2.1. 

2. Analytically, by a series expansion which, however, is only valid under certain ideal conditions, such as 
specific elementary geometries. To the extent that the real process conditions can be simplified without 
losing too much of the connection to reality, analytical solutions are much less demanding on computing 
power and dedicated programming.  For rapid, predictive calculations analytical solutions are much to be 
preferred for reasons expounded on below. A specific advantage of the analytical solutions is the price of 
the needed software. 

It should be stressed that both numerical and analytical solutions to the heat equation require a thorough 
physical understanding of phenomena occurring during processing in order to set the correct conditions for 
the calculations. This statement may appear self-evident, but it is too important to be neglected. If the 
engineer has not investigated which physics are involved in the investigated process, the calculations could 
be useless. Because experimental validation sometimes have significant variations in measured parameters 
and responses it can even be difficult to assess the performance of the calculations and whether the correct 
frame for the calculations have been set. Generally, models and predictions are used to predict responses for 
new inputs. Only a calculation based on the correct understanding of the phenomena can be used for this. A 
model or a calculation that is not based on correct physical understanding is basically just data fitting. 

Independent of the solution method used to the heat equation, the input parameters in form of thermo-
physical properties and boundary conditions needs to be adequately assessed cf. section 1.3. A perfect model 
is a perfect correlation between input and output. If the input is uncertain it is a perfect correlation to an 
uncertain output. The sensitivity of the input parameters to the model determines how affected the output is 
by uncertainties in the input parameters. This is discussed in chapter 7. 

Although the establishment of a model for a numerical solution to the heat equation may result in the best 
predictive power, it is not in all situations the most favourable strategy. This is mainly because the generation 
of such a model and its solution is knowledge intensive and a time consuming task, and many food producers 
do not have the required software to either conduct the modelling or acquire the knowledge generated in 
academically produced models. Thus, in the daily routines at the food manufacturers it is often an advantage 
to use more simple predictive calculations. The operational tasks can be crude calculation of process times 
and resulting temperatures. Crude calculations are valuable tools in e.g; implementation of new products or 
processes, conduction of process planning and in de-bottlenecking operations to optimize the scheduling of a 
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process line. Especially, the possibility of incorporating the equations into simple spreadsheet programs will 
serve as an advantage for food manufacturers lacking more advanced dedicated software. Though the use of 
simple analytical tools are most important in food manufacture, the development of the predictive calculation 
methods is an academic task. This is important because simple tools need to be thoroughly theoretically 
validated in order to ensure a wide application. An understanding of the physical phenomena dominating the 
calculations has to be established to ensure proper use of the calculations. If the equations are not based on a 
physical understanding and instead based on a high degree of data fitting, the models could perform poorly 
in terms of predictions outside the fitted area. Subsequently all models and equations also need industrial 
validation in context of intended use.  

The majority of recent studies on the calculation of thermal processes are based on numerical solutions and a 
huge variety of models are constructed and reported in academic journals. Unfortunately, as stated above, 
many food producers do not have in-house qualifications and/or time to conduct or make use of numerical 
modelling. In addition, the costs for conducting advanced numerical simulations are high. 

There is therefore still a need for analytical calculations that can be utilized with existing software in order to 
ensure a broad implementation at the food manufacturers. The motivation of this study is to derive such 
equations, which are user friendly and supply an adequate precision for utilization at the manufacturers. 

In the production of food, a huge variety of product characteristics and unit operations is present within even 
a single production site. If the company has intentions of acquiring numerical modelling knowledge through 
academic collaboration, it is an advantage if the company can perform crude calculations on their unit 
operations and products to select the most suited process to ensure value for the money spend. Then the 
modelling activities can be focused towards processes and products where a simple calculation does not 
suffice. 

The assumption of this work is that implementing simpler equations into the routine at food manufacturers 
ease the later implementation of more advanced numerical methods, and in general promote a culture where 
production management is conducted in more scientific way.  
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1.2 An introduction to the theory of analytical solutions for non-stationary heat 
transfer in food processing 

 

The following section is as an introduction to non-stationary heat transfer giving the general theoretical 
background for the later chapters in this thesis. In this introductory theory section, equations that are 
specifically referred to later in the thesis are numbered in brackets, while equations of informational 
character and not directly referred to later are not numbered. 

The evaluation and calculation of heat transfer processes is an old discipline that origins from the work of 
Isaac Newton with the law of cooling. This law states that the rate of cooling of an object is opposite 
proportional to the mass of the object and the heat capacity of the object, with the driving force being the 
temperature difference between the exposed surface area and the cooling media: 

݉ ∙ ܿ௣ ∙ ሺ ௧ܶ െ ଴ܶሻ ൌ ܷ ∙ ܣ ∙ ሺ ௦ܶ െ ௧ܶሻ ∙  ݐ

Where integration over time yields what is called the lumped capacitance equation 

ሺ ೞ்ି ೟்ሻ

ሺ ೞ்ି బ்ሻ
ൌ ݁

ି൬
ೆ∙ಲ
೘∙೎೛

൰∙௧
      [1.1]  

The lumped capacitance equation evaluates the temperature response inside a body where the internal 
resistance to heat transfer can be neglected (Biot number <0.1), yielding uniformity in temperature 
distribution. Situations where the internal resistance to heat transfer cannot be neglected are characterized by 
the Biot number: 

݅ܤ ൌ
௛∙ோ

௞
       [1.2] 

h is the heat transfer coefficient [W/m2K], R is the characteristic dimension [m] (half thickness for infinite 
slabs, and the radius for infinite cylinders and spheres), k is the thermal conductivity [W/m.K]. The Biot 
number describes the ratio between the external resistance to heat transfer and the internal resistance to heat 
transfer.   

The general equation describing the temperature response in solids subjected to convective heat transfer is 
derived from Fourier’s law and the conservation of energy (Fourier 1822). The Fourier law states that the 
flow rate of energy through a surface is proportional to the negative temperature gradient across the surface: 

ݍ ൌ െ݇∆ܶ 

Based on Fourier´s law and the conservation of energy the heat equation (here presented for 3 dimensions) 
becomes: 

ܶߜ
ݐߜ

ൌ ߙ ቆ
ଶܶߜ
ଶݔߜ

൅
ଶܶߜ
ଶݕߜ

൅
ଶܶߜ
ଶݖߜ

ቇ 

Where α, is the thermal diffusivity [m2/s] determining the rate that heat is transported through a solid body. 
The thermal diffusivity is calculated from the thermo-physical properties of the solid: 
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ߙ ൌ
݇

ߩ ∙ ܿ௣
 

Where k is the thermal conductivity [W/m.K], ρ is the density [kg/m3] and cp is the specific heat capacity 
[J/kg.K]. 

In pure heat transfer processes the Fourier equation can be solved by a series expansion also initially 
proposed by Fourier (1822) and thoroughly described by Carslaw and Jaeger (1959): 

Ω ൌ ቀ ୘౩ି୘
୘౩ି୘బ

ቁ ൌ ∑ ܽ௜݁ି௕೔∙ி௢
ஶ
௜ 	      [1.3] 

Where Ω, is the dimensionless temperature difference [-] determined by the surrounding temperature Ts, the 
initial body temperature T0 and the present temperature T, because the temperatures are measured in 
differences all units of temperature has the same equation, at time t [s]. Fo is the Fourier number [-] 
describing the dimensionless time: 

݋ܨ ൌ
ఈ

ோమ
∙  [1.4]        ݐ

In non-stationary heat transfer the series expansion is conveniently expressed by its 1st term approximation 
when the Fourier number is above a certain limit. As discussed later in chapter 7, this limit is traditionally set 
at Fo>0.2 based on the pioneering work by Heissler (1947). The 1st term approximation is presented as: 

 Ω ൌ ቀ ୘౩ି୘
୘౩ି୘బ

ቁ ൌ ܽଵ ∙ ݁െܾ1∙݋ܨ	[1.5]       

 

Where a1 is the first lag factor and b1 is the Fourier exponent, calculated from root functions (table 1.1.) 
given for the 3 elementary geometries (infinite slab, infinite cylinder and sphere). Below in figure 1.1 the 
behaviour of the 1st term approximation (equation 1.5) is presented in comparison to the entire expansion 
(equation 1.3). The figure presents an infinite cylinder with a Biot number of 10 as an example.  

 

Figure 1.1 Graphical presentations of the 1st term approximation of the Fourier series expansion and explanation of the 1st 
lag factor and Fourier exponent. 
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From the presentation in figure 1.1 it is seen that the 1st term approximation is converging rapidly towards 
the entire series expansion solution for Fourier number above 0.2. In the graph to the right the lag factor a1 is 
indicated as the crossing of the dimensionless temperature (Ω) axis in a semi logarithmic plot vs the Fourier 
number. The Fourier exponent (b, λ2) is the slope of the linearized 1st term approximation. 

The inputs in equation 1.3 are the Fourier number (Fo), the lag factors ai and the Fourier exponents (bi, λi
2). 

For the first term approximation only the 1st lag factor and 1st Fourier exponent are needed.  

The Fourier exponent bi in equation 1.3 is related to the eigenvalue λi to the respective root functions: 

ܾ௜ ൌ ௜ߣ
ଶ        [1.6] 

The eigenvalues are calculated by iteration from the root functions in table 1.1 based on the Biot number. 
The equations for the derived lag factors ai are presented along for the centre temperature ac the volume 
average temperature am and positional temperatures a(x/R) within the body. The equations presented in table 
1.1 are for the three elementary geometries (infinite slab, infinite cylinder and sphere). 

Table 1.1 Mathematical presentation of the respective root function for the ideal geometries, lag factors for centre 
temperatures (ac), the positional lag factors (ax/R) and the lag factors for mean temperatures (am),  

Geometry Root function λi ac  ax/R am 

Inf. Plate ݅ܤ ൌ ݅ߣ݊݅ݏ௜ 2ߣ݊ܽݐ௜ߣ
݅ߣ ൅ ݅ߣݏ݋ܿ݅ߣ݊݅ݏ

 ܽܿ ∙ cos ቀ݅ߣ
ݔ

ܮ
ቁ ܽܿ ∙

ሻ݅ߣሺ݊݅ݏ

݅ߣ
 

Inf. Cylinder 
݅ܤ ൌ

௜ሻߣଵሺܬ௜ߣ
௜ሻߣ଴ሺܬ

 
1ሻߣ1ሺܬ2

0ܬሺ݅ߣ
2ሺ݅ߣሻ ൅ 1ܬ

2ሺ݅ߣሻሻ
 ܽܿ ∙ 0ܬ ቀ݅ߣ

ݔ

ܴ
ቁ ܽܿ ∙ 2

݅ߣ1ܬ
݅ߣ

 

 

Sphere 

 

݅ܤ ൌ 1 െ  ௜ߣݐ݋௜ܿߣ

 

2ሺ݅ߣ݊݅ݏ െ ሻ݅ߣݏ݋ܿ݅ߣ

݅ߣ െ ݅ߣݏ݋ܿ݅ߣ݊݅ݏ
 

ܽܿ ∙
݊݅ݏ ቂ݅ߣ ቀ

ݔ
ܴቁቃ

݅ߣ ቀ
ݔ
ܴቁ

 
ܽܿ ∙ 3

ሻ݅ߣሺ݊݅ݏ െ ሻ݅ߣሺݏ݋ܿ݅ߣ

݅ߣ
3  

J0 and J1 is the Bessel function of the 1st kind with 0th and 1st order respectively. x/R is the relative distance from the centre 

The behaviour of the complete series expansion (equation 1.3) in non-dimensional form for each of the 3 
elementary geometries are presented in figure 1.2.  
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Figure 1.2 The non-dimensional temperature history in the center of the three elementary geometries for two selected Biot 
numbers 

It is clear that the sphere exchanges heat with its surroundings faster than the infinite cylinder and the infinite 
slab for equal Biot numbers, where also the process time is equal for the geometries at equal Fo-numbers 
(figure 1.2). This is because the sphere has the largest surface are to volume ratio. For low Fourier numbers 
(Fo<0.05) Ω ≈ 1, indicating that the thermal response in the centre is not yet detectable. 

The series expansion is an exact analytical solution to the heat equation for convective non-stationary heat 
transfer if all the series are considered under the given assumptions: 

1. No phase change or mass transfer is occurring 
2. No heat generation is considered 
3. The initial conditions are uniform for both temperature and thermos-physical properties 
4. The thermos-physical properties are assumed constant during processing 
5. The geometry is either elementary or can be represented as cross products of elementary geometries 
6. No changes in geometry  

For applications in bodies that cannot be presented as an infinite slab, an infinite cylinder or a sphere 
Newman (1936) presented a method for the cross products of these elementary geometries. The cross 
products are an infinite prism (slab x slab), a box (slab x slab x slab) and a can (slab x cylinder) which 
expanded the application area of the series expansion to more common geometries. The procedure is 
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presented in equation 1.7, exemplified by the shape of a box. The cross product geometries are shown in 
figure 1.3 

 

௕௢௫ߗ ൌ Ω௟௘௡௚௧௛ ∙ Ω௪௜ௗ௧௛ ∙ Ω௛௘௜௚௛௧       

Ω௕௢௫ ൌ ቂ∑ ܽ௜ ∙ ݁ሺିఒ೔
మ∙ி௢ሻஶ

௜ୀଵ ቃ
௟௘௡௚௧௛

∙ ቂ∑ ܽ௜ ∙ ݁ሺିఒ೔
మ∙ி௢ሻஶ

௜ୀଵ ቃ
௪௜ௗ௧௛

∙ ቂ∑ ܽ௜ ∙ ݁ሺିఒ೔
మ∙ி௢ሻஶ

௜ୀଵ ቃ
௛௘௜௚௛௧

  [1.7] 

 

 

Figure 1.3 The general geometries generated by cross products of the elementary geometries, by courtesy of Jens Adler-
Nissen (2014). 

For crude calculations of the thermal history it is not practical to use the entire expansion. When the process 
time is sufficiently large (Fo>0.2) (Heissler 1947, Mills 1995, Singh and Heldman 2013) applying only the 
1st term induces only small errors in the calculations (a further investigation in the prediction errors at Fo=0.2 
is presented in chapter 7). Using the 1st term approximation is not only favourable in terms of simplicity in 
the calculation; it has furthermore the advantage that it can be used in the inverse form for calculating the 
time to reach a specific temperature. If two or more terms are used, it is only possible to calculate the 
temperature at a specific time input without iteration. Thus to reach a specific temperature it is necessary to 
produce a time-temperature curve and then find the time to reach the target temperature from the curve.  

Heissler (1947) developed graphs for determining the temperature response at Fourier numbers below 0.2 
which are still used today (Mills 1995, Singh and Heldman 2013). The graphs are a valuable fast tool for the 
evaluation but are not convenient for implementation into programming. Furthermore, the risk of misreading 



17 
 

is a problem. Pflug et.al (1965) published an approach where the Fourier exponents and lag factors for the 1st 
term approximation can be determined graphically. The procedure from Pflug et.al (1965) is still used today 
for crude calculations, and is a part of the curricula in food engineering education (Singh and Heldman pp. 
377-380). 

 

1.3 Thermo-physical properties and heat transfer coefficients 
 

The series expansion solution (equation 1.3) to the heat equation is essentially exact under given 
assumptions. The input parameters in the equations are coupled with uncertainties. In addition to the 
definition of the geometry, the input parameters into the series expansion and to a numerical solution are the 
thermo physical properties of the food and the convective heat transfer coefficient(s) associated with the 
process. In all cases in this thesis the initial conditions are assumed uniform in terms of thermo-physical 
properties and temperature, which is essential for the applicability of the series expansion solution. 

 

Thermo-physical properties 

The relevant thermo-physical properties, in situations where only heat transfer is considered, are the density 
ρ, the thermal conductivity k and the heat capacity cp. The thermo-physical properties can be obtained from 
literature for specific food items. Determination of the thermo-physical properties from knowledge of the 
composition of the food can also be done with reasonable accuracy (Nesvadba 2014; Singh and Heldman 
2014: 275-282). For the temperature dependence of the properties the task is a bit more difficult but the 
standard equations based on Choi and Okos (1986) can be used. It should be noted that the procedure is 
coupled with some level of uncertainty as in this work (Choi and Okos 1986) the temperature dependence 
was determined experimentally for liquids and might not be directly applicable for the calculation of heat 
transfer in solids. Because solid foods (except for dried products) have high water content the use of Choi 
and Okos´s procedure is widely accepted. The incorporation of the temperature dependence of the properties 
is not directly applicable in an analytical solution based on the series expansion, which is why the utilized 
properties are often assumed constant at the value corresponding to the averaged product temperature in the 
duration of the process. For this thesis the procedure of using constant averaged thermo physical properties is 
used in all situations as this is a prerequisite for the series expansion solution.  

 

Calculation of thermo-physical properties 

For a given homogeneous product, the thermo physical properties can be calculated based on the content of 
macronutrients (Carbohydrates, lipids, protein, fibre, ash and water). The content of macronutrients can be 
evaluated based on the recipe. The content of macronutrients and general composition can be found in 
databases e.g. the National Food Institute: www.foodcomp.com. The formulas for calculating the thermo-
physical properties are: 

The density: 
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heat capacity: 
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thermal conductivity: 
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ܿ௣,௣௥௢ௗ௨௖௧
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			ሾ
ܹ

݉ ∙ ܭ
ሿ 

 

Boundary conditions (driving temperature difference and heat transfer coefficients) 

For convective heat transfer the energy transferred between the product and the surrounding medium 
(typically water or air) is determined by the heat transfer coefficient and the driving temperature difference 
between the surroundings and the surface of the object. In numerical solutions the driving temperature 
difference and the heat transfer coefficient are combined in the flux equations defining the boundary 
conditions for the calculation. In the analytical solutions to the heat equation using the Fourier series 
expansion they are handled individually. 

For the surrounding temperature it is a fact that both small and large fluctuations will happen simply due to 
the nature of how processes are controlled, this is especially evident when air serves as the media because its 
thermal buffer is low compared to water. Using the series expansion solution it is necessary to assume  a 
constant surrounding temperature equal to the process average value. 

The heat transfer coefficient, h, is defined as the energy [W] transferred pr. surface area [m2] of the boundary 
between the solid and the liquid pr. temperature difference [K] between the solid and the liquid, have the 
unit: [W/m2K]. 

A more detailed description of convective heat transfer coefficients is presented in chapter 6, where also 
determination methods and uncertainties in the determinations are discussed. 
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1.4 Research question 
 

As discussed above, the overall aim of this project is to deduce new equations for easier calculations of heat 
transfer in food manufacture. The format of the equations should allow for implementation into simple 
calculation tools and guidelines, preferably the equations could be implemented directly into spreadsheet 
solutions. 

This thesis deals with calculations at a unit operation level, and specifically focuses on thermal processes 
where transient heat conduction is dominant, and where mass transfer and phase transition are negligible. In 
this context the Fourier series expansion solution to the heat equation introduced in the theory section 1.2 is 
central.  

The overall research question for this thesis is: 

 Is it possible to deduce and validate new engineering equations in heat transfer for food 
processing, which are user-friendly and provide adequate precision? 

In the next chapter the overall research question will be analysed in terms of a literature review of the subject 
and operationalized into sub-sections describing the tasks needed in order to fully answer the research 
question.  
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1.5 Overview of the thesis structure 
 

The structure of the thesis is schematically presented in figure 1.4. The general introduction and literature 
review is followed by an operationalization of the research question in chapter 2. A simplification track 
(green) and an experimental section on heat transfer coefficients (orange) serves as the fundament for the 
synthesis of a proper work frame for the series expansion and the discussion of the application of the 
developed predictive calculations. 

 

 
  

  

 

     

 

 

 

2.1-2.4 Literature 
review  

1.Introduction 
Background, theory 
Research question 
 

2.5 
Operationalization of 
the study 

6. Determination 
of heat transfer 
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3. Non-iterative 
determination of 
Fourier exponents

4. Simplified 
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Fourier numbers

5. Numerical 
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new approach (3+4)

8. Discussion 
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perspectives

7. Uncertainties in the established Fo-Bi workframe and 
synthesis of suited limits to ensure continuity in the use of 
the series expansion  

Figure 1.4 Schematic overview of the thesis structure, and the division into chapters 
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2. Literature review and operationalization of the research question 
 

This section reviews the research related to the research question presented in chapter 1.4. In this context the 
review is primarily focusing on studies dealing with simplification of the Fourier series expansion and the 
application of the series expansion for non-stationary heat transfer in food processing. The literature search 
has been conducted in research databases through google scholar and DTU-Library, and by browsing 
through scientific journals deemed to be central to the field: Journal of Food Engineering, Journal of Food 
Science and Technology, Journal of Food Process Engineering, Applied Thermal Engineering, Food 
Engineering Reviews, International Journal of Heat Transfer, Journal of Heat and Mass Transfer. Various 
combinations of typical search words have been: food, engineering, heat transfer, transient conduction, non-
stationary heat transfer, heat equation, series expansion, analytical solutions, calculation, application, unit 
operation, thermal processes, heating, cooling. 

The review covers; determination and application of analytical solutions to the heat equation and briefly 
introduce how adaptations to the series expansion have been utilized in the calculations of food processes.  

For a part of the review a historical backtracking was needed for accessing important pioneering studies, 
such as the work from (Fourier (1822), Ball (1923), Pflug et al. (1965), Newman (1936), Gurnay and Lurie 
(1923) and Heissler (1947)). This was also needed to investigate where common guidelines originate for 
example the limits for using the lumped capacitance model and the 1st term approximation to the series 
expansion.  

Because many studies related to analytical solutions to the heat equation and simplification of the series 
expansion are old and often scarcely cited, a broad database search was also necessary for acquiring the 
literature. 

The primary input in the equations is the energy flux governed by the heat transfer coefficient. Quantitative 
knowledge on heat transfer coefficients are crucial for all calculations of heat transfer into solids and a 
prerequisite for predictive calculations on thermal processes. Methods for determination of heat transfer 
coefficients are also reviewed in this chapter. 
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2.1 Review 
 

This thesis is focusing on solutions to the heat equation. Basically two types of solutions exist: numerical 
solutions and analytical solutions. In addition, also simplified engineering equations and graphical solutions 
are evaluated in this review. The numerical solutions are introduced briefly, because in this project numerical 
solutions are used for validation of generated equations; however, it is outside the scope of the thesis to 
review all the literature dealing with numerical solutions of heat transfer in solid foods. In contrast, analytical 
solutions to the heat equation are reviewed thoroughly as these solutions constitute the basis for the 
construction of the simplifications and applied engineering equations.  

 

2.1.2 Historical background 
 
The historical background of the Fourier equation is condensed from Narasimhan (1999) and a translated 
English version of Fourier´s work “Analytical theory of heat” (Freeman; 1878). In 1822 Joseph Fourier 
presented his monograph “Theorié analytique de la chaleur” which still stands as the founding reference 
work for the mathematical description of heat transfer, introducing the heat equation. In the same monograph 
Fourier also supported an analytical solution to the heat equation based on trigonometric series. In 1804, a 
few years earlier than Fourier, Jean Baptiste Biot had also addressed the problem of heat conduction, but he 
was unsuccessful in including convective heat transfer in his work. Fourier read the work from Biot and 
started to formulate a solution to this challenge and submitted his work “Théorie de la propagation de la 
chaleur dans les solides” in 1807. Initially, Fourier´s work was rejected publication and it was not accepted 
for publication before 1822 (Narasimhan; 1999).  
 
For application of the series expansion solution, graphical solutions were presented in the early-mid 20th 
century. Amongst others, Gurnay and Lurie (1923) presented graphical solutions for the distributions of 
temperature in heating and cooling of solids known as the Gurney Lurie diagrams. They exemplify how 
charts can be used for the evaluation of temperature history for few selected Biot numbers ranging from 0-2 
for the elementary geometries. In 1947 Heissler published sets of graphical solutions for a large range of Biot 
numbers and Fourier numbers (Fo>0.2) that are still presented in present textbooks (Singh and Heldman 
2013, Mills 1995) for easy calculation of the 1st term approximation. The charts presented by Heissler are 
presented in figure 2.1 directly copied from his original article.  
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Figure 2.1 Example of a Heissler chart, from his original work for the calculation of thermal response in a semi-infinite plate 
for Fo numbers above 0.2. Heissler (1947), line numbering referring to the reciprocal Biot number. 

It is also in the work from Heissler (1947) that the limit (Fo>0.2) for the use of the 1st term approximation 
originates. In addition to these charts Heissler also introduced charts for determining thermal response in the 
low Fourier region (Fo<0.2) in the same work from 1947. The charts for low Fourier numbers are more 
difficult to read and interpret, as can be seen in figure 2.2 and are seldom presented in modern textbooks. 
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Figure 2.2 Example of charts produced by Heissler for the determination of centre temperature and mid-plane temperature 
at Fourier numbers below 0.2 (Heissler 1947) 

Similar charts can be viewed in e.g. (Mills 1995 pp.1210-1216) for selected Biot numbers. These are easier 
to interpret. 
 
Even though the graphical methods supplied by e.g. Gurnay and Lurie (1923) and Heissler (1947) have 
found great use in industrial production they only cover bodies that can be approximately described by one 
of the elementary geometries (infinite slab, infinite cylinder and sphere). The analytical calculation of finite 
bodies (general geometries) was presented by Newman (1936) and is briefly introduced in chapter 1. This 
enabled the analytical calculation for geometries that are more presentative for food processing e.g. the 
sterilization of cans cf. chapter 1.2. 
 
A cornerstone in the analytical calculation of heating and cooling of solids is presented by Carslaw and 
Jaeger (1959) where different solution methods for the heat equation is deduced from Fourier´s work and 
published in the extensive work “Conduction of Heat in Solids” where chart-based solutions, analytical 
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derivations of the Fourier equation with several terms and even analytical handling of semi-infinite bodies 
are presented. In this work also the Fourier exponents and lag factors are presented as tabulated values for 
several terms. Whereas the lag factors and exponents can be acquired in this extensive work for several terms 
in the series expansion, the values for the 1st term are presented in most textbooks covering heat transfer in 
solids (Mills 1995, Singh and Heldman 2013). 
 

In many situations it is reasonable to assume that a 1st term approximation to the series expansion is adequate 
(Fo>0.2) (Mills (1995) p. 152). It was thus worthy to determine the 1st Fourier exponent and 1st lag factor in 
a simple procedure. (Pflug et al. 1965) presented a graphical solution to determine these two important 
variables as a function of the Biot number. Their solution is an alternative to the use of the Heissler charts 
presented in figure 2.1. The use of the 1st term approximation under the condition (Fo>0.2) from Heissler 
(1947), is in some cases problematic and the uncertainties are not thoroughly presented in literature or 
textbooks. This issue is analysed in chapter 7. 

 

2.1.3 The Fourier expansion applied in food engineering 
 

Ball (1923) was apparently the first to apply the series expansion to food engineering where the sterilization 
curves of canned foods were investigated to ensure food safety. Ball used two factors to describe the heat 
equation. He introduced the heating rate as 1/f, where f is the thermal decimation in a log10 plot of the 
temperature as a function of the time, describing the heating rate in the exponential phase (basically this is 
where the 1st term approximation applies, as later determined by Heissler (1947) to be Fo>0.2). Ball also 
introduced a lag factor he called j representing the intercept of the equation (in this thesis this is denoted as a, 
according to the nomenclature of Mills (1995)). The relation between the Fourier exponent b and the heating 
rate f is: 

ܾଵ, ଵߣ
ଶ ൌ
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݂

∙
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Where R is the characteristic dimension and α is the thermal diffusivity. The procedure from Ball (1923) is 
reproduced in (Singh and Heldman 2013 p. 378) and presented in figure 2.3. 
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The investigation from Ball is interesting because it was conducted on a finite geometry (a cylindrical can) 
before the analytical calculation of finite geometries was established by Newman in 1936. The work by Ball 
was based on a 1st order approximation of the sterilization curve based on experimental observations. 

The Fourier series expansion has since then been widely used in classical food engineering to evaluate 
thermal history, initially for sterilization processes. Hayakawa (1969) presented calculations also covering 
the initial heating and cooling period in sterilization processes limited to the geometry of a can. Together, 
Hayakawa and Ball (1971) published theoretical calculations for sterilization of cans, also including a time 
varying process temperature for 5 typical process situations. These studies are presented at the same time 
period where Teixeira et al. (1969) presented some of the first numerical solutions to the heat equation, 
which changed the focus in Food Engineering research towards more numerical solutions and modelling.  

 

2.1.4 Numerical solutions 
 

The application of numerical calculations of heating/cooling of solid foods was applied along with the 
development of computer technologies and was initiated by the work by Teixeira et al. (1969). Along with 
technological advances in hard- and software the computer assisted numerical calculations have been used in 
numerous applications in food engineering. Since the work from Teixeira in 1969 the physical models have 
incorporated numerous phenomena in the calculations of food processes. Recently the larger knowledge 
heavy corporations have started to include modelling activities (Datta 2008). 

In recent decades the research on heat transfer in solid foods has focused on modelling and simulations of 
numerical solutions in often advanced software such as the MATLAB based COMSOL Multiphysics 
(Trystram 2012, Dehghannya et al. 2010). The numerical solutions have the advantage that more advanced 
and coupled physics can be included into the calculations accounting for mass transfer, geometry changes, 
chemical reactions and structure changes within the products (Lemus-Mondaca et al. 2011). Such 
calculations are, if conducted properly, precise and can handle real processing situations; however, they are 
often targeted at specific products in specific processes making them less versatile for general engineering 

Figure 2.3 The procedure used by Ball (1923-1924) for 
experimental determination of the heating rate and the lag-factor 
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calculations. It is crucial that constructed models are not too complex to avoid misunderstanding of model 
results, in some cases a simple approach is preferable(Chwif and Baretto 2000). 

 

2.1.5 Simplification to the series expansion 
 

In the use of the series expansion for the calculation of heat transfer in solids also studies in possible 
simplifications of the expansion have been proposed. Three challenges in the use of a series expansion 
solution covered: The determination of the crucial parameters, the lag factor and the Fourier exponent by 
approximating the root functions (cf. chapter 1.3), calculation of the initial cooling/heating phase to avoid the 
use of multiple terms in the expansion, and incorporation of correction factors for the calculation of irregular 
geometries. 

 

Fourier exponents and lag factors 
One of the big challenges using the solutions devised by Pflug et al. (1965) is the determination of the 
Fourier exponents given by the eigenvalues to the respective root functions (Table 1.1, chapter 1.2). As 
mentioned, the root functions are of iterative character and are thus cumbersome to solve. Alternatively, the 
Fourier exponents can be found tabulated in textbooks or papers on the subject (Mills 1995 pp.173; Pflug 
et.al 1965), where it is often needed to interpolate between tabulated values, or they can be found in charts 
(Singh and Heldman 2013 pp.379) where there is a risk of misreads. Neither the tabulated values nor the 
graphical representation are suited for implementation in simple programs or spreadsheets. Thus, it would be 
an advantage to develop non-iterative equations for calculating the Fourier exponents, and a few authors 
have presented such equations.  

Ramaswamy et al. (1982) fitted the Fourier exponents to ideal geometries using trigonometric regressions of 
the Biot number with good precision. The trigonometric regression made by Ramaswamy et al. (1982) 
introduces many new constants and equations which hampers the application in food manufacture. Lacroix 
and Castaigne (1987) used a logarithmic polynomial fit to determine the Fourier exponents. Ostrogorsky and 
Mikic (2008), developed explicit equations for the determination of Fourier exponents with a good precision 
at Bi<2. Ostrogorsky and Mikic (2009) also determined explicit equations for the Fourier exponents for Bi>2 
with a good prediction. Ostrogorsky (2009) presented equations that cover the entire Biot range also with 
good accuracy. 

All the above-mentioned four studies provide non-iterative solutions that could be incorporated into 
spreadsheets. However the suggested solutions by Ramaswamy et al. (1982) and Lacroix and Castaigne 
(1987) are rather complex for easy interpretation, hence the application of these studies has not been 
transferred outside academia or made their presence in textbooks on the subject. The solutions from 
Ostrogorsky and Mikic are split into two sets of equations one for Bi<2 and another set for Bi>2 which is not 
favourable. Additionally, Ostrogorsky (2009) published other simple explicit equations for the whole Biot 
range with a good overall precision. The methodology and robustness of Ostrogorsky (2009) is, however, 
less transparent. If the work was presented in a single paper the procedure and results might have been easier 
to interpret and use. All the four mentioned studies are compared and discussed more extensively in chapter 
3. 
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The lag factors needed in the series expansion has been modelled separately to the Fourier exponent 
(Ramaswamy et al. 1982 and Ostrogorsky 2009), both with good precision. However in a spreadsheet 
solution it is not necessary to model the lag factors separately as they can be calculated non-iteratively if the 
Fourier exponent is determined. 

New procedures for calculation on thermal response have also been proposed. Cuesta and Lemúa (1995) 
published a new method based on asymptotic modelling of the heating curves where the entire expansion is 
essentially known for Bi0 in form of the lumped capacitance model, and for Biinfinity where the 
exponents and lag factors of the expansion is known a priory. Their work is a simplified solution in the sense 
that the Fourier exponents and lag factors do not need to be determined; their model is validated for 
elementary and general geometries for Fo=0.5 with prediction errors of up to 8%. In comparison, the use of a 
1st term approximation where the lag factors and Fourier exponents are determined based on either 
Ramaswamy et al. (1982) or Ostrogorsky (2009), inducing errors less than 1% at an even lower Fourier 
number (0.2). 

 

Low Fourier numbers 
It was only possible to track one paper that has been published on a simple analytical solution for heat 
transfer also including the initial phase (Fo<0.2). Ramaswamy and Shreekanth (1999) presented such a 
solution where the low Fourier number region could be calculated as well. Their approach was a stepwise 
regression of the residual between the entire series expansion and the 1st term approximation. The resulting 
equations from their work are rather precise and could be incorporated into a spreadsheet solution. However 
the procedure in establishing the equations with a set of 13 new parameters in 3 different equations for each 
of the 3 elementary geometries is very comprehensive for practical industrial application. This work is 
discussed more extensively in chapter 4. 

 

Irregular geometries 
A numerical solution performed in a suited software package is often the preferred choice for researchers 
because the solution works for all geometrical shapes. But also analytical solutions for irregular geometries 
have been presented.  

The calculation of irregular geometries with a series expansion solution is challenging because the solution is 
bound to one of the three coordinate systems (Cartesian, cylindrical or spherical). If a geometry cannot be 
represented by these coordinate systems or orthogonal cross products of them (elementary geometries cf. 
chapter 1.2) no root function or calculation of the lag factor exists to describe the product. 

For the calculation of irregular geometries with the series expansion Cleland and Earle (1982) published a 
method of averaging the heat transfer through the concept of EHTD (Equal Heat Transfer Dimensionality). 
The procedure is quite similar to the use of the Volume to Area ratio as the characteristic dimension but is 
somewhat more complex to interpret. Their proposed solution is after their own conclusion rather precise 
with an accuracy of +- 10%. However, it is not their proposed EHTD that has most impact in reducing the 
uncertainty but the additional inclusion of what they call the lag time, which restricting the dimensionless 
temperature response (Ω=1 if Ω>1). The EHTD procedure is also used in their pioneer work on freezing 
prediction (Cleland and Earle 1987). A procedure where the temperature response is corrected in the same 
manner (Ω=1 if Ω>1) is also proposed by Merts et al. (2007) for irregular geometries. 
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Uyar and Erdogdu (2012) presented a method where the calculation of sphere-like geometries (pears, apples, 
potatoes etc.) could be calculated as if they were spherical by using the calculation of a sphere with the same 
V/A ratio. Their procedure is validated with good accuracy as long as the product has a high sphericity, but 
for products with low sphericity the procedure is imprecise, according to their own conclusion.    

Christensen et.al (2011)1 investigated the possibility of expressing irregular geometries by their Volume to 
Area ratio as the characteristic dimension in predictive calculations of cooling processes. The procedure had 
only a narrow operation window and is thus not widely applicable.  

It seems that no simple calculations have been proposed with a large operation window covering irregular 
geometries of different character with an acceptable accuracy.  

 

2.1.6 Adaptation of the series expansion solution to incorporate other phenomena 
 

In the application of the series expansion solution also other phenomena than heat transfer have been 
included in the calculations. Cuesta and Lamúa (2009) included the respiration phenomena by a correction of 
the Fourier exponent and in addition found that a 1st term approximation was converging with the complete 
solution for Fo>0.2 as for the series expansion solution without internal respiration. The respiration has been 
included as an empirical parameter based on data from the American Society of Heating, Refrigeration and 
Air condition Engineers (ASHRAE). Dincer (1993) coupled the respiration to the complete series expansion 
by incorporating the phenomena of transpiration and respiration in a lumped heat transfer coefficient with 
good validation when the complete series is solved under the tested conditions.  

Lacroix and Castaigne (1987) presented an equation for freezing processes, where the initial cooling phase 
was calculated through a series expansion. The simplification of the series expansion is in form of the 
determination of lag factors and Fourier exponents by adapting a logarithmic polynomial (Lacroix and 
Castaigne; 1987). For the application, the phase change of water is included through Plank´s freezing 
equation, (Singh and Heldman 2014, p 537).   

Van der Sman (2003) presented a shell and core model to calculate cooling times that also involved mass 
transfer. The approach for his simplification was to incorporate the evaporation into the external resistance to 
heat transfer in the Biot number. His model is based on the assumption that the mean volume averaged 
temperature can be presented as a single point throughout the process; this is according to his own figures 
and results not correct, however, a position that equals the volume average temperature initially will be close 
to the surface and in the very end close to the centre. Because the study is validated with a small driving 
temperature difference it is difficult to establish the uncertainties of the model. It would be interesting though 
to see a full validation of the study in order to investigate the versatility of the work. Though the study is not 
a direct simplification of the series expansion, his view on how an evaporation phenomena can be included 
the description of the process through the Biot number is a simple approach for coupled heat and mass 
transfer worth for further investigation. 

The works from Cuesta and Lamúa (2009), Dincer (1993), Lacroix and Castaigne (1987) and van der Sman 
(2003) imply that the application of the series expansion solution can be adapted for the calculation of other 
processes than purely heat transfer.  

                                                      
1 The publication is difficult to access, but is attached also as appendix 3 
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Beside the mentioned studies numerous papers have been published on simplified calculations of other 
occurring phenomena in food processing. These studies are not included in this review because the heat 
transfer phenomenon is not the primary driving phenomena in these processes. 

Application of analytical solutions to the heat equation and evaluation of thermal response in solids are also a 
task related to other engineering fields. The challenges of other engineering fields are often of a different 
character. For example in building construction the Biot numbers associated with the heat transfer processes 
are often very high due to insulation and in the metallurgy industry the associated Biot numbers are often 
very low due to the high conductivity of metals. Also the process time in heating and cooling of solid foods 
differ from other industries where heating/cooling of solids is central; In quenching processes in the 
metallurgy industry and hardening of rubber in the chemical industry where the thermal response is fast 
(Baïri and Laraqi 2003), and in geology and building construction the heat transfer rate is very low (Lü et al. 
2006). The heating and cooling of solid foods is of a different character as the associated Biot numbers have 
a wide span from low Biot numbers (Bi<0.5) in chilling of small products to large Biot numbers (Bi>30) in 
the canning industry. Also the process time differs substantially. 

 

2.1.7 Determination of heat transfer coefficients 
 

Basically two general procedures are used in the determination of a convective heat transfer coefficient hc to 
a solid: evaluation of the fluid media or evaluation of a product exposed to the fluid media. In this context 
the fluid media could be a liquid (food or water) noted as a fluid to particle heat transfer coefficient hfp, and it 
could be a gas (typically air) where the heat transfer coefficient is in this thesis denoted a convective heat 
transfer coefficient hc. 

In the investigation on the fluid media Computational Fluid Dynamics (CFD) has been used to determine 
flow profiles around a solid based on the inlet velocity in the equipment and the geometry of the equipment 
and the product, (Denys et.al 2003). This procedure is most commonly used by equipment manufacturers in 
optimizing the design of cooling towers, heat exchangers, spray-dryers etc. For some simple designs also 
engineering equations in form of Nusselt-relations have been used, most often in closed equipment with a 
liquid media as the fluid.  

The other possibility is to investigate the heat transfer coefficient through measurements on the product by 
inverse calculation from the temperature response (Zuritz et al. 1990). This can be done by either analytical 
or numerical methods for the curve fitting. 

But also more exotic measurement techniques have been applied in order to determine heat transfer 
coefficients; The use of time temperature integrators based on microbial inactivation kinetics, (Maesmans et 
al. 1994 and Weng et al. 1992), Particles with embedded liquid crystals, (Balasubramaniam and Sastry 
1995), Magnetic Resonance Imaging (MRI) ( Kantt 1998). These methods are not elaborated further. 

 

Investigations through Computational Fluid Dynamics (CFD) 
Many studies have used computational fluid dynamics (CFD) to quantify fluid flow and thereby approximate 
the convective heat transfer coefficient. Two examples are; Verboven et al. (1997) investigated local 
convective heat transfer coefficients across a rectangular body for sous-vide application, Augusto et al. 
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(2012) determined convective heat transfer coefficients for heating and cooling of bottles using a CFD 
approach.   

The CFD approach have played an active part in the design and control of process equipment in the food 
industry and are in these fields widely applied, (Norton and Sun 2006). This has since become even more 
evident as can also be observed in the candidates sought for by process equipment manufacturers, where 
CFD skills are highly appreciated. Bhutta et al. ( 2012) reviewed application of CFD in the design, 
development and optimization of heat exchangers, concluding that the approach is a cost effective and very 
efficient method in the equipment manufacturing industry. An advantage of using CFD for the determination 
is that it is possible to quantify local heat transfer coefficients. In food manufacture however CFD is seldom 
used outside academic collaboration mainly due to cost. 

 

Heat transfer coefficient determination from fluid to a particle (hfp) 
An extensive listing of references is out of scope here, as the literature (the majority of references are from 
the 1980s and 1990s) is well covered by three extensive reviews (Maesmans et al. 1992; Ramaswamy et al. 
1997; Barigou et al. 1998). The most common approach is to measure the temperature-time curve inside a 
real food particle or replicas made either in materials having thermal properties close to those of the food 
product or made in a highly conductive material, usually aluminium. By fitting the temperature-time curve to 
a mathematical solution of the Fourier equation for non-stationary convective heat transfer into a body of the 
relevant geometry, it is possible to estimate hfp (Maesmans et al. 1992 and Barigou et al. 1998). For 
convective heat transfer coefficients it is important that the geometrical shape of a model product is as close 
to a real product as possible because the flow pattern around the food item is shape dependent.  

The advantage of using model replicas in metal, for which the Biot number is very low (Bi < 0.1), is that the 
solution to the heat transfer equation is simple and allows a high precision in the determination of heat 
transfer coefficients (Barigou et al. 1998). Besides, the position of the temperature sensor inside the body is 
not critical (Ramaswamy et al. 1997). For particles with food-like thermo-physical properties, Bi is higher, 
which generally results in a less precise determination and the heat transfer equation must be solved by a 
more complicated series expansion of the Fourier equation (Maesmans et al. 1992 and Barigou et al. 1998). 
Also the position of the temperature sensor is sensitive in order to achieve precise measurements. A 
numerical solution matched with several temperature sensors are in case of real food products more reliable.  

An advantage of using model particles with food-like thermo-physical properties is that the heat transfer 
conditions are more realistic than for replicas constructed in metal; this holds in particular in cases were 
natural convection is a significant mode of heat transfer (Åström & Bark 1994). This will be the case in 
many vessel cooking processes, as agitation should be gentle to avoid destroying the often fragile particles. 

 

Heat transfer coefficient determination where the fluid is a gas (hc) 
In situations where the fluid is a gas is primarily for this thesis covering cooling operations where products 
are cooled by circulating air. In heating processes where air is the media (primarily ovens) the determinations 
are often more difficult to conduct and the process physics more complex, and in relation to the focus of this 
thesis, oven processes are out of scope (heat transfer is seldom the only governing phenomena as also 
evaporation and considerable mass transport often occurs). Primarily in research CFD is used for 
determination of hc in cooling with circulating air. Because the characteristics of the air flow applied often 



32 
 

induce varying heat transfer coefficients dependent on the relative position of the boundary to the flow 
direction, a flow quantification that allows for local heat transfer investigation (like CFD) is an advantage.  

Since the hc is both product (geometry) and process (design and setting) dependent it is crucial that they are 
also determined at the production sites for predictive calculations on the operation of equipment. For these 
determinations both measurements using model foods made from a high conductive material and real food 
items are possibilities. The standard procedure is an inverse calculation of the temperature curve (Maesmans 
et al. 1992). The choice of method however can have very different results. In the extensive review from 
Maesmans et al. (1992) differences of up to a factor of 3 was observed for measuring using a real food item 
compared to aluminium, with aluminium showing the highest values. The reason for this is unknown and a 
thorough investigation into the original data is needed.  

 

2.2 Reflections on the literature review 
 

The academic community has transferred from discovering physical phenomena in the renaissance, 
describing them in the 18th and 19th century by mathematics, supplying graphical solutions for applications in 
the early 20th century to conducting advanced mathematical solutions to applied problems in the mid-late 20th 
century.  

The 21st century has transferred the industrial production into the IT age with smart censor technologies, 
advanced numerical solutions for coupled phenomena and processes, and incorporated smart process control 
through e.g. genetic algorithms and artificial neural networks. 

Based on decades of collaboration with the food industry, in the Food Production Engineering group at the 
Technical University of Denmark, we are convinced that the history is somewhat different in industrial food 
manufacture. Even though equipped with modern process equipment with incorporated process control 
systems and advanced censor technologies belonging to the 21st century, the majority of food manufactures 
have not included a culture where process calculations are performed as a general activity.  

When handling the calculation of thermal processes in food manufacture the food engineer have a choice in 
preferred solution method. The level of detail needed and the calculation possibilities and availability of 
suited software of the company often sets boundaries for whether a numerical solution or an analytical 
solution is the most suited. Independent of the chosen solution method a reasonable heat transfer coefficient 
must be determined. 

In 2013 Saguy et.al published an important paper with viewpoint on the challenges focusing the area of food 
engineering (Saguy et al. 2013) especially with regards to academic focus and education of the food 
engineers of the future. They discuss the many advances accomplished in food technology and also supply 
thorough and thoughtful recommendation for future academic focus and curricula for food technology 
educations.  

What is not discussed as thoroughly is how the advance in food engineering can be applied also into the 
operational tasks in food manufacture and how food manufactures actively can improve their production by 
utilizing the knowledge generated from the academic projects, independently whether they have been a part 
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of the specific project or not. It is this issue that the aim of developing engineering equations for heat transfer 
is addressing. 
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2.3 Operationalization of the research question 
 

This section presents an operationalization of the research question presented in the introduction in chapter 1. 
To answer the research question:  

“Is it possible to deduce and validate new engineering equations in heat transfer for food processing, 
which are user-friendly and provide adequate precision?”  

This thesis is an analysis of the series expansion to the heat equation. The thesis is formulated around the 
challenges in the use of the series expansion solution. How the chapters are related to the Fourier series 
expansion for heat transfer in solids is presented in figure 2.4 

 

Figure 2.4 Graphical description of the overall theme in this thesis. The figure serves as an overview of how the thesis is 
connected. 

 

The task is split up into four Objectives. 

 Analytic determination of eigenvalues in chapter 3 

 Thermal calculations at low Fourier numbers in chapter 4 
- Validation of the developed model (chapter 3 and 4) is presented in chapter 5 

 Determination of heat transfer coefficients in chapter 6 

 Continuity and sensitivity in the series expansion  in chapter 7 

The first two objectives are theoretical work on simplification of the analytical solution to the heat equation, 
the third objective is an experimentally based section on the determination of heat transfer coefficients and 
part four is a synthesis section. In the fourth objective the uncertainty and sensitivity in the utilization of the 
series expansion is investigated in order to establish guidelines and frames for the utilization of the series 
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expansion solution to the Fourier equation. In the end of each description of the four objectives, the 
corresponding chapter is highlighted in italic bold. 

The literature review has pinpointed two challenges in simplification of the series expansion, namely; the 
determination of lag factors and Fourier exponents, and the calculation of the thermal history at low Fourier 
numbers.  

Objective 1: Analytic determination of eigenvalues to the root functions.  

A simple non-iterative solution to determine eigenvalues for the root functions to the general geometries 
should be established. The solution should dispense with the need for charts or tables for giving input 
parameter values in the series expansion solutions, and thus promote the application of predictive 
calculations on thermal processes. Chapter 3 

Objective 2: Formulating equations for low Fourier numbers, to evaluate process history also valid in the 
initial phase (Fo<0.2)  

A simplification of the series expansion where the initial heating/cooling period can be evaluated should be 
deduced and validated, in order to dispense with the use of the graphs or programming. Chapter 4 

Validation of the simplified model: 

The combined procedure for a simplified series expansion is validated against a numerical solution of two 
typical commercial products: Chapter 5  

 Pre cooling of packaged cream cheese before storage: After processing the cream cheese is pasteurized 
and packaged at app. 70°C. After packaging the cheeses are cooled in a blast cooler to an average 
temperature set-point of 30-40°C.  

 Three-step processing of hamburgerryg (brined, smoked and salted saddle of pork): In the processing of 
hamburgerryg, it is initially smoked before the heat treatment process, followed by a cooling step.  

In all solution methods for thermal calculation it is essential to determine the heat transfer coefficients 
driving the thermal process. Sub-task 3 is presenting methods for the determination of convective heat 
transfer coefficients that can be measured on site at food manufacturers. 

Objective 3: Determination of heat transfer coefficients and handling of complex heat transfer situations. 

Determination methods for heat transfer coefficients are investigated and discussed based on a review of 
procedures. Specific measurement methods and results are also supplied: Determination of fluid to particle 
heat transfer coefficients, heat transfer to particles during boiling and the variation in heat transfer 
coefficients depending on position relative to the flow of the media and presence of a headspace in packaged 
foods. Chapter 6 

The last part of the thesis is a characterization of the Fourier-Biot workspace for the Fourier equation based 
on an analysis of the uncertainties and sensitivities in the use of the series expansion solution.  

Objective 4: Continuity and sensitivity of different simplified solutions to transient heat transfer is 
investigated.  
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It has been experienced that there is a discontinuity between the different heat transfer equations for transient 
heat conduction. The possibility of creating continuity between the equations is discussed for 3 different 
aspects Chapter 7 

‐ The challenge deciding the number of terms needed in the series expansion should be 
investigated in terms of setting proper limits for the utilization of the 1 term approximation 

‐ The continuity between low Biot numbers in the heating of solid foods, and the lumped 
capacitance analysis (0<Bi<0.1) should be investigated and reported. 

‐ To assess the uncertainty in the calculation of heating and cooling of solids it is needed to 
establish a conceptual understanding of the sensitivity of the parameters used in the calculation. 
This is also expounded in objective 4. 

As a result from the investigation in chapter a work frame with proper guidelines is presented for the use of 
simplified approximations to the series expansion. 

 

2.4 Calculation programs 
 

The general methodology of this thesis is primarily a theoretical study where different solution forms to the 
Fourier heat equation is solved and compared. These solutions are conducted in specific programs. A brief 
introduction to the used calculation programs is described in this section. 

The theoretical calculations have been conducted in Microsoft Excel 2010, the freeware program “R - 
HEATMAN” and the commercial software COMSOL Multiphysics. Where the specific methodology for the 
excel procedure is described in the belonging chapters chapter 3, 4 and 5. The essential procedure for the use 
of HEATMAN and COMSOL Multiphysics are described in the following two sections.  

Solving the series expansion in “R” 

Civil engineer Peter Reimer Stubbe2 has coded a solution method to the series expansion in an R (R 2008) 
platform in a library under the name HEATMAN (the description of the program and manual for usage is 
attached in appendix 7). The function of the program is as follows: 

Initiating the program, the number of terms needed in the calculation is typed (100 is the standard). After 
applying the wanted number of roots, each of the roots is solved by iteration by applying the Biot number for 
the investigated geometry. The series expansion is solved directly from the roots for the centre temperature, 
positions in the body or volume average temperature, either by point investigation (input of a process time in 
form of a scalar) or curve (input of several process times in form of a vector). 

Modelling of heat transfer in COMSOL Multiphysics 

In the heat transfer module in COSMOL Multiphysics the wanted geometry is constructed and divided into 
small elements by meshing. The specific partial differential equation governing the phenomena for heat 
transfer is approximated by a finite element method (FEM). In FEM the investigated domain is divided into a 
finite number of defined elements which are connected through node points. The governing equation is 

                                                      
2 Food production Engineering Group, National Food Institute, Technical University of Denmark 
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solved individually for each element and the unique solution in each element is combined by iteration of the 
input and output temperature of each node, until all points converge and a continuous solution is obtained 
(Tijskens et al. 2001). 

The needed input in the program is the initial conditions (temperature, thermo-physical properties), the 
boundary conditions (temperature and heat transfer coefficients) applying the investigated physical 
phenomena (transient heat conduction). 
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3 Fourier exponents 
 

This chapter is the foundation for the submitted paper “Proposing a normalized Biot number: for simpler 
determination of Fourier exponents and for sensitivity analysis of heating and cooling of solids” attached in 
appendix 1. 

In this chapter the series expansion solution to the heat equation is investigated and a simplified solution to 
the two important variables is presented, namely the first Fourier exponent (b1, λ1

2) and the lag factor a1. The 
series expansion is recalled from the theory section in chapter 1: 

Ω ൌ ቀ ୘౩ି୘
୘౩ି୘బ

ቁ ൌ ∑ ܽ௜݁ି௕೔∙ி௢
ஶ
௜ 	    ܾ௜ ൌ ௜ߣ

ଶ 

For each term applied in the series expansion the corresponding Fourier exponent needs to be calculated by 
solving the given root functions to obtain the eigenvalues of the functions, which are λi for i=1 to i (table 
3.1). The Fourier exponents are λi

2, cf. chapter 1. The lag factor needed in the series expansion solution can 
be directly calculated from the λi –values, as shown in table 3.1. 

Table 3.1 Mathematical presentation of the respective root function for the ideal geometries, lag factors for centre 
temperatures (ac), the positional lag factors (ax/R) and the lag factors for the volume average temperatures (am),  

Geometry Root function λi ac  ax/R am 

Inf. Plate ݅ܤ ൌ ݅ߣ݊݅ݏ௜ 2ߣ݊ܽݐ௜ߣ
݅ߣ ൅ ݅ߣݏ݋ܿ݅ߣ݊݅ݏ

 ܽܿ ∙ cos ቀ݅ߣ
ݔ

ܮ
ቁ ܽܿ ∙

ሻ݅ߣሺ݊݅ݏ

݅ߣ
 

Inf. cylinder ݅ܤ ൌ
௜ሻߣଵሺܬ௜ߣ
௜ሻߣ଴ሺܬ

 
1ሻߣ1ሺܬ2

0ܬሺ݅ߣ
2ሺ݅ߣሻ ൅ 1ܬ

2ሺ݅ߣሻሻ
 ܽܿ ∙ 0ܬ ቀ݅ߣ

ݎ

ܴ
ቁ ܽܿ ∙ 2

݅ߣ1ܬ
݅ߣ

 

Sphere  
݅ܤ ൌ 1 െ  ௜ߣݐ݋௜ܿߣ

2ሺ݅ߣ݊݅ݏ െ ሻ݅ߣݏ݋ܿ݅ߣ

݅ߣ െ ݅ߣݏ݋ܿ݅ߣ݊݅ݏ
 

ܽܿ ∙
݊݅ݏ ቂ݅ߣ ቀ

ݎ
ܴቁቃ

݅ߣ ቀ
ݎ
ܴቁ

 
ܽܿ∙ ∙ 3

ሻ݅ߣሺ݊݅ݏ െ ሻ݅ߣሺݏ݋ܿ݅ߣ

݅ߣ
3  

J0 and J1 is the Bessel function of the 1st kind with 0th and 1st order respectively. 

In chapter 4, a solution for the series expansion where the 1st Fourier exponent is central in order to predict 
thermal response also valid at Fo<0.2 is presented. Thus, the development of a non-iterative solution to the 
root functions is central. 

The Fourier exponents may be calculated by iterations of the root functions for any given Bi number. 
However, the iterative character of the root functions results in cumbersome calculations. In general, the 
values of the 1-term Fourier exponents and the associated lag factors are found in charts or tables in 
textbooks on the subject, while values of the higher order terms are rarely available as tables or graphs. 
Solutions which require more terms, that is when Fo<0.2, are based on graphs of Ω as a function of Fo, as 
explained in chapter 1. This situation is dealt with further in chapter 4.  

For solutions based on the 1st term (Fo>0.2) it is beneficial to determine the Fourier exponents from a non-
iterative analytical solution. This is a classical challenge and for the 1st Fourier exponent used in the 1st term 
approximation of the series expansion several studies have suggested good solutions cf. chapter 2. 
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(Ramaswamy et al. (1982), Ostrogorsky (2009) and Lacroix and Castaigne (1987)) are good examples 
serving adequate precision. This study proposes a new way of calculating the first Fourier exponent (b1=λ1

2) 
which is more transparent and intuitive which will be shown later. The studies are presented, compared and 
discussed in section 3.2 in this chapter.  

The Fourier exponents is in this study determined through a normalisation of the Biot number, which enables 
a more simple and intuitive procedure. The normalisation and the resulting determined Fourier exponents are 
presented in the next section. 

 

3.1 Normalisation of the Biot number and determination of Fourier exponents 

 

The Biot number (Bi), describing the ratio between the internal and external resistance to heat transfer, is 
recapitulated below for better interpretation of the procedure in formulating a normalized Biot number: 

݅ܤ ൌ
݄
݇
∙ ܴ 

For easier calculation of the Fourier exponents, this study proposes a normalisation of the Biot number 
(Binorm) in equation 3.1. Where (Bi) is the fraction of internal resistance to external resistance to heat transfer, 
(Binorm) is the fraction of internal resistance to overall resistance of heat transfer. The internal resistance to 
heat transfer, R/k, is described as the characteristic dimension (R), divided by the thermal conductivity (k). 
The external resistance to heat transfer is the reciprocal heat transfer coefficient (1/h). The total resistance to 
heat transfer can be defined as: 

݁ܿ݊ܽݐݏ݅ݏ݁ݎ	݈ܽݐ݋ݐ ൌ
1
݄
൅
ܴ
݇

 

And the ratio of the internal resistance to the total resistance will be defined as: 

݁ܿ݊ܽݐݏ݅ݏ݁ݎ	݈ܽ݊ݎ݁ݐ݊݅	݂݋	݋݅ݐܽݎ ൌ

ܴ
݇

1
݄ ൅

ܴ
݇

 

Multiplying with the heat transfer coefficient (h), gives a rational description of Binorm: 

 

௡௢௥௠݅ܤ ൌ
೓
ೖ
∙ோ

೓
೓
ା
೓
ೖ
∙ோ
ൌ

஻௜

஻௜ାଵ
           [3.1] 

The constructed normalized Biot number has some advantages: it has an s-shaped curvature as a function of 
Bi enabling a more simple expression to determine Fourier exponents without iteration. It enables a 
presentation of the Fourier exponent in a linear scale in graphical presentation instead of a logarithmic scale 
for Bi, which notoriously has been a road to misreads. The relation between Binorm, Bi and the Fourier 
exponents is presented graphically in figure 3.1. 
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Figure 3.1 Normalisation of the Biot number (left), Fourier exponents as a function of the Biot number (middle) and the 
Fourier exponents as a function of the normalised Biot number (right). Fourier exponents are from Mills (1995) p. 173. 

The normalized presentation (Binorm) of (Bi) has the advantage of having the same s-shaped curvature as the 
Fourier exponents, making (Binorm) easier to utilize as a base for regression determination of Fourier 
exponents (b, λ2), (figure 3.1). The behaviour of the Fourier exponent is monotonically increasing as a 
function of (Binorm), where both the 1st and the 2nd derivative are positive, making polynomial fitting suitable 
with very small residuals (figure 3.2, 3.3 and 3.4). This enables a simple procedure where engineers can 
construct a spreadsheet themselves, from which the Fourier exponents can be determined.  

In this study twenty one Biot numbers have been chosen to illustrate the procedure (0.02; 0.04; 0.06; 0.08; 
0.1; 0.2; 0.4; 0.6; 0.8; 1; 2; 4; 6; 8; 10; 20; 30; 40; 50; 100; ∞) (all available data from Mills 1995 p. 173). 
The twenty one Fourier exponents from Mills (1995) are plotted as a function of Binorm. A polynomial 
regression of the third order gave a reasonable fit (figure 3.2-3.4); higher order polynomials have also been 
tried without improving the fit substantially and a lower order polynomial gave a less precise fit over the 
whole range.  

 

Figure 3.2 The b values (λ1
2) as a function of the normalised Biot number, The dots represents b-values from Mills (1995), the 

line represents the polynomial fit. 
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Figure 3.3 The b values (λ1
2) as a function of the normalised Biot number, The dots represents b-values from Mills (1995), the 

line represents the polynomial fit. 

 

Figure 3.4 The b values (λ1 
2) as a function of the normalised Biot number, The dots represents b-values from Mills (1995), 

the line represents the polynomial fit. 

From visual inspection of the plots, and by means of the regression coefficients, the Fourier exponents can be 
predicted fairly precise by these 3rd order polynomial regressions (R2>0.9999). By this procedure the 
calculation of the Fourier exponents, eigenvalues and lag factors associated with the series expansion can be 
determined without iterations. The regression equations are summarized in table 3.2. 

Table 3.2 Summation of the regression polynomials to determine the Fourier exponents for the series expansion 

Geometry Regression polynomials 

Inf. slab ܾ ൌ ଵߣ
ଶ ൌ 1.1911 ∙ ሺ݅ܤ௡௢௥௠ሻଷ ൅ 0.1878 ∙ ሺ݅ܤ௡௢௥௠ሻଶ ൅ 1.0939 ∙ ሺ݅ܤ௡௢௥௠ሻ െ 0.0037  

Inf. cylinder ܾ ൌ ଵߣ
ଶ ൌ 3.2595 ∙ ሺ݅ܤ௡௢௥௠ሻଷ ൅ 0.3628 ∙ ሺ݅ܤ௡௢௥௠ሻଶ ൅ 2.1878 ∙ ሺ݅ܤ௡௢௥௠ሻ െ 0.0053  

Sphere ܾ ൌ ଵߣ
ଶ ൌ 6.2941 ∙ ሺ݅ܤ௡௢௥௠ሻଷ ൅ 0.4877 ∙ ሺ݅ܤ௡௢௥௠ሻଶ ൅ 3.1477 ∙ ሺ݅ܤ௡௢௥௠ሻ ൅ 0.00073  

 

All the polynomial regressions have positive coefficients and they are monotonically increasing (table 3.2). 
The residual in the regressions should optimally be 0 for Bi0. However when Bi0, then the Fo infinity 
for all t > 0; thus the series expansion is less suited for Bi  0. Instead, the lumped capacitance model 
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(equation 1.1) should be used, cf. chapter  1, when Bi<0.1 (Mills 1995 p. 30 and Singh and Heldman 2013 p. 
359 ). This assumption is discussed further in chapter 7 where the uncertainty in this assumption is evaluated.  

 

3.2 Validation  
 

The polynomial regression fit is used to determine Fourier exponents and the eigenvalues for the series 
expansion based on the equations from table 3.1. The results are validated by comparison with tabulated 
values from Mills (1995) p.173. The results are presented in figure 3.5 for the Fourier exponent (b1).  

 

Figure 3.5 Validation of the calculated Fourier exponents (b1 , λ1
2) on the polynomial fits. The dashed lines are calculated 

values, the open dots represents data from Mills (1995). 

It is clear that the calculated Fourier exponents match the actual values (figure 3.5). It is thus reasonable to 
believe that the regressions also predict the exponents in between the tabulated values and hence 
interpolation is not necessary using this new approach. 

To validate that the approach could also be used for calculating the lag factors used in the series expansion, 
the eigenvalues λ, derived from the Fourier exponents (λ2=b from table 3.2) are used to calculate the lag 
factors (table 3.1). These are presented in figure 3.6 for the lag factor used when considering centre 
temperatures, (ac) and figure 3.7 for lag factors considering the volume averaged temperatures (am). The 
calculated values are compared with tabulated values from Mills (1995) p. 173. 
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Figure 3.6 Validation of the calculated lag factors for centre temperatures (ac) in the Fourier expansion compared to 
tabulated values from Mills (1995). 

 

Figure 3.7 Validation of the calculated lag factors for volume averaged temperatures (am) in the Fourier expansion compared 
to tabulated values from Mills (1995). 

From the validation of the lag factors (figure 3.6 and figure 3.7) it is seen that the derived lag factors based 
on the predicted lag factors have a good fit with the actual lag factors as presented in Mills (1995). The 
average variation coefficients, CVRMSD (Coefficient of Variation of the Root Mean Squared Deviance) 
(equation. 3.2) for the three fits in figure 3.5, 3.6 and 3.7 are presented in table 3.3.  
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Table 3.3 CVRMSD values for the fit of the Fourier exponents and the lag factors needed in the series expansion calculation 
for non-stationary heat transfer for centre and volume average temperatures 

 Fourier exponent  (b, λ1
2) Lag factor centre (ac) Lag factor mean (am) 

Inf. Slab 0.0011 0.00033 0.00034 

Inf. Cylinder 0.0043 0.00076 0.00082 

Sphere 0.0059 0.0018 0.0017 

 

The CVRMSD values from table 3.3 shows that the Fourier exponents and the derived lag-factors can be 
determined with high accuracy. Because the positional lag factors (ax/R) are also derived from the same 
eigenvalues as the centre lag factor (ac) they can also be precisely calculated from this approach.  

 

3.3 Comparison with related studies 
 

The presented approach is compared to existing studies (Ramaswamy et al, 1982;  Lacroix and Castaigne 
1987, and Ostrogorsky, 2009) that provide a good precision. These studies are described in the literature 
review (cf. 2.1.5) and introduced in the beginning of this chapter. The proposed equations are presented in 
table 3.4.  
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Table 3.4 Proposed equations for determining Fourier exponents for the series expansion 

 Proposed equations 

Ramaswamy et al. (1982)  

Infinite slab 
ଵߣ
ଶ ൌ

݅ܤ2.0738
ሺ݅ܤ ൅ 2ሻ

൅ 0.2795 ݊ܽݐܿݎܽ ൬
݅ܤ
3
൰ െ 0.02915 ሻ݅ܤሺ5݊ܽݐܿݎܽ

൅ 0.001171 

Infinite cylinder 
ଵߣ
ଶ ൌ

݅ܤ4.1093
݅ܤ ൅ 2

൅ 1.2365 ݊ܽݐܿݎܽ ൬
݅ܤ
3
൰ െ 0.1641 ሻ݅ܤሺ2݊ܽݐܿݎܽ

െ 0.007762 

Sphere 
ଵߣ
ଶ ൌ

݅ܤ4.0704
݅ܤ ൅ 2

൅ 3.5560 ݊ܽݐܿݎܽ ൬
݅ܤ
3
൰ ൅ 0.1781 ݊ܽݐܿݎܽ ൬

݅ܤ
8
൰

െ ሻ݅ܤሺ7݊ܽݐܿݎ0.04036ܽ ൅ 0.002262 

Lacroix and Castaigne (1987)  

Infinite slab ߣଵ ൌ 0.860972 ൅ 0.312133ሺlnሺ݅ܤሻሻ ൅ 0.007986ሺln	ሺ݅ܤሻሻଶ

െ 0.016192൫݈݊ሺ݅ܤሻ൯
ଷ
െ 0.001190ሺlnሺ݅ܤሻሻସ

൅ 0.000581ሺlnሺ݅ܤሻሻହ 

Infinite cylinder ߣଵ ൌ 1.257493 ൅ 0.487941ሺlnሺ݅ܤሻሻ ൅ 0.025322ሺln	ሺ݅ܤሻሻଶ

െ 0.026568ሺlnሺ݅ܤሻሻଷ െ 0.002888ሺlnሺ݅ܤሻሻସ

൅ 0.001078ሺlnሺ݅ܤሻሻହ 

Sphere ߣଵ ൌ 1.573729 ൅ 0.642906ሺlnሺ݅ܤሻሻ ൅ 0.047859ሺln	ሺ݅ܤሻሻଶ

െ 0.03553ሺlnሺ݅ܤሻሻଷ െ 0.004907ሺlnሺ݅ܤሻሻସ

൅ 0.001563ሺlnሺ݅ܤሻሻହ 

Ostrogorsky (2009)  

Infinite slab 
ଵߣ ൌ

π/2
ሺ1 ൅ ଵ.଴଻ሻ଴.ସ଺଼݅ܤ/2.62

 

Infinite cylinder 
ଵߣ ൌ

2.4048
ሺ1 ൅ ଵ.ଵଶହሻ଴.ସସ଺݅ܤ/3.28

 

Sphere ߣଵ ൌ
π

ሺ1 ൅ ଵ.ଵ଼ሻ଴.ସଶଷ଼݅ܤ/4.1
 

 

When evaluating the equations from the three studies and the present work it is important also to establish 
the users of such equations. In academia the calculation using a 1st term approximation to Fourier’s heat 
equation is no big challenge and academic research is certainly not the focus group. The proposed solutions 
have their real value in the teaching of students lacking full engineering training and employees in food 
manufacture (food process engineers) who needs crude calculations in their daily process operations.  



46 
 

The proposed equations from Ramaswamy et al. (1982) and Lacroix and Castaigne (1987) comprise of 
several new parameters/constants and neither of the equations is monotonically increasing. This could lead to 
wrong calculations. From experience in teaching food technology at universities and collaborating with food 
manufacturing industries this issue is important. The equations proposed by Ostrogorsky (2009) are simple in 
their expression; however the methodology in the construction of these equations is not explained. Thus it is 
difficult to assess the variability in the presented parameters. The visibility of the procedure in the present 
study through the formulated normalised Biot number makes the study more transparent and the parameter 
sensitivity easier to assess. 

The error of prediction (equation 3.3) of the solutions from the three studies is compared to the present study 
(in figure 3.8, 3.9 and 3.10).  

ݎ݋ݎݎ݁ ൌ
ఒభ,೎ೌ೗೎ೠ೗ೌ೟೐೏
మ ିఒభ,ೌ೎೟ೠೌ೗

మ

ఒభ,ೌ೎೟ೠೌ೗
మ       [3.3] 

 

Figure 3.8 Comparison of prediction errors for related studies for infinite slabs 

 

 

Figure 3.9 Comparison of prediction errors for related studies for infinite cylinders 
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Figure 3.10 Comparison of prediction errors for related studies for spheres 

From the comparison between the related studies it can be extracted that all the studies are promoting a good 
fit for Bi<10 with an overall prediction error <0.02 for all the studies (figure 3.8, 3.9 and 3.10). The study by 
Lacroix and Castaigne (1987) is less suited for high Biot numbers (10-100). The best overall fit is performed 
by Ramaswamy et al. (1982) with an overall maximum error<0.01 (which was also the set point in their 
multiple regression). The present study has the same overall maximum error of 0.01 for the slab at all Biot 
numbers and for the cylinder at all Bi > 0.2. The prediction error in the elementary geometries of an infinite 
plate and an infinite cylinder is more sensitive because they are used to generate cross product geometries 
such as cans and boxes. In all cases for all elementary geometries the maximum prediction error is less than 
0.02 for the present study.  

The propagation of the prediction error of the Fourier exponents from the present study is evaluated in the 
worst case scenarios for the three elementary dimensions at Biot 2 and 10. The propagation is presented as 
the residual Ωactual-Ωpredicted in figure 3.11. 

 

Figure 3.11 Residual logarithmic temperature difference (ΔΩ) for the worst case predictions of the centre temperatures of 
infinite slabs, infinite cylinders and spheres for Fo>0.2 

The residual can be extracted to a maximum of ΔΩ=0.006 for spheres at Bi=2. In food processing the driving 
temperature difference is seldom above 100°C in situations where mass transfer and phase changes can be 
neglected (figure 3.11). Thus the maximum residual will induce an error in the predicted temperature of 
maximum 0.6°C for spheres. For the infinite slabs and infinite cylinders the residuals are considerably lower 
(<0.3°C); therefore the construction of finite bodies by cross products of these does not induce any 
appreciable error.  
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3.4 Discussion 
 

The determination of the eigenvalues (λ) and hence Fourier exponents (b) to the series expansion without the 
need for iterations and interpolation, is a clear advantage in the construction of simple programs for 
evaluating thermal history. The solution provided supports the study in modelling the low Fourier region 
presented in chapter 4, where the 1st eigenvalue is used in the modelling.  

In addition Binorm is a more direct description of the influence of internal and external resistance to heat 
transfer. This is valuable in assessing the sensibility in heat transfer calculations, especially the determination 
of heat transfer coefficients and thermal conductivity. For example if Bi is calculated to be 10 based on an 
average heat transfer coefficient of 100 +/-20 [W/m2K] the implications can be seen directly. By means of 
the resulting Bi (8, 10 and 12) the sensibility in the estimation of h is difficult to assess. By using Binorm, the 
internal fraction of the resistance is calculated in the three possible situations to be: 0.89, 0.91 and 0.923.  

The presentation of the sensibility in terms of internal resistance is more direct because the Fourier equation 
is a calculation of internal conduction, based on an external impact. Because [Binorm] has a more direct 
relation to the Fourier exponent compared to [Bi] the resulting calculation uncertainty is easier to assess, cf. 
figure 3.1. Because the thermal calculations are primarily dominated by the internal resistance in this 
example a variation of 20% in the heat transfer coefficient determination is less sensitive in the 
determination of the internal resistance.  

In cases where the Biot number is high it is thus more important to determine the conductivity with small 
uncertainties. The opposite will be the case for low Biot numbers (Bi<1). In general the determination of the 
thermal conductivity (k) is prone to less uncertainty than the determination of the heat transfer coefficients 
(h). 
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4. Solutions for low Fourier numbers 
 

This chapter is the foundation for the submitted paper “Simplified equations for transient heat transfer 
problems at low Fourier numbers” attached in appendix 2. 

The following section presents a solution to heat transfer problems at low Fourier numbers (Fo<0.2). The 
main focus is to approach the challenge described in the introduction; the lack of precision in the low Fourier 
region (Fo<0.2). The solution and validation is also presented for the calculation of centre temperatures and 
volume average temperatures. The implementation and versatility in industrial applications is discussed.  

The challenge of heat transfer calculations for low Fourier numbers is traditionally solved by the use of 
charts such as Heissler (1947) (figure 2.2), by using the complete series expansion (equation 1.3) or by a 
numerical solution. As described in the introduction, food manufacturers are often limited to a 1st term 
approximation (equation 1.5) and applying chart based solutions for the initial phase (Fo<0.2). This 
procedure is still central in textbooks on food engineering (Singh and Heldman, 2013).   

The aim of this task is to derive more simple equations which are valid for all Fourier numbers, also for 
Fo<0.2 and to avoid the use of graphs normally required for the standard procedures (1st term 
approximation).  

Studies directed towards more simple engineering equations to handle low Fourier numbers are scarce. 
Ramaswamy and Shreekanth (1999) used a stepwise multiple regression approach to approximate the 
summarized series solution at Fo<0.2 for infinite geometries. Their general idea was to model the residual 
between the summarized series and the 1 term approximation, as is also done in the present study. Their 
solution included 13 new parameters for each of the three infinite geometries in a set of three equations. This 
chapter is presenting a solution only including one new empirically determined constant.  

 

4.1 General approach  
 

The theory for the series expansion solution to the heat equation is introduced in section 1.2. The solution to 
the series expansion (equation 1.3) is obtained using the freeware program R (R Development Core Team 
2008) see HEATMAN manual in the appendix 7. 100 terms is used to represent the virtually exact solution 
to the complete expansion.  

The difference between the 100 term solution and the 1 term solution (residual) is then evaluated for 16 Biot 
numbers (0.1; 0.2; 0.4; 0.6; 0.8; 1; 2; 4; 6; 8; 10; 20; 30; 40; 50; 100) for the three elementary geometries 
(infinite slab, infinite cylinder and sphere). Because the residual between the 1 term solution and the 100 
term solution to the thermal history is only of practical significance at Fo<0.2 the analysis of the residual is 
conducted for the range 0<Fo<0.2.  

Following the procedure from Ramaswamy and Shreekanth (1999), an approximate solution to the series 
expansion is achieved by splitting the expansion into the 1st term minus a residual, where the residual is be 
the difference between the complete series and its 1st term (equation 4.1) covering the full range of Fourier 
numbers (Fo>0): 
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Ω ൌ ܽଵ ∙ ݁ିఒభ
మ∙ி௢ െ 	߳     [4.1] 

where:  

߳ ൌ ∆Ω ൌ ቀܽଵ ∙ ݁ିఒభ
మ∙ி௢ െ ∑ ܽ௜ ∙ ݁ିఒ೔

మ∙ி௢ஶ
௜ୀଵ ቁ   [4.2]  

In the procedure of constructing a simplified expression covering the low Fourier numbers it is an advantage 
only to model the residual from equation 4.2 and subtract it from the 1st term approximation. Because the 
series expansion truncates at its first term at Fo>0.2 the remaining series in the series expansion can be 
lumped in the residual for a finite timescale. In the formulation of the residual it is important that the residual 
also truncates rapidly at Fo>0.2.  

The method represented by eq. 4.1 is illustrated in figure 4.1, where Ω for a sphere of Bi=4 is plotted against 
the Fourier number [0:0.2] for the 1st term solution, the 100 term solution and the residual (equation 4.2). 

 

Figure 4.1 Graphical method description of equation 4.2 

 

 

4.2 Centre temperatures – derivation of equations 
 

The procedure for the formulation of an expanded 1st term approximation is identical for the centre 
temperature and the volume average temperature. The procedure is presented in detail for the centre 
temperature. 

The natural logarithm to the residual (ε = Ω1 term - Ω100 terms) calculated from equation 4.2, is investigated as a 
function of the Fourier number [0; 0.2; 0.02]. This is chosen in order to express the residual in the same 
format as the series expansion solution. In figure 4.2 it is exemplified for a sphere with a Biot number of 4.  

The initial residual is known a priory through the lag-factor. The intercept in the regression is thus forced at 
ln(ac,1-1). This is convenient because the lag factor is the intercept of the 1st term approximation and (ac-1) is 
the initial residual. The determination of ac,1 is calculated from the 1st eigenvalue through the equations 
presented in table 1.1. In chapter 3 a solution is proposed for an accurate and easy calculation of the Fourier 
exponent λ1

2 and hence also the eigenvalue λ1 needed in this calculation (see table 3.2). 
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Figure 4.2. Regression plot of the residual (eq. 4.2) as a function of the Fourier number, for a sphere with a Biot number of 4, 
fitted by a minimal squared error regression with a forced intercept  

The regression equation 4.3 crudely represents the development in the residual over process time (Fo): 

ln ߳ ൌ ௦௟௢௣௘ߙ ∙ ݋ܨ ൅ lnሺܽ௖,ଵ െ 1ሻ     [4.3] 

All the regressions are presented in appendix 5. The regression slopes (appendix 5) for the 16 tested Biot 
numbers are plotted against ln[Bi] for infinite slabs (figure 4.3), for infinite cylinders (figure 4.4) and for 
spheres (figure 4.5).  

Because it is desirable to introduce as few new variables as possible in the calculation of the residual it is 
chosen to express the regression slope as a function of the Biot number and the first eigenvalue λ1 to the 
respective root function. The choice of representing the slope as a function of the Biot number also enables a 
single regression equation to fit for all Biot numbers.  

Testing a number of simple combinations it is found that the regression slope α, follow rather closely 
equation 4.4: This expression is also convenient because the introduced parameter in the slope λ1 is already 
known from the 1st term approximation. Thus only the constant C is not already known from the 1st term 
approximation. 

௦௟௢௣௘ߙ ൌ െሺߣଵ ∙ lnሺ݅ܤሻ ൅  ሻ     [4.4]ܥ

Where C is a constant which depends on the geometry and is close to the regression slope at Bi=1, the value 
of C represents the best global fit of the forced regressions. The predicted regression slopes from equation 
4.4 are presented in figure 4.3, 4.4 and 4.5.  
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Figure 4.3. Plot of the slopes of the residual plots as a function of ln(Bi) for infinite slabs, the line represents the predicted 
coefficients from equation 4.4. 

 

Figure 4.4. Plot of the slopes of the residual plots as a function of ln(Bi) for infinite cylinders, the line represents the predicted 
coefficients from equation 4.4. 

 

Figure 4.5. Plot of the slopes of the residual plots as a function of ln(Bi) for spheres, the line represents the predicted 
coefficients from equation 4.4. 

 

The construction of a simplified equation that describes the residual propagation as a function of the 
dimensionless time (Fo) is constructed by the combination of the residual description in equation 4.3, and the 
regression for the slope of the residual behaviour from equation 4.3.  

Inserting equation 4.4 in equation 4.3 gives: 

lnሺ߳ሻ ൌ െሺߣଵ ∙ lnሺ݅ܤሻ ൅ ሻܥ ∙ ݋ܨ ൅ ݈݊൫ܽ௖,ଵ െ 1൯   [4.5] 
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Taking the antilogarithm to equation 4.5 and rearranging gives: 

߳ ൌ ൫ܽ௖,ଵ െ 1൯ ∙ ݁ିఒభ∙୪୬	ሺ஻௜ሻ∙ி௢ ∙ ݁ି஼∙ி௢    [4.6]  

Equation 4.6 may be simplified to:  

߳ ൌ ൫ܽ௖,ଵ െ 1൯ ∙ ఒభ∙ி௢ି݅ܤ ∙ ݁ି஼∙ி௢     [4.7]  

For the infinite slab, the infinite cylinder and the sphere, the rounded values of C equals: 11, 15 and 19, 
respectively.  

Equation 4.6 and 4.7 predicts that the residual, ε approaches 0 when the Fourier number becomes large and 
approaches ac,1 when the Fourier number approaches 0, in full accordance with the complete series 
expansion. For Bi<0.1 ac,1 approaches 1 and the residual is negligible, and in these cases the lumped 
capacitance method can also be used (Mills 1995 p.,32) For Bi>100 the surface resistance is negligible and 
these situations can be calculated as if Bi=100. The parameter C is not sensitive to small variations; however, 
the global fit of the model is best at the suggested values of C. The inputs needed are summarised in table 
4.1.  

Table 4.1 Formulae input to calculate the thermal history based with the suggested equation 

Geometry λ1 ac am C 

Inf. Plate ݅ܤ ൌ ଵߣ݊݅ݏଵ 2ߣ݊ܽݐଵߣ
௜ߣ ൅ ଵߣݏ݋ଵܿߣ݊݅ݏ

 ܽ௖ ∙
௜ሻߣሺ݊݅ݏ

௜ߣ
 

11 

Inf. Cylinder ݅ܤ ൌ
ଵሻߣଵሺܬଵߣ
ଵሻߣ଴ሺܬ

 
ଵሻߣଵሺܬ2

଴ܬଵሺߣ
ଶሺߣଵሻ ൅ ଵܬ

ଶሺߣଵሻ
 ܽ௖ ∙ 2 ∙

௜ߣଵܬ
௜ߣ

 
15 

Sphere ݅ܤ ൌ 1 െ ଵߣ݊݅ݏଵ 2ሺߣݐ݋ଵܿߣ െ ଵሻߣݏ݋ଵܿߣ
ଵߣ െ ଵߣݏ݋ଵܿߣ݊݅ݏ

 ܽ௖ ∙ 3 ∙
௜ሻߣሺ݊݅ݏ െ ௜ሻߣሺݏ݋௜ܿߣ

௜ߣ
ଷ  

19 

 

The values of λ1, ac,1 and am,1  for different Biot numbers are presented in most textbooks on the subject based 
on the equations summarized in table 4.1, and as presented in chapter 3, these can be predicted with very 
good accuracy using the proposed polynomial fit in table 3.2 recapitulated below in table 4.2: 

 

Table 4.2 regression equations for the determination of the 1st Fourier exponent from chapter 3 

Geometry Regression polynomials 

Inf. Slab ܾ ൌ ଵߣ
ଶ ൌ 1.1911 ∙ ሺ݅ܤ௡௢௥௠ሻଷ ൅ 0.1878 ∙ ሺ݅ܤ௡௢௥௠ሻଶ ൅ 1.0939 ∙ ሺ݅ܤ௡௢௥௠ሻ െ 0.0037  

Inf. Cylinder ܾ ൌ ଵߣ
ଶ ൌ 3.2595 ∙ ሺ݅ܤ௡௢௥௠ሻଷ ൅ 0.3628 ∙ ሺ݅ܤ௡௢௥௠ሻଶ ൅ 2.1878 ∙ ሺ݅ܤ௡௢௥௠ሻ െ 0.0053  

Sphere ܾ ൌ ଵߣ
ଶ ൌ 6.2941 ∙ ሺ݅ܤ௡௢௥௠ሻଷ ൅ 0.4877 ∙ ሺ݅ܤ௡௢௥௠ሻଶ ൅ 3.1477 ∙ ሺ݅ܤ௡௢௥௠ሻ ൅ 0.00073  
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Also the solutions for determining λ1, ac,1, and am,1 suggested by Ramaswamy et al. (1982) and Ostrogorsky 
(2009) provides accurate determinations. However, as discussed in chapter 3 they are more complex and less 
transparent equations. 

For the combined approximation for the complete series expansion, the calculated residual in equation 4.7, is 
combined with the description of the complete expansion by a 1st term approximation – subtracted a residual 
in equation 4.8. 

Inserting eq. 4.7 into eq. 4.1 gives: 

Ω ൌ ܽ௖,ଵ ∙ ݁ିఒభ
మ∙ி௢ െ	൫ܽ௖,ଵ െ 1൯ ∙ ఒభ∙ி௢ି݅ܤ ∙ ݁ି஼∙ி௢   [4.8] 

For an improved precision at Fo<≈0.05-0.08, where equation 4.8 tends to overshoot the predicted value of Ω 
(see figure 4.6 later), the rational restriction Ω≤1 should be applied, since a value of Ω>1 is not physical 
because no internal heat generation is considered. The consequence of the restriction can be seen in section 
4.4. 

Ω ൌ ܽ௖,ଵ ∙ ݁ିఒభ
మ∙ி௢ െ	൫ܽ௖,ଵ െ 1൯ ∙ ఒభ∙ி௢ି݅ܤ ∙ ݁ି஼∙ி௢												ሾ	where	Ω ൑ 1ሿ  [4.9]   
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4.3 Volume average temperatures 
 

The same procedure as in section 4.2 is used for constructing a similar equation for the volume average 
temperature. The residual between a 1st term approximation and a complete solution to the series expansion 
is investigated. As in section 4.2 the residual is plotted against Fo in a log scale and the regression equations 
are based on a forced regression with a known intercept. For the volume average temperature, the forced 
regression is at (am,1-1), all regressions can be found in appendix 5. The following expression was obtained to 
describe the residual as a function of the Fourier number generalised for all Bi-numbers: 

lnሺ߳ሻ ൌ െሺ3 ∙ ଵߣ ∙ lnሺ݅ܤሻ ൅ ሻܥ ∙ ݋ܨ ൅ ݈݊൫ܽ௠,ଵ െ 1൯ 

Antilog gives: 

߳ ൌ ൫ܽ௠,ଵ െ 1൯ ∙ ݁ିଷ∙ఒభ∙୪୬	ሺ஻௜ሻ∙ி௢ ∙ ݁ି஼∙ி௢ 

Simplifies to 

߳ ൌ ൫ܽ௠,ଵ െ 1൯ ∙ ଷ∙ఒభ∙ி௢ି݅ܤ ∙ ݁ି஼∙ி௢ 

Combining the 1st term approximation with the residual determination gives the simplified equation for 
volume average temperature also covering low Fourier numbers. 

 

Ω ൌ ܽ௠,ଵ ∙ ݁ିఒభ
మ∙ி௢ െ	൫ܽ௠,ଵ െ 1൯ ∙ ଷ∙ఒభ∙ி௢ି݅ܤ ∙ ݁ି஼∙ி௢   [4.10]  

The exponential term (3.λ1
.Fo) in equation 4.10 for volume average temperatures is larger than the 

exponential term (λ1
.Fo) in equation 4.8 for the centre temperatures. This is because the 1-term 

approximation is converging more rapidly for the volume average temperature than for the centre 
temperature (see figure 7.8 in chapter 7). The convergence of the 1st term approximation for centre, volume 
average and positional temperatures is presented and discussed thoroughly in chapter 7.  

The restriction Ω≤1 does not need to be applied in the case of volume average temperatures because the 
theoretical value of the dimensionless temperature response never goes above 1 for the volume average 
temperature.  

The temperature predictions at very low Fourier numbers are not challenging. The centre temperature is 
equal to the initial temperature before the heat has significantly reached the centre (app. Fo<0.04). The 
volume average temperature is more difficult to predict at very low Fourier numbers (Fo<0.04) and needs 
many terms in the series expansion to be exact. The presented study is not suited for this calculation. For heat 
transfer operations this is not crucial because the Fourier numbers are seldom extremely low within a 
reasonable process window, and the initial volume average temperature is of no big concern. However in the 
application of the procedure to mass transport processes (where the same basic Fourier expansion is used) 
such as salting operations this is important. The issue of calculating the volume average temperature at very 
low Fourier numbers (Fo<0.04) is not within the theme of this dissertation. 
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4.4 Validation 
 

To test the validity of the new equation (equation 4.9) it is compared with the solution to infinite series 
solution at representative Biot numbers (1 and 10 for the centre temperature, 4 and 20 for the volume average 
temperature). The validation is presented in the figures 4.6.a-f for the centre temperature and 4.7.a-f for the 
volume average temperature. Even though the restriction should always be used (equation 4.9), the 
prediction without the restriction is presented in graphs to show the behaviour. 

 

Figure 4.6. a-f. Centre temperature validation by comparing the 1- term solution from equation 1.5 (full line), the exact 
solution with 100 terms from equation 1.3 (open circles), and the new equation 4.8 (dashed line).  The restriction from 
equation 4.9 (Ω≤1) is included in the charts. 

Figure 4.6 shows that equation 4.8 generally overshoots slightly at low Fo; by including the restriction (Ω≤1) 
in equation 4.9 predicts the temperature response in the centre with good precision at all Fo-numbers.  

The results from the validation of the volume average temperature calculation (equation 4.10) are presented 
in figure 4.7. a-f.  
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Figure 4.7. a-f. Volume average temperature validation by comparing by comparing the 1- term solution from equation 1.5 
(full line), the exact solution with 100 terms from equation 1.3 (open circles), and the new equation 4.10 (dashed lines). 

As for the centre temperature, the precision of the prediction is good also at low Fourier numbers as can be 
observed in the graphs in figure 4.7.a-f.  

For investigating the full validation the precision of the developed equations (4.9 and 4.10) is supported by 
the calculation of the error of prediction in terms of Root Mean Squared Difference (RMSD) (equation 4.11) 
for all tested Biot numbers (0<Fo<0.2). The investigation is based on a comparison between the 100 term 
solution and the solution from equations 4.9 and 4.10, for the centre and volume average temperature 
respectively. The RMSD values of all the tested geometries are presented in table 4.2.  
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ܦܵܯܴ ൌ ඨ∑ ൬
൫௫భ,೟ି௫మ,೟൯

మ

௡
൰௡

௧ୀଵ 			    [4.11] 

Table 4.2 The calculated RMSD values for the comparison between the new equation and the 100 term solution at 0<Fo<0.2 
for the centre temperature and volume average temperature.  

 Centre temperature (equation 4.9) 
(Restriction: Ω≤1) 

Volume average temperature 
(equation  4.10) 

 Inf. slab Inf. cylinder sphere Inf. slab Inf. cylinder sphere 

Bi  RMSD RMSD  RMSD RMSD  RMSD RMSD 

0.1 0.0008 0.0010 0.0005 - - - 

0.2 0.0013 0.0017 0.0012 - - - 

0.4 0.0019 0.0026 0.0021 - - - 

0.6 0.0024 0.0034 0.0030 - - - 

0.8 0.0030 0.0041 0.0039 - - - 

1 0.0031 0.0046 0.0047 0.0007 0.0006 0.0011 

2 0.0035 0.0060 0.0072 0.0020 0.0018 0.0022 

4 0.0031 0.0066 0.0089 0.0031 0.0032 0.0035 

6 0.0035 0.0067 0.0101 0.0046 0.0047 0.0045 

8 0.0041 0.0066 0.0102 0.0058 0.0062 0.0067 

10 0.0046 0.0070 0.0102 0.0068 0.0074 0.0080 

20 0.0046 0.0074 0.0103 0.0093 0.0109 0.0121 

30 0.0041 0.0077 0.0107 0.0085 0.0123 0.0135 

40 0.0042 0.0080 0.0115 0.0108 0.0126 0.0140 

50 0.0037 0.0086 0.0124 0.0105 0.0128 0.0141 

100 0.0041 0.0111 0.0161 0.0101 0.0123 0.0140 

- At Bi<1, the error (RMSD) is insignificant for the volume average temperature because am,1 ≈ 1  

As seen from the RMSD values (table 4.2) it is obvious that the error of the new equation is increasing at 
higher Biot numbers. The maximum error is for spheres (Bi=100) with a maximum RMSD of 0.016. In 
general RMSD is about 0.01 or lower, and this precision is adequate in most practical situations. 
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4.5 General geometries 
 

Calculation of general geometries represented as cross sections of infinite bodies (cans, boxes and infinite 
prisms) the method suggested by Newman (1936) (equation 1.7) is adopted with the new approach, keeping 
in mind that the restriction (equation 4.9) should be applied for all individual dimensions.  

Two representative cases have been chosen. The first case is the heating of a can with the dimensions: r=54 
[mm], h=108 [mm], a heat transfer coefficient of 150 [W/m2K], an initial product temperature of 20°C and a 
surrounding temperature of 120°C. The resulting heating profile is presented in figure 4.8.  

The second case is convective cooling of a box with the dimensions 80x80x40 [mm], a heat transfer 
coefficient of 40 [W/m2K], an initial product temperature of 70°C and a surrounding temperature of 2°C. The 
resulting heating profile is presented in figure 4.9 where the Fourier number refers to the largest dimension 
(80mm). The corresponding process time for the can in case 1 is 5000s at Fo=0.2, and for the box in case 2 it 
is 2700s at Fo=0.2. 

 

Figure 4.8. Validation of the heating profile of a can geometry during the initial heating period. The exemplified heat transfer 
coefficient is considered 150 [W/m2K], and the can dimensions are r=54mm and h=108mm. Biradius=20, Bi1/2h =20 
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Figure 4.9. Validation of the cooling profile of a box geometry during the initial cooling period. The exemplified heat transfer 
coefficient is considered 41 [W/m2K]. The box dimensions are 80x80x40 [mm]. The box geometry has two sets of Fo numbers, 

here it is presented by the lowest Fourier numbers (the two dimensions of 80mm) at the x-axis. Bih=4, Biw=8, Bil=8 

 

From figure 4.8 and 4.9 it is seen that the proposed new equation 4.9 is able to predict the thermal history in 
the initial phase with a high level of precision. the maximum error for the two cases is 2°C for the can in case 
1 and 1.5°C for the box in case 2. The maximum error occurs in the beginning of the process where it is 
usually less important to know the temperature with a high precision.  

The developed equations are compared with a numerical solution to two industrial examples in the next 
chapter to validate the equations for more real-life examples. 
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4.6 concluding remarks  
 

The equations formulated in this study (equations 4.8-4.10) gives good precision for the thermal response in 
the centre and for the volume average temperature of simple geometries (slabs, cylinders, spheres, cans, 
boxes and prisms), covering the whole process time (Fo>0) and all Biot numbers in the range 0.1<Bi<100. In 
general, RMSD is about 0.01 or lower; for the sphere at high Bi the prediction error (RMSD) increases up to 
0.016. This precision is adequate in most practical situations, considering that the driving temperature 
difference in most cases in the food industry is below 100oC. The variable input to the new equation is 
identical to the information needed in a 1-term solution to non-stationary heat transfer problems and an 
additional constant depending on the geometry.  

For the utilization of this procedure the geometry of investigated product and the thermo-physical properties 
needs to be assessed which in most situations is not problematic. However, also the Biot number have to be 
calculated where a determination of the heat transfer coefficient is crucial. Determination of heat transfer 
coefficients for different process situation is presented and discussed in chapter 6. 

Equation 4.9 applies for the full Fo range for the center-temperatures, equation 4.10 for the volume average 
temperatures is less precise at very low Fourier numbers(Fo<0.02). 
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5. Numerical validation of real products 
 

The combined simplification method, developed and presented in chapter 3 and 4, has been validated for the 
elementary geometries in the previous chapters against the complete series expansion (exemplified by 100 
terms). The validation of finite bodies in terms of general geometries (cans, quadratic prisms and boxes) that 
can be represented as cross sections of elementary geometries (infinite slab, infinite cylinder and sphere), the 
method is straight forward by applying the procedure from Newman (1936). In these cases it is important 
that the restriction (Ω≤1) is applied to individual dimensions following equation 4.9. 

For the validation of industrial products, this chapter presents the predictive calculation of two product 
examples from food manufacture, also presented in the operationalization section to this thesis (Chapter 2.3).  

The method used for this validation is a numerical solution calculated using the commercial software 
COMSOL Multiphysics. For the first case presented, regarding the cooling of packaged cream cheese I have 
performed the modelling during the Ph.D study, for the second case (processing of hamburgerryg), Assistant 
Professor Aberham Hailu Feyissa has supported with numerical data.  

 

5.1 Industrial application - Cream cheese case study 
 

The case is inspired by a project where a Danish dairy production of cream cheese is investigated with 
regards to the cooling profile of a packaged product. In the project former bachelor student Søren Holm 
Rasmussen, investigated the influence of cooling of cream cheese under my co-supervision. From meetings 
with the company we got insight to the production and cooling of the cream cheese products. The modelling 
work and the predictive calculations presented in this thesis is formulated and calculated in the thesis study 
solely. 

For this validation it is desired to know the heat transfer coefficients for individual boundaries. Due to the 
design of the cooling equipment, the supplied airflow is perpendicular (figure 5.1) which induces varying 
heat transfer coefficients at the different surfaces of the package.  

 

 

 

 Airflow direction 

Figure 5.1 Description of the cooling during the processing of cream cheese in case 1. The package has 
a headspace and is exposed to perpendicular airflow across the sides and the insulated headspace 
insulated surface at the top. The boundaries are named according to their relative position to the flow 
i.e. Front, Back, Side and Top 

Front 
Back 

Side 

Top 
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A set of heat transfer coefficients for each boundary is assumed based on the experience from an earlier 
investigation where individual heat transfer coefficients were measured in a laboratory setup (see chapter 
7.1). These are presented in table 5.1. Optimally, the convective heat transfer coefficients need to be 
measured at the production site. The procedure for determining heat transfer coefficients for separate 
boundaries is presented in chapter 6. 

The description of the equipment and product characteristics are as follows: 

The air tunnels comprises of a moving band inside a big housing with circulating air that surrounds the 
surface of the products. In the theoretical setup there is a slight insulation at the bottom surface touching the 
conveyor band (a plastic material, with assumed low thermal conductivity), and there is an insulating 
headspace at the product top between the attached lid and the product domain.  

Process settings: The cream cheese is to be pre-cooled before storage to allow the gel to set at a volume 
average temperature set-point of around 30-40°C (the actual set-point is anonymised). The initial 
temperature is 70°C and the surrounding temperature is 0°C. The volume average temperature is important 
as a set point for the cooling process, but also the centre temperature (more precisely the global maximum 
temperature) is important in order to conduct process evaluation at the production site, as this can be directly 
measured.  

 

5.1.1 Heat transfer coefficients in the process 
 

The cream cheese is cooled in a conventional cooling spiral by circulating air. The air is considered a 
perpendicular airstream as presented in figure 5.1 inducing a non-uniform heat transfer around the package. 
The assumed heat transfer coefficients for the calculations are presented in table 5.1. 

Table 5.1 Heat transfer coefficients used in the calculations of the cooling profiles of the cream cheese. 

Dimension Heat transfer coefficient 

Top 30 [W/m2K] 

Bottom 10 [W/m2K] 

Sides 22 [W/m2K] 

Back 18 [W/m2K] 

Front 35 [W/m2K] 

 

For the numerical calculations the heat transfer coefficients in table 5.1 are applied to the respective 
boundary. In the analytical calculations the heat transfer coefficient is averaged in direction (x, y, z) 
top/bottom, side/side and front/back. 
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The headspace below the lid acts as an insulating layer, and the heat transfer coefficient to the top of the 
cream cheese is therefore equal to the overall heat transfer coefficient U (the air in the headspace is assumed 
stagnant in both the numerical and the analytical solution). 

ଵ

௎
ൌ

ଵ

௛
൅

௅೓೐ೌ೏ೞ೛ೌ೎೐
௞ೌ೔ೝ

ൌ
ଵ

ቀ
భ
యబ
ା
బ.బమయళ
బ.బబమ

ቁ
ൌ 7.5	ሾW/݉ଶKሿ  

For the analytical calculations based on the equations presented in this study (chapter 3 and chapter 4), the 
average values of h in each dimension are used, cf. the boundary conditions above: 

 Top/bottom: 8.75 [W/m2K] ቀ
଻.ହାଵ଴

ଶ
ቁ 

 Sides: 22 [W/m2K] ቀ
ଶଶାଶଶ

ଶ
ቁ 

 Front/back: 26.5 [W/m2K] ቀ
ଵ଼ାଷହ

ଶ
ቁ 

The thermo physical properties of the cream cheese (T, 50°C): ρcheese=998 [kg/m3], kcheese=0.45[W/m.K], 
cp,cheese=3261[J/kgK], kheadspace=0.0237[W/m.K], calculated from the content of macronutrients in the product 
and the temperature dependence described by Choi and Okos (1986). The dimensions of the product is (half 
height=0.01 [m], half-length=0.04 [m] and half width=0.065 

Based on the dimension averaged heat transfer coefficients, the resulting Biot numbers for the cream cheese 
domain is: 

 Top/bottom:  ݅ܤ ൌ
଼.଻ହ

଴.ସହ
∙ 0.01 ൌ 0.194 

 Sides:  ݅ܤ ൌ
ଶଶ

଴.ସହ
∙ 0.06 ൌ 2.93 

 Front/back: ݅ܤ ൌ
ଶ଺.ହ

଴.ସହ
∙ 0.04 ൌ 2.36 

 

5.1.2 Numerical Calculation  
 

The developed equations (4.9 and 4.10) are compared to a numerical simulation of the Fourier equation 5.1 
solved in COMSOL Multiphysics®. 

௣ܿߩ
డ்

డ௧
ൌ ׏ ∙ ሺ݇ܶ׏ሻ ൌ ݇ ቂ

డమ்

డ௫మ
൅
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డ௭మ
ቃ     (5.1) 

The simulation describes the temperature as a function of time and position using the following boundary 
conditions: 
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ݖ߲

ൌ ݄௭ሺܶ െ ௔ܶ௜௥ሻ 
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The packaged cream cheese is considered as a box with the dimensions (20×80×120 [mm]) and an apparent 
headspace of 2 [mm] on the top boundary caused by an attached lid. In figure 5.2 the geometry is presented 
along with the applied mesh for the numeric calculations. In the simulations and the predictions with the 
developed equations, all thermo physical properties are assumed constant, and no convection is considered in 
the headspace. The study is performed as a pure conduction study, with applied convective heat transfer at 
the boundaries. 

 

Figure 5.2. The constructed geometry for the modelling of cream cheese to the left and the applied mesh to the right. The 
dimension unit is [cm]. The attached lid is positioned at the top. The cream cheese domain is in the bottom. 

 

5.1.3 Analytical calculation with the developed method 
 

The simplified prediction using the procedures presented in chapter 3 and 4 is implemented in Excel where 
the inputs needed for the calculations are the Biot numbers calculated above, the thermo physical properties 
and the characteristic dimensions. From the Biot numbers presented in section 5.1.1 normalised Biot 
numbers are calculated for each of the three dimensions. 
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௡௢௥௠,ሺ௦௜ௗ௘௦ሻ݅ܤ ൌ
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The normalised Biot numbers are used to determine the Fourier exponents needed in the series expansion 
solution by the polynomial regressions determined from chapter 3, table 5.2 shows the calculation of the 3 
Fourier exponents. In the table only the first two decimals are presented in the parameters, for the full 
regression equations see table 3.2. 

Table 5.2 Polynomial regressions determination (from table 3.2) for the first Fourier exponent for the three dimensions 

dimension Regression polynomia 

Top,bottom ܾ ൌ ଵߣ
ଶ ൌ 1.19 ∙ ሺ0.162ሻଷ ൅ 0.19 ∙ ሺ0.162ሻଶ ൅ 1.09 ∙ ሺ0.162ሻ െ 0.0037 ൌ 			0.185  

Front,back ܾ ൌ ଵߣ
ଶ ൌ 1.19 ∙ ሺ0.703ሻଷ ൅ 0.19 ∙ ሺ0.703ሻଶ ൅ 1.09 ∙ ሺ0.703ሻ െ 0.0037 ൌ 			1.269  

sides ܾ ൌ ଵߣ
ଶ ൌ 1.19 ∙ ሺ0.759ሻଷ ൅ 0.19 ∙ ሺ0.759ሻଶ ൅ 1.09 ∙ ሺ0.759ሻ െ 0.0037 ൌ 			1.456  

 

The square root of the Fourier exponents, calculated from table 5.2, gives the eigenvalue belonging to the 
specific root function in table 1.1 used as input value to determine the lag factors.  

ଵ,௧௢௣,௕௢௧௧௢௠ߣ ൌ 0.185଴.ହ ൌ 0.4295 

ଵ,௙௥௢௡௧,௕௔௖௞ߣ ൌ 1.269଴.ହ ൌ 1.1264 

ଵ,௦௜ௗ௘௦ߣ ൌ 1.456଴.ହ ൌ 1.2079 

 

For the specific case, only the equations for infinite slabs are used in the calculations in table 5.3  

 

Table 5.3 Calculation of the lag factor based on the first eigenvalues calculated in table 5.2 

Geometry ac  am 

Top,bottom 2sinሺ0.43ሻ
0.43 ൅ sin	ሺ0.43ሻcos	ሺ0.43ሻ

ൌ 1.031 ܽ௖ ∙
ሺ0.43ሻ݊݅ݏ

0.43
ൌ 0.999 

Sides 2sinሺ1.13ሻ
1.13 ൅ sin	ሺ1.13ሻcos	ሺ1.13ሻ

ൌ 1.192 ܽ௖ ∙
ሺ1.13ሻ݊݅ݏ

1.13
ൌ 0.956 

Front,back 2sinሺ1.21ሻ
1.21 ൅ sin	ሺ1.21ሻcos	ሺ1.21ሻ

ൌ 1.214 ܽ௖ ∙
ሺ1.21ሻ݊݅ݏ

1.21
ൌ 0.94 

 

The Fourier exponents b1, lag factors ac,1, am,1 and 1st eigenvalues λ1 are used as input in the developed 
simplified equations, for the centre temperature response (equation 4.9) with the time interval in 
dimensionless form (Fo). The procedure is presented as an example for the calculation of the centre 
temperature. The procedure in calculating the volume average temperature is analogue. 

 



67 
 

Ω ൌ ܽ௖,ଵ݁ି௕∙ி௢ െ ൫ܽ௖,ଵ െ 1൯ି݅ܤఒభ∙ி௢݁ି஼∙ி௢	ሺΩ ൌ 1	݂݅	Ω ൐ 1ሻ 

 

For the calculation of infinite slabs C=11. For calculation of general geometries that can be exemplified as 
cross sections of elementary geometries the approach described by Newman (1936) is adopted, in this 
specific case as a finite box. Keeping in mind that the restriction of the temperature response (Ω=1 if Ω>1) 
should be used on separate dimensions before they are multiplied. This can in practice be done in two ways 
in Excel. Either the response can be changed manually in the cells which is timeconsuming, or more 
elegantly an IF function can be used in the output cells. 

 

Ω௧௢௣,௕௢௧௧௢௠ ൌ 1.031 ∙ ݁ି଴.ଵ଼ହ∙ி௢ െ ሺ1.031 െ 1ሻି݅ܤ଴.ସଶଽହ∙ி௢݁ିଵଵ∙ி௢	ሺΩ ൌ 1	݂݅	Ω ൐ 1ሻ   

Ω௙௥௢௡௧,௕௔௖௞ ൌ 1.192 ∙ ݁ିଵ.ଶ଺ଽ∙ி௢ െ ሺ1.192 െ 1ሻି݅ܤଵ.ଵଶ଺ସ∙ி௢݁ିଵଵ∙ி௢	ሺΩ ൌ 1	݂݅	Ω ൐ 1ሻ 

Ω௦௜ௗ௘௦ ൌ 1.214 ∙ ݁ିଵ.ସହ଺∙ி௢ െ ሺ1.214 െ 1ሻି݅ܤଵ.ଶ଴଻ଽ∙ி௢݁ିଵଵ∙ி௢	ሺΩ ൌ 1	݂݅	Ω ൐ 1ሻ  

 

For the temperature response in the cream cheese the 3 dimensions are multiplied (Newman 1936) 

 

Ω௖௥௘௔௠	௖௛௘௘௦௘ ൌ Ω௧௢௣,௕௢௧௧௢௠ ∙ Ω௙௥௢௡௧,௕௔௖௞ ∙ Ω௦௜ௗ௘௦ 

      

For the volume average temperature the procedure is the same as for the centre temperature. Equation 4.10 is 
used for volume average temperatures, recapitulated below: 

 Ω ൌ ܽ௠,ଵ݁ି௕∙ி௢ െ ൫ܽ௠,ଵ െ 1൯ି݅ܤଷఒభ∙ி௢݁ି஼∙ி௢ 

 

5.1.4 Results 
 

The results from the simulation are the temperature history of the volume average temperature and the global 
maximum. Figure 5.2 demonstrates, also in this case, a good agreement between the numerical simulations 
and the calculations according to the new equations developed in the present work.  
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Figure 5.2 Comparison between the 1st term series expansion solution and the present work with the model result from 
COMSOL for the thermal history of the average temperature (left) and the global maximum temperature (right) for the 
simulation setup described in the case, the “new equation” label cover the combined procedure from chapter 3+4. 

The prediction of the volume average temperatures using the new approach fits well with the numerical 
simulation of the process and is an improvement compared to the presently used 1st term approximation. 
Also the centre temperature can be predicted with high accuracy.  

Where the simplified solution tested is predicting the geometrical centre, the numerical solution is in this 
validation predicting the thermal centre in the cream cheese domain. For this validation the thermal centre 
and the geometrical centre is close because the boundary heat transfer coefficients are similar in the same 
dimensions (top/bottom, sides, front/back), (figure 5.3).  

 

Figure 5.3 The temperature at the vertical centreline at the end of the cooling step after 1800s (left) and the position of the 
global maximum temperature in the midplane symmetric slice (right). 

The thermal gradient is small around the thermal centre (figure 5.3). This is because the Biot numbers are 
small. 

An additional comparison is presented in figure 5.4, where the bottom heat flux is increased to 20 [W/m2K]. 
Because the product has an apparent headspace below the lid of the product, it is assumed that the biggest 
potential for optimising the cooling time is through the bottom of the package. In this theoretical 
optimization setup, it is proposed that a high conductive material in the conveyor band can increase the heat 
transfer coefficient to the bottom of the package. This simulation was conducted for two reasons; in order to 
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investigate the optimisation potential, and to validate whether the developed equations could be used for 
such an investigation. 

 

  

Figure 5.4 Comparison between the 1st term series expansion solution and the recently developed equation with the model 
result from COMSOL for the thermal history of the average temperature (left) and the global maximum temperature (right) 
for the simulation with an increased heat transfer at the bottom boundary 

From the comparison in figure 5.4 of the process with an increased heat transfer coefficient to the bottom it 
can be seen that the developed equation has a high accuracy when compared to the numerical simulation for 
both the volume average temperature (left) and the centre temperature (right). For optimisation purposes, the 
target of a volume average temperature of e.g. 30°C is recalled from the case description. This is reached in 
the traditional process after 1800 [s], and in the optimization setup after 1500s, a reduction in cooling time of 
300 [s] or 16%.   

For this case it has been shown that the developed equations from the previous chapters can be used for 
predictive calculations of products with different heat transfer coefficients at the boundaries. 
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5.2 Industrial application – 3 step processing of “hamburgerryg” 
 

In the second case the processing of hamburgerryg (brined, smoked and boiled saddle of pig) is modelled by 
a numerical simulation and compared to the simplified solution for predicting the thermal history as 
described in chapter 3 and 4. The experimental results and numerical simulations come from another project 
and are provided with courtesy of dr. Aberham Hailu Feyissa. The description of the process is provided 
below  

Process description 

Cylindrical hamburgerryg are manufactured in a three step process. The heat treatments are conducted after 
the brining step, which are not covered by this analysis. The hamburgerryg, which consists of brined meat 
cuts, have a length of 540 [mm] and a diameter of 85 [mm]. The thermo physical properties of the 
hamburgerryg are at process average temperature. The data used in this project has been transposed by a 
factor multiplied with the time and another factor multiplied with the temperature in the graphs due to 
confidentiality of the data. The set-points for the process are changed to an interval instead of a target.  

Density: ρ=1064.5 [kg/m3] 

Specific heat capacity: cp= 3535.5 [J/kg.K] 

Thermal conductivity: k= 0.47[W/m.K] 

Processing can be described as the following; 

1. Initially the products are placed in a smoker where they are smoked until the desired quality is obtained. 
The conditions in the smoker is an average surrounding temperature of 50-60°C and a convective heat 
transfer coefficient of 20 [W/m2K] 

2. After the initial smoking of the products they are transferred to a steamer where they are processed at 70-
85°C and a heat transfer coefficient of 3790 [W/m2K]. In the transition period between the two heating 
steps the ambient temperature is 25°C under free convection at a heat transfer coefficient of 8 [W/m2K]. 
The set-point of the steaming process is 70-80°C in the centre. 

3. After steaming the hamburgerryg is cooled with water in a falling film inducing a heat transfer 
coefficient of 80 [W/m2K] at 10-40°C 

4. After the active cooling step they are placed for passive cooling at 0-10°C with a heat transfer coefficient 
of 13 [W/m2K] 

In the simplified prediction only the first three steps are modelled. The hamburgerryg is considered an 
infinite cylinder based on the numerical results. The product is also considered an infinite cylinder in the 
numerical solution. The resulting Biot numbers in the three steps are. 

1. Bi=1.81 – initial heating and smoking 
2. Bi=342 – heating with steam 
3. Bi=7.23 – cooling with falling water 

Following the same procedure as described in section 5.1.3 the centre temperature is calculated as a function 
of time. 
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5.2.1 Numerical solution 
 

The numerical modelling of the process is conducted as a pure conduction process as no significant mass 
transfer or phase change need to be considered. The procedure of the modelling is in principal identical to the 
procedure used for the cream cheese calculation. However, the boundaries in the hamburgerryg process 
changes during the process history. This is included in the model by a sequential boundary where the 
boundaries vary over time. In the simulations the boundaries are equal to the equipment setting. The 
numerical calculations for the hamburgerryg case will not be elaborated further in this study as it only serves 
as comparative input for developed method. The numerical data are provided with courtesy of Aberham 
Hailu Feyissa, 2013.  

 

5.2.2 Analytical calculation with the developed method 
 

The predictive calculations are adapted using the developed method (equation 4.9 and 4.10). The Biot 
numbers and the normalised Biot numbers are calculated. The Fourier exponents and the derived eigenvalues 
and lag factors are determined as a function of the normalised Biot number by polynomial regression (table 
3.2), and the equations presented in table 1.1. The procedure is identical to the procedure in section 5.1.3 for 
the calculation on the cooling profile for the cream cheese.  

The processing of hamburgerryg differs substantially from the cooling of the cream cheese due to a change 
in the boundaries with regards to temperature and heat transfer coefficients during processing. In the case of 
the hamburgeryg processing it is possible to model a change in the boundary conditions with a series 
expansion solution because the surrounding temperatures are close to the target temperature of the product in 
each step. The assumption of initial uniform product temperature in the beginning of each of the process 
steps is approximately fulfilled.  

 

5.2.3 Boundary temperature 
 

The boundaries used in the numerical solution, the actual measured boundary temperature and the 
temperature used for the simple calculations are presented in figure 5.5, to exemplify the simplification of 
the boundary temperature of measurements and the used boundaries for the calculation. In figure 5.5 the 
temperatures and time scales have been removed from the graph to anonymise the experimental results. 
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Figure 5.5 Boundary temperatures measured in during the experiment (orange) the equipment setup used in the numerical 
simulation (blue) and the used temperature for the simplified predictions (green) 

In the simplified calculations it is an advantage that the expression of the boundary temperature is as simple 
as possible. 

 

5.2.4 Results 
 

The results from this study are divided in three sections: the provided experimental data, prediction of the 
temperature by a numerical solution and the developed equations from chapter 3 and 4, and a validation of 
the comparison of the numerical and developed solutions against the experimental data. 

Experimental measurements 

During the experiment, 16 products had an inserted thermocouple in the centre point to validate the thermal 
response in the expected coldest point during processing. The resulting measurements are presented in figure 
5.6 for the average with included standard deviations. The time and temperature scale is removed for 
anonymising the experimental results. 
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Figure 5.6 Experimental centre temperatures for the processing of ham, and the measured boundary temperature 

 

Temperature predictions 

The process is calculated numerically and with the developed method, eq. 4.9. The input for the Fourier 
exponents is the Biot numbers from section 5.1.3 and the temperature boundaries presented in figure 5.5. In 
the comparison in figure 5.7 the input boundary temperatures are not included, and the measured temperature 
is presented for the average enabling a more clean interpretation of the results. The boundaries can be viewed 
unit less in figure 5.5. The residuals of the numerical simulation and the developed simplified equations are 
presented in figure 5.8. 

 

Figure 5.7 Comparison of the measured centre temperature with the temperature predicted by the numerical model and the 
predictive calculation from equation 4.9. 

The measured average centre temperature in the experiments can be modelled by the numerical calculation 
and the predictions with the developed approach (figure 5.7). For analysing the precision of the prediction 
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from both the numerical solution and the new approach the residuals between the measured and the predicted 
is presented as a function of time in figure 5.8. It can be observed that the developed method predicts the 
temperature with comparable precision to a numerical solution (figure 5.8). It is also be observed that for the 
majority of the process a standard 1st term approximation gives a good prediction (figure 5.7). This is because 
for a big part of the process steps the Fourier number is above 0.2, where the approximation is valid. 
However, the 1st term approximation is less precise in the initial phase of the process steps. Especially for the 
cooling step this is problematic. Overshoot of the maximum temperature in this area disables the possibility 
of evaluating food safety with lethality calculations where the cooling step is included.  

 

Figure 5.8 Residual between the measured and predicted temperature in the centre of the processed hams. Based on 16 
thermocouples. 

The accuracy of the temperature prediction using the numerical solution and the developed equations is 
comparable (figure 5.8). In addition it is also seen that the variance in the experimental measured values is 
larger than the prediction residuals. For a more in depth investigation the prediction of specific products is a 
more precise validation. However, this is out of scope for this specific case, where the comparison between 
the performance of a numerical solution and the developed equations is the focus. 

The results from case two indicate that the developed equations can be used also for connected unit 
operations when the condition of initial uniform temperature is only approximately fulfilled. The results from 
the study also indicate that it is possible to use an average value for the boundary temperature in the 
calculations. This is important because process temperatures do vary, and a series expansion solution can 
only be calculated with an assumed constant boundary temperature. 
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5.3 Concluding remarks 
 

The results from the two cases investigated shows that the developed equation for the Fourier exponents and 
the calculation of the initial heating and cooling time can be combined and used for the temperature 
prediction in industrial cases. The solution provides good accuracy and has been directly used in a 
spreadsheet. However, the solution needs to be used with caution. In case one (cooling of cream cheese) the 
geometry does not have big irregularities and the individual heat transfer coefficients are comparable. If 
bigger differences are seen in the heat transfer coefficients, and if the products are more irregular the solution 
could be less precise. In case two (processing of hamburgerryg) the target temperature in each step of the 
processing is close to the boundary temperature which implies that only a small temperature gradient is 
observed in the product in the initial phase of the subsequent step. Because one of the assumptions that allow 
a good accuracy for a series expansion solution is that the initial temperature is uniform the solution provides 
good accuracy in the investigated case. If the target temperature (in the centre of the product) differs 
substantially from the boundary temperature the temperature prediction over several process steps is less 
accurate.  

In order to investigate the industrial versatility of the developed equations it is needed to conduct a larger 
validation study of various geometries, for a wider range of processes, optimally with comparison to both 
experimentally determined temperature profiles and to numerical solutions. These investigations should be 
performed in close industrial collaboration and is a definite future scope. 
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6. Convective heat transfer coefficients 
 

In heat transfer processes, the thermal response is characterized by the energy transport within the product, 
determined by the thermo physical properties, and the energy transferred to the product at the product surface 
governed by the boundary conditions the product is subjected to. The theory on heat transfer coefficient 
determination is presented in chapter 2.1.  

All the presented methods in this section are with an industrial focus, meaning that the procedures in 
principle could be conducted at the food manufacturing sites. 

This part of the study concerns method development for the determination of convective heat transfer 
coefficients. Two focus areas have been chosen, namely situations when the heating/cooling media is air, and 
when the heating/cooling media is a liquid. 

Convective heat transfer coefficients in air cooling of packaged foods. The determination of different heat 
transfer coefficients at individual boundaries, and the consequence of an apparent headspace are presented. 

Fluid-to-particle heat transfer during vessel cooking of suspended particles. A new method is proposed 
using a potato as the measuring device, which has practical advantages. In vessel cooking equipment, the 
often non-Newtonian properties of the liquid, supplied agitation, and induced boiling makes the possibilities 
of using a CFD approach extremely challenging, and due to agitation it is not easy to acquire the particle 
temperature with thermo-couples and use inverse calculations.   

 

6.1. General procedure  
 

In this section, the determination of the heat transfer coefficient through evaluation of the solid and an 
inverse calculation of the thermal curve is presented. The generalized inverse calculations are done through 
solving the heat equation with either a numerical or analytical solution (cf. 2.1.7). If aluminium is used as 
product replica, the thermal conductivity is very large (app. 170 [W/m.K]  and the Bi-number is low. Below 
is an example where the characteristic dimension of the aluminium replica is 0.04 [m] and the heat transfer 
coefficient is 100 [W/m2K]. 

݅ܤ ൌ
݄ ∙ ܴ௔௟௨௠௜௡௨௠
݇௔௟௨௠௜௡௜௨௠

ൌ
100 ∙ 0.04

170
ൌ 0.024	ሾെሿ 

The method presented in section 6.2 is an aluminium replica and calculation through the lumped capacitance 
model. In section 6.3 a real food item (potato) is used and the thermal curve is fitted with the Fourier series 
expansion.   

The methodology is presented as an example using aluminium as the solid. For very low Bi-numbers the 
curve can be calculated using the lumped capacitance model (equation 1.1), recapitulated below: 

Ω ൌ ቀ ೞ்ି்

ೞ்ି ೚்
ቁ ൌ ݁

ି൬
೓∙ಲ
೘∙೎೛
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Where h [W/m2K] is the heat transfer coefficient, A [m2] is the exposed surface area, m [kg] is the mass, cp 
[J/Kg.K] is the specific heat capacity and t [s] is the time. The dimensionless temperature difference Ω is 
calculated from measured temperature T at time t, the surrounding temperature Ts, and the initial product 
temperature T0. In the experimental heating curve of the aluminium product the slope is equal to [–
(h.A)/(m.cp)] when ln(Ω) is plotted against the time. From the slope, the heat transfer coefficient can be 
determined from knowledge on the mass, the exposed surface area and the specific heat capacity. An 
example of the procedure is presented in figure 6.1, for an aluminium block having a surface area of 0.0332 
[m2], a mass of 0.648 [kg], a cp of 2700 [J/kg.K] and an initial temperature 70°C, exposed to media of 5°C.  

  

Figure 6.1 Procedure for determining heat transfer coefficients with aluminium.  

From the temperature profile in figure 6.1 (left) the dimensionless temperature difference Ω is calculated and 
plotted logarithmically against the time. From the slope the heat transfer coefficient is calculated, in this 
particular case it is 50 [W/m2.K]. The measured heat transfer coefficient resembles the average value exposed 
to the surface of the aluminium block. 

In all experiments connected to this chapter the temperature is recorded using sensors (T-type 
thermocouples) connected to a computer with a data logger (Tc-08 Pico Technology, Cambridgeshire, UK) 
where the temperature is recorded every second.   
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6.2 Heat transfer coefficients in convective cooling 
 

This part covers the convective heat transfer in the cooling of food products with circulating air. The general 
approach is to follow the method described in section 6.1.  

In many situations the flow around the food creates a non-uniform heat flux depending on the boundary´s 
relative position to the direction of the airflow. Because many food products are cooled in the package, this 
investigation is focused towards packaged foods.  

Often packaged foods have an apparent headspace, either because the package is not entirely filled with 
product before it is sealed or if a lid is attached before the cooling step, creating a narrow space with stagnant 
air in between.  

This investigation is split into two small parts. Part one being the determination of individual heat transfer 
coefficients for boundaries that have a different relative position to the airflow. Part two is investigation of 
the influence of a headspace. 

 

6.2.1 Heat transfer for individual boundaries 
 

The heat transfer coefficients for individual boundaries are measured with an aluminium block. The 
aluminium block is heated to app. 45°C and placed in a large kitchen scale blast cooler (Gram KPS 18/30, 
Gram A/S Kolding, DK) 

To investigate individual boundaries, a mould was carved in polystyrene wherein the aluminium block was 
inserted, only exposing the top surface of the aluminium block (figure 6.2). The experiments with the 
insulated block are conducted for all six relative positions to the airflow (top, bottom, side x 2, front and 
back). The results from the measurements are presented in table 6.1. In the experiments, the block can be 
rotated so that the aluminium surface is facing the airflow  

 

Table 6.1 measured individual heat transfer coefficients 

Geometry position Local heat transfer coefficient 
[W/m2.K] 

Back 24.5 

Sides 27 

Front 33 

Bottom 35 

Top 32 

Average  30 
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From the measurements in table 6.1 it can be seen that the values of the heat transfer coefficient is dependent 
of the relative position of the product to the airflow. However, these results should be considered with 
caution as the polystyrene insulation (being rather large) could change the flow pattern. In addition the 
measurements are only conducted to mimic one individual product. In a process line, several products could 
be placed close to each other which could change the airflow around the packages. For situations where the 
heat transfer coefficients are comparable, an average value would suffice, which makes the determination 
more straight forward. This is important because these have to be conducted on site at food manufacturers 
for enabling thermal calculations representable of their processes. 

If the heat transfer coefficients for each boundary differs substantially it could be necessary to study the 
individual heat transfer coefficients.  If a headspace is present or the product is placed on a conveyor band 
that provides insulation the heat transfer coefficient for each boundary differs substantially. In these cases it 
is necessary to study the individual heat transfer coefficients. This issue is presented in the following section 

 

6.2.2 Influence of a headspace 
 

In food processing the finished products are often cooled in the package. This is an advantage because they 
can be hot-filled in the package increasing the shelf life without the necessity of aseptic filling. In the design 
of food packages a headspace is often present. Due to package design, the headspace is often insulating the 
smallest characteristic dimension of the package. Because the smallest characteristic dimension is governing 
the cooling rate it is crucial to determine the effect on the heat transfer coefficient in the presence of a 
headspace.  

To investigate the influence of a headspace, an aluminium block is inserted in a polystyrene insulated mould 
with an adjustable bottom. In the setup the heat transfer coefficient is measured for the exposed surface 
without a headspace and with a headspace of 5 [mm], 10 [mm] and 28 [mm]. The experimental setup is 
presented in figure 6.3. 

 

Figure 6.3 Experimental setup for the investigation of the headspace influence to the convective heat transfer coefficient 

Figure 6.2 Insulation of the aluminum block, only 
exposing a single surface 
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The results from the investigation are presented in table 6.2 where the results are compared to a calculation 
of the theoretical headspace influence through the overall heat transfer coefficient (kheadspace=0.0237[W/m.K], 
50°C) 

ଵ

௎
ൌ

ଵ

௛
൅

௅೓೐ೌ೏ೞ೛ೌ೎೐
௞ೌ೔ೝ

      (eq.6.1) 

NB: The assumption for using equation 6.1 in the presence of a headspace is that the air is stagnant.the 
difference between measured values and calculated values are presented in table 6.2 

Table 6.2 Measured heat transfer coefficients with influence of headspace 

Geometry position Local heat transfer coefficient 
[W/m2.K] 

Overall heat transfer 
coefficient (equation 6.1) 

Exposed surface 32 32 

Headspace 28 mm  7 1.1 

Headspace 10 mm 9 2.2 

Headspace 5 mm 10 4 

 

It can be seen that a headspace influence the convective heat transfer coefficient. It is also seen that an 
overall heat transfer coefficient calculation cannot be used for investigation of large headspaces. A reason for 
this is that the air is not stagnant in these situations. For small headspaces (1-2 mm) use of the overall heat 
transfer coefficients will induce smaller errors because the air is more stagnant. Because the aluminium 
block was not perfectly insulated at the other boundaries the actual heat transfer coefficient is assumed to be 
lower than the measured.  
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6.3 Fluid-to-particle heat transfer coefficients (hfp) – the use of potatoes as temperature 
indicators 
 

This section presents the foundation for the submitted paper “Potatoes as potential devices for studying fluid-
to-particle heat transfer in vessel cooking processes” attached in appendix 4. 

Heating of suspended particles in a liquid is a very common operation in the food industry, for example in 
vessel cooking of soups and sauces with suspended pieces of meat and/or vegetables (Bouvier et al. 2011).  

A theoretical calculation of fluid-to-particle heat transfer coefficients, (hfp), under these conditions is very 
difficult if not close to the impossible because of the complicated movement of the particles. In agitated 
vessels the mode of heat transfer cannot be expected to be fully forced convection, because suspended 
particles generally follow the movement of the liquid, the slip velocities are low, and natural convection 
must contribute to the heat transfer as well. Natural convection evidently dominate if stirring is not applied 
or only used intermittingly to minimize mechanical damage (Bouvier et al. 2011). 

This section describes a new method for evaluating hfp, by using a potato as a model food particle and 
utilizing an observed gelatinization front as a temperature measurement. For further background information 
and validation of the method see appendix 4. 

 

6.3.1 Methodology 
 

The first step is to develop a simple procedure for determining the progression of the gelatinization front in 
potatoes immersed for a given time in a medium. The second step is to study the progression of the 
gelatinization front and the temperature profile in real time. From the gelatinization front, positional 
temperatures are indirectly measured as the gelatinization temperature is known through step one. 

From the indirect temperature measurements an inverse calculation of the temperature profile enables a 
prediction of the fluid to particle heat transfer coefficient. For the full procedure description see appendix 4. 

 

6.3.2 Results  
 

The results are presented in three sections: Determination of the gelatinization temperature and conformation 
that the observed front in the potatoes is due to gelatinization of the native starch. Calculation of the heat 
surface to particle heat transfer coefficient with a standard Fourier series expansion for three theoretical 
examples. The feasibility of using a 1st term approximation to evaluate the heat transfer coefficient is 
investigated through a comparison with the complete series expansion solution.  

The results are followed by a discussion of the sensitivity of the measurements based on position of the 
gelatinization front and determination of the gelatinization temperature. 

The comparison of the experimentally determined heat transfer coefficient with a numerical solution of the 
experimental setup is found in the submitted paper, attached in appendix 4.  
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Fluid-to-particle heat transfer coefficients 
Because the observed gelatinization front can be used as an indirect temperature measurement, a thermal 
history can be produced (appendix 4). The thermal history is not the temperature in a known position over 
time, but the position of a known temperature (67°C) over time. The heat transfer coefficient can be 
calculated from the relative position of the gelatinisation front, either by a numerical solution or an analytical 
solution to the heat equation. Only the analytical procedure is presented here. The Fourier series expansion 
for heat conduction in spheres is presented in equation 6.2 for relative positions (x/R) in the solid. 

Ω ൌ
ሺ ೞ்ି்ሻ

ሺ ೞ்ି బ்ሻ
ൌ ∑ ܽೣ

ೝ
,௜ ∙ ݁

ି௕೔∙ி௢ஶ
௜ ൌ ∑

௦௜௡ቂఒ೔ቀ
ೣ
ೃ
ቁቃ

ఒ೔ቀ
ೣ
ೃ
ቁ

∙
ଶሺ௦௜௡ఒ೔ିఒ೔௖௢௦ఒ೔ሻ

ఒ೔ି௦௜௡ఒ೔௖௢௦ఒ೔
∙ ݁ିఒ೔

మ∙ቀ
ഀ
ೃమ
ቁ∙௧ஶ

௜   [6.2] 

Where λi is the eigenvalue to the respective root function (cf. chapter 1.2), x/R is the position relative to the 
centre. In this case r is the diameter of the potato, x is the gelatinization front distance from the centre, α is 
the thermal diffusivity calculated from the composition (cf. chapter 1.2) and t is the time. Ts is the 
temperature of the heating medium, T0 is the initial potato temperature and T is the gelatinization 
temperature, in this case 67°C. For the investigation with a first term approximation only the first eigenvalue 
is needed. 

An example of the calculation is presented below for a 1st term approximation. The result is validated by a 
complete expansion solution at the determined Biot number.  

 

Example calculations 
A potato (R = 0.021 [m]) is heated in a media of 90°C with an initial temperature of 20°C. The thermo-
physical properties (table 6.3) are estimated from the composition. 

Table 6.3 Thermo-physical properties of potatoes (estimated from composition) 

parameter  value  Unit 

kp 0.54   [W/(m. K)]

Cp,p
 3671.6  [J/(kg.K)]

ρp
 1076  [kg/m3] 

Α 1.37.10-7  [m/s] 

 

Three situations are evaluated, all hypothetic x/R to a given time:  

Case 1: After 600 [s] the potato is removed from the liquid and plunged into ice-water. The relative position 
of the gelatinization front to the centre is x/R=0.33 (0.014 [m] from the surface) 

Case 2: After 900 [s] the potato is removed from the liquid and plunged into ice-water. The relative position 
of the gelatinization front to the centre is x/R=0.33 (0.0014 [m] from the surface)  

Case 3: After 600 [s] the potato is removed from the liquid and plunged into ice-water. The relative position 
of the gelatinization front to the centre is x/R=0.62 (0.008 [m] from the surface)  
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The relative position x/R of the three cases at the respective time t are inserted into equation 6.2 and solved 
by iteration to find the roots that gives the solution: 

Ω ൌ
ሺ ௦ܶ െ ܶሻ
ሺ ௦ܶ െ ଴ܶሻ

ൌ
ሺ90 െ 67ሻ
ሺ90 െ 20ሻ

ൌ 0.329 

In the calculation also an investigation in the sensitivity of the measured values (gelatinization temperature, 
position of the gelatinization front) is presented. The investigated sensitivity is conducted under assumption 
that the gelatinization temperature is known with 1°C precision (66.5-67.5 [°C]) and the gelatinization front 
can be measured with a precision of 1 [mm] (+/- 0.005 [m]). The calculation results from the three cases are 
presented in table 6.4. 

Table 6.4 Predicted heat transfer coefficients using a 1st term approximation to equation 6.1 

Case 1    

Measured distance [m] 
x/R =0.33 (600s) 

Tgel=66.5°C Tgel=67°C Tgel=67.5°C 

0.0135 365 [W/m2K] 415 [W/m2K] 470 [W/m2K] 

0.0140 328 [W/m2K] 360 [W/m2K] 410 [W/m2K] 

0.0145 288 [W/m2K] 316 [W/m2K] 360 [W/m2K] 

Case 2    

Measured distance [m] 
x/R =0.33 (900s) 

Tgel=66.5°C Tgel=67°C Tgel=67.5°C 

0.0135 68 [W/m2K] 71 [W/m2K] 73 [W/m2K] 

0.0140 66 [W/m2K] 69 [W/m2K] 71 [W/m2K] 

0.0145 65 [W/m2K] 67 [W/m2K] 70 [W/m2K] 

Case 3    

Measured distance [m] 
x/R =0.62 (600s) 

Tgel=66.5°C Tgel=67°C Tgel=67.5°C 

0.0075 112[W/m2K] 118[W/m2K] 123[W/m2K] 

0.008 104[W/m2K] 108[W/m2K] 113[W/m2K] 

0.0085 96[W/m2K] 100[W/m2K] 104[W/m2K] 

 

Based on the measured position and the predicted heat transfer coefficients in table 6.4, the gelatinization 
temperature is predicted by back calculation using the complete series expansion of equation 6.1, for 
validating whether a 1st term approximation is suited for the calculation. The validation is conducted for the 
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centre measurements from table 6.4 for the three cases. Figures 6.4-6.6 show the temperature curves using 
the entire expansion of equation 6.2.  

 

Figure 6.4 Temperature profile for a spherical potato (radius=0.021m) heated in liquid media with a heat transfer coefficient 
of 360 [W/m2K] at relative position to the centre of (x/r=0.33) (left) residual between the complete expansion (equation 6.1) 
and a 1st term approximation (equation 1.5) in the process window of interest (right) 

 

 

 

Figure 6.5 Temperature profile for a spherical potato (radius=0.021m) heated in liquid media with a heat transfer coefficient 
of 108 [W/m2K] at relative position to the centre of (x/r=0.62) (left) residual between the complete expansion (equation 6.1) 
and a 1st term approximation (equation 1.5) in the process window of interest (right) 
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Figure 6.6 Temperature profile for a spherical potato (radius=0.021m) heated in liquid media with a heat transfer coefficient 
of 69 [W/m2K] at relative position to the centre of (x/r=0.33) (left) residual between the complete expansion (equation 6.1) and 
a 1st term approximation (equation 1.5) in the process window of interest (right) 

From the figures 6.4-6.6 (left) it can be seen that a 1st term approximation is only valid late in the process for 
predicting the temperature in the investigated positions (x/R). From the residual plot (right) it can be seen 
that the 1st term approximation predicts the gelatinization (67°C) temperature with a precision of 
(error<0.6°C). The error induced by the use of a 1st term approximation compared to the complete expansion 
is thus comparable to an error of 0.5°C in the assumed/determined gelatinization temperature. In the three 
cases the respective Fo-number is below 0.2 normally used as a criterion for the 1st term approximation. 
However chapter 7 (figure 7.8) it is presented that the point temperature in the middle between the surface 
and the centre calculated with a 1st term approximation converges much faster with the complete solution. 

The conducted study presented in appendix 4, and further elaborated in this chapter is validated for particles 
heated in water. If the liquid is more viscous (soups or sauces) the heat transfer coefficients are generally 
lower. If the liquid is boiling the heat transfer coefficient is increased due to condensation of vapour to the 
particle surface and an increased convection. A small comparative study of the influence of boiling in water 
and non-Newtonian liquids is found in appendix 8. The results from the study emphasise that boiling is 
reducing the heating time for viscous fluids, but for water the convective heat transfer coefficients without 
boiling is sufficient (no significant decrease in heating time for the particles). In the comparative study 
(appendix 8) the heat transfer coefficient in commercial soups and sauces could be ten times lower than for 
water. In the submitted paper (appendix 4) on heat transfer coefficients the induced fluid to particle heat 
transfer coefficient was found to be around 400-500 [W/m2K].  

The sensitivity of a determined heat transfer coefficient is calculated for four typical particles (green peas, 
frankfurter sausages, carrot cubes and potatoes) heated with varying heat transfer coefficients. In the study 
only heat transfer is included as a phenomenon. The heating time for the particles is defined as: the time to 
reach 78°C in the centre calculated from equation 1.3. 

Figure 6.7 represents the heating time to reach 78°C from an initial temperature of 20°C as a function of the 
heat transfer coefficient. The thermal properties of the particles are calculated from the content of 
macronutrients. The characteristic dimensions of the investigated particles are: Peas (R=0.003 [m], sphere), 
frankfurters (R=0.095 [m], infinite cylinder), carrot cubes (L=0.005 [m], cubic) and potatoes (R=0.02 [m], 
sphere). 
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Figure 6.7 Heating time for selected food particles as a function of the fluid to particle heat transfer coefficient 

From figure 6.7 it can be observed that the heating time for investigated particles does not decrease 
substantially with an increase in the heat transfer coefficient above app. 500 [W/m2K].  

 

6.4 Conclusion remarks 
 

In this chapter two methods have been presented for determining convective heat transfer coefficients. For 
the determination of heat transfer coefficients for individual boundaries a method using aluminium is 
proposed where the other boundaries are insulated with polystyrene. The influence of a headspace was 
investigated and it was found that the use of overall heat transfer coefficient, assuming that the air in the 
headspace was stagnant is insufficient.  

For the determination of fluid to particle heat transfer coefficients in vessel cooking a new procedure is 
presented where an observed gelatinisation front in potatoes could be used as a thermal indicator for inverse 
calculation of the heat transfer coefficient. Additional validation has shown that a 1st term approximation for 
the calculation can be applied with good accuracy.  

The presented methods can be applied without the need for extensive modelling, and in most situations in the 
presented procedures a 1st term approximation or a lumped capacitance calculations of a thermal curve is 
adequate. The procedures can be used at the production sites but some staff education is needed to ensure a 
proper measure of the heat transfer coefficients.   
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7. Continuity and sensitivity  
 

This chapter presents an analysis of the series expansion solution to the heat equation. The methodology in 
this chapter is to investigate the consequences of general assumptions and the sensitivity of parameters in the 
series expansion. For presenting the dynamics of the series expansion some of the deductions are also 
presented in this chapter whilst the explanation of the asymptotes is placed in appendix 6.   

For predictive calculations of heating and/or cooling of solids it is important to be aware of the uncertainties 
induced by the choice of solution. To determine the precision of a predictive calculation an important activity 
is to assess the sensitivity of the parameters used in the calculation. Even though the focus of this chapter is 
the series expansion solution to the Fourier heat equation, the sensitivity analysis for the thermo-physical 
properties and the Biot number is more general and equally important in a numerical solution. 

The Fourier series expansion for calculating the thermal response in solids during heating or cooling is 
described thoroughly in chapter 1.2 (equation 1.5), recapitulated below:  

Ω ൌ ∑ ܽ௜ ∙ ݁ିఒ೔
మ∙ி௢	ஶ

௜ୀଵ        

In the analysis of the series expansion, two focus areas have been chosen: the continuity between the 
simplified solutions (1st term approximation and the lumped capacitance model) and the sensitivity of the 
Fourier expansion. 

Continuity 

Two criteria have been established where simplified expressions are adequate. For low Biot numbers 
(Bi<0.1) the lumped capacitance method can be used (equation 1.1) and for high Fourier numbers (Fo>0.2) 
the 1st term approximation can be used (equation 1.5). For crude calculations this is a big advantage.  

The two criteria are well established in educational textbooks as well as acknowledged in research papers.  

1. When the Biot number is below 0.1 the lumped capacitance method (equation 1.1) can be applied 
assuming negligible surface resistance to heat transfer (Singh and Heldman 2013 pp., Mills 1995 pp.32, 
Incropera and DeWitt 1996 pp. 216, Cengel and Ghajar 2011 pp.228, Ramaswamy et al. 1982, 
Ramaswamy and Shreekanth 1999, Balasubramaniam and Sastry 1994, Baptista et al. 1997) 
 

2. When the Fourier number exceeds 0.2 the 1st term of the expansion (equation 1.5) is sufficient to 
evaluate the thermal response in the geometry (Mills 1995 pp.152, Singh and Heldman 2013 pp. 
Incropera and DeWitt 1996 pp. 226, Cengel and Ghajar 2011 pp.238, Heissler 1947, Ramaswamy et al. 
1982, Ramaswamy 1999, Awuah et al. 1992) 

The magnitude of the uncertainty induced by assuming the simplicity criteria is not presented in either 
textbooks or in literature and the continuity between the simplified solutions is not clear. The criterion for the 
use of the 1st term approximation is based on the temperature response in the centre. This chapter 
additionally presents how the convergence depends on relative position inside a product. 
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Sensitivity 

The focus areas are in this section sensitivity of the thermo-physical properties and the sensitivity of the Biot 
number. The consequence of the number of terms used in a series expansion is also investigated to evaluate 
how many terms is needed for an accurate calculation. 

Section 7.1 discusses the lumped capacitance model. Section 7.2 discusses the 1st term approximation and 
section. Section 7.3 discusses the sensitivity in the parameters used in the Fourier series expansion. 

 

7.1 The limitations of the usage of the lumped capacitance method for infinite and 
finite specimens 
 

The general equation for the series expansion used to calculate non stationary heat transfer for solids is 
presented in simple form (only the 1st term) below in equation 7.2. Because a process rapidly exceeds Fo<0.2 
for situation at low Biot numbers (Bi<0.1), the 1st term approximation (equation 1.5), recapitulated below, is 
suitable for this analysis. 

Ω ൌ ܽ ∙ ݁
ିఒమ∙

ೖ
೎೛∙ഐ∙ೃమ

∙௧
       [7.1] 

For situations where the Biot number is very low it is difficult to obtain the lag factor (a) and the Fourier 
exponent λ2 in charts with a good precision. In these situations the internal resistance to heat transfer is 
negligible and it is standard procedure to use the lumped capacitance model recapitulated in equation 7.2.  

Ω ൌ ݁
ି൬

ಲ∙೓
ೇ∙೎೛∙ഐ

൰∙௧
      [7.2] 

The consequences of utilising the lumped capacitance model as a function of the Biot number is investigated 
for elementary geometries (Infinite slabs, Infinite cylinders and spheres).  From the standard presentation of 
the 1st term approximation (equation 7.1) and the lumped capacitance model (equation 7.2) it is difficult to 
see how they converge because equation 7.1 and equation 7.2 is represented by different characteristic 
dimensions, R and A/V respectively. 

It is convenient to express the lumped capacitance model on a basis of the characteristic dimension (1/2 
height for slabs and radius for cylinders and spheres). This is achieved by calculation of the area to volume 
ratio (A/V) of the infinite bodies. 

Slab: 

ܣ
ܸ
ൌ

2 ∙ ሺ݈݄݁݊݃ݐ ∙ ሻ݄ݐܹ݀݅
݄ݐ݃݊݁ܮ ∙ ݄ݐܹ݀݅ ∙ ݐ݄݃݅݁ܪ

ൌ
2

ݐ݄݃݅݁ܪ
ൌ

1
ݐ1/2݄݄݁݅݃

 

Cylinder: 

ܣ
ܸ
ൌ
ߨ ∙ 2 ∙ ܴ ∙ ݐ݄݄݃݅݁
ߨ ∙ ܴଶ ∙ ݐ݄݄݃݅݁

ൌ
2
ܴ

 

Sphere: 
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ܣ
ܸ
ൌ
4 ∙ ߨ ∙ ܴଶ

4
3 ∙ ߨ ∙ ܴ

ଷ
ൌ
3
ܴ

 

Generalised: 

ܣ
ܸ
ൌ
݊
ܴ

 

 

Where n, refers to the dimensionality (n=1 for infinite slabs, n=2 for infinite cylinders and n=3 for spheres). 
A generalized form of the lumped capacitance equation 7.2 can be written for infinite specimens as: 

Ω ൌ ݁
ି∙
೙
ೃ
∙
೓

೎೛∙ഐ
∙௧

       [7.3] 

 

7.1.1 The continuity between the series expansion and the lumped capacitance method at low Biot 
numbers 
 

The following describes the continuity between the series expansion and the lumped capacitance method. 
Initially it is relevant to investigate the limits for the series expansion exemplified by the 1st term: 

Ω ൌ ܽ ∙ ݁ିఒ
మ∙ி௢  

1:	ܽ → ݅ܤ	݄݊݁ݓ	1 → 0 

ଶߣ	:2 → ݊ ∙ ݅ܤ	݄݊݁ݓ	݅ܤ → 0 

The mathematical explanation for the behaviour of the series expansion for Bi0 is presented in appendix 6.  

The mathematical reason for the behaviour of the Fourier exponent λ2 at low Biot numbers is thoroughly 
described in appendix 6. 

For Bi 0: 

Ω ൌ ݁ି௡∙஻௜∙ி௢ 

Written out: 

Ω ൌ ݁
ି௡∙

௛∙ோ
௞ ∙

௞
௖೛∙ఘ∙ோమ

∙௧
↔ Ω ൌ ݁

ି൬
௡∙௛

ோ∙஼೛∙ఘ
൰௧

 

 

As recalled from the definition of the A/V ratio: 

ܣ
ܸ
ൌ
݊
ܴ
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Thus: 

Ω ൌ ݁
ି൬

஺∙௛
௏∙௖೛∙ఘ

൰௧
ൌ ݁ି௡∙஻௜∙ி௢ 

The consequences for the lumped capacitance assumption are as follows: 

Ω ൌ ܽ ∙ ݁ିఒ
మ∙ி௢ ൌ ݁ି௡∙஻௜∙ி௢ ൌ ݁

ି൬
஺∙௛

௏∙஼೛∙ఘ
൰௧
	ሺ݂ݎ݋	݅ܤ → 0ሻ 

Hence the lumped capacitance assumption can be split into two assumptions: 

Assumption 1: ܽ ൌ 1 

Assumption 2: ߣଶ ൌ ݊ ∙  ݅ܤ

The consequences of utilizing the lumped capacitance model is presented in figure 7.1 for low Biot numbers 
(0.02<Bi<1). Because the 1st term approximation is only valid in situations where the Fourier number is 
above 0.2, the consequences are presented at Fo=0.2 to exemplify the uncertainties.  

The generally acknowledged criteria (Bi<0.1) and the uncertainties induced are not fully documented. The 
errors in the lumped capacitance assumption is clarified and documented below. 

 

 

Figure 7.1 The residual between the series expansion solution (equation 7.1) and the lumped capacitance solution (equation 
7.2) for low Biot numbers 

At Bi=0.1 the residual (ΔΩ) is 0.015 for infinite slabs, 0.025 for infinite cylinders and 0.03 for spheres 
(figure 7.1). For interpretation of these residuals the dimensionless temperature difference Ω is used. 

Ω ൌ ቀ ೞ்ି்

ೞ்ି బ்
ቁ        [7.4] 
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Where Ts is the surrounding temperature, T0 is the initial product temperature and T is the temperature at 
Time t. Following equation 7.4: 

ܶ ൌ ௦ܶ െ Ω ∙ ሺ ௦ܶ െ ଴ܶሻ 

The residual (ΔΩ) converted to temperature difference: 

ΔT ൌ ΔΩ ∙ ሺ ௦ܶ െ ଴ܶሻ 

The driving temperature difference (Ts-T0) is seldom above 100°C in food processing (at atmospheric 
pressure). The consequence of utilizing the lumped equation is a maximum prediction error of 1.5°C for 
infinite slabs, 2.5°C for infinite cylinders and 3°C for spheres at Bi=0.1 based on the calculation results from 
figure 7.1.  

NB: If the residual is required to be less than 1% (ΔΩ<0.01) the limitations for the use of the lumped 
capacitance model is: Bi<0.06 for infinite slabs, Bi<0.04 for infinite cylinders and Bi<0.03 for Spheres 
according to the results in figure 7.1. 

 

 

 

7.1.2 Assumption λ2=n.Bi 
 

Further investigation of the error induced by the use of the Lumped capacitance is investigated in terms of 
the lag factor for the centre temperatures ac , and the Fourier exponent  λ2. 

 

Figure7.2 The error induced in the Fourier exponent determination by the lumped capacity assumption for the 3 elementary 
geometries 
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The error in assuming negligible surface resistance to heat transfer does not induce big errors at Bi<0.1 in the 
determination of the Fourier exponent (figure 7.2). For Biot number above 0.1, the error increases 
dramatically. The resulting calculation error (ΔΩ) is presented in figure 7.3.  

 

Figure 7.3 The residual from the lumped capacitance assumption induced by the error in the determination of the Fourier 
exponent  

At Bi<0.1 the error in assuming the lumped capacitance model (λ2=n*Bi) is only introducing a small residual 
in induced by the Fourier exponent ΔΩ<0.002, thus the residual from figure 7.1 is not induced by the error in 
the prediction of the Fourier exponent. 

7.1.3 Assumption a=1 
 

The lumped capacitance model also assumes that the lag factor is insignificant (a=1) according to equation 
7.3, the actual lag factor as function of the Biot number is presented in figure 7.4 
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Figure 7.4 The error induced in the lag factor determination by the lumped capacity assumption for the 3 elementary 
geometries 

 

The error in assuming the lag factor a=1 is accompanied by an error of up to 3% at Bi=0.1. The residual 
(ΔΩ) at Fo=0.2 is investigated in figure 7.5 as a function of the Biot number. 

 

 

Figure 7.5 The residual from the lumped capacitance assumption induced by the error in the determination of the lag factor 

From the investigation of the errors in assuming the lumped capacitance model (a=1, λ2=n*Bi) it has been 
shown that the induced error is primarily caused by the lag factor for Bi<0.1. This is an important result 
because an error (ΔΩ) induced by the lag factor is static and do not propagate with time, if the error (ΔΩ) was 
induced by the Fourier exponent it would propagate with time as seen from equation 7.1. 
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It is thus convenient to have a simple estimation of the lag factor at low Biot numbers to correct for this static 
error. One example of this is presented by Ostrogorsky (2009), which has a good precision in this area. The 
approximation equations for the lag factor at low Biot numbers are presented in table 7.1 

Table 7.1 Proposed simple equations for approximation of the lag factor for center temperatures in low Bi processes by 
Ostrogorsky (2009) 

Geometry Lag factor center (ac) for Bi<1 

Infinite slab (1+Bi/7) 

Infinite cylinder (1+Bi/4) 

sphere (1+Bi/3.5) 

 

The approximation of the lag factors presented by Ostrogorsky (2009) increase the accuracy of the lumped 
capacitance model without the need for determining the Fourier exponents. However since the presented 
simple calculations from chapter 3 and chapter 4 is valid for Bi>0.02 it would be more easy and transparent 
to change the criteria for the use of the lumped capacitance model from the present (Bi<0.1) to a more 
precise (Bi<0.02) where the static error is very low (less than 1%). The propagation of the lumped 
capacitance model as af unction of time (Fo) is presented in figure 7.6 the progression of the residuals from 
the lumped capacitance assumption is presented for the original criterion (Bi<0.1) and the proposed criterion 
(Bi<0.02) in figure 7.7. Both figures are presented by the geometry of a sphere. 

 

Figure 7.6 Propagation of the lumped capacitance model for the original criterion (Bi<0.1) and the proposed criterion 
(Bi<0.02) 

The residual between the series expansion solution (equation 1.1) and the lumped capacitance solution 
(equation 1.3) for Bi=0.1 and Bi=0.02. 
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Figure 7.7 Propagation of the residual induced by the lumped capacitance assumption for the original criterion (Bi<0.1) and 
the proposed criterion (Bi<0.02) 

From figure 7.6 it is seen that a significant temperature response only for rather large Fourier number 
(Fo>0.3). From the residual plot in figure 7.7 it is seen that the residual is reducing with time and the worst 
prediction error is at the beginning of the process as expected from the analysis in the previous sections.  
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7.2 Uncertainties accompanied with the 1st term approximation  
 

The criterion acknowledged for the adequacy of the 1st term approximation to the heat equation at Fo>0.2 is 
investigated in this section. The centre temperature response, the spatial temperature response and the 
volume average temperature response is covered.  

The thermal response in a given geometry is calculated from the series expansion using “HEATMAN” with 
100 terms applied in the solution used as the complete analytical solution subtracted from the 1st term 
approximations is subtracted to obtain the residual. Figure 7.8 exemplifies the procedure for a sphere at 
Bi=4, 0<Fo<0.2 calculated from equation 4.2 recapitulated below. 

߳ ൌ ∆Ω ൌ ቀܽଵ ∙ ݁ିఒభ
మ∙ி௢ െ ∑ ܽ௜ ∙ ݁ିఒ೔

మ∙ி௢ஶ
௜ୀଵ ቁ     

 

 

Figure 7.8 graphical representation of the residual between the exact series solution and the 1st term approximation to the 
series expansion. 

This procedure is conducted for the elementary geometries as a function of the Fourier number for 21 
selected Biot numbers (0.02:0.1:0.02, 0.2:1:0.2, 2:10:2, 10:50:10, 100). From this investigation the residuals 
for the criteria Fo>0.2 can be studied.  

 

7.2.1 Induced error at Fo=0.2 
 

The general criteria for utilization of the 1st term approximation for non-stationary heat transfer (Fo>0.2) is 
investigated with regards to induced uncertainty. As described in the above section, the residual (ΔΩ) is 
presented at Fo=0.2 as a function the Biot number. Initially the residual error introduced by assuming that the 
1st term approximation is sufficient at Fo=0.2 is presented in figure 7.9. 
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Figure 7.9 Maximum residual calculated from eq.6 for the elementary geometries at Fo=0.2 

As it can be seen from figure 7.9 the nominal residual error for all elemental geometries is largest at Bi=2 
(0.006 for spheres, 0.012 for infinite cylinders and 0.018 for infinite slabs). Biot numbers close to the value 
of 2 where the largest residual is introduced is very common in food manufacture. 

 

7.2.2 Corresponding Fourier number at ΔΩ<0.01 
 

As described in the beginning of this chapter, the criterion in literature is Fo>0.2 for acceptance of the 
residual in using only the 1st term in the series expansion. However this criterion is not presented along with 
the induced prediction errors as calculated here and presented in figure 7.9. Additionally this criterion is 
based only on the centre temperature. It is of interest to know at which process time (Fo) the residual (ΔΩ) is 
less than 0.01 as a function of the position in the specimen. To achieve this, the residual is calculated based 
on equation 4.2 for (0.1<Bi<100: 0<Fo<0.5: 0<x/R<1). The maximum Fo number to obey the criterion is 
presented in figure 7.10 as a function of the position in the specimen (0=centre, 1=surface). In general the 
maximum Fourier number that obeys ΔΩ<0.01 is found for 2<Bi<4, as expected from figure 7.9. 
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Figure 7.10 Fourier number obeying the criterion ΔΩ<0.01 as a function of the internal position within elementary 
geometries. 

The convergence criterion is very dependent on the position inside the specimen (figure 7.10), and in general 
the centre temperature converges at the highest Fo number, notably higher than the in literature 
acknowledged 0.2. It should also be noted that the corresponding Bi numbers (not presented here) referring 
to the slowest convergence is close to 2 in all situations as expected from the investigation from figure 7.9. 

 

7.2.3. General geometries - case example 
 

For general geometries the situation is more complex because even though the process time is obviously the 
same for the different dimensions of a given product, the corresponding Fourier number is different if the 
dimensions have a different characteristic length. The situation is discussed with the following example: 

A box shaped packaged food item is to be cooled in a blast cooler. The product dimensions are 
width=0.1[m], height=0.04[m] and length=0.2[m]. The heat transfer coefficient is 25 [W/m2K] and the 
thermal conductivity is assumed to 0.45 [W/mK]. Giving the following Biot numbers for the three 
dimensions: 

1. Biwidth =5.6 
2. Bilength=11.1 
3. Biheight=2.2 

Because all Fourier numbers needs to be above 0.2 in order to agree with the criterion for the use of the 1st 
term expansion, and the Fo-number scales by 1/L2 
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3. Foheight=5 

Thus for a finite specimen the criteria for using the 1st term approximation is more complicated. Because the 
smallest dimension is the main contributor to the rate of cooling it might not be possible to evaluate the 
process by a 1st term approximation, as presented in figure 7.11 for the volume average temperature and 7.12 
for the centre temperature. The 1st term approximation is in this case compared with the developed equations 
(4.9 for the centre temperature and 4.10 for the volume average temperature), presented and validated in 
chapter 3, 4 and 5. The blue lines represent the 1st term approximation (eq 1.5) for the investigation and the 
red lines represent the approximated complete solution (equation 4.9). 

 

Figure 7.11 Volumetric average temperature history of the cooling case with indication of the dimensional Fourier number 
criteria 

 

 

Figure 7.12 Centre average temperature history of the cooling case with indication of the dimensional Forier number criteria 

From the case results in figure 7.11 and 7.12 it is observed that the criterion Fo<0.2 is very sensible to the 
interpretation of dimensions. Also it is observed that upon calculation of the temperature history (especially 
for the centre temperature) the 1st term approximation is only valid late in the process for the tested finite 
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geometry. To solve this, the developed equation (eq. 4.9) or more terms in the expansion (eq. 1.1) could be 
used 

 

7.3 Sensitivity of the Fourier series expansion 
 

The sensitivity using the Fourier expansion is here defined as the variations in the calculation results caused 
by a specific variation in the input parameters. Covered in this section are: the precision of the series 
expansion depending on the number of terms used for the calculation, the sensitivity of the thermo-physical 
properties and the sensitivity of the Biot number. 

 

7.3.1 Number of terms used in a series expansion 
 

It is well acknowledged that for high Fourier numbers (Fo>0.2) only 1 term in the series expansion is needed 
in order to achieve a good approximation of the thermal response. If the initial part of the thermal history 
curve is of interest, then how many terms is actually needed to achieve a good prediction?   

In a recent paper Uyar and Erdogdu (2012) used a method where 10.000 terms were used in the calculation 
of the centre and volume average temperature with the scope to identify how a simple model (series 
expansion solution) could be used in process control.  

Even though the computer power is not a limiting factor for the number of terms used in a series expansion 
solution, there is no need for using excessive number of terms. The evaluation of the number of terms needed 
is exemplified in this section for the centre temperature and the volume average temperature of a sphere. The 
example is representative for all elementary geometries as can also be seen in figure 1.2 in chapter 1. 

Centre temperature 
The number of terms needed in the series expansion for the prediction of the centre temperature depends on 
which level of prediction is accepted at low Fourier number. For this investigation the complete series is 
presented by a 100 term solution. The convergence of the first 5 terms is presented in figure 7.13 and 7.14. 
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Figure 7.13 Convergence to the complete expansion when an increased number of terms are applied in the series expansion 
for a sphere with a Bi-number of 2. 

 

Figure 7.14 Convergence to the complete expansion when an increased number of terms are applied in the series expansion 
for a sphere with a Bi-number of 50. 

From the investigation presented in figure 7.13 and 7.14 it can be seen that only using a few terms it is 
possible to predict the entire history curve for the centre. Before the heat has penetrated to the centre 
(Fo<0.03) the dimensionless temperature response, Ω=1. 

 

Volume average temperature 
The convergence of the volume average temperature is also of interest in food processing (often a target in 
cooling processes). The convergence to the complete series expansion is investigated and exemplified in the 
presentation of a sphere with a Biot number of 10, and 50 in figure 7.15 and 7.16. 
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Figure 7.15 Convergence to the complete expansion when an increased number of terms are applied in the series expansion 
for a sphere with a Bi-number of 50. 

 

 

Figure 7.16 Convergence to the complete expansion when an increased number of terms are applied in the series expansion 
for a sphere with a Bi-number of 50. 

From figure 7.15 and 7.16 it is seen that also for the volume average temperature only a few series is needed 
in order to have a convergence with the complete expansion for Fo>0.03. However for the volume average 
temperature also the very initial phase is diverging from a 1st term approximation. If a good prediction is 
needed in the very initial phase, several terms are thus needed. In heat transfer processes the volume average 
temperature in the very initial phase is of little interest. This is in contrast to mass transfer processes, where 
the same mathematics is used in a series expansion solution, the very initial phase is of great interest (e.g. in 
salting and brining operations). 

The number of terms needed to investigate point temperatures outside the centre is more challenging because 
it is very dependent on the relative position to the centre. For positions close to the centre, only a few terms 
are needed whilst for positions close to the surface (x/R =0.95) many terms are needed to get a good 
approximation for the initial phase (Fo<0.2). The convergence for the surface temperatures are presented in 
figure 7.17 for a sphere with a Biot number of 2 and figure 7.18 for a Biot number of 10.  
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Figure 7.17 Convergence of the series expansion using an increasing number of terms for the surface temperature of a sphere 
with a Biot number of 2  

 

Figure 7.18 Convergence of the series expansion using an increasing number of terms for the surface temperature of a sphere 
with a Biot number of 10  

From the graphs in figure 7.17 and 7.18 it can be seen that for a series expansion solution for the surface 
temperature many terms are needed to describe the very initial phase, where a dramatic change in the 
temperature is occurring very early in the process.  

 

7.4.2 Sensitivity for the parameters in the series expansion. 
 

In this section the sensitivity of the parameters included in the series expansion solution is discussed. The 
focus in this investigation is the Biot number and Biot number related sensitivity. In the investigation the 
temperature dependence of the thermophysical properties are not considered. In generalized form, the series 
expansion describes the correlation between a time input and a temperature output based on the physical 
phenomenon of heat transfer. The series expansion solution is recapitulated below. For this investigation the 
1st term approximation for the centre temperature is used to exemplify the sensitivity of parameters. 
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Ω ൌ ൬ ௦ܶ െ ܶ

௦ܶ െ ଴ܶ
൰ ൌ ܽଵ݁ି௕భ∙ி௢ 

The equation is expanded below to highlight the parameters: 

Ω ൌ ൬ ௦ܶ െ ܶ

௦ܶ െ ଴ܶ
൰ ൌ ݂ሺ݅ܤሻ݁
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௞

ఘ∙௖೛∙ோమ
௧
 

Expanding the Biot number: 

Ω ൌ ቀ ೞ்ି்

ೞ்ି బ்
ቁ ൌ ݂ ቀ

௛∙ோ

௞
ቁ ∙ ݁

ି௙ቀ
೓∙ೃ
ೖ
ቁ∙

ೖ
ഐ∙೎೛∙ೃమ

௧
     [7.5] 

From this expanded version of the Fourier expansion the sensitivity can be studied more directly.  

The sensitivity of the density (ρ), and the specific heat capacity (cp), is directly coupled with the exponent, 
and has thus a high sensitivity to the output of the equation. The density and the heat capacity can often be 
determined with adequate precision based on the composition of the food. The characteristic dimension (R) 
has a high impact on the calculation as it is influencing the exponent squared. The characteristic dimension is 
often not a big challenge to measure for elemental and general geometries. If the geometry is complex, the 
dimensions are difficult to determine, however the series expansion is less suited for very complex 
geometries where a numerical solution is more suited.  

The sensitivity of the thermal conductivity is important because it is a part of both the Fourier number and 
the Biot number, and also the sensitivity of the thermal conductivity is dependent on the value of the Biot 
number. This is best described through the lumped capacitance equation in extended form (equation 7.3) 
valid for (Bi<0.1) where the sensitivity of the conductivity is 0. If Bi is approaching infinity, the influence of 
the thermal conductivity for the calculation is directly proportional to the exponent. The thermal conductivity 
is more difficult to measure than the density and the heat capacity, and also the temperature dependency of 
the thermal conductivity is larger. 

 

Sensitivity of the Biot number  
The sensitivity of the Biot number as most directly explained through the sensitivity of the lag factor and the 
Fourier exponent which are both a function of the Biot number. This is presented above in equation 7.5. The 
sensitivity of these two parameters is evaluated by utilizing the normalized Biot number presented in chapter 
3. 

௡௢௥௠݅ܤ ൌ
݅ܤ

1 ൅ ݅ܤ
 

The relation between the normalised Biot number and the lag factor ac and the Fourier exponent λ2 can be 
seen in figure 7.19 and 7.20. 
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Figure 7.19 Relation between the normalised Biot number and the lag factor for infinite slabs 

  

 

Figure 7.20 Relation between the normalised Biot number and the first Fourier exponent 

The close relation between the sensitivity of the normalised Biot number to both the lag factor and the 
Fourier exponent makes the normalised Biot number an easy way to investigate the sensitivity in the 
calculations with the Fourier series expansion. This is exemplified by 4 examples: 

A Biot number in a process has been determined with an accuracy of +/-20% (due to uncertainties in the 
determination of the dimension R, the thermal conductivity k and the heat transfer coefficient h) the four 
determined Biot numbers are in this case 0.2, 1, 5 and 20. Calculation of the normalised Biot number: 
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௡௢௥௠݅ܤ .5 ൌ
ହ

ହାଵ
ൌ 0.833  

௡௢௥௠݅ܤ .6 ൌ
ଶ଴

ଶ଴ାଵ
ൌ 0.952 

 
The implications of an uncertainty of 20 % is calculated and the variety in the normalized is presented as: 

௡௢௥௠݅ܤ .1 ൌ
଴.ଵ଺

଴.ଵ଺ାଵ
→

଴.ଶସ

଴.ଶସାଵ
ൌ 0.14 െ 0.19 

௡௢௥௠݅ܤ .2 ൌ
଴.଼

଴.଼ାଵ
→

ଵ.ଶ

ଵ.ଶାଵ
ൌ 0.44 െ 0.55  

௡௢௥௠݅ܤ .3 ൌ
ସ

ସାଵ
→

଺

଺ାଵ
ൌ 0.8 െ 0.86	 

௡௢௥௠݅ܤ .4 ൌ
ଵ଺

ଵ଺ାଵ
→

ଶସ

ଶସାଵ
ൌ 0.94 െ 0.96	 

From this small investigation it can be seen that the determination of the Biot number is most sensitive at 
Biot numbers close to 1 as a function of the Fourier number. If the Biot number is very high or very small it 
is less sensitive to its determination. However, it should be noticed that the propagation of the error is 
dependent on the process time as well, and that processes at very low Biot numbers are finalized at much 
higher Fourier numbers. This can be seen in figure 7.21 where a 1st term approximation of the 4 presented 
Biot numbers are presented with indication of the 20% error line. 

 

Figure 7.21 Propagation of the prediction of the centre temperature of a sphere at selected Biot numbers. The y axis is 
logarithmic to compare the error related to the Fourier number. The dashed lines indicates the consequence of a 20% error 
in the estimation of the Biot number 

 

If the error propagation is investigated in form of the prediction error of Ω as a function of the target point 
e.g. 0.1 the result is somewhat different. This can be viewed in figure 7.22. 
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Figure 7.22 Propagation of the prediction of the centre temperature of a sphere at selected Biot numbers. The x axis is 
logarithmic to compare the implication related to Ω. The dashed lines indicates the consequence of a 20% error in the 
estimation of the Biot number 

From figure 7.21 and 7.22 the propagation of the prediction error is presented. In figure 7.21 it is seen that 
the error as a function of the Fourier number is largest at Bi 1, which is expected through the normalised Biot 
number. However the propagated error when the target temperature is in focus the error is large at the low 
Biot numbers, and negligible at very high Biot numbers. This can also be seen in the asymptotes of the 1st 
term approximation to the series expansion, presented below for a sphere. 

Ω ൌ ݁ିଷ∙஻௜∙ி௢	ሺFor	Bi ൏ 0.1ሻ     [7.6] 

Ω ൌ 2 ∙ ݁ିగ
మ∙ி௢ሺfor	Biinfinityሻ	    [7.7]  

From equation 7.6 (generalised lumped capacitance) it is seen that the sensitivity of the Biot number is high 
at very low Biot numbers. For very large Biot numbers only the parameters in the Fourier number are 
important, the thermal diffusivity α and the characteristic dimension (equation 7.7). For the majority of food 
processing the Biot number is intermediate (0.1-20), ranging from ambient air-cooling of small products to 
steaming of large products. 

To assess the real implications of the sensitivity of the parameters it needs to be coupled with uncertainty, as 
a very sensitive parameter is more crucial of the determination if it also has a high uncertainty. How 
uncertainty and sensitivity is coupled needs a thorough investigation such as exemplified by the study of 
contact baking by Feyissa et al. (2012) and will not be treated further in this study. For the investigation of 
the coupled uncertainties and sensitivities a numerical model is more suitable because many calculations can 
be conducted fast after the model is build.  

It is important to emphasize that the parameters will not necessarily vary independently. The thermo physical 
properties are all related to the composition of the product and the heat transfer coefficients sensitivity is 
dependent on the magnitude of the Biot number, which is also influenced by the thermo-physical properties 
and the characteristic dimension. If uncertainties are coupled in the sensitivity analysis it is important to 
know both the uncertainty due to measurements/assumptions and the variation of the parameters.  
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7.4 Summarised conclusions 
 

The presented analysis of the induced uncertainties emphasise some concerns with regards to the generally 
assumed criteria in the choice of solution method to the Fourier equation.  

For the use of the lumped capacitance model at Bi<0.1, the recommended solution should be guided with a 
description of the induced error (ΔΩ) which as in worst case (sphere at Bi=0.1) 3%. It is found that the error 
in the lumped capacitance criterion is largest at low Fourier numbers and do not increase with time. The 
criterion should be changed to 0.02 where the static error (ΔΩ) is below 1% for all elemental geometries.  

For the case of the high process times (Fo>0.2) the uncertainties induced are too large to recommend the use 
of the 1st term approximation in this area, especially because the largest error is observed at very common Bi 
numbers (0.5-10). The problem is even more evident in the construction of general geometries (cans and 
boxes) where the dimensions are multiplied, and the worst case (a box where all three dimensions have a 
Biot number around 2) gives prediction errors of up to 6%.  

As a result the criteria for using the 1st term approximation should be changed to Fo>0.3. This is problematic 
as the Heissler charts originally produced to cover the low process times is only covering 0<Fo<0.2, and do 
not include the volume average temperatures. Thus new charts are needed if the graphical solution should 
provide sufficient accuracy. 

The analysis also shows that the convergence between the 1st term approximation and the complete solution 
is faster in positions in between the centre and the surface. This information is useful in the determination of 
heat transfer coefficients as presented in chapter 6. 

It is shown that the number of terms needed in a series expansion solution in many cases is rather few. For 
the centre temperature only 3 terms can predict the full temperature history as long as the criterion (Ω≤1) is 
acknowledged. For the volume average temperature and the surface temperature more terms are needed. 

The use of the developed equations (4.9 and 4.10) has no restriction criteria and they can be readily applied 
without any graphs for all Biot numbers above 0.02 and for all Fourier numbers without the use of any 
graphs. 
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8 Discussion  
 
The formulation of engineering equations is an academic tradition at technical universities. It is important to 
continuously develop and validate engineering equations that can be used in the industry and assist the 
transfer of knowledge. It is important to continuously develop and validate engineering equations in order to 
exploit the qualitative and quantitative understanding of physical phenomena. 
 
This study has presented and validated engineering equations suited for the calculations of heating and 
cooling of solids. This with an improved window of operation compared to classical 1st term approximations 
without making the solution more complex. 
  
Results of the individual contributions in this study have been discussed in the previous chapters. Because 
the results are connected they are summarised briefly to get an overview of the results. Following is the 
discussion of the combined work and the application of the contributions.  
 
The formulation and validation of predictive calculations is an academic task to ensure a broad application 
and to promote equations governed by understanding of prevailing physical phenomena. The use of 
predictive calculations is however seldom an academic task, which emphasise the importance of simplicity in 
the formulation.  
 

8.1 Individual contributions 
 

Determination of Fourier exponents 
In chapter 3 the proposed normalised Biot number (Binorm) and its use in determination of the first Fourier 
exponent is presented. This method eliminates the need for charts and tables to acquire the exponents. The 
prediction of Fourier exponents was compared to three related studies. All the studies were providing 
adequate accuracy, but the solution based on Binorm is more transparent and simple.  
In addition Binorm can be used as sensitivity measure of Bi and the derived Fourier exponents and lag factors, 
and could be a useful tool invalidation of predictive calculations. 

 

Simplified predictions for low Fourier numbers 
In chapter 4 the modelling of the residual between a 1st term approximation and a complete solution to the 
Fourier heat equation is presented and validated. The proposed solution provides a tool where the initial 
heating/cooling phase can be evaluated by a modified 1st term approximation for the centre temperature and 
for the volume average temperature. The formulated equation is expanding the workspace of the 1st term 
approximation in a simplified manner. 
 

Numerical validation of industrial examples 
The combined methods from chapter 3 and 4 were validated in chapter 5 through two industrial examples, 
showing good compliance with a numerical simulation. To ensure wide industrial application the formulated 
equation should be validated in industrial setups for a variety of processes involving heating/cooling of 
solids.  
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Handling of irregular geometries 
From investigation of previous publications it seems that no simple solutions provide accuracy and wide 
application for irregular geometries. But a promising procedure of calculating irregular geometries as a 
corresponding general geometry with a respective A/V ratio could be considered. Following the analogy that 
sphere like objects can be calculated as a sphere (Uyar and Erdogdu 2012), most objects has a geometry that 
can be related to a general geometry and thus be calculated as the corresponding (e.g. can, box or prism) with 
an equal A/V ratio. Because the formulated equations have a large operational window (Fo>0, Bi>0.02 for 
all elementary and general geometries) they are suited for such investigations. The scope of this study has 
not been to investigate irregular geometries; however the formulated equations set a framework where it 
could be possible to make further adaptions. 
 

Determination of heat transfer coefficients 
In calculation of heating and cooling of solids it is important that correct inputs are used in the equations. 
Often the thermo-physical properties can be determined with adequate precision from product composition, 
whereas the heat transfer coefficient is often determined or assumed with less accuracy. In chapter 6 two 
methods for determining heat transfer coefficients are presented. It is shown that the heat transfer 
coefficients can be determined by matching a temperature curve with a simple expression; the lumped 
capacitance model for aluminium replica, and a 1st term approximation for position temperatures inside real 
food objects. The possibility of using simple expressions in the determination is important for industrial 
application of these methods. 
  
 

Continuity and sensitivity of the series expansion 
Utilization of the Fourier series expansion solution has been thoroughly analysed in terms of the work frame 
for simplified solutions in form of the lumped capacitance method and the 1st term approximation. It is found 
that the errors induced by generally acknowledged assumptions are not acceptable. It is also found that 
convergence of the 1st term approximation to the complete series expansion depends on position inside the 
solid.  
 
I propose that the limit for the 1st term approximation is changed to Fo>0.3 to avoid prediction errors for 
general geometries and that the criterion for the use of the lumped capacitance method is revised to Bi<0.02 
to avoid a static prediction error. 
 
The simplified equation given in chapter 4 and the non-iterative determination of the Fourier exponent 
through the normalised Biot number in chapter 3 expands the work-frame for the 1st term approximation to 
cover all Fourier numbers and all relevant Biot numbers (0.02>Bi). When the developed method is used only 
the criteria for the lumped capacitance model (proposed Bi<0.02) is needed. 
 
It has been shown in chapter 7 that convergence of the 1st term approximation towards the complete series 
expansion is highly position dependent. This should be stated along with the criteria for a deeper insight into 
the dynamics of the series expansion solution. Especially because this information can be used actively as 
shown in the calculation of fluid-to-particle heat transfer coefficients. The faster convergence of a relative 
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position between the centre and the surface of a particle enabled determination of the heat transfer coefficient 
through calculation of a 1st term approximation at Fourier numbers below 0.2 with good accuracy. 
 
The adequate number of terms needed for an accurate temperature prediction was investigated. Results 
pointed out that for the centre temperature very few terms are needed for accurate prediction. This is 
important because there is no need for using excessive calculations. In the area of process control it is an 
advantage to have as simple calculations as possible, especially when using more information than the 
temperature history.  
 

Simplification 
In order to formulate a simple model that provides adequate precision two general procedures can be 
followed. Either a complex model can be formulated and subsequently simplified to fulfil a precision 
criterion, or a simplicity criterion can be formulated and the model optimised to achieve the best precision in 
fulfilment with the simplicity criteria. The two approaches differ substantially in scope and procedure but 
also in the solution provided. As discussed in Chwif and Baretto (2000) it is important to incorporate 
simplicity in the initial phase and to only include parameters needed in the intended use in the formulation of 
the scope of the calculations.  

Because the provided contribution in the simplification of the series expansion in this study has the same 
scope as Ramaswamy et al. (1982) it is of interest to compare the procedures and resulting solutions. In both 
of the related studies an accuracy criteria was formulated and used for simplification in a multiple regression 
approach. Their solution meets the accuracy criteria but is complex with many parameters making the 
application difficult. In the procedure presented in this study (chapter 3 and 4) a simplicity criteria was 
formulated with the 1st term approximation as the reference, subsequently the 1st term approximation was 
expanded to cover the wanted operation window. The solution is very simple with no new parameters and 
only one constant for each of the elementary geometries. The two proposed solution procedures actually 
provide equal accuracy. 

 

8.2 Application of combined contributions 
In some cases it is necessary to evaluate the thermal history and predicted process time along with 
calculations of several unit operations in order to investigate a process line. In process scheduling and de-
bottlenecking operations this is often the case. In these cases it is convenient to have the calculations in the 
same program frame e.g. a spreadsheet solution. A specific programmed solver for each of the unit 
operations could hamper the interfaces in the calculations. 
 
The presented equations are less precise than a numerical solution, but the precision more than meets the 
needs of practice. The formulated equations are very versatile under the given assumptions that only heat 
transfer is dominating and it can be used directly without programming.  
 
The target group for the utilization of the developed methods is employees and students in food process 
engineering. This group has extensive qualitative knowledge of product quality, biological materials and 
food processing. But has traditionally less focus on quantitative process knowledge as they have not 
necessarily had a full engineering training. The formulated equations improve the accessibility of predictive 
calculations on heating and cooling of solids. This is an advantage for food process engineers with tight 
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schedules, and for food science students pursuing a career in food engineering. The accessibility is facilitated 
by expanding the operation window for simple calculations with adequate precision and eliminating the need 
for graphs and tables.   

It should be noted that for all calculations of heating and cooling of solids it is a prerequisite that the thermo 
physical properties are known, that the geometry is well defined and that the heat transfer coefficients can be 
measured or assumed with reasonable precision. In addition the reliability of the solution implies that both 
mass transport and phase change should be negligible.  

The contribution of this study is equations for simple calculations of the temperature history for all general 
geometries where transient conduction is the only dominating phenomena. The equations should be used as a 
foundation where more phenomena can be adapted. It could possibly be used as a reference frame for 
calculations of irregular geometries, and it is assumed that small contributions of phase change and internal 
heat generation can be incorporated as proposed for the complete series expansion by e.g. Dincer (1993).  

 

Food manufacture  

In general food manufacture it would be beneficial to have more simple tools for crude calculations in order 
to conduct rational production planning and ease the introduction of new products to existing process lines. 
The developed equations could serve as an important tool to minimize the time used in trials for 
implementation of new procedures. The equations proposed in the submitted papers would be applicable to 
many unit operations where mass transfer and phase changes are negligible, where the obvious example is 
cooling operations of finished products, ingredients or meal elements.  

 

Food process design 

In the design of process equipment numerical solutions are often most suited for design optimization. The 
optimal design of process equipment might be different depending on the product characteristics in the 
process line where it is used. In the design of process equipment it is thus valuable to know the implications 
the designed equipment has on food processing. Because process equipment manufacturers are producing 
equipment for a massive variety of product characteristics it is valuable to have a set of simple equations for 
crude evaluation of process impact on products. 

 

Automation 

In automation and process control the primary goal is to ensure that a process is producing products within 
acceptable specifications. By feedback control the process settings are adjusted to ensure that specifications 
are met. An incorporation of a predicted temperature history into the control system is believed to improve 
the process control. 
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Education 

It is also worthy to elaborate on the education of new food engineering graduates. For this is important to 
establish a description of the food industry, as it is the education of their future employees that sets a part of 
the frame for their process calculation capabilities. 

In food science and food technology educations we refer to the series expansion in order to enable students 
to be able to carry out crude calculations and physical based decision making in food manufacture to 
evaluate kinetic reactions of either food safety or food quality issues. Often the crude calculation of process 
time and temperature history is used for evaluation of process lines and conduction of process scheduling. 
The presented extension to the 1st term approximation enables that these crude calculations are conducted 
more easily without the use of charts and tables and that solutions are adequately accurate for a larger part of 
the process. 

 

Authorities 

For authorities assuring food safety it would be beneficial to have a simple tool to fast evaluate whether e.g. 
the cooling guidelines could  be met by a specific procedure described in a company’s own control 
documents, and also enable an evaluation whether a deviation from the procedure is problematic or not. For 
these purposes the presented solution could be beneficial as it can be implemented in simple software and the 
solution is very versatile for crude calculations, especially for cooling operations. 
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9 Conclusion and perspectives 
 

The overall research question for this dissertation was whether it was possible to formulate and validate 
engineering equations for heat transfer that are user friendly and provide adequate precision. The challenge 
was divided into four objectives: a non-iterative determination of Fourier exponents, a simple equation also 
valid for low Fourier numbers, determination of heat transfer coefficients and an analysis of the series 
expansion to understand the work frame for the developed equations.  

With the contributions provided with this thesis, it is shown that it is possible to formulate new engineering 
equations for heat transfer in food processing. The formulation of the normalised Biot number and the 
developed method for determination of the first Fourier exponent, eigenvalue and lag factor has made the use 
of the calculations more user-friendly by eliminating the necessity of charts and tables. 

It has been shown that the application frame for a traditional 1st term expansion can be increased to also 
cover the initial phase (Fo<0.2) for all Biot numbers, for all elementary and general geometries with a good 
accuracy (prediction error <1%). This precision is within acceptance and will serve adequate in most 
situations. The provided solution is validated for the calculation of the centre temperature and the volume 
average temperature.  Furthermore the developed equations have been validated against numerical 
simulations of real processing situations with promising results. It was possible to achieve an accurate 
prediction of the cooling profile for the cooling of a packaged product with an apparent headspace using the 
new equation. The developed equation was also validated against a numerical solution to a 3 step process 
where a change in the boundary condition occurred. The new equation matched the prediction from the 
numerical solution. 

The study provides methods for determining heat transfer coefficients in food manufacture. It was shown 
that a 1st term approximation can be used for inverse calculation of the temperature curve with good accuracy 
for the determination of fluid-to-particle heat transfer coefficients by using an observed gelatinisation front 
in potatoes.  

Based on the investigation of the sensitivity of the Fourier series-expansion and the continuity of the 
simplified solutions, two new discoveries are presented: The error induced by using a 1st term approximation 
is not adequate at Fo=0.2 (errors of up to 6%) and the criteria should be revised. The prediction error when 
using the lumped capacitance model for Bi=0.1 (up to 3%) is primarily static, and caused primarily by the 
lag factor. In determination of heat transfer coefficients where an aluminium replica product is used, a static 
error is less problematic than a dynamic error. However the criterion could easily be changed to 0.02 where 
the error is less than 1% for all elementary geometries. The proposed equation in this study is validated from 
Bi>0.02 ensuring convergence between the solutions.   

It has been shown that the series expansion converges more rapidly for positions in between the surface and 
the centre (more than twice as fast for the half radius point) which is an advantage in inverse calculations 
used for the determination of heat transfer coefficients. 

The proposed normalised Biot number can be used as a fast and crude evaluation of the sensitivity of the 
Biot number to assess heat transfer calculations. This can be used to assess the needed accuracy in the 
determination of heat transfer coefficients.   
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Overall, the accessibility of heat transfer calculations in the food industry has been enhanced by expanding 
the work space for the simplified calculations, and by eliminating the necessity of charts and tables in the 
calculations. 
 
The format of the supplied equations allow for implementation into various software applications, which 
favours that the calculations are performed as a general activity as a part of process-planning, -scheduling, 
and –optimisation. 

 

9.1 Perspectives and future work 
 
The presented equations have been formulated for the centre temperature and volume average temperature 
evolution. It is a goal to also formulate analogue relations to cover temperatures for relative positions inside 
solids to enable a prediction of the temperature distribution.  
 
The presented equations have been validated for the elementary and general geometries and for two 
industrial examples. It is a big motivation to expand this validation to cover more products and processes 
together with the industry. By using an analogy to the procedure presented for sphere like objects (Uyar and 
Erdogdu 2012) it could be investigated whether irregular geometries in general can be represented by a 
general geometry with a close relation to the irregular geometry by using the respective V/A ratio. 
 
In the future it is also a clear goal to expand the applications of the developed equations to also cover areas 
where other phenomena are present. The formulated equations can probably be used as a foundation for the 
incorporation of additional physical phenomena (e.g. phase-change and mass transfer), provided their 
contribution to the overall energy balance is relatively small compared to contribution of conduction through 
the solid. For the complete series expansion it has already been suggested that small contributions can be 
incorporated by adaptations to the expansion by correcting the heat transfer coefficient (Dincer 1993) or the 
Foruier exponent (Cuesta and Lamua 2009). A future focus is to investigate whether small adaptations to the 
presented simplified equations can be used for predictions where other phenomena play a role. 
 
Because the same mathematical expressions are used in mass transfer and heat transfer, it is a possibility that 
an analogy to the developed equations could be formulated to cover mass transfer processes, such as salting 
and brining operations. In salting and brining operations the volume average concentration is often more 
critical than local concentrations and often the Fourier number in such processes are very low. A future focus 
is to formulate equations with an increased precision for the volume average concentration in the very initial 
phase.  
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Proposing a normalized Biot number: For simpler determination of Fourier 

exponents and for sensitivity analysis of heating and cooling of solids 
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Abstract 
This paper presents a normalization of the Biot number, which enables the Fourier exponents to be fitted 

with a simple 3
rd

 order polynomial (R
2
>0.9999). The method is validated for Biot numbers ranging from 0.02 

to ∞, and presented graphically for both the Fourier exponents and the lag factors needed in the series 

expansion. The lag factors and Fourier exponents are validated with an average variation coefficient 

(CVRMSD) less than 0.006. The resulting prediction error of the thermal response is <0.6°C for spheres and 

<0.3°C for slabs and cylinders. The normalized Biot number also facilitates an easy investigation of the 

sensitivity in heat transfer calculations. The simplicity of the solution facilitates its implementation in the 

industry and curricula for engineers that needs crude calculation methods for thermal calculations, e.g. food 

science and food technology educations. 

Keyword: Normalization; Biot number; Transient heat transfer; Series expansion; Eigenvalues; Fourier 

exponent; Lag factor 

1. Introduction 
The calculation of heating and cooling of solids is a traditional engineering task in several industries, also in 

food manufacture. The production of food is conducted in large scale factories often expanded from smaller 

productions, based on a history of trial and error. To ensure safe products and to evaluate the quality of 

manufactured food, it is crucial to know the thermal history that the products undergo during processing, 

cooling, storage and distribution. The staff at most current food production sites often do not have an 

advanced engineering training, and they must rely on simple, robust calculations in their daily process 

evaluation and performing scheduling activities. This paper is proposing an easy way to evaluate thermal 

response based on a normalized Biot number, suited for such calculations.  

For evaluation of the thermal response in solid foods the series expansion to the Fourier equation for non-

stationary conductive heat transfer is the standard procedure for food products which approximately can be 

described by ideal geometries (infinite slab, infinite cylinder and sphere) and cross-sections of the first two.  

Nomenclature   

Bi Biot number     
 

 
   [-] J0 0

th
 order of the Bessel function of the first kind 

Binorm Normalized Biot number    
  

    
 [-] J1 1

st
 order of the Bessel function of the first kind  

ac,1 Lag factor (center temperatures) in the 

series expansion [-] 

k Thermal conductivity [W/m
2
] 

am,1 Lag factor (average temperatures) in the 

series expansion [-] 

Ω Dimensionless temperature difference 

  
(    )

(     )
 [-], subscripts s is the surrounding 

temperature, 0 is the initial temperature 

mailto:mgch@food.dtu.dk
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bi Fourier exponent      
 [-] ρ Density [kg/m

3
] 

cp Specific heat capacity [J/kg
.
K] λ1 The first eigenvalue to respective root 

functions [-] 

α Thermal diffusivity   
 

    
 [m

2
/s] R Determining dimension (1/2 height for slabs, 

radius for cylinders and spheres) [m] 

h Heat transfer coefficient [W/m
2
K] Fo Fourier number, dimensionless process time 

   
 

  
   [-] 

t Time [s]   

 

The mathematical apparatus for calculating non-stationary heat transfer using the series expansion is 

thoroughly described by Carslaw and Jaeger [1]. It is the standard for predictive heat transfer calculations, 

and it is presented in most textbooks on the subject [2, 3]. The series expansion is presented below in 

condensed form for ideal geometries (infinite slabs, infinite cylinders and spheres). 

 The series expansion for heat transfer: 

  (
    

     
)  ∑    

       
       [1] 

Where the Fourier number (Fo): 

   
 

  
          [2] 

The Fourier exponent bi in eq.1 is calculated from the eigenvalue (λi) to the respective root functions: 

     
         [3] 

The eigenvalues are calculated by iteration from the root functions in Table 1 based on the Biot number. The 

equations for the derived Fourier exponents (bi) and lag factors (ai) are presented along in Table 1. 

Table 1 Mathematical presentation of the respective root function for the ideal geometries, lag factors for center 

temperatures (ac), the positional lag factors (ax/R) and the lag factors for mean temperatures (am),  

Geometry Root function λi 

 

ac  ax/R am 

Inf. Plate                  
             

        (  
 

 
)    

   (  )

  
 

Inf. cylinder 
   

    (  )

  (  )
 

   (  )

  (  
 (  )    

 (  ))
      (  

 

 
)     

    
  

 

 

Sphere 

 

             
 
 (             )

             
 
   

   [  (
 
 
)]

  (
 
 
)

 
     

   (  )       (  )

  
  

J0 and J1 is the Bessel function of the 1st kind with 0th and 1st order respectively. 

The Biot number (Bi) is the ratio between the external and internal resistance to heat transfer and is 

calculated using eq. 4: 

   
 

 
         [4] 

Where h is the heat transfer coefficient, k is the thermal conductivity and R is the characteristic dimension.  
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The lag factor a can be calculated from the equations in Table 1, where index c denotes the center 

temperature, index x/r denotes a position relative to the center  and m denotes the volume average 

temperature . 

The developed series applies for ideal geometries that can be described in simple coordinate systems (the 

infinite slab in Cartesian coordinates, the infinite cylinder in cylindrical coordinates and spheres in a 

spherical coordinate system). For calculating geometries that can be expressed as the cross section of ideal 

geometries [4] the thermal response can be calculated from eq. 5, here exemplified by the calculation of a 

can-shaped geometry.  

(    )

(     )
        

 
      

              [5] 

In the early-mid 20
th
 century heat transfer calculations were time-consuming to conduct without the 

availability of computers; thus several graphical methods and tabulated values for determining the Fourier 

exponents and lag factors have been constructed. They are presented also in recent standard textbooks on the 

subject [2, 3]. For a fast evaluation of thermal response as a function of Bi and Fo several graphical methods 

have also been reported such as the Guernay-Lourie plots and the Heissler charts [5, 6]. The series expansion 

solutions to non-stationary heat transfer have been thoroughly mathematically described [1], and they are 

presented in a more condensed format applied to food processing [7]. The solutions from [7] are still 

rendered in textbooks today [2, 3]. Even though several more advanced tools and techniques (simulation 

software, and finite element calculations) are widely applied in research, they are rarely used in the food 

manufacturing industry or in teaching for several reasons: the software is expensive and the training needed 

for the employees or students in order to conduct and utilize the obtained information from these calculations 

is intensive.   

In many processing situations it is often adequate to acquire information on the thermal response in the last 

part of the process. In these situations the dimensionless temperature difference will be low and the Fourier 

number will be fairly large (Fo>0.2). For calculations where the Fourier number is above 0.2 the 1
st
 term in 

the series expansion is assumed adequate for evaluating the thermal response [2]. Christensen and Adler-

Nissen [8] showed that also the initial phase in heating and cooling of solids can be modelled by an extended 

1
st
 term approximation where the first eigenvalue is the only needed input parameter to cover 0<Fo∞. 

One of the big challenges using the solutions devised by [7] is the determination of the Fourier exponents 

given by the eigenvalues to the respective root functions (Table 1). As mentioned, the root functions are of 

iterative character and are thus cumbersome to solve. Alternatively, the exponents can be found tabulated in 

textbooks or papers on the subject [3, 7], where it is often needed to interpolate between tabulated values, or 

they can be found in charts [2] where there is a risk of misreads. Neither the tabulated values nor the 

graphical representation are suited for implementation in simple programs or spreadsheets. Thus, it would be 

a great advantage to develop non-iterative equations for calculating the Fourier exponents, and a few authors 

have presented such equations, as discussed in the following.  

Ramaswamy, Lo and Tung [9] fitted the Fourier exponents to ideal geometries using trigonometric 

regressions of the Biot number with good precision. Lacroix and Castaigne [10] used a logarithmic 

polynomial fit to determine the Fourier exponents. Ostrogorsky and Mikic [11], developed explicit equations 

for the determination of Fourier exponents with a good precision at Bi<2. Ostrogorsky and Mikic [12] also 

determined explicit equations for the Fourier exponents for Bi>2 with a good prediction. All four studies 

provide non-iterative solutions that could be incorporated into spreadsheets. However the suggested solutions 
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by [9, 10] are rather complex for easy interpretation and are thus difficult to teach students and the industry, 

hence the application of these fits has not spread outside academia or made its presence in textbooks on the 

subject. The solutions from Ostrogorsky and Mikic [11, 12] are split into two sets of equations one for Bi<2 

and another set for Bi>2, which is less practical. Additionally Ostrogorsky [13] published other simple 

explicit equations for the whole Biot range with a good overall precision. The methodology and robustness 

of [13] is, however, less transparent.  

This paper focuses on the series expansion solution to non-stationary heat transfer. We propose a new way of 

calculating the first Fourier exponent (b1=λ1
2
) which is more transparent and intuitive. The calculation is 

based on a normalization of the Biot number which results in smooth, monotonically increasing and simple 

regression functions. 

The series expansion only including the 1
st
 term is presented in equation 6.  

                 [6] 

Where a=ac is the lag factor for the center, a=am is the lag factor for the volume average temperature, a=ax/R 

is the lag factor for positions within the geometry. b is the first Fourier exponent and Fo is the Fourier 

number.  

Historically, the nomenclature has not been concise throughout the development of the field; hence a 

summation of the nomenclature is presented in table 2 for easier interpretation of the present work. 

Table 2 Nomenclature of present study and the standard references 

 Definition This 

study  

Singh and 

Heldman 

(2013) 

Mills 

(1995) 

Ramaswamy, 

Lo and Tung 

(1982) 

Pflug, Bleidsdell 

and Kopelman 

(1965) 

Biot number  Bi NBi Bi Bi NBi 

Fourier 

number 

 (α/R
2
)t [-]  Fo NFo Fo Fo - 

Lag factor table 1 [-] a A A R j 

Fourier 

exponent 

table 1 [-] b, λ
2
 b, λ

2
 λ

2
 S β

2 

Dimensionless 

temperature 

difference 

(Ta-T)/(Ta-T0) [-] Ω - Θ U - 

- Means that no particular symbol is used 

2. Materials and methods 
The Biot number, describing the ratio between the internal and external resistance to heat transfer, is 

recapitulated below for better interpretation of the procedure in formulating a normalized Biot number. 

   
 

 
         [4] 

For easier calculation of the Fourier exponents, we introduce the normalized Biot number [Binorm] in equation 

7. [Binorm] is basically the fraction of internal resistance to overall heat transfer resistance. The internal 

resistance to heat transfer (R/k) is described as the characteristic dimension (R) divided by the thermal 
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conductivity (k).The external resistance to heat transfer is the reciprocal heat transfer coefficient (1/h). The 

total resistance to heat transfer can be defined as: 

                 
 

 
 
 

 
 

And the ratio of the internal resistance to the total resistance will be defined as: 

                             

 
 

 
 
 
 
 

 

Multiplying with the heat transfer coefficient [h] gives a rational description of [Binorm]: 

 

       
 

 
  

 

 
 
 

 
  
 

  

    
           [7] 

The constructed normalized Biot number has some advantages: it has an s-shaped curvature as a function of 

[Bi] enabling a more simple expression to determine Fourier exponents without iteration, because the Fourier 

exponents and the lag factor also have an s-shaped curvature as a function of the Biot number. Furthermore 

the normalized Biot number has a finite scale [01] which enables the Fourier exponent to be expressed in a 

linear scale in a graphical presentation instead of a logarithmic scale for [Bi], which notoriously has been a 

road to misreads. The basic procedure is exemplified graphically in figure 1. 

   

Figure 1 Normalization of the Biot number to the left, Fourier exponents as a function of the Biot number in the middle and 

the Fourier exponents as a function of the normalized Biot number to the right. Fourier exponents are from [2] p. 173. 

The normalized presentation of the Biot number has the advantage of having the same s-shaped curvature as 

the Fourier exponents, making Binorm easier to utilize as a base for regression determination of Fourier 

exponents (b, λ
2
) as can be seen from figure 1. In figure 2, 3 and 4 it is shown that the behavior of the Fourier 

exponent is monotonically increasing as a function of Binorm , where both the 1
st
 and the 2

nd
 derivative are 

positive, making polynomial fitting suitable with very small residuals.  

In this study 21 Biot numbers (Bi) have been chosen to illustrate the procedure (0.02; 0.04; 0.06; 0.08; 0.1; 

0.2; 0.4; 0.6; 0.8; 1; 2; 4; 6; 8; 10; 20; 30; 40; 50; 100; ∞) (data from [2]). The Fourier exponents are plotted 

as a function of the normalized Biot number, and they are fitted by a polynomial regression of the third order 

to gain a reasonable fit. The plots are shown in figure 2-4, and the regression equations are summarized in 

Table 3. 
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Figure 2 The Fourier exponents (b, λ1
2) as a function of the normalized Biot number, the dots represents the Fourier 

exponents from [2], the line represents the polynomial fit. 

 

Figure 3 The Fourier exponents (b, λ1
2) as a function of the normalized Biot number, the dots represents the Fourier 

exponents from [2], the line represents the polynomial fit. 

 

Figure 4 The Fourier exponents (b, λ1
2) as a function of the normalized Biot number, the dots represents the Fourier 

exponents from [2], the line represents the polynomial fit. 

Figure 2, 3 and 4 demonstrate that, the Fourier exponents can be predicted fairly precise by the 3
rd

 order 

polynomial regressions (R
2
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Table 3 Summation of the regression polynomia to determine the Fourier exponents for the series expansion 

Geometry Regression polynomia 

Inf. slab     
         (      )

         (      )
         (      )                  

Inf. cylinder     
         (      )

         (      )
         (      )                  

Sphere     
         (      )

         (      )
         (      )                

 

As seen from the equations in table 3, all the polynomial regressions have positive coefficients and they are 

monotonically increasing. The residual in the regressions should optimally be 0 for Biot numbers 

approaching 0. The residuals are indeed very small, but it is not recommended to force the regression 

through (0,0). However when the Biot number is approaching 0, then the Fourier number is approaching 

infinity for all t > 0; thus the series expansion is not valid for Bi → 0. Instead, the lumped capacitance 

assuming no internal resistance to heat transfer model should be used. In practice, when the Biot number is 

below 0.1 the lumped capacitance model (eq. 8) is adequate [2, 3].  

   
 
   

    
  

       [8] 

Where h is the heat transfer coefficient, A is the surface area where the heat is transferred, m is the mass of 

the product and cp is the specific heat capacity. 

The regression polynomial can be used for Biot numbers as low as 0.02 and still gives accurate values of the 

Fourier exponent, ensuring adequate overlap with the region where the lumped capacitance model can be 

used.  

3. Results and validation  
The polynomial regression fit is used to determine Fourier exponents and the eigenvalues for the series 

expansion based on the equations from Table 3. The results are validated by comparison with tabulated 

values from [2]. The results are presented in figure 5 for the Fourier exponent (b1).  
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Figure 5 Validation of the calculated Fourier exponents (b1, λ1
2) on the polynomial fits. The dashed lines are calculated 

values, the open dots represents data from [2]. 

From figure 5 it is clear that the calculated Fourier exponents match the actual values rather precisely. It is 

thus reasonable to believe that the regressions will also predict the exponents in between the tabulated values 

and hence interpolation is not necessary using this new approach. 

To validate that the approach could also be used for calculating the lag factors used in the series expansion, 

the eigenvalues from the regressions are used to calculate the lag factors from the equations in table 2. These 

are presented in figure 6 for the lag factor (ac) used when considering center temperatures, and figure 7 for 

lag factors (am) considering the volume averaged temperatures. The calculated values are compared with 

tabulated values from [2]. 

 

Figure 6 Validation of the calculated lag factors for center temperatures (ac) in the Fourier expansion compared to tabulated 

values from [2] 
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Figure 7 Validation of the calculated lag factors for volume averaged temperatures (am) in the Fourier expansion compared 

to tabulated values from [2] 

From the validation of the lag factors in figure 6 and figure 7 it is seen that the derived lag factors based on 

the eigenvalues calculated from the equations in table 3 have a good fit with the actual lag factors presented 

in [2]. The average variation coefficients, CVRMSD (Coefficient of Variation of the Root Mean Squared 

Deviance) (eq. 9) for the fit are presented in table 4.  
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           [9] 

Table 4 CVRMSD values for the fit of the Fourier exponents and the lag factors needed in the series expansion calculation for 

non-stationary heat transfer for center and volume average temperatures 

 Fourier exponent  

(b, λ1
2
) 

Lag factor center 

(ac) 

Lag factor mean 

(am) 

Inf. Slab 0.0011 0.00033 0.00034 

Inf. Cylinder 0.0043 0.00076 0.00082 

Sphere 0.0059 0.0018 0.0017 
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Because the positional lag factors (ax/R) are also derived from the same eigenvalues as the center lag factor 

(ac) they can also be precisely calculated from this approach.  

The precision of the present approach is comparable to the precision of related studies [9, 10 and 13]. The 

error of prediction (eq.10) from the three studies are compared to the present study in figure 8, 9 and 10 

      
             
           

 

         
        [10] 

 

Figure 8 Comparison of prediction errors for related studies for infinite slabs 

 

 

Figure 9 Comparison of prediction errors for related studies for infinite cylinders 
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Figure 10 Comparison of prediction errors for related studies for spheres 

From the comparison between the related studies in figure 8, 9 and 10 it can be extracted that all the studies 

are promoting a good fit for Bi<10 with an overall prediction error <0.02 for all the studies. The study by 

Lacroix and Castaigne [10] is not suited for high Biot numbers (10-100) because of the high error. The best 

overall fit is performed by Ramaswamy et.al [9] with an overall maximum error<0.01. The present study has 

the same overall maximum error of 0.01 for the slab at all Biot numbers and for the cylinder at all Bi > 0.2. 

These the two geometries are by the far the most relevant in sterilization processes, and situations where Bi < 

1 rarely occur for such processes. Because the infinite cylinder and the infinite slab is used for the calculation 

of general geometries (box, prism and can) the accuracy of these two elementary geometries is most critical. 

The simplicity of the present study and the transparency of the methodology is an advantage in many 

situations involving teaching and knowledge transfer to the food producing industry. The consequences of 

the error in the prediction of the Fourier exponents are evaluated in the worst case scenarios for the three 

dimensions which are at Biot 2 and 10 following the error graphs in figure 8, 9 and 10. The consequences are 

presented as the residual (Ωactual-Ωpredicted) the propagation of the error is presented in figure 11. 

 

Figure 11 Residual logarithmic temperature difference (ΔΩ) for the worst case predictions of the center temperatures of 

infinite slabs, infinite cylinders and spheres for Fo>0.2  

From figure 11 the residual can be extracted to a maximum of ΔΩ=0.006 for spheres at Bi=2. In food 

processing the driving temperature difference will seldom be above 100°C in situations where mass transfer 

and phase changes can be neglected. Thus the maximum residual will induce an error in the predicted 

temperature of maximum 0.6°C for spheres. For the infinite slabs and infinite cylinders the residuals are 
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considerably lower (<0.3°C); therefore the construction of finite bodies by cross products of these will not 

induce any appreciable error.  

4. Sensitivity of the series expansion 
In generalized form, the series expansion describes the correlation between a time input to a temperature 

output based on the physical phenomenon of heat transfer. To investigate the consequences of a variability is 

the input to the variability of the output an analysis of the sensitivity of the parameters is used. The series 

expansion solution is recapitulated below. For this investigation the 1
st
 term approximation for the center 

temperature is used to exemplify the sensitivity of parameters. The series expansion is expanded below to 

highlight the parameters where the lag factor is a function f(Binorm) and the Fourier exponent is a function 

g(Binorm): 

  (
    

     
)   (       ) 

  (      ) 
 

       
 
    [11] 

The sensitivity of the density ρ, and the heat capacity cp, is directly coupled with the exponent, and has thus a 

high sensitivity to the output of the equation. The density and the heat capacity can often be determined with 

adequate precision based on the composition of the food. The characteristic dimension R is very sensitive for 

the calculation as it is influencing the exponent squared. The characteristic dimension is often not a big 

challenge to measure for elemental and general geometries. If the geometry is complex, the dimensions are 

difficult to determine; however, the series expansion is less suited for very complex geometries where a 

numerical solution is more suited.  

The sensitivity of the thermal conductivity is important because it is a part of both the Fourier number and 

the Biot number. The sensitivity of the thermal conductivity is dependent on the value of the Biot number. 

This is best described through the lumped capacitance equation where the sensitivity of the conductivity is 0. 

For Bi∞, the sensitivity of the thermal conductivity to the output is directly proportional to the exponent.  

The uncertainty in the Biot number is often most influenced by the uncertainty in the heat transfer coefficient 

determination. The consequence of an uncertainty of the determined heat transfer coefficient is evaluated 

through the sensitivity of the Biot number. 

4.1 Sensitivity of the Biot number  

The sensitivity of the Biot number is most directly explained through the sensitivity of the lag factor and the 

Fourier exponent which are both a function of the normalized Biot number. This is presented above in 

equation 11. The sensitivity of these two parameters is evaluated by utilizing the normalized Biot number:  

       
  

    
 

The relation between the normalized Biot number and the lag factor and the Fourier exponent can be seen in 

figure 12 and 13. 
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Figure 12 Relation between the normalized Biot number and the 1st Fourier exponent  

 

 

Figure 13 Relation between the normalized Biot number and lag factor for the center temperature  

 

The simple relation between the normalized Biot number to both the lag factor and the Fourier exponent 

makes the normalized Biot number an easy way to investigate the sensitivity of the Biot number in the 

calculations with the Fourier series expansion. 

5. Discussion 
The determination of the eigenvalues and hence Fourier exponents to the series expansion without the need 

for iterations and interpolation is a clear advantage if simple programs for evaluating thermal history are to 

be constructed. Especially, the possibility of incorporating the equations into simple spreadsheet programs 
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will serve as an advantage for food manufacturers lacking more advanced dedicated software, and for the 

teaching of students in food technology. The presented approach is validated at Biot numbers above 0.02. In 

situations with Biot numbers below 0.1 it will in most cases be sufficient to use the lumped capacitance 

model assuming no internal resistance to heat transfer, thus for Biot numbers below 0.02 it will be 

meaningless to use the series expansion in most cases. Because the presented solution in this study is based 

on a normalized Biot number, there is no upper limit for the value of the Biot number.  

In addition [Binorm] is a more direct description of the influence of internal and external resistance to heat 

transfer. This is valuable in assessing the sensibility in heat transfer calculations, especially the determination 

of heat transfer coefficients and thermal conductivity. For example if [Bi] is calculated to be 10 based on an 

average heat transfer coefficient of 100 +/-20 [W/m
2
K], the implications can be seen directly. By means of 

the resulting [Bi] (8, 10 and 12) the sensibility in the estimation of [h] is difficult to assess. By using [Binorm], 

however the internal fraction of the resistance is calculated in the 3 possible situations to be: 0.89, 0.91 and 

0.923. The presentation of the sensibility in terms of internal resistance is more direct because the Fourier 

equation is a calculation of internal conduction, based on an external impact.  

If a Biot number is calculated to be 2 average heat transfer coefficient of 100 +/-20 [W/m
2
K] the uncertainty 

in the Biot number is (1.6, 2, 2.4). The resulting Binorm
 
is 0.615, 0.667 and 0.706 respectively. From the 

normalized Biot numbers it can be concluded that the determination of low Fourier numbers are more 

sensitive than the determination of high Biot numbers. This is important in heat transfer coefficient 

determination.   

This study presents a solution for calculating Fourier exponents that has similar precision as reported in 

earlier studies [9, 10, 11, 12 and 13], but provides a more intuitive and transparent solution based on a 

normalized Biot number. This enables a more intuitive understanding of the parametric variability and 

transparency in the procedure. In addition the provided solution improves the simplicity in the calculation of 

the whole Fo regime presented by [9] 

6. Conclusion 
A new method to determine the Fourier exponents needed to calculate the series expansion for non-stationary 

heat transfer has been developed. The developed method utilizes our finding that a normalization of the Biot 

number enables a simple polynomial fit of the first Fourier exponents. The polynomial is monotonically 

increasing yielding a high robustness in the parametric variability. The polynomial regression is validated 

with a low error for the range of Biot numbers (0.02<Bi<∞). The study will facilitate the generation of more 

general and simple programming in spreadsheets to handle non-stationary heat transfer problems.  
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Abstract 
This paper proposes an analytical solution to transient heat transfer, which also applies for the 

initial heating/cooling period (Fo<0.2) of solids with simple geometries subjected to convective 

boundary conditions, with negligible mass transfer and phase-change. The new equation is 

presented and validated for infinite slabs, infinite cylinders, spheres and by an industrial application 

example, covering the center temperature and the volume average temperature. The approach 

takes ground in the residual difference between the 1 term series solution and a 100 term solution 

to the Fourier equation of the thermal response for solids subjected to convective heat transfer. By 

representing the residual thermal response as a function of the Biot number and the first 

eigenvalue, the new approach enables the description of the thermal response in the whole Fourier 

regime. The presented equation is simple and analytical in form, which allows an easy 

implementation into spreadsheets and thus serves as a transparent and fast tool for crude process 

calculations in e.g. process planning or introduction of new products to existing lines. The 

prediction error of the new equation is low (RMSD<0.015) for 0<Fo<0.2 and 0.1<Bi<100 for infinite 

slabs, infinite cylinders, spheres and typical examples of finite bodies. 

Keywords: Modeling; heat-transfer; analytical solutions; low Fourier-numbers 

1. Introduction 
 

The calculation of non-stationary convective heat transfer into solids is important in several 

engineering fields, such as aeronautics, metallurgy, building construction and food technology 

[1,2,3]. For elementary geometries (infinite slab, infinite cylinder, sphere), the standard approach is 

to solve the Fourier differential equation through a series expansion [4,5]. The solution assumes 

convective uniform boundary conditions with no or insignificant mass transfer, no internal heat 

generation and negligible changes in geometry. Despite these restrictions, many practical 

engineering problems of convective heating or cooling of solids can be approximated by the 

situation with ideal geometries or cross-sections of them. In food engineering, calculation of the 

sterilization process in the canning industry is the classical example [6,7]. Also calculation of 

cooling processes is an often encountered issue in the food industry where it is important for the 

safety and quality of the food to ensure that a target temperature of a solid food product is reached 

before it enters a chilled storage.  

In recent decades research in heat transfer, also within food engineering, has focused on modeling 

and simulations in often advanced software such as the MATLAB based COMSOL Multiphysics®  

[8,9]. The simulations have the advantage that more complex physics can be included into the 

models accounting for mass transfer, geometry changes, chemical reactions and structure 

mailto:mgch@food.dtu.dk
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changes within the products [10]. An example of this modeling approach is a study of the 

convective roasting of meat [11], where heat and mass transfer is coupled with a geometrical 

change (shrinkage) during processing. Such simulations are precise and can handle real 

processing situations; however, they are often targeted at specific products in specific processes 

making them less versatile for general engineering calculations. In addition, many engineers in the 

food producing industry do not have access to suitable software nor the time needed to conduct 

simulations in their daily work. This means that there is still a need for classical engineering 

equations to handle the calculation of the thermal history of solid foods, preferably by using simple, 

commonly used software such as spreadsheets.   

2. Theory 
For the infinite slab, the infinite cylinder, and the sphere the temperature history can be calculated 

using eq. 1-7 below [5], assuming convective boundary conditions with no or insignificant mass 

transfer and disregarding the influence of chemical reactions and possible changes in geometry.  

Nomenclature   
α Slope of regression curves J0 0th order of the Bessel function of the first kind 

[-] 

ai Lag factor in the series expansion to the heat 
transfer equation [-] 

J1 1st order of the Bessel function of the first kind 
[-] 

Bi Biot number     
 

 
   [-] k Thermal conductivity [W/m2] 

cp Specific heat capacity [J/kg.K] λi The eigenvalue to respective root functions [-] 
C Intercept of regression curves L Determining dimension [m] 
ε Residual dimensionless temperature 

difference [-] 
Ω Dimensionless temperature difference 

  
(    )

(     )
 [-], subscripts s is surrounding 

temperature, 0 is initial temperature 
Fo Fourier number (dimensionless process time) 

   
 

       
   [-] 

ρ Density [kg/m3] 

h Heat transfer coefficient [W/m2K] x Relative position in geometry, x=0 for center, 1 
for surface 

T Temperature [°C] t Time [s] 
 

  ∑        
      

         (1) 

λi is the eigenvalue to the representative root functions eq. 2, 3 and 4, for the 3 elementary 

geometries. 

                           (2) 

                 
    (  )

  (  )
       (3) 

                           (4) 
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The lag factor (ai) is calculated for the three geometries as a function of the respective eigenvalue 
to the root functions in equation 5, 6 and 7. L is the characteristic dimension, which is half 
thickness for slabs, and the radius for cylinders and spheres. 
  

         (     )     
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)    (5) 
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       (     )    
 (             )

             
 
   (  

 

 
)

  
 

 

    (7) 

  
For estimating the center temperature in finite bodies such as cans, boxes and prisms the cross-

products of the elementary geometries is the standard solution [12]. The resulting dimensionless 

temperature difference (Ω) is the product of the individual contributions, here exemplified by the 

calculations of a finite box: 

                                 (8) 

     [∑     (   
    ) 

   ]
      

 [∑     (   
    ) 

   ]
     

 [∑     (   
    ) 

   ]
      

  (9) 

Applying only the first term of the expansion is considered adequate if the Fourier number exceeds 

0.2 [5]. However, for finite bodies each dimension is usually different, and the corresponding 

Fourier number will be different for the same process time. For example, for a finite box where one 

of the dimensions is two times larger than the smallest dimension, the Fourier number will be four 

times lower. This means that at e.g. Fo = 0.3 for the smallest dimension, the largest dimension will 

have Fo = 0.075 which introduces a significant error in the calculation, if only 1 term is applied. For 

calculations involving finite bodies more terms in the expansion are therefore often needed even if 

the smallest dimension has a Fo-number that exceeds 0.2. Alternatively, charts can be used to 

evaluate the thermal response at Fo < 0.2 [1,13,14,15,16]. Both the approach of using more terms 

in the series expansion and the use of charts is feasible. However, using more terms in the 

expansion requires dedicated software or programming (in Matlab, R, etc.), whilst the graphical 

method is less precise, time consuming and not readily incorporated into spreadsheet solutions. 

The aim of this study is to derive more simple equations which are valid for all Fourier numbers, 

also for Fo < 0.2, where the standard solutions require the use of graphs. Studies directed towards 

more simple engineering equations to handle low Fourier numbers are scarce, and they are neither 

widely implemented in the industry nor presented in textbooks. Hayakawa [15] reported charts and 

tables to estimate the initial center temperature response for canned foods, but the solutions are 

limited to the geometry of a finite cylinder. Ramaswamy and Shreekanth [17] used a stepwise 

multiple regression approach to approximate the summarized series solution at Fo<0.2 for infinite 

geometries. Their general idea was to model the residual between the summarized series and the 

1 term approximation, as is also done in the present study. Their solution included 13 new 

parameters for each of the three infinite geometries in a set of three equations [17]. As it will be 

shown, we propose a simpler solution of sufficient precision with only 1 new parameter included in 

a single equation for handling the prediction of the center temperature and the volume average 
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temperature. The solution covers a wide application area (0<Fo, 0.1<Bi<100) for the elementary 

geometries and their cross-sections, cans, prisms, and boxes. 

3. Materials and methods  
The solution to the series expansion (eq. 1) is obtained using the freeware program R [18], where 

100 terms represent the virtually exact solution to the entire expansion based on the equations 1-7. 

The difference between the 100 term solution and the 1 term solution (residual) is then evaluated 

for 16 Biot numbers (0.1; 0.2; 0.4; 0.6; 0.8; 1; 2; 4; 6; 8; 10; 20; 30; 40; 50; 100) for the three 

elementary geometries. Because the residual between the 1 term solution and the 100 term 

solution to the thermal history is only of practical significance at Fo<0.2 the analysis of the residual 

is conducted for the range 0<Fo<0.2.  

Following Ramaswamy and Shrekanth [17] we handle the approximate solution to eq. 1 by splitting 

the series expansion into the 1st term minus a residual, where the residual will be the difference 

between the infinite series and the 1st term: 

         
             (10) 

where:  

     (       
     ∑        

     
   )     (11) 

The method represented by eq. 10 is illustrated in figure 1, where Ω for a sphere of Bi=4 is plotted 

against the Fourier number [0:0.2] for the 1st term solution, the 100 term solution and the residual 

(eq. 11). 

 

Figure 1 Graphical method description of equation 11 

3.1 Center temperatures – derivation of equations 

The natural logarithm to the residual (ε = Ω1 term - Ω100 terms) is investigated as a function of the Fo-

number [0; 0.2; 0.01] in order to express the residual in the same format as the first term 

expansion. In figure 2 it is exemplified for a sphere with a Biot number of 4. Because we want the 

residual at Fo=0 to be equal to the difference between the 1 term solution and the exact solution to 

the heat equation, the intercept in the regression is forced at ln(ac,1-1). ac,1 is calculated from 

equation 5, 6 and 7. 
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Figure 2. Regression plot of the residual (eq. 11) as a function of the Fourier number, for a sphere with a Biot number of 4, fitted 
by a minimal squared error regression with a forced intercept  

The regression equation 12 crudely represents the development in the residual over process time 

(Fo): 

           (      )      (12) 

All the regression lines are presented in appendix A1 for infinite slabs, A2 for infinite cylinders and 

A3 for spheres. The regression coefficients from appendix (A1, A2, A3) for the 16 tested Biot 

numbers are plotted (open circles) against ln(Bi) for infinite slabs (figure 3), for infinite cylinders 

(figure 4) and for spheres (figure 5).  

Because it is desirable to introduce as few new variables as possible in the calculation of the 

residual we have chosen to express the regression coefficients as a function of the Biot number 

and the first eigenvalue (λ1) to the respective root function. Testing a number of simple 

combinations we found that the regression coefficients (α) follow rather closely equation 13: 

   (     (  )   )      (13) 

Where C is a constant which depends on the geometry and equals the coefficient at Bi=1. The 

predicted regression coefficients from equation 13 are presented in figure 3, 4 and 5 as dotted 

curves. 
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Figure 3. Plot of the slopes of the residual plots as a function of ln(Bi) for infinite slabs, the line represents the predicted 

coefficients from equation 13. 

 

Figure 4. Plot of the slopes of the residual plots as a function of ln(Bi) for infinite cylinders, the line represents the predicted 

coefficients from equation 13. 

 

Figure 5. Plot of the slopes of the residual plots as a function of ln(Bi) for spheres, the line represents the predicted coefficients 

from equation 13. 

Inserting eq.13 in eq.12 gives: 

  ( )   (     (  )   )     (      )    (14) 

Taking the antilogarithm to eq. 14 and rearranging gives: 

  (      )          (  )                (15) 
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Equation 15 may be simplified to:  

  (      )                       (16) 

For the infinite slab, the infinite cylinder and the sphere, the rounded values of C equals: 11, 15, 

19, respectively.  

Equation 15 predicts that the residual, ε approaches 0 when the Fourier number becomes large 

and approaches ac,1 when the Fourier number approaches 0, in full accordance with the exact 

solution of the series expansion (eq. 1). For Bi<0.1 ac,1 approaches 1 and the residual is negligible, 

and in these cases the lumped capacitance method can be used [21]. For Bi>100 the surface 

resistance is negligible and these situations can be calculated as if Bi=100. The parameter C is not 

sensitive to small variations; however, the global fit of the model is best at the suggested values of 

C. The inputs needed are summarized in table 1.  

Table 1 Formulae input to calculate the thermal history based with the suggested equation 

Geometry λ1 ac am C 

Inf. plate                  

             

    
   (  )

  

 
11 

Inf. cylinder 
   

    (  )

  (  )
 

   (  )

  (  
 (  )    

 (  )
     

    

  

 
15 

sphere               (             )

             

      
   (  )       (  )

  
  

19 

 

The values of λ1, ac,1 and am,1  for different Biot numbers are presented in most textbooks on the 

subject based on the equations in table 1, alternatively, non-iterative solutions [19,20] can applied 

with small errors. 

Inserting eq. 16 into eq. 10 gives: 

           
      (      )                      (17) 

For an improved precision at Fo<≈0.05-0.08, where eq. 17 tends to overshoot the predicted value 

of Ω (see figure 6 later), the rational restriction Ω≤1 should be applied, since a value of Ω>1 is 

unphysical because no internal heat generation is considered.  

           
      (      )                                             

 (18) 

3.2 Volume average temperatures 
The same procedure as in section 2.1 is used for constructing a similar equation for the volume 

average temperature: 

           
      (      )                        (19) 

The exponential term (3.λ.Fo) is larger than in eq. 17 because the 1-term approximation is 

converging more rapidly for the volume average temperature than for the center temperature. The 

restriction Ω≤1 needs not to be applied in this case. 



Appendix 2 
 

9 
 

3.3 Finite bodies 
For the calculation of finite bodies that can be represented as cross sections of infinite bodies 

(cans, boxes and infinite prisms) the method suggested by Newman [12] can be adopted with the 

new approach in the same manner as presented in equation 8, keeping in mind that the restriction 

(eq.18) should be applied for all individual dimensions. This is exemplified in section 4.1 by a case 

from industry. 

4. Results and Discussion 
To test the validity of the new equation (eq.18) it is compared with the solution to eq. 1 at 

representative Biot numbers (1 and 10 for the center, 4 and 20 for the volume average). The 

validation is presented in the figures 6.a-f for the center temperature and 7.a-f for the volume 

average temperature. The validation is presented for 0<Fo<0.2. At higher Fourier numbers the 

solutions of both the 1-term solution and the new equation converge with the 100 term solution. 

The rational restriction Ω≤1 is included in the figures. 
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Figure 6. a-f. Center temperature validation by comparing the 1- term solution (eq. 1), the exact solution with 100 terms (eq. 1), 

and the new equation (eq. 18).  

Figure 6 shows that eq. 17) generally overshoots slightly at low Fo; by including the restriction 

(Ω≤1) in eq. 18 predicts the temperature response in the center with good precision at all Fo 

numbers.  

The results from the validation of the volume average temperature calculation (eq.19) are 

presented in figure 7. a-f.  

 

 

 

Figure 7. a-f. Volume average temperature validation by comparing by comparing the 1- term solution (eq. 1), the exact solution 
with 100 terms (eq. 1), and the new equation (eq. 19). 
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As for the center temperature, the precision of the prediction is good also at low Fo numbers as 

can be observed in the graphs in figure 7.a-f.  

The validation of the new equation is supported by the calculation of the error of prediction in terms 

of Root Mean Squared Difference (RMSD) (eq.20) for comparison between the 100 term solution 

and equations 18 and 19, respectively. The RMSD values of all the tested geometries are 

presented in table 2.  

     √∑ (
(         )

 

 
) 

           (20) 

Table 2 The calculated RMSD values for the comparison between the new equation and the 100 term solution at 
0<Fo<0.2 for the center temperature and volume average temperature.  

 Center temperature (eq. 18) 
(Restriction: Ω≤1) 

Volume average temperature 
(eq.  19) 

 Inf. slab Inf. cyl sphere Inf. slab Inf. cyl sphere 
Bi  RMSD RMSD  RMSD  RMSD  RMSD RMSD 

0.1 0.0008 0.0010 0.0005 - - - 
0.2 0.0013 0.0017 0.0012 - - - 
0.4 0.0019 0.0026 0.0021 - - - 
0.6 0.0024 0.0034 0.0030 - - - 
0.8 0.0030 0.0041 0.0039 - - - 
1 0.0031 0.0046 0.0047 0.0007 0.0006 0.0011 
2 0.0035 0.0060 0.0072 0.0020 0.0018 0.0022 
4 0.0031 0.0066 0.0089 0.0031 0.0032 0.0035 
6 0.0035 0.0067 0.0101 0.0046 0.0047 0.0045 
8 0.0041 0.0066 0.0102 0.0058 0.0062 0.0067 
10 0.0046 0.0070 0.0102 0.0068 0.0074 0.0080 
20 0.0046 0.0074 0.0103 0.0093 0.0109 0.0121 
30 0.0041 0.0077 0.0107 0.0085 0.0123 0.0135 
40 0.0042 0.0080 0.0115 0.0108 0.0126 0.0140 
50 0.0037 0.0086 0.0124 0.0105 0.0128 0.0141 
100 0.0041 0.0111 0.0161 0.0101 0.0123 0.0140 
- At Bi<1, the error (RMSD) is insignificant for the volume average temperature because am,1 ≈ 1  

As seen from the RMSD values in table 2, it is obvious that the error of the new equation is 

increasing at higher Biot numbers. The maximum error is for spheres (Bi=100) with a maximum 

RMSD of 0.016. In general RMSD is about 0.01 or lower, and this precision is adequate in most 

practical situations. 

4.1 Validation of finite geometries – Cream cheese case study 

To validate the developed equations in an industrial setup, the cooling of a packaged cream 

cheese is chosen, where the developed equations (18 and 19) are compared to a numerical 

simulation of the Fourier equation (eq. 21) conducted in COMSOL Multiphysics®. 

   
  

  
   (   )   [

   

    
   

    
   

   ]      (21) 

The simulation describes the temperature as a function of time and position using the following 

boundary conditions: 
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   (      ) 

  
  

  
   (      ) 

  
  

  
   (      ) 

 

The packaged cream cheese is considered as a box with the dimensions (20×80×120 [mm]) and 

an apparent headspace of 2 [mm] on the top boundary caused by an attached lid, see figure 8.  

 

Figure 8. The constructed geometry for the modeling of cream cheese to the left and the applied mesh to the 
right. The dimension unit is [cm]. The attached lid is positioned at the top, the cream cheese domain is in the 
bottom. 

The cream cheese is cooled in a conventional cooling tower by circulating air in a perpendicular 

airstream inducing a non-uniform heat transfer around the package. In a separate project we had 

measured the following heat transfer coefficients for the individual surfaces:  

Dimension Heat transfer coefficient 

Top 30 [W/m2K] 
Bottom 10 [W/m2K] 
Sides 22 [W/m2K] 
Back 18 [W/m2K] 
Front 35 [W/m2K] 

 

The headspace below the lid acts as an insulating layer, and the heat transfer coefficient to the top 

of the cream cheese is therefore equal to the total heat transfer coefficient U: 
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For the simplified calculation in the present work, the average values of h in each dimension are 

used, cf. the boundary conditions above: 

 Top/bottom: 8.75 [w/m2K] (
      

 
) 

 Sides: 22 [w/m2K] (
     

 
) 

 Front/back: 26.5 [w/m2K] (
     

 
) 

The thermo physical properties of the cream cheese are (T, 50°C) : ρcheese=998 [kg/m3], 

kcheese=0.45[w/m.K], cp,cheese=3261[J/kgK], kheadspace=0.0237[w/m.K]. 

Process description: The cream cheese is to be pre cooled before storage to allow the gel to set at 

a volume average temperature of 30°C, the initial temperature is 70°C and the surrounding 

temperature is 0°C. The volume average temperature is important as a set point for the cooling 

process, but also the center temperature (more precisely the global maximum temperature) is 

important in order to conduct process evaluation at the production site, as this can be directly 

measured.  

The results from the simulation are the temperature history of  the volume average temperature 

and the global maximum. Figure 9 shows the simulation results compared with the calculations 

using eq. 19 and eq. 18. The figure demonstrates also in this case a good agreement between the 

numerical simulations and the calculations according to the new equations developed in the 

present work.  

  

Figure 9 Comparison between the 1 term series expansion solution and the present work with the model result from COMSOL 
for the thermal history of the average temperature (left) and the global maximum temperature (right) for the original simulation 
setup described in the case 

    

4.2 Implementation and parameter variability of the model  
The developed equation (eq.18 for center temperature and eq.19 for volume average temperature) 

is immediately applicable in spreadsheets where the equation can be directly solved for any 

timescale. The input parameters needed in the calculations are the thermo-physical data 

calculated from the content of macro-nutrients, the product geometry, the heat transfer coefficient 

and the Fourier exponents (λ1
2 ), thus the same inputs as if only the 1 term solution is applied, but 

with an additional constant C for each of the 3 ideal bodies. The needed eigenvalues (λ1) and 
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Fourier exponents (λ1
2) can be found in charts or tables in textbooks [3,5]. Alternatively they can be 

calculated by utilizing a non-iterative approximation procedure [19,20]. For finite bodies that can be 

presented as cross products of infinite elements, the solution by Newman [12] can be adopted as 

presented in the industrial case.  

The only input parameter to the new equation that can vary independently is the constant C. The 

suggested values of C, (11 for infinite slabs, 15 for infinite cylinders and 19 for spheres) represent 

the best global fit for the tested Biot numbers. The other input parameters (Bi, λ1, ac,1, am,1) are 

given by the boundary conditions and the geometry of the body. 

5. Conclusion and perspectives 

The proposed equation gives good precision for the thermal response in the center and for the 

volume average temperature of simple geometries (slabs, cylinders, spheres, cans, boxes and 

prisms), covering the whole process time (Fo>0) and all Biot numbers in the range 0.1<Bi<100. In 

general, RMSD is about 0.01 or lower; for the sphere at high Bi the prediction error (RMSD) 

increases up to 0.016. This precision is adequate in most practical situations, considering that the 

driving temperature difference in most cases in the food industry is below 100oC. The variable 

input to the new equation is identical to the information needed in a 1-term solution to non-

stationary heat transfer problems and an additional constant depending on the geometry. The 

equation can be applied by engineers for process evaluation, and it is directly implementable in 

spreadsheet solutions. 
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Appendix A 
Table A1 Regression line coefficients and intercepts for the tested Biot numbers for infinite plates. The lag-
factors ac,1 and the eigenvalues (λ1) are extracted from Mills [5] 

Bi ac,1 λ1 intercept 
ln (ac,1-1) 

Coefficient 
(α) 

Bi ac,1 λ1 Intercept 
ln (ac,1-1) 

Coefficient 
(α) 

0.1 1.016 0.133 -4.135 -8.813 6 1.248 1.349 -1.394 -14.305 
0.2 1.031 0.433 -3.474 -8.920 8 1.257 1.398 -1.359 -15.133 
0.4 1.058 0.593 -2.847 -9.201 10 1.262 1.429 -1.339 -15.714 
0.6 1.081 0.705 -2.513 -9.594 20 1.270 1.496 -1.309 -17.158 
0.8 1.102 0.791 -2.283 -9.712 30 1.272 1.520 -1.302 -17.678 
1 1.119 0.860 -2.129 -10.107 40 1.272 1.533 

* 
-1.302 -18.179 

2 1.180 1.077 -1.715 -11.119 50 1.273 1.539 -1.298 -18.174 
4 1.229 1.265 -1.474 -13.101 100 1.273 1.555 -1.298 -18.712 

*Corrected value due to typing error in Mills 1995 

A2 

Table A2 Regression line coefficients and intercepts for the tested Biot numbers for infinite cylinders. The lag-
factors ac,1 and the eigenvalues (λ1) are extracted from Mills [5] 

Bi ac,1 λ1 intercept 
ln (ac,1-1) 

Coefficient 
(α) 

Bi ac,1 λ1 Intercept 
ln (ac,1-1) 

Coefficient 
(α) 

0.1 1.025 0.442 -3.689 -12.09 6 1.526 2.049 -0.642 -19.63 
0.2 1.049 0.617 -3.016 -12.36 8 1.553 2.128 -0.592 -20.78 

0.4 1.094 0.869 -2.364 -12.91 10 1.568 2.179 -0.566 -21.62 
0.6 1.135 1.018 -2.002 -13.47 20 1.593 2.288 -0.523 -23.49 
0.8 1.173 1.149 -1.754 -13.82 30 1.598 2.326 -0.514 -24.38 
1 1.208 1.256 -1.570 -14.11 40 1.600 2.345 -0.511 -24.81 
2 1.338 1.599 -1.085 -15.86 50 1.601 2.357 -0.509 -25.06 
4 1.470 1.908 -0.755 -18.10 100 1.602 2.381 -0.507 -25.69 

 

A3 

Table A3 Regression line coefficients and intercepts for the tested Biot numbers for spheres. The lag-factors ac,1 
and the eigenvalues (λ1) are extracted from Mills [5] 

Bi ac,1 λ1 intercept 
ln (ac,1-1) 

Coefficient 
(α) 

Bi ac,1 λ1 Intercept 
ln (ac,1-1) 

Coefficient 
(α) 

0.1 1.030 0.542 -3.507 -16.79 6 1.834 2.654 -0.182 -25.64 
0.2 1.059 0.759 -2.830 -17.89 8 1.892 2.765 -0.114 -27.16 
0.4 1.116 1.052 -2.154 -18.31 10 1.925 2.836 -0.078 -28.21 
0.6 1.171 1.264 -1.766 -18.52 20 1.978 2.986 -0.022 -31.01 
0.8 1.224 1.432 -1.496 -18.58 30 1.990 3.037 -0.010 -32.03 
1 1.273 1.570 -1.298 -19.19 40 1.994 3.063 -0.006 -32.71 
2 1.479 2.029 -0.736 -20.89 50 1.996 3.079 -0.004 -33.10 
4 1.720 2.456 -0.329 -23.67 100 1.999 3.110 -0.001 -33.78 
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ABSTRACT 

A new equation to predict equilibrium temperatures for cooling operations of packaged foods has been 
deducted from the traditional 1st order solution to Fourier’s heat transfer equations. The equation is analytical 
in form and only requires measurable parameters, in form of area vs. volume ratio (A/V), thermo-physical 
properties calculated from the recipe, and the heat transfer coefficients measured in the equipment. The 
equation is based on an overall Biot number. The simple deducted model was tested and validated with 
experimental and simulated setups. Simulations have been performed using COMSOL Multiphysics, 
commercially available software, to test the new equation. Additionally, an experiment with all boundary 
conditions known, and the three dimensional coordinates of the position of six thermocouples were 
conducted. The COMSOL simulation showed very good conformity with experimental results matching all 
individual thermocouples. Simulations are used as a validation tool for cooling predictions. This was done by 
comparing the simulated equilibrium temperature with the calculated using the new equation. The 
simulations are able to evaluate cooling situations in the industry where experiments are too laborious or 
impossible to conduct. The deducted equation was tested for irregular geometries, unequal heat transfer and 
headspace restrictions. The new equation predicted equilibrium temperature curves of the simulated cooling 
with a low error (1.5°C for Fourier numbers below 0.3) and good precision at the target temperature (error 
below 0.5°C for Fourier numbers above 0.3).  
 
Keywords: Cooling; Finite Element Method; Irregular geometry; Heat Transfer; Modelling 
 
INTRODUCTION 
Cooling operations are important unit operations in the food industry. Often, it is a big challenge to find the 
appropriate cooling time because the optimal set-point is to achieve the correct equilibrium temperature in 
the product before it is conveyed to the cold storage. As the product eventually will obtain the same 
temperature in the cold storage it is economically advantageous only to cool until the cold storage 
equilibrium temperature is met. However, it is difficult to conduct experiments for measuring the equilibrium 
temperature over time, especially in industrial setups. This necessitates fast calculations to manage prediction 
of the equilibrium temperature during daily operation management. So far, simple equations have only been 
developed to handle calculations of the equilibrium temperature of simple geometries for cooling processes 
where the solutions suggested by Pflug et.al [1] can be used. The scope of this project is to derive such 
models by using finite element modelling (FEM) in COMSOL Multiphysics to conduct in silico experiments 
for the validation of the models. In this paper the first developed model based on A/V (area to volume) ratio 
and an overall Biot-number is validated. The models must be analytical for implementation in commercial 
software, easy to use, and still provide more precision than the traditional 1st order approximations of 
Fourier’s equations for Fo> 0.3 and simple geometries.  
 
Traditionally, the equations used for calculation of cooling operation times in the food industry have been 
based on a 1st order approximation of Fourier’s heat transfer equations (1). This is done by utilising a-values 
(am for the equilibrium temperature) as described by Pflug and Kopelman as a j-factor [1], and b values as 
described by Ball [2] as an f-factor.  
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For non-ideal geometries the approach suggested by Newman [3] has been utilised. However, due to unequal 
boundary conditions and lack of symmetry these methods are not very precise under real life conditions. 
Simple model solutions have been suggested by Cleland and Earle [4] and Merts, Bickers and Chadderton [5] 



for centre temperature prediction during cooling and these simple solutions requires thorough geometrical 
calculations. 

 
Alternatively, and pushed by the technological advance in IT, calculations of cooling times have been 
performed using finite element modelling by Wang and Sun [6] and Amézquita, Wang and Weller [7]. These 
studies have also been focussing on point temperatures, and are conducted with assumed equal boundary 
condition, or calculated based on air velocity, which can be very difficult to measure in industrial setups.  
 
FEM methods are precise but unfortunately time consuming and demand trained personnel. Further it 
necessitates that the boundary conditions are well described. When utilised properly FEM modelling can 
handle the unequal boundaries and asymmetrical geometries present in industrial cooling operations, and can 
serve as a powerful tool in validating and testing simple, deduced analytical models, when experiments are 
too laborious or impossible to conduct. 
 
Many food products are cooled in the package, which often can be described as a semi-filled un-symmetrical 
plastic package with an air filled headspace. The products are typically cooled with a perpendicular airflow 
across the packages. This highlights the two major challenges when a simple equation should be developed 
for cooling processes: the boundary conditions are not equal and must be determined individually, and the 
geometry is asymmetrical. Thus the widely used method described by Newman [3] is not applicable in many 
situations, according to his own conclusions. However, by utilising the A/V ratio as the determining 
dimension, a different view on the geometry is achieved which is not dependent on the geometrical shape.  
 
The Biot number in blast cooling is usually fairly low (below 5). In blast cooling operations the equilibrium 
temperature is often the target and the dimensionless temperature Ω will be low (Ω<0.5), therefore the 
Fourier number will be fairly high (above 0.2). This favours a simplification by utilising a 1st order 
approximation. In earlier studies [8] the Biot numbers of known geometries (infinite slab, infinite cylinders, 
spheres and cubes) have been investigated for Biot numbers below 5. An overall Biot number (Biotd) of a 
specimen have been suggested to give similar results in cooling process evaluations compared to single 
dimension Biot numbers. The geometry´s overall Biot number is suggested to be calculated based on A/V 
ratio, for the three finite specimens in the x,y,z domain as presented in eq. 2 and 3: 
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Where V [m3] is the volume of the geometry, A [m2] is the surface area of the geometry, h [W/m2K] is the 
heat transfer coefficient, and k is the thermal conductivity of the food. Eq. 2 is suggested to apply for all 
irregular, asymmetric geometries [8]. 
The overall Biot number enables a single equation description of the heat transfer in 3-dimensional 
geometries. This requires that the “a”- and “b”- values can be expressed as single values for the specimen. To 
achieve this, the b values are plotted as b/Biot (4) as a function of Biotd (3). 
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For the known infinite geometries (inf. slab, inf. cylinder and sphere) the b values can be expressed by eq. 5 
by utilising a geometry factor, n [7] (slab=1, cyl=2, sphere=3) by curve fitting of b-values. 
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Where n is the dimensionality, and Biotd is the overall Biot number. The same relationship is utilised when 
handling irregular geometries.  
 
As the am values for the first order approximation are determined based on point measurements [1], the 
solution suggested by [3] does not apply for modelling equilibrium temperatures. Thus no overall 



determination of the am-value for finite elements exists. In this study the am values are proposed to follow eq. 
(6) based on the assumption that am values for finite elements can be calculated by a plot fit of the am for 
single dimensions as a function of the overall Biot number (Biotd) and a dimensional factor ( n), and the 
overall Biot number [8].  
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The expression of the b-values in eq. 4 gains continuity between the 1st order approximation of Fourier’s 
equations and the lumped form used when no heat gradient is considered (for Biot→ 0, y→ 1). In the 
approach the y factor is denoted as b/Biot fulfilling the assumption of obtaining continuity. When the three 
known geometries are expressed by an overall Biot number, the “a” and “b” values can be calculated using 
eq. 5 and 6. The relationship between Ω and time (t) is then deduced to the following: 
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In eq. 7 the 1st order solution for Fourier’s equations presented in eq. 1 is reduced from three equations down 
to one explaining all three dimensions for equilibrium temperatures, where ρ [kg/m3] is the density of the 
food and cp [J/(kgK)] the specific heat capacity. The equation has been tested against a 6th order solution to 
Fourier’s equation for cylinders, cubes and spheres with comparable results for Biot numbers below 5 [8] 
with good agreement, and with an advantage of handling irregular geometries, where three single Biot 
numbers are not determinable. 
 
In this study the governing equations of Fourier in eq. 8 have been solved for the experimental geometry 
using COMSOL Multiphysics to simulate the conducted wet experiments. 
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MATERIALS & METHODS 

For the experimental validation of the new developed equation a puree was made of soaked, boiled and 
blended chickpeas as a model system. The dry matter content of the puree was 25 % [w/w], and the thermo-
physical properties calculated to; thermal conductivity 0.538 [W/(mK)], density 1072 [kg/m3], heat capacity 
3591 [J/(kgK)]. The chickpea puree was cooled in a blast freezer and the temperature measured by T-type 
thermo couples in seven measuring points through a custom made geometry (100x100x300mm aluminium 
with a thickness of 2 mm), as presented in figure 1. 
 
 
 
 
 
 
 
 
To determine the local heat transfer in the blast cooler, a solid aluminium block was used. The aluminium 
block was isolated from all sides except one using polystyrene, and placed in the cooler to determine the 
temperature history of all six sides of the block singularly, using T-type thermo couples. The local heat 
transfer was calculated based on the lumped equation for transient heat transfer, assuming a very low Biot 
number for the aluminium block (<0.01).  
 
The experiments were simulated using COMSOL Multiphysics, with the measured local heat transfer 
coefficients as boundary conditions. The x,y,z-coordinates of the T-couples in the simulation was compared 
with the experimental results based on six point temperature curves to validate the conformity between the 
simulations and experiments. The calculated equilibrium temperatures from the simulations have been used 

Figure 1 Geometrical setup of the experiments in the blast cooler



for validation of the simple model. Further validation of the new equation (7) is conducted by comparison 
with a 6th order solution to Fouriers series (in eq. 1) in an excel-based program, BIC-Simula, developed at the 
institute by associate professor Jørgen Risum. Calculations based on the programme is in this article noted 
BIC-Simula. 
 
RESULTS & DISCUSSION 

The local heat transfer coefficients were measured in a blast cooler to determine the boundary conditions for 
the simulations of cooling processes in the equipment. Based on the heat flux across a solid aluminium block, 
the heat transfer coefficient was calculated based on the lumped equation for transient heat transfer. It is clear 
that the local heat transfer coefficients are different on the six boundaries in table 1. Thus the COMSOL 
simulations should preferably be computed using the local heat transfer coefficients. The results also indicate 
that in case of headspace in the packaging material the local heat transfer is reduced significant, (from 30 to 
10 [W/(m2K)], but is still too high to neglect and use the approach suggested by [3].  
 
Table 1. Local heat transfer coefficients 

Geometry position Local heat transfer coefficient 
[W/m2K] 

back 24,5 

sides 27 

front 33 

bottom 35 

isolated bottom 0 

top  

-direct flow 32 

-headspace 28 mm  7 

headspace 10 mm 9 

headspace 5 mm 10 

 
 
The COMSOL simulation is compared with the experiments in figure 3 for six measurements during blast 
cooling of chickpea puree. 
 

 
Figure 3 Comparison of the measured Temperature points during cooling of chickpea puree in a blast cooler (T1, T2, T3, 
T4, T6, T7), with the corresponding simulated temperature curves (COM1, COM2, COM3, COM4, COM6, COM7) at 
the x,y,z points in COMSOL. 
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Figure 2 Temperature distribution at t=15000s for 
the COMSOL simulation 



The simulated and experimental results show good agreement with only minor deviations at the positions 
close to the centre (-2°C). The simulations are thus used as in silico experiments for the validation of the new 
model for equilibrium temperature. The equilibrium temperature are calculated from the simulation and used 
for comparison with the developed eq. 7. This approach will make it possible to test irregular geometries with 
unequal boundary conditions and headspace in simulations to further validate the new eq. 7. The simulation 
and the developed model are compared in figure 4, 5, 6 and 7 for different geometries. In Table 2, the 
maximum error between the simulation and the simple model are listed. The simulated cooling curve for 
equilibrium temperature is compared to the calculated cooling curve from eq. 7, and a 6th order 
approximation for finite elements.  
 

 

 

Figure 4 Comparison of the simulated temperature curves by COMSOL and the calculated equilibrium temperature using 
the new model (7), the four graphs presented are free standing geometry (a)(100x100x300mm), free standing geometry 
with headspace (b)(100x100x300mm), free standing geometry (c)(50x50x150mm) and a free standing geometry with 
headspace (d)(50x50x150mm).  

From the results in Figure 4, the new model is able to describe the evolution of the equilibrium temperature 
with good precision. At high Fourier numbers, the simple model predicts the same equilibrium temperatures 
as found in the COMSOL simulations.  
 
Table 2. Maximal error in degrees centigrade between simulated equilibrium  
temperatures and prediction of the temperatures using the new model. 

Geometry Centigrade error maximum Error at target (5°C) 

Geometry (a) +1,5 [°C] <0.5[°C] 

Geometry (b) +2 [°C] <1 [°C] 

Geometry (c) +1.5 [°C] <0.5 [°C] 

Geometry (d) +2 [°C] <0.5 [°C] 
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The results presented in Figure 4 and the errors summed in Table 2 indicate good precision in predicting 
equilibrium temperatures using the new equation. An important notice is that the error in the latter part of the 
prediction curve is very small (large Fo-numbers). Thus in the final equilibrium temperature prediction the 
error is insignificant compared to experimental error, because the target of importance during cooling is the 
final equilibrium temperature. The simplification has not harmed the prediction of equilibrium temperatures 
when compared to the BIC-SIMULA calculations. 
 
It should be noted that the suggested solution to handle cooling and equilibrium temperatures are only 
validated for specimens with a Biot number below 5. The future scope is to further develop the simple model, 
with respect to the equation description of the “a” and “b” values, to enable handling products with larger 
Biot numbers, and to investigate the possibility of incorporating mass transfer into a single equation. 
 
CONCLUSION 

An experimental setup has been used to enable simulations for the prediction of equilibrium temperature 
during cooling of foods in packaging materials. The simulation has proved a powerful tool for the validation 
of simple prediction models. 
  
It is possible to conduct easy calculation of cooling times for foods in packaging materials in industrial 
applications, where the boundary conditions are unequal, and the package is asymmetrical, by utilising the 
simple model presented in eq. 7.  
 
The newly developed model has proven quite precise in equilibrium temperature prediction in the performed 
simulations based on a few industrial measurable variables (A/V ratio, thermo physical data and heat-flux). 
The temperature error was low (<0.5°C) in the final equilibrium temperature prediction. Due to the analytical 
form of the model it is implementable in excel spreadsheets and could serve as a powerful tool for fast and 
easy cooling time prediction in daily operations in the food industry.    
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Abstract 

This paper presents and demonstrates a novel idea of using spherical potatoes as a dispensable, 

cheap device for studying fluid-to-particle heat transfer in vessel cooking processes. The 

transmission of heat through the potato can be traced by measuring the distance from the surface to 

the gelatinization front, which is easy to identify visually. Knowing this distance, the gelatinization 

temperature, the period of immersion, and the average radius of the potato allow for the assessment 

of the heat transfer coefficient by fitting a simple numerical model (FEM) of non-stationary heat 

transfer into a sphere with the thermo-physical properties of potatoes. Alternatively, an analytical 

one-term solution of the Fourier equation can be applied. The gelatinization temperature of the 

potatoes used was assessed to be 67
o
C by a direct temperature measurement while visually 

following the progression of the gelatinization front in a half potato attached to a window in the 

cooking vessel. 

Keywords: 

Heat transfer coefficient – potato – fluid-to-particle heat transfer – gelatinization – FEM 

Highlights: 

 Determination of fluid-to-particle heat transfer coefficient for food particles in vessel cooking 

processes by using spherical potatoes as model particles. 

 The progression of the gelatinization front during heating is easy to identify visually and gives 

the moving position of the 67
o
C isotherm. 
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 Solving the Fourier equation numerically or analytically gives a model which can predict the 

relation between the heat transfer coefficient and the position of the 67
o
C isotherm with time.  

 

1. Introduction 

Heating of suspended particles in a liquid is a very common operation in the food industry, for 

example in many canning processes (Meng & Ramaswamy 2005), in continuous aseptic processing 

(Ramaswamy et al. 1997), or in vessel cooking of soups and sauces with suspended pieces of meat 

and/or vegetables (Bouvier et al. 2011). It is the vessel cooking process that is the focus of this 

paper. The common practice in industry is first to make the base soup or sauce and then add the 

solid food pieces at prescribed intervals. At the time of addition, the solid food pieces are colder 

than the fluid, or even frozen; this can cause a significant drop in the temperature of the fluid. After 

processing the product needs to be cooled, and this also induces considerable temperature gradients 

between the fluid and the particles.  

To evaluate if the suspended food particles have received an adequate heat treatment in the course 

of the process it is necessary to know the geometry and thermo-physical properties of the food 

particles and also to have a rough assessment of the fluid-to-particle heat transfer (hfp) under the 

prevailing process conditions. Determination of the thermo-physical properties from knowledge of 

the composition of the food can be done with reasonable accuracy (Nesvadba 2014; Singh and 

Heldman 2014: 275-282), while determination of the fluid-to-particle heat transfer is not a trivial 

task. 

In the literature several different techniques have been reported for estimating fluid-to-particle heat 

transfer coefficients in food processes, primarily in continuous heat treatment processes or in 

canned foods processed in rotating autoclaves. A complete listing of references is out of scope here, 

as the literature (the majority of references are from the 1980s and 1990s) is well covered by three 

extensive reviews (Maesmans et al. 1992; Ramaswamy et al. 1997; Barigou et al. 1998). The most 

common approach is to measure the temperature-time profile inside a real food particle or replicas 

of either materials having thermal properties close to food products or of a highly conductive 

material, usually aluminium. By fitting the temperature-time curve to a mathematical solution of the 

Fourier equation for non-stationary convective heat transfer into a body of the relevant geometry, 
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usually a sphere, it is possible to estimate the particle-to-fluid heat transfer coefficient (Maesmans 

et al 1992; Barigou et al. 1998). Three examples of studies using this approach are: one represents 

particles in tube flow (Ramaswamy & Zareifard 2000, another is dealing with the determination of 

hfp for surface pasteurisation of eggs (Denys et al. 2003), the third is a study of the autoclaving of a 

canned, viscous model food with particles (Meng & Ramaswamy 2005).  

The advantage of using particle replicas of metal, for which the Biot number is very low (Bi < 0.1), 

is that the solution to the heat transfer equation is simple and allows a high precision in the 

determination of hfp (Barigou et al. 1998), and that the position of the temperature sensor inside the 

body is not critical (Ramaswamy et al. 1997). The use of particles with food-like thermo-physical 

properties (Bi > 0.1) generally results in a less precise determination of hfp, and the heat transfer 

equation must be solved by a more complicated series expansion of the Fourier equation 

(Maesmans et al 1992; Barigou et al. 1998). However, an advantage of using model particles with 

food-like thermo-physical properties is that the heat transfer conditions are more realistic than for 

metal replicas ; this holds in particular for cases in which were natural convection is a significant 

(Åström & Bark 1994). The different solutions to the heat transfer equation at Bi>0.1 are presented 

in standard textbooks (Mills 1995: 167-176; Singh & Heldman 2014: 355-383), and need not be 

expounded here. 

The recording of the temperature inside the particle represents a major experimental obstacle in 

nearly all processes since the food pieces are normally free flowing in the liquid, and a connecting 

wire will restrict the particle flow. Alternative, wireless methods are therefore much sought for 

(Maesmans et al. 1992). Time-temperature-integrators based on the kinetics of microbial 

inactivation have been proposed and tested, but the method requires calibration and does not seem 

to be precise for determination of hfp (Maesmans et al. 1994). The method is, however, useful for 

studying the temperature distribution in agitated vessels (Mehauden 2008). Particles with embedded 

liquid crystals, which are heat sensitive and change colour with temperature have been tested 

(Balasubarminan & Sastry 1994). Calibration is difficult and the use of the technique is restricted to 

transparent liquids in transparent equipment (Ramaswamy et al. 1997; Barigou et al. 1998). A 

promising technique is magnetic resonance imaging (MRI) which has been tested in continuous 

aseptic processing of potato cubes (Kantt et al. 1998). The method relies on the temperature 

dependence of the proton resonance frequency, and it does seem to produce a reliable image of the 
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temperature distribution inside the potato cubes, from which hfp may be calculated by numerical 

modelling and fitting. The method requires a metal-free imaging region (Kantt et al. 1998) which 

may be difficult to achieve experimentally in vessel cooking. Tessneer and co-workers (2001) have 

demonstrated that the mechanism of ablation heat transfer could be used for determining hfp in tube 

flow. Spheres of ice were introduced into the tube flow and recovered after leaving the tube. From 

the weight difference an energy balance can be set up, allowing the calculation of hfp. The method 

could be applied in the fluid temperature range of 3
o
C to 10

o
C; this speaks against the feasibility of 

this method because the viscosity and hence hfp at those temperatures would be much different from 

the viscosity in vessel cooking in the typical temperature range of 75
o
C to 100

o
C.       

As appears from the above discussion of the literature, there are only few studies concerned directly 

with the study of fluid-to-particle heat transfer in vessel cooking. In this paper we propose to use 

spherical potatoes as a dispensable, cheap device for studying fluid-to-particle heat transfer in such 

processes. The idea is based on the fact that the gelatinization of potato starch occurs in a narrow 

temperature interval around 67.5
o
C (Pravisani et al. 1985; Verlinden et al. 1995). Above this 

temperature, the activation energy for the gelatinization reaction is very high, meaning that reaction 

will be completed rapidly, while it is rather slow at lower temperatures (Verlinden et al. 1995). This 

explains why the gelatinization front is easily identified visually and is rather sharp (Derbyshire & 

Owen 1988; Lamberg & Olsson 1989).  

Assuming that  mass transfer during the initial cooking period is negligible, Derbyshire and Owen 

(1988) found in a small experiment that the center temperature of a potato plunged into boiling 

water can be described by the standard Fourier equation for non-stationary conductive heat transfer 

into a sphere. In their modelling they assumed that the resistance to convective heat transfer was 

negligible, which is sensible because the heat transfer coefficient is high in boiling water due to the 

rapid movement and low viscosity of the fluid. 

However, the fluid-to-particle heat transfer coefficient in cooking processes is rarely as high as it is 

when using boiling water as the medium of heat transfer. In industrial recipes for soups and gravies 

containing pieces of vegetables, meat, or fish, vigorous boiling is avoided to reduce evaporation and 

minimize over-cooking of the particles. In addition, soups and gravies have higher viscosity than 

water, which also reduces the fluid-to-particle heat transfer coefficient. This means that the thermal 
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history of a food particle will be determined by non-stationary heat transfer into the particle at 

middle-range Biot numbers (typically Bi = 1 to 20). A theoretical calculation of hfp under these 

conditions is very difficult, if not close to the impossible, because of the complicated movement of 

the particles. In agitated vessels the mode of heat transfer cannot be expected to be fully forced 

convection, because suspended particles generally follow the movement of the liquid, the slip 

velocities are low, and natural convection must contribute to the heat transfer as well. Natural 

convection will evidently dominate if stirring is not applied or only used intermittingly to minimize 

mechanical damage (Bouvier et al. 2011). 

From these considerations we came across the idea of experimentally determine the progression of 

the gelatinization front during cooking of potatoes and use this information to obtain information 

about the fluid-to-particle heat transfer coefficient. The purpose of the present work is to investigate 

the feasibility of this idea.  

The first step in this work is to develop a simple procedure for determining the progression of the 

gelatinization front in potatoes immersed for a given time in a medium. The second step is to study 

more closely the progression of the gelatinization front and the temperature profile in real time. In 

this experiment we could validate the expected gelatinization temperature of about 67
o
C. The third 

step is to establish a Finite Element Model (FEM) of this experiment to validate that the 

temperature profile could be described by non-stationary conductive heat transfer and that the 

model correctly described the temperature profile using a realistic, average value of the fluid-to-

particle heat transfer coefficient. The fourth step is to establish a physical-mathematical model for 

predicting the progression of the gelatinization front and determining its sensitivity with respect to 

the heat transfer coefficient, the diameter of the potato and the gelatinization temperature. This 

predictive model can then be used to assess the fluid-to particle heat transfer coefficient by fitting 

the predicted and experimental distances of the gelatinization front. 

2. Materials and Methods 

Potatoes of the Danish varieties Marbelle and Folva were bought in a local supermarket, and the 

most spherical potatoes were selected for the experiments. The smaller Marbelle variety (diameter 

around 36-38 mm) was used in 2.1 (imaging of gelatinization front), and the larger Folva variety 

(diameter around 41- 49 mm) in 2.2 and 2.3 (the internal temperature measurements). 
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2.1 Interval heating of potatoes and identification of gelatinization front 

The potato samples (Marbelle) were heated in hot water at 90
o
C in a cooking vessel for 1 min, 2 

min, 3 min, 5 min and 6 min. At the indicated times a potato was taken out, cut in half and 

immediately cooled in ice water bath containing 4% citric acid. After cooling, the potato samples 

were dried for half an hour at room temperature. The two halves of each potato sample were sliced 

(in approximately 2 mm thickness) parallel to the cut surface. One of the slices was stained by 

placing it in Lugol’s iodine solution for one minute and then rinsed in distilled water for one 

minute. The composition of the Lugol’s iodine solution was 2 g KI in 50 ml distilled water and 

adding 0.2 ml iodine stock solution (Lamberg and Olsson 1989).  

All the samples, both the unstained and the stained samples, were photographed using a Canon 

500D camera with Macro lens EF-S 60 mm 1:2.8 USM. For all the samples, the distance from the 

surface to the gelatinization front (which was clearly visible, see Figure 4 later) was determined 

from the images using Adobe Photoshop CS4. The distance was measured at 30
o
 intervals around 

the periphery of the potato, and the distance was reported as the average of these 12 measurements.  

2.2 Real-time study of the gelatinization front  

A cast iron pot was cut in half along the vertical symmetry plane, and a glass plate was glued onto 

the open half with a temperature-tolerant adhesive. This formed a window that allowed visual 

inspection of the cooking processes. The idea is inspired by Myhrwold et al. (2011). The vessel was 

heated by placing it on a contact frying rig where the contact temperature can be controlled and the 

temperature of the fluid and evaporative mass loss can be measured continuously (Ashokkumar & 

Adler-Nissen, 2011). A spherical potato (Folva) was cut in half and attached to the window using a 

conventional laboratory clamp. In order to measure the actual gelatinization temperature, in one of 

the experiments a T-type thermocouple was placed between the glass wall and the potato surface 

about one-third of the distance from the periphery to the center of the potato (see Fig. 6 later). Hot 

water at 80
o
C was poured into the half vessel, and the water temperature was maintained at around 

77.5
o
C by manually adjusting the contact temperature of the frying rig to compensate for the heat 

loss from the vessel. The camera was mounted on a tripod and placed in horizontal alignment with 

the sample in the pot (Fig. 1). Ambient light illumination was used and the distance from the sample 
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was 0.3-0.4 m. The setup allowed continuous imaging by video of the submerged potato through 

the glass plate (Fig. 1). 

 

Figure 1   Experimental setup for video inspection of particle heating in a liquid media 

2.3 Measuring temperature profiles and the gelatinization front  

Similarly to the set-up in 2.2, three T-type thermocouples were attached and placed at different 

positions (A, B, and C, Fig. 2) between the half potato and the glass window of the half-vessel. This 

potato was particularly selected for its spherical shape; its diameter of 48.7mm was calculated as the 

average of the minimum (48.4 mm) and maximum (48.9) diameter of the potato. The exact 

positions of the data loggers were determined from the images that were taken from the video setup: 

the positions of the thermocouples were 0 mm, 9.8 mm and 20.5 mm from the center for the 

position A, B, and C, respectively. All the temperature sensors (T-type thermocouples) were 

connected to the computer with a data logger (Tc-08 Pico Technology, Cambridgeshire, UK) where 

the temperatures were recorded every second.  
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Figure 2: Temperature sensor position within half potato (A = center, B = 9.8 mm from the center,, C = 
20.5 mm from the center . D and E are temperature sensor position within the fluid in the top and 
bottom sides, respectively. Diameter of the potato is 48.7 mm. 

 

2.4 Modelling of heat transfer  

Model formulation: The governing heat transfer inside the model food (potato) and through the 

glass is described by Eq. (1) and Eq. (2), respectively (Bird et al., 2001).  

Heat transfer within the potato, (Fig. 2 domain 1):    

       (
  

  
)     

       (1) 

Heat transfer within glass (Pyrex glass) (Fig. 2 domain 2):  

        (
  

  
)     

  )     (2) 

where T is the temperature [K], t is time [s], kp  and  kg is the thermal conductivity of the product  

and the glass, respectively [W/(m
.
K)],  and cp,p and cp,g  is the specific heat capacity of the product  

and the glass, respectively [J/(kg
.
K)],  and  ρp and ρg  is the density of the product and the glass, 

respectively [kg/m
3
].  

Boundary conditions:  

The boundary of potato surfaces that is exposed to fluid (n is the normal vector):  

    sfluidfpp TThTkn 
    

 (3)   

Interior boundary, interface between the glass and the potato:  

D 

 E 

C 

B 

A 
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   TknTkn gp        (4) 

The glass-air interface (the boundary exposed surrounding air):  

   sairairg TThTkn       (5) 

The glass-fluid interface (the boundary of glass wall that exposed to fluid): 

   sfluidfgg TThTkn       (6) 

Where hfp is the heat transfer coefficient between the fluid (heating medium) and the particle (in the 

case potato), [W/(m
2.

K], hair is the heat transfer coefficient between the glass and the surrounding 

air, [W/(m
2.

K)], hfg is the heat transfer coefficient between the glass and fluid, [W/(m
2.
K)], Tair and 

Tfluid  are  the temperature of the surrounding air and the heating medium (fluid), respectively. The 

values of these input parameters are given in Table 1. 

  

Figure 3. The geometry: domain 1(product) and domain 2 (the glass) modeled in COMSOL 

 

Solution: The mathematical model (the partial differential equations, equation 1 and 2) that 

describes heat transfer together with boundary condition (Eq. 3-5) was solved using the Finite 

Element Method in COMSOL Multiphysics®3.5. The set up in COMSOL consists of two domains: 

the product (domain 1, in Fig. 3) and the glass (domain 2, in Fig. 3). The governing equations of 

heat transfer were set for each domain. The initial value was obtained from the measurements; the 

1 

2 
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values of the input parameters used in the model are given in the Table 1. The model prediction was 

compared with the obtained experimental temperature profile. The unknown parameter (heat 

transfer coefficient) in the model was estimated by manual tuning its value until it matched the 

measured temperature profile at the center of the product.  
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Table 1 Thermophyical properties of the potato and the glass and other input parameters     

Parameter  Value  Reference  parameter Value Reference 

kp 0.54  W/(m.K) estimated  kg 1.3  W/(m.K) Bejan (1993) 

Cp,p
 3671.6 J/(kg.K)  estimated  cp,g 750  J/(kg.K) Bejan (1993) 

ρp
 1076 kg/m3 estimated  ρg 2210 kg/m3 Bejan (1993) 

Tair 25 oC  measured Tfluid 77.5 oC measured  

To 20 0C measured hair 10 W/(m2.K) estimated 

 

2.5 Progression front and sensitivity analysis  

The progression of the gelatinization front was determined using a mathematical model of heat 

transfer solved in COMSOL, but in a simplified form: a whole spherical potato was immersed in the 

fluid instead of modelling a hemispherical potato attached to a glass wall (section 2.4). Using this 

model the moving isotherm at the gelatinization temperature of 67 
o
C was tracked, and the distance 

of the front from the surface (dfs) was predicted as function of time.  

The sensitivity of the position of the gelatinization front was investigated with respect : 1) the heat 

transfer coefficient – higher values (h = 240 W/m
2.

K, h = 300 W/m
2.

K and h = 360 W/m
2.
K) and 

lower values (h = 80 W/m
2.

K, h =100 W/m
2.
K and h = 120 W/m

2.
K);  2) the gelatinization 

temperature of potato starch – in this case gelatinization temperatures of 66.5 
o
C, 67 

o
C and 67.5 

o
C 

were considered; and 3) the size  of the potato – the diameter  of the potato were varied as follows: 

0.032 m, 0.036 m, 0.04 m, 0.044m, 0.048 m and 0.056 m. The two ranges of h were chosen as they 

represent typical upper and lower values  of experimentally determined fluid-to-particle heat 

transfer coefficients (hfp) reported for conditions prevailing in vessel cooking, namely natural 

convection and for viscous liquids also forced convection (Maesmans et al. 1992).    

3. Results and discussion 
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3.1. Validation of gelatinization front by imaging  

The first step (section 2.1) was to check if it is possible to observe the gelatinization front from the photos. 

Fig. 4 shows the images obtained: a) without iodine and b) with iodine. The front observed in the two 

images agrees well, which indicates that the moving front is due to the gelatinization, see Fig. 5. In the 

unstained samples the gelatinization front is visible as a sharp change in translucency – the inner, un-

gelatinized part of the potato being more opaque than the outer part of the potato. The iodine staining 

confirms that the outer part is gelatinized.   

 

a)        b) 

Figure 4 a) image of sliced sample without iodine treatment b) image of sliced sample stained with iodine 

(average diameter = 38 mm) 
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Figure 5 the position of front from surface vs the time: where the distance obtained 

from a) the image of sliced sample (black triangle) and b) image of the sample 

stained with iodine (red +) 

3.2 Validation of the gelatinization front using the measured temperature    

The next step was to validate the gelatinization temperature using the data from the real-time study 

(section 2.2) .Figure 6a, 6b and 6c show that the images of the potato at 300 s, 360 s and 420 s, 

respectively. The position of the thermocouple is shown by the red circle, and the images show that 

the moving front had passed this position at a time between 360 s and 420 s. The temperature 

measured at that position is shown in Fig. 7.   

The distance from the surface, dfs, was measured on the images as described in 2.1. At 360 s (Fig. 

6b), dfs = 6.40 mm and at 420 s (Fig 6c), dfs = 7.23 mm from the surface. The time at which the 
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moving front reached the position of the temperature sensor (6.68 mm from the surface) was 

determined by linear interpolation to be 380 s (6.3 min). This distance corresponds to a temperature 

of around 67
o
C, as shown in Figure 7. This is in agreement with what could be expected from the 

kinetic studies discussed in the introduction (Verlinden et al. 1995; Pravisani et al. 1985).    

    

a) 300 s      b) 360 s   c) 420 s 

Figure 6: images of the front and the measured temperature: a) image at 300 s (5min), b) image at 360 s 

(6 min), c) image at 420 s (7 min) and at the sensor position (red circle) for the temperature measurement   

 

Figure 7 the measured temperature at the position indicated with red circle in Fig. 6, the dashed line 

indicates the 67 oC (gelatinization temperature of the potato) at 380 s  

64

65

66

67

68

69

70

320 340 360 380 400 420 440 460 480

T
e

m
p

e
ra

tu
re

 [
 °

C
 ]

 

Time [s] 



Appendix 4 

 

16 

 

3.3. Comparison of simulated and measured temperature profile  

The simulation was performed in COMSOL-MATLAB
®

3.5 (as described in Section 2.4) and the 

obtained temperature profiles at position A, B and D (Fig. 2) are presented in Fig. 8 with blue, black 

and red lines, respectively. The simulated and the measured temperatures were compared, and the 

fluid-to-particle heat transfer coefficient was estimated (Fig. 8). The temperature profile was 

simulated at different values of the heat transfer coefficient (varied from 200 to 700 W/(m
2.

K), first 

in large steps and later steps with smaller and smaller steps. For each step the calculated 

temperature profiles were compared with the measured temperature profiles. The best fit was 

obtained with the heat transfer coefficient value (rounded) of 300 W/(m
2.

K) under the current 

experimental set up. 

 

Figure 8 comparison the measured temperature and the simulated temperature (o measured and the line 

is simulation, red is the close to surface (at the position C, Fig. 2), black is the middle (at the position B, 

Fig. 2) and blue is the center (at the position A), (hfp = 300 W/m2.K) and the diameter of potato is 48.7 

mm.  
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3.4. Effect of heat transfer coefficient, gelatinization temperature and the size of potato  

The distance of the front from the surface (dfs) was calculated as function of time at different values of the 

heat transfer coefficient as described in the section 2.5. Fig. 9 shows the effect of the heat transfer 

coefficient on the dfs profile for a sphere of the same size (diameter 48.7 mm) and thermo-physical 

properties as the potato in 3.3 and with the same fluid temperature (77.5oC. The obtained dfs profiles 

exhibit more sensitivity  – understood as how large the relative horizontal distance is between the curves 

for a variation in h of ±20% – at the lower heat transfer coefficient (h =100 W/m2.K) than at higher heat 

transfer coefficient (300W/m2.K). The calculated difference in sensitivity is in accordance with what could 

be expected from the calculated values of the Biot numbers of 4.5 and 13.5, respectively. The greater 

sensitivity at h =100 W/m2.K is promising with regard to the practical use of the suggested method for 

measuring fluid-to-particle heat transfer coefficients in soups and sauces, since values of hfp of this 

magnitude or lower are frequently reported for viscous fluids (Chandarana & Gavin 1990; Awuah et al. 

1992; Maesmans et al. 1992). Fig. 10 shows the effect of the gelatinization temperature of (66.5 oC, 67 oC 

and 67.5 oC) on the dfs profiles. The curves lie close to each other, showing that the exact determination of 

the gelatinization temperature is not critical. This issue will be briefly discussed in section 4. 
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Figure 9 Effect of heat transfer coefficient (100±20 W/m2.K and 300 ±60 W/m2.K).  The diameter is 48.7 mm. 

 

 

 

 

 
 

          

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            Figure 10  Effect of gelatinization temperature (67 ±0.5 oC): T_gel=66.5 oC (dashed line), T_gel=67 oC (dotted line) 
and T_gel = 67.5 oC (solid line).  h=100 W/(m2.K)  and h =300 W/(m2.K) and diameter is 48.7 m.  
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Figure 11 Effect of the size of the potato (diameter = 0.032, 0.036, 0.04, 0.044, 0.048 and 0.056 m).  h=300 
W/m2.K) 

 

Fig 11 shows the effect of different sizes of potato on dfs as a function of time. The sensitivity with respect 

to size is large; however, this is hardly problematic since the average diameter of an approximately 

spherical potato can be measured with high precision using a Vernier caliper.  

3.5. General discussion – application of the method and its limition   

From the experimental results reported in section 3.1 and 3.2, it can be concluded that the gelatinisation 

front is easily observed, also without the use of iodine staining, and that its distance from the surface (dfs) 

can be measured with high precision from photos of the potato cut in half, as described. The gelatinization 

temperature can be determined experimentally using the set-up with the half-vessel. Since the modelling in 

section 3.3 shows that the exact gelatinization temperature is not very critical, it is reasonably safe to use 

either the measured temperature of 67oC or the value of 67.5oC reported in the literature. It would 
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however, be advantageous to develop a more simple method for measuring the gelatinization temperature 

on the same batch of potatoes as is used for experimentally determining fluid-to-particle heat transfer 

coefficients. This is addressed in the conclusion in section 4. 

As described, the postion of the gelatinization front as a function of time can be calculated using the 

developed model (FEM). When the model is first established, it is easy to vary the radius of the potato or 

the heat transfer coefficient in the model. It is also possible to rely on classical analytical procedures for 

modelling the progression of the gelatinization front by solving the Fourier equation using the series 

expansion. From the data in Fig. 9 we calculated the Fourier number (Fo) at the time, when dfs was half the 

radius of the potato and found that Fo increased from Fo = 0.23 at h =360 W/m2.K to Fo = 0.34 at h =80 

W/m2.K. It was also interesting to note that a similar calculation using the data in Fig. 11 showed that Fo 

only varied slightly with the diameter of the potato, from Fo = 0.23 at D = 0.056 m to 0.27 at D = 0.032 m. 

Since Fo>0.2 in all cases this means that a rather precise analytical solution can be obtained using only the 

first term of the series expansion of the Fourier equation (Mills 1995, 167-176). Calculations also show that 

if the fluid temperature is higher, Fo will be lower when dfs reaches half the radius of the potato, and for 

potatoes in boiling water Fo will be around 0.12. One of us (Christensen 2014) has, however, shown that 

the expansion series solution to the Fourier equation converges particularly rapidly for the sphere at 

positions about half-way between center and surface, and Christensen’s study indicates that the one-term 

solution is applicable down to Fo around 0.12. Taken together, these calculations demonstrate that a 

simple analytical one-term solution can be applied for a relevant range of fluid-to-particle heat transfer 

coefficients as well as particle sizes.  

In general, we found that a value of dfs > about 0.6×radius is less applicable because the gelatinisation front 

tends to become blurred when the temperature gradient becomes less steep later in the cooking process. 

Measurements of the fluid-to-particle heat transfer coefficients in different set-ups is carried out by 

plunging a potato in the liquid for a given time and removing it, cutting it in half and measure the dfs of the 

gelatinization front, as described in 2.1. From the image, the average radius of the potato can also be 

measured with high precision. These two measured distances plus the time are input to the model, be it 

numerical or analytical, and h is then varied until the predicted dfs fits with the measured value.   

4. Conclusion and perspective   

In the present paper we have demonstrated the feasibility of using spherical potatoes as a 

dispensable, cheap device for studying fluid-to-particle heat transfer in vessel cooking processes. 

The method is based on the observation that the transmission of heat through the potato can be 

traced by measuring the distance from the surface to the gelatinization front. Knowing this distance, 

the period of immersion and the average radius of the potato allows for the assessment of the heat 

transfer coefficient by fitting a simple numerical model (FEM) of a sphere with the thermo-physical 
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properties of potatoes. Alternatively, an analytical one-term solution of the Fourier equation can be 

applied. 

The gelatinization temperature of the potatoes used was assessed to be 67
o
C by a direct temperature 

measurement while visually following the progression of the gelatinization front in the vessel-with-

window setup. This setup also allows for studying other physical phenomena such as uneven 

transfer of heat under natural convection and for visualising particle and liquid movements. 

As an alternative way to measure gelatinization temperature of a particular batch of potatoes we 

suggest to immerse some of the potatoes in vigorously boiling water. This ensures that the Biot 

number is so high that the progression of the gelatinization front will be independent of the actual 

value of the fluid-to-particle heat transfer coefficient. As before, dfs is measured after a given time. 

The only unknown variable in the model is now the temperature of the gelatinization isotherm.  

Future studies of the proposed method should concentrate on further validation and of adapting the 

method to industrial practice.  
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Appendix 5A Center temperature 
Table A1 Regression line coefficients and intercepts for the tested Biot numbers for infinite plates. The lag-factors ac,1 and the 
eigenvalues (λ1) are extracted from Mills [5] 

Bi ac,1 λ1 intercept ln 
(ac,1-1) 

Coefficient (α) Bi ac,1 λ1 Intercept 
ln (ac,1-1) 

Coefficient 
(α) 

0.1 1.016 0.133 -4.135 -8.813 6 1.248 1.349 -1.394 -14.305 
0.2 1.031 0.433 -3.474 -8.920 8 1.257 1.398 -1.359 -15.133 
0.4 1.058 0.593 -2.847 -9.201 10 1.262 1.429 -1.339 -15.714 
0.6 1.081 0.705 -2.513 -9.594 20 1.270 1.496 -1.309 -17.158 
0.8 1.102 0.791 -2.283 -9.712 30 1.272 1.520 -1.302 -17.678 
1 1.119 0.860 -2.129 -10.107 40 1.272 1.533 

* 
-1.302 -18.179 

2 1.180 1.077 -1.715 -11.119 50 1.273 1.539 -1.298 -18.174 
4 1.229 1.265 -1.474 -13.101 100 1.273 1.555 -1.298 -18.712 

*Corrected value due to typing error in Mills 1995 

Table A2 Regression line coefficients and intercepts for the tested Biot numbers for infinite cylinders. The lag-factors ac,1 and the 
eigenvalues (λ1) are extracted from Mills [5] 

Bi ac,1 λ1 intercept ln 
(ac,1-1) 

Coefficient 
(α) 

Bi ac,1 λ1 Intercept ln 
(ac,1-1) 

Coefficient 
(α) 

0.1 1.025 0.442 -3.689 -12.09 6 1.526 2.049 -0.642 -19.63 
0.2 1.049 0.617 -3.016 -12.36 8 1.553 2.128 -0.592 -20.78 
0.4 1.094 0.869 -2.364 -12.91 10 1.568 2.179 -0.566 -21.62 
0.6 1.135 1.018 -2.002 -13.47 20 1.593 2.288 -0.523 -23.49 
0.8 1.173 1.149 -1.754 -13.82 30 1.598 2.326 -0.514 -24.38 
1 1.208 1.256 -1.570 -14.11 40 1.600 2.345 -0.511 -24.81 
2 1.338 1.599 -1.085 -15.86 50 1.601 2.357 -0.509 -25.06 
4 1.470 1.908 -0.755 -18.10 100 1.602 2.381 -0.507 -25.69 

 

Table A3 Regression line coefficients and intercepts for the tested Biot numbers for spheres. The lag-factors ac,1 and the 
eigenvalues (λ1) are extracted from Mills [5] 

Bi ac,1 λ1 intercept ln 
(ac,1-1) 

Coefficient 
(α) 

Bi ac,1 λ1 Intercept ln 
(ac,1-1) 

Coefficient 
(α) 

0.1 1.030 0.542 -3.507 -16.79 6 1.834 2.654 -0.182 -25.64 
0.2 1.059 0.759 -2.830 -17.89 8 1.892 2.765 -0.114 -27.16 
0.4 1.116 1.052 -2.154 -18.31 10 1.925 2.836 -0.078 -28.21 
0.6 1.171 1.264 -1.766 -18.52 20 1.978 2.986 -0.022 -31.01 
0.8 1.224 1.432 -1.496 -18.58 30 1.990 3.037 -0.010 -32.03 
1 1.273 1.570 -1.298 -19.19 40 1.994 3.063 -0.006 -32.71 
2 1.479 2.029 -0.736 -20.89 50 1.996 3.079 -0.004 -33.10 
4 1.720 2.456 -0.329 -23.67 100 1.999 3.110 -0.001 -33.78 
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Appendix 5B Volume average temperature 
Table B1 Regression line coefficients and intercepts for the tested Biot numbers for infinite plates. The lag-factors am,1 and the 
eigenvalues (λ1) are extracted from Mills [5] 

Bi am,1 λ1 intercept 
ln (1-am,1) 

Coefficient 
(α) 

Bi am,1 λ1 Intercept 
ln (1-am,1) 

Coefficient 
(α) 

1 0.986 0.860 -4.265 -13.3 20 0.846 1.496 -1.874 -29 
2 0.965 1.077 -3.346 -16.5 30 0.836 1.520 -1.806 -30 
4 0.927 1.265 -2.613 -20 40 0.829 1.523 -1.769 -31 
6 0.902 1.349 -2.325 -22 50 0.826 1.540 -1.750 -32 
8 0.886 1.398 -2.170 -24 100 0.818 1.555 -1.706 -30 
10 0.874 1.429 -2.074 -25      

 

Table B2 Regression line coefficients and intercepts for the tested Biot numbers for infinite cylinders. The lag-factors am,1 and the 
eigenvalues (λ1) are extracted from Mills [5] 

Bi am,1 λ1 intercept ln 
(1-am,1) 

Coefficient 
(α) 

Bi am,1 λ1 Intercept ln 
(1-am,1) 

Coefficient 
(α) 

1 0.983 1.256 -4.099 -17.6 20 0.754 2.288 -1.402 -37.3 
2 0.954 1.599 -3.070 -20.5 30 0.735 2.326 -1.329 -38.8 
4 0.895 1.908 -2.252 -25.2 40 0.724 2.345 -1.287 -40.3 
6 0.852 2.049 -1.914 -28 50 0.718 2.357 -1.265 -41.7 
8 0.824 2.129 -1.736 -30 100 0.705 2.381 -1.220 -42.4 
10 0.803 2.179 -1.627 -32.5      
 

Table B3 Regression line coefficients and intercepts for the tested Biot numbers for spheres. The lag-factors am,1 and the 
eigenvalues (λ1) are extracted from Mills [5] 

Bi am,1 λ1 intercept ln 
(1-am,1) 

Coefficient 
(α) 

Bi am,1 λ1 Intercept ln 
(1-am,1) 

Coefficient 
(α) 

1 0.985 1.570 -4.220 -21.3 20 0.692 2.986 -1.179 -46 
2 0.953 2.029 -3.062 -27 30 0.666 3.037 -1.096 -49 
4 0.883 2.456 -2.145 -33 40 0.652 3.063 -1.055 -50 
6 0.828 2.654 -1.760 -35 50 0.643 3.079 -1.031 -53 
8 0.789 2.765 -1.556 -38 100 0.626 3.110 -0.983 -54 
10 0.761 2.836 -1.430 -40      
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Appendix 6 The convergence between the series expansion and the 

lumped capacitance model. 
6A, For infinite slabs: 

From the definition of the Fourier exponents: 

     
  

With the root function 

                  [A1] 

Which is an iterative root function to be solved, an explicit form of the equation [A1] can be obtained by 

expanding the tangent: 

         
  
 

 
 
   
 

  
   

For small values of λ1: 

               [A2] 

Thus for small values of λ1 inserting A2 into A1: 

     
    

6B, For infinite cylinders: 

From the definition of the Fourier exponents: 

     
  

With the root function 
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        [B1] 

Where J1 and J0 is Bessel functions of the First kind with 1st and 0th order. The Besselfunctions can be 

expanded following for small values of λ1 and Bi: 
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      [B3] 

For very small values of λ1 only the first terms in equation [B2] and [B3] becomes determining. Inserted into 

[B1] 
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6C, for spheres: 

From the definition of the Fourier exponents: 

     
  

With the root function 

                    [C1] 

Expanding Cotangent yields: 

      
 

  
 
  
 
 
  
 

  
   

For very small values of λ1: 

      
 

  
 
  
 

 

 

Inserting into [C1] 
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heatman is a library for R, that implements solutions for transient heat con-
duction problems.

Geometries

The four simple shapes, infinite plate, infinite cylinder, sphere, and halfspace
are implemented aswell as combinations totalling thirteen different geometries.

Compound geometry Elements
plate plate
cylinder cylinder
sphere sphere
halfspace halfspace
prism plate and plate
box plate and plate and plate
platecorner plate and halfspace and halfspace
finite cylinder cylinder and plate
plate edge plate and halfspace
prismend plate and plate and halfspace
cylinderend cylinder and halfspace
edge halfspace and halfspace
corner halfspace and halfspace and halfspace

Boundary Conditions

heatman solves for three boundary conditions. Type 1, or Dirichlet states that
the surface has a fixed temperature, type 2, or von Neumann states that there
is a fixed heatflux at the surface, and type 3, or Robin states that there is
convection at the surface.
Functions starting with “conv” solves for a Robin boundary condition, or a
Dirichlet if the Biot number is very high. Functions starting with “q” solves for
a von Neuman boundary condition.
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Sequences

The simple solutions to instationary heat conduction problems will only solve
for one step change in temperature or flux. However using Duhamel integration
it is possible to calculate more complicated problems involving several steps.
All functions ending in seq will solve for a sequence of changing temperatures,
where the parameter T0 is the starting temperature and the parameter seq is
a vector with alternating times in seconds and temperatures (or fluxes). E.g.
c(0,100,2000,20), will give a step from T0 to 100 oC at the time 0, and a step
from 100 oC to 20 oC at the time 2000 seconds.

Arguments and Results

Arguments

n number of terms in solution
T temperature [oC]
Bi Biot number hL

k
time time [s]
alpha thermal diffusivity k

ρcp

L half thickness of plate [m]
R radius of cylinder og sphere [m]
root roots as calculated by convplateroot(), convcylroot(), or convsphereroot()
x dimensionless position
y dimensionless position
z dimensionless position
r dimensionless position
h heat transfer coefficient [ W

m2K ]
k thermal conductivity [ WmK ]
X position [m]
Y position [m]
Z position [m]
T0 initial temperature [oC]
seq sequence temperatures
w angular velocity [rad/s]
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Results

n number of terms in solution
cp labeled table of heat capacities
k labeled table of thermal conductivities [ WmK ]
rho labeled table of densities
alpha labeled table of thermal diffusivities k

ρcp

root vector of roots
t dimensionless temperature t = T∞−T

T∞−T0

T temperature [oC]
X position [m]
time time [s]
a dimensionless temperature amplitude a = T∞−T

T∞−T0

Time and position arguments can be scalars or vectors. Vector arguments will
result in a vector or at most a two dimensional table. If more than two arguments
are vectors, only the first element will be used from the time, and maybe the z
dimension.

t res
t[ ] res[t]
t,x res
t,x[ ] res[x]
t[ ],x res[t]
t[ ],x[ ] res[t,x]
t,x,y res
t,x,y[ ] res[y]
t,x[ ],y res[x]
t[ ],x,y res[t]
t,x[ ],y[ ] res[x,y]
t[ ],x,y[ ] res[t,y]
t[ ],x[ ],y res[t,x]
t[ ],x[ ],y[ ] res[x,y] only calculated for t[1]
t,x,y,z res
t,x,y,z[ ] res[z]
t,x,y[ ],z res[y]
t,x[ ],y,z res[x]
t[ ],x,y,z res[t]
t,x,y[ ],z[ ] res[y,z]
t,x[ ],y,z[ ] res[x,z]
t,x[ ],y[ ],z res[x,y]
t[ ],x,y,z[ ] res[t,z]
t[ ],x,y[ ],z res[t,y]
t[ ],x[ ],y,z res[t,x]
t,x[ ],y[ ],z[ ] res[x,y] only calculated for z[1]
t[ ],x[ ],y[ ],z res[x,y] only calculated for t[1]
t[ ],x[ ],y,z[ ] res[x,z] only calculated for t[1]
t[ ],x,y[ ],z[ ] res[y,z] only calculated for t[1]
t[ ],x[ ],y[ ],z[ ] res[x,y] only calculated for t[1] and z[1]
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Functions

n<-heatinit(n)

Sets the number of terms to use in the solution, and calculates some roots. The
function is called when the library is loaded, and is only needed if more or fewer
than the standard number of 100 are needed.
Example:
> heatinit(100)
[1] 100

cp<-foodspecheat(T)

Calculates the heat capacity for food constituents.
Example:
> foodspecheat(25)

protein fat carbo fibre ash water ice
2037.602 2018.032 1594.150 1888.758 1137.539 4177.349 2214.223

k<-foodconduct(T)

Calculates the heat conductivity for food constituents.
Example:
> foodconduct(25)

protein fat carbo fibre ash water ice
0.2070064 0.1115891 0.2333880 0.2125723 0.3628307 0.6109627 2.1268400

rho<-fooddensity(T)

Calculates the density of food constituents.
Example:
> fooddensity(25)

protein fat carbo fibre ash water ice
1316.9400 915.1508 1591.3385 1302.3528 2416.7843 994.9102 913.6223

alpha<-fooddiffusivity(T)

Calculates the thermal diffusivity of food constituents.
Example:
> fooddiffusivity(25)

protein fat carbo fibre ash
7.969313e-08 9.561082e-08 9.265388e-08 8.556387e-08 2.102600e-08

water ice
1.457979e-07 1.082916e-06
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root<-convplateroot(Bi)

Calculates roots for use by convplate functions.
Example:
> convplateroot(5)

[1] 1.313838 4.033568 6.909596 9.892753 12.935221 16.010659
[7] 19.105520 22.212556 25.327648 28.448314 31.572985 34.700624
[13] 37.830519 40.962167 44.095206 47.229363 50.364435 53.500262
[19] 56.636721 59.773715 62.911164 66.049003 69.187181 72.325653
[25] 75.464383 78.603341 81.742501 84.881839 88.021338 91.160980

root<-convcylroot(Bi)

Calculates roots for use by convcyl functions.
Example:
> convcylroot(5)

[1] 1.989815 4.713142 7.617708 10.622300 13.678558 16.762984
[7] 19.863966 22.975361 26.093678 29.216811 32.343419 35.472615
[13] 38.603785 41.736495 44.870430 48.005354 51.141087 54.277491
[19] 57.414458 60.551901 63.689750 66.827948 69.966450 73.105215
[25] 76.244213 79.383414 82.522797 85.662342 88.802031 91.941849

root<-convsphereroot(Bi)

Calculates roots for use by convsphere functions.
Example:
> convsphereroot(5)

[1] 2.570432 5.354032 8.302929 11.334826 14.407971 17.503428
[7] 20.612031 23.728945 26.851418 29.977779 33.106961 36.238251
[13] 39.371158 42.505330 45.640512 48.776510 51.913179 55.050405
[19] 58.188099 61.326189 64.464619 67.603342 70.742318 73.881515
[25] 77.020907 80.160471 83.300188 86.440040 89.580014 92.720097

t<-convplate(time,alpha,L,root,x)

Infinite plate.
Example:
> r<-convplateroot(4)
> convplate(10000,1.5e-7,0.04,r,0)
[1] 0.2743694

t<-convplatemean(time,alpha,L,root)

Calculates mean dimensionless temperature of an infinite plate.
Example:
> r<-convplateroot(4)
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> convplatemean(10000,1.5e-7,0.04,r)
[1] 0.2068708

T<-convplateseq(time,alpha,L,root,T0,seq,x)

Example:
> r<-convplateroot(4)
> convplateseq(1:10*1000,1.5e-7,0.04,r,10,c(0,100,2000,20),0.2)
[1] 12.58958 21.75389 29.67680 30.80363 29.88442 28.64529
[7] 27.47372 26.44070 25.54574 24.77403

t<-convcyl(time,alpha,R,root,r)

Infinite cylinder.
Example:
> r<-convcylroot(4)
> convcyl(10000,1.5e-7,0.04,r,0)
[1] 0.04840784

T<-convcylseq(time,alpha,R,root,T0,seq,r)

Example:
> r<-convcylroot(4)
> convcylseq(1:10*1000,1.5e-7,0.04,r,10,c(0,100,2000,20),0.2)
[1] 16.45635 36.50776 48.59939 43.85653 37.45027 32.47183
[7] 28.87465 26.30964 24.48526 23.18828

t<-convcylmean(time,alpha,R,root)

Calculates mean dimensionless temperature for an infinite cylinder.
Example:
> r<-convcylroot(4)
> convcylmean(10000,1.5e-7,0.04,r)
[1] 0.0294773

t<-convsphere(time,alpha,R,root,r)

Sphere.
Example:
> r<-convsphereroot(4)
> convsphere(10000,1.5e-7,0.04,r,0)
[1] 0.0060308
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T<-convsphereseq(time,alpha,R,root,T0,seq,r)

Example:
> r<-convsphereroot(4)
> convsphereseq(1:10*1000,1.5e-7,0.04,r,10,c(0,100,2000,20),0.2)
[1] 22.44514 52.54141 61.71087 46.69276 35.39916 28.76728
[7] 24.98270 22.83114 21.60858 20.91395

t<-convspheremean(time,alpha,R,root)

Calculates mean dimensionless temperature for a sphere.
Example:
> r<-convsphereroot(4)
> convspheremean(10000,1.5e-7,0.04,r)
[1] 0.003095588

t<-convhalfspace(time,alpha,h,k,X)

Halfspace. X is from the surface in.
Example:
> convhalfspace(10000,1.5e-7,100,1,0.05)
[1] 0.7191208

T<-convhalfspaceseq(time,alpha,h,k,T0,seq,X)

X is from the surface in.
Example:
> convhalfspaceseq(1:10*1000,1.5e-7,100,1,20,c(0,100,1000,20),0.05)
[1] 20.10602 21.49944 22.76919 23.11955 23.05246 22.84367
[7] 22.60162 22.36645 22.15165 21.96029

time<-convhalfspacetcrit(alpha,h,k,L)

Calculates the critical time when a finite body with characteristic length L, is
no longer considered a halfspace.
Example:
> convhalfspacetcrit(1.5e-7,100,1,0.04)
[1] 53.22256

X<-convhalfspacedepth(time,alpha)

Calculates the position where the change is 1% of the change at the surface.
This function requires a Dirichlet type boundary.
Example:
> convhalfspacedepth(3600,1.5e-7)
[1] 0.08458596
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t<-convhalfspacecycl(time,alpha,w,X)

Calculates the dimensionless temperature for a periodic changing surface tem-
perature. This function requires a Dirichlet type boundary.
Example:
> convhalfspacecycl(1:10*1000,1.5e-7,0.1,0.01)
[1] 0.0031081451 0.0026467118 0.0014564740 -0.0001348218 -0.0016889927
[6] -0.0027780788 -0.0031021868 -0.0025720697 -0.0013337017 0.0002719175

a<-convhalfspacecyclamp(alpha,w,X)

Calculates the dimensionless amplitude at depth X for a periodic changing sur-
face temperature. This function requires a Dirichlet type boundary.
Example:
> convhalfspacecyclamp(1.5e-7,0.1,0.01)
[1] 0.003108849

X<-convhalfspacecycldepth(alpha,w)

Calculates the position where the amplitude is 1% of the amplitude at the
surface. This function requires a Dirichlet type boundary.
Example:
> convhalfspacecycldepth(1.5e-7,0.1)
[1] 0.007976094

T<-convedge(time,alpha,h,k,X,Y)

Edge made by combining two halfspaced in a quaterspace.
Example:
> 100-90*convedge(1000,1.5e-7,100,1,0:4*0.01,0:4*0.001)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 87.46730 86.22918 85.02327 83.85213 82.71808 81.62316
[2,] 76.78711 74.49389 72.26032 70.09114 67.99067 65.96268
[3,] 70.42228 67.50027 64.65426 61.89032 59.21390 56.62985
[4,] 67.60319 64.40268 61.28543 58.25804 55.32653 52.49619
[5,] 66.68123 63.38964 60.18367 57.07013 54.05519 51.14431

T<-convedgeseq(time,alpha,h,k,T0,seq,X,Y)

Example:
> convedgeseq(1:10*1000,1.5e-7,100,1,20,c(0,100,2000,20),0.01,0.001)
[1] 77.32790 86.10485 32.60156 25.98499 23.55295 22.36627
[7] 21.69332 21.27339 20.99320 20.79669
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T<-convplateedge(time,alpha,h,k,L,rootp,X,y)

The edge of a plate made by combining a plate and a halfspace. X is from the
edge in, y is perpendicular to the plate.
Example:
> r<-convplateroot(4)
> convplateedge(2000,1.5e-7,100,1,0.04,r,0:4*0.01,0:5/5)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.2565338 0.2496956 0.2288429 0.1934302 0.1438284 0.0824123
[2,] 0.4909100 0.4778241 0.4379199 0.3701531 0.2752340 0.1577064
[3,] 0.6675154 0.6497219 0.5954622 0.5033162 0.3742497 0.2144415
[4,] 0.7816971 0.7608599 0.6973188 0.5894108 0.4382669 0.2511227
[5,] 0.8449244 0.8224018 0.7537212 0.6370851 0.4737160 0.2714347

T<-convplateedgeseq(time,alpha,h,k,L,rootp,T0,seq,X,y)

Example:
> r<-convplateroot(4)
> convplateedgeseq(1:5*1000,1.5e-7,100,1,0.04,r,20,c(0,100,2000,20),0.01,0)
[1] 45.58249 60.69006 45.03981 36.69718 31.68164

T<-convprism(time,alpha,Lx,Ly,rootx,rooty,x,y)

Infinite prism made by combining two plates.
Example:
> rx<-convplateroot(4)
> ry<-convplateroot(8)
> convprism(2000,1.5e-7,0.04,0.08,rx,ry,0:4/4,0:5/5)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.8920063 0.8892088 0.8707244 0.7978764 0.6045528 0.2565338
[2,] 0.8547572 0.8520766 0.8343641 0.7645581 0.5793075 0.2458213
[3,] 0.7405276 0.7382052 0.7228598 0.6623826 0.5018889 0.2129698
[4,] 0.5475475 0.5458303 0.5344839 0.4897670 0.3710976 0.1574702
[5,] 0.2865599 0.2856612 0.2797230 0.2563203 0.1942145 0.0824123

T<-convprismseq(time,alpha,Lx,Ly,rootx,rooty,T0,seq,x,y)

Example:
> convprismseq(1:5*1000,1.5e-7,0.04,0.08,rx,ry,20,c(0,100,2000,20),0,0)
[1] 21.26784 28.52842 36.83955 38.72358 37.63141

T<-convfincyl(time,alpha,L,R,rootp,rootc,x,r)

Finite cylinder made by combining a cylinder and a plate.
Example:
> rp=convplateroot(4)
> rc=convplateroot(4)
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> convfincyl(1000,1.5e-7,0.04,0.04,rp,rc,0,0)
[1] 0.9929876

T<-confincylseq(time,alpha,L,R,rootp,rootc,T0,seq,x,r)

Example:
> convfincylseq(1:5*2000,1.5e-7,0.04,0.04,rp,rc,20,c(0,100,2000,20),0,0)
[1] 45.00618 47.75520 36.09905 28.87323 24.87264

T<-convcylend(time,alpha,h,k,R,rootc,X,r)

Cylinder end made by combining a cylinder and a halfspace. X is from the end
in.
Example:
> convcylend(3600,1.5e-7,100,1,0.04,rc,0.04,0)
[1] 0.6040951

T<-convcylendseq(time,alpha,h,k,R,rootc,T0,seq,X,r)

Example:
> convcylroot(4)
> convcylendseq(1:5*2000,1.5e-7,100,1,0.04,r,20,c(0,100,2000,20),0.04,0)
[1] 41.23253 42.89996 34.93199 29.58732 26.28932

T<-convbox(time,alpha,Lx,Ly,Lz,rootx,rooty,rootz,x,y,z)

Box made from three plates.
Example:
> rx=convplateroot(4)
> ry=convplateroot(8)
> rz=convplateroot(12)
> convbox(2000,1.5e-7,0.04,0.08,0.12,rx,ry,rz,0:4/4,0:5/5,0)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.8920057 0.8892083 0.8707239 0.7978759 0.6045525 0.25653365
[2,] 0.8547567 0.8520760 0.8343636 0.7645576 0.5793071 0.24582113
[3,] 0.7405271 0.7382047 0.7228593 0.6623822 0.5018886 0.21296962
[4,] 0.5475472 0.5458300 0.5344836 0.4897667 0.3710974 0.15747015
[5,] 0.2865597 0.2856610 0.2797228 0.2563202 0.1942144 0.08241225

T<-convboxseq(time,alpha,Lx,Ly,Lz,rootx,rooty,rootz,T0,seq,x,y,z)

Example:
> convboxseq(1:5*2000,1.5e-7,0.04,0.08,0.12,rx,ry,rz,20,c(0,100,2000,20),0:5/5,0,0)
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[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 28.41832 30.32031 36.12009 45.96851 59.75526 74.70055
[2,] 38.75008 38.50181 37.56941 35.51940 31.98668 26.99010
[3,] 35.85708 35.37138 33.93414 31.61019 28.52083 24.85177
[4,] 31.79186 31.41769 30.31841 28.56259 26.26058 23.55828
[5,] 28.29985 28.03585 27.26062 26.02342 24.40288 22.50211

T<-convprismend(time,alpha,h,k,Ly,Lz,rooty,rootz,X,y,z)

Prism end made by combining two plates and a halfspace. X is from the end in.
Example:
> convprismend(2000,1.5e-7,100,1,0.08,0.12,ry,rz,1:5*0.02,0,0)
[1] 0.7470260 0.9455668 0.9926337 0.9986923 0.9991119

T<-convprismendseq(time,alpha,h,k,Ly,Lz,rooty,rootz,T0,seq,X,y,z)

Example:
> convprismendseq(2000,1.5e-7,100,1,0.08,0.12,ry,rz,20,c(0,100,2000,20),1:5*0.02,0,0)
[1] 40.22157 24.33829 20.57295 20.08826 20.05469

T<-convplatecorner(time,alpha,h,k,Lp,rootp,x,Y,Z)

Corner of a plate made by combining two halfspaces and a plate. x is theough
the plate.
Example:
> convplatecorner(1:4*2000,1.5e-7,100,1,0.08,ry,0,0:5/5,0)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.08249303 0.2870908 0.2870908 0.2870908 0.2870908 0.2870908
[2,] 0.04499723 0.2096538 0.2096538 0.2096538 0.2096538 0.2096538
[3,] 0.02961359 0.1654376 0.1654380 0.1654380 0.1654380 0.1654380
[4,] 0.02109360 0.1345273 0.1345333 0.1345333 0.1345333 0.1345333

T<-convplatecornerseq(time,alpha,h,k,Lp,rootp,T0,seq,x,Y,Z)

Example:
> convplatecornerseq(1:4*2000,1.5e-7,100,1,0.08,ry,20,c(0,100,2000,20),0:4/4,0,0)

[,1] [,2] [,3] [,4] [,5]
[1,] 93.39401 93.44441 93.74220 95.06866 96.79903
[2,] 22.99966 23.06915 23.16829 22.74727 21.10702
[3,] 21.23069 21.23208 21.16825 20.89033 20.33230
[4,] 20.68160 20.66368 20.58902 20.41947 20.15134

T<-convcorner(time,alpha,h,k,X,Y,Z)

Corner made from three halfspaces yielding an eigthsspace.
Example:
> convcorner(1:4*2000,1.5e-7,100,1,0,0:5/5,0)
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[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.023724328 0.08256499 0.08256499 0.08256499 0.08256499 0.08256499
[2,] 0.009886650 0.04606447 0.04606447 0.04606447 0.04606447 0.04606447
[3,] 0.005735449 0.03204133 0.03204141 0.03204141 0.03204141 0.03204141
[4,] 0.003854456 0.02458231 0.02458341 0.02458341 0.02458341 0.02458341

T<-convcornerseq(time,alpha,h,k,T0,seq,X,Y,Z)

Example:
> convcornerseq(1:4*2000,1.5e-7,100,1,20,c(0,100,2000,20),0,0:5/5,0)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 98.10205 93.39480 93.39480 93.39480 93.39480 93.39480
[2,] 21.10701 22.92004 22.92004 22.92004 22.92004 22.92004
[3,] 20.33210 21.12185 21.12185 21.12185 21.12185 21.12185
[4,] 20.15048 20.59672 20.59664 20.59664 20.59664 20.59664

T<-qplate(time,Q,alpha,k,L,x)

Infinite plate.
Example:
> qplate(2000,100,1.5e-7,1,0.05,0:4/4)
[1] 0.07443634 0.14210821 0.39388593 0.95372513 1.95445847

T<-qplateseq(time,alpha,k,L,T0,seq,x)

Example:
> qplateseq(1:4*2000,1.5e-7,1,0.05,20,c(0,100,2000,0),0)
[1] 20.07449 20.38705 20.53420 20.57986

T<-qcyl(time,Q,alpha,k,R,r)

Infinite cylinder.
Example:
> qcyl(2000,100,1.5e-7,1,0.05,0:4/4)
[1] 0.2385702 0.3330883 0.6548711 1.2941657 2.3324804

T<-qcylseq(time,alpha,k,R,T0,seq,r)

Example:
> qcylseq(1:4*2000,1.5e-7,1,0.05,20,c(0,100,2000,0),0)
[1] 20.23744 20.96130 21.15870 21.19291

T<-qsphere(time,Q,alpha,k,R,r)

Sphere.

12



Example:
> qsphere(2000,100,1.5e-7,1,0.04,0:4/4)
[1] 1.091374 1.208209 1.564374 2.172220 3.041007

T<-qsphereseq(time,alpha,k,R,T0,seq,r)

Example:
> qsphereseq(1:4*1000,1.5e-7,1,0.04,20,c(0,100,2000,0),0:4/4)

[,1] [,2] [,3] [,4] [,5]
[1,] 20.19588 20.26863 20.52107 21.03185 21.86482
[2,] 21.10398 21.20809 21.56449 22.17212 23.03298
[3,] 21.98535 22.03638 22.15610 22.26773 22.30883
[4,] 22.20957 22.21754 22.23595 22.25272 22.25879

T<-qhalfspace(time,Q,alpha,k,X)

Halfspace. X is from the surface in.
Example:
> qhalfspace(2000,100,1.5e-7,1,0:4/100)
[1] 1.9544100 1.1150526 0.5719636 0.2611839 0.1052952

T<-qhalfspaceseq(time,alpha,k,T0,seq,X)

Example:
> qhalfspaceseq(1:4*2000,1.5e-7,1,20,c(0,100,2000,0),0:4/100)

[,1] [,2] [,3] [,4] [,5]
[1,] 21.95441 21.11505 20.57196 20.26118 20.10530
[2,] 20.80954 20.76327 20.64027 20.47902 20.32091
[3,] 20.62118 20.60041 20.54222 20.45764 20.36116
[4,] 20.52368 20.51124 20.47565 20.42180 20.35656

T<-qedge(time,Q,alpha,k,X,Y)

Edge made from two halfspaces giving a quarterspace.
Example:
> qedge(2000,100,1.5e-7,1,0:4/100,0.01)
[1] 3.069463 2.230105 1.687016 1.376237 1.220348

T<-qedgeseq(time,alpha,k,T0,seq,X,Y)

Example:
> qedgeseq(2000,1.5e-7,1,20,c(0,100,500,0),0:4/100,0.01)
[1] 20.49967 20.47565 20.41611 20.34825 20.29444

T<-qplateedge(time,Q,alpha,k,Lp,X,y)

Edge of a plate made by combining a plate and a halfspace. X is from the edge
in, y is through the plate.
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Example:
> qplateedge(2000,100,1.5e-7,1,0.04,0:4/100,0)
[1] 2.1650013 1.3256439 0.7825548 0.4717751 0.3158864

T<-qplateedgeseq(time,alpha,k,Lp,T0,seq,X,y)

Example:
> qplateedgeseq(1:4*1000,1.5e-7,1,0.04,20,c(0,100,2000,0),0:4/100,0)

[,1] [,2] [,3] [,4] [,5]
[1,] 21.40665 20.63079 20.23778 20.08325 20.03702
[2,] 22.16504 21.32568 20.78259 20.47182 20.31593
[3,] 21.49583 21.40345 21.17776 20.92547 20.72618
[4,] 21.45230 21.40603 21.28303 21.12178 20.96367

T<-qprism(time,Q,alpha,k,Lx,Ly,x,y)

Infinite prism made by combining two plates.
Example:
> qprism(2000,100,1.5e-7,1,0.04,0.08,0:4/100,0)
[1] 0.2120094 0.2121468 0.2125590 0.2132463 0.2142089

T<-qprismseq(time,alpha,k,Lx,Ly,T0,seq,x,y)

Example:
> qprismseq(2000,1.5e-7,1,0.04,0.08,20,c(0,100,1500,0),0:4/4,0)
[1] 20.21130 20.29408 20.53223 20.83370 20.98004

T<-qprismend(time,Q,alpha,k,Ly,Lz,X,y,z)

Prism end made by combining two plates and a halfspace. X is from the end in.
Example:
> qprismend(2000,100,1.5e-7,1,0.04,0.08,0:4/100,0,0)
[1] 2.1664195 1.3270621 0.7839731 0.4731933 0.3173046

T<-qprismendseq(time,alpha,k,Ly,Lz,T0,seq,X,y,z)

Example:
> qprismendseq(2000,1.5e-7,1,0.04,0.08,20,c(0,100,1500,0),0:4/100,0,0)
[1] 21.18851 21.04037 20.73062 20.46675 20.31624

T<-qbox(time,Q,alpha,k,Lx,Ly,Lz,x,y,z)

Box made by combining three plates.
Example:
> qbox(2000,100,1.5e-7,1,0.04,0.08,0.012,0:4/4,0:5/5,0)
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[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 2.512009 2.517526 2.556915 2.730617 3.267727 4.465001
[2,] 2.599824 2.605340 2.644729 2.818431 3.355541 4.552816
[3,] 2.884875 2.890392 2.929781 3.103482 3.640592 4.837867
[4,] 3.419679 3.425196 3.464585 3.638286 4.175397 5.372671
[5,] 4.257246 4.262763 4.302152 4.475854 5.012964 6.210238

T<-qboxseq(time,alpha,k,Lx,Ly,Lz,T0,seq,x,y,z)

Example:
> qboxseq(2000,1.5e-7,1,0.04,0.08,0.012,20,c(0,100,1500,0),0:4/4,0:5/5,0)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 22.08488 22.09039 22.12976 22.30004 22.73058 23.06066
[2,] 22.16765 22.17317 22.21253 22.38282 22.81336 23.14344
[3,] 22.40580 22.41132 22.45068 22.62097 23.05151 23.38159
[4,] 22.70727 22.71279 22.75215 22.92244 23.35298 23.68306
[5,] 22.85362 22.85913 22.89850 23.06878 23.49932 23.82940

T<-qfincyl(time,Q,alpha,k,L,R,x,r)

Finite cylinder made by combining a cylinder and a plate.
Example:
> qfincyl(2000,100,1.5e-7,1,0.04,0.04,0:4/4,0:5/5)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.7967771 0.8645958 1.073162 1.435446 1.966321 2.675842
[2,] 0.8845915 0.9524102 1.160976 1.523261 2.054135 2.763656
[3,] 1.1696428 1.2374615 1.446028 1.808312 2.339187 3.048707
[4,] 1.7044469 1.7722657 1.980832 2.343116 2.873991 3.583511
[5,] 2.5420141 2.6098329 2.818399 3.180683 3.711558 4.421079

T<-qfincylseq(time,alpha,k,L,R,T0,seq,x,r)

Example:
> qfincylseq(1:4*2000,1.5e-7,1,0.04,0.04,20,c(0,100,2000,0),0,0)
[1] 20.79591 22.06207 22.22798 22.24702

T<-qcylend(time,Q,alpha,k,R,X,r)

Cylinder end made by combining a cylinder and a halfspace. X is from the end
in.
Example:
> qcylend(2000,100,1.5e-7,1,0.04,0:4/100,0:5/5)
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[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 2.5405959 2.6084147 2.8169808 3.179265 3.710140 4.419661
[2,] 1.7012385 1.7690573 1.9776234 2.339908 2.870783 3.580303
[3,] 1.1581495 1.2259683 1.4345344 1.796819 2.327693 3.037214
[4,] 0.8473697 0.9151885 1.1237546 1.486039 2.016914 2.726434
[5,] 0.6914810 0.7592998 0.9678659 1.330150 1.861025 2.570546

T<-qcylendseq(time,alpha,k,R,T0,seq,X,r)

Example:
> qcylendseq(2000,1.5e-7,1,0.04,20,c(0,100,1500,0),0:4/100,0)
[1] 21.56015 21.41202 21.10226 20.83840 20.68789

T<-qcorner(time,Q,alpha,k,X,Y,Z)

Corner made by combining three halfspaces.
Example:
> qcorner(2000,100,1.5e-7,1,0:4/100,0.01,0.01)
[1] 4.184515 3.345158 2.802069 2.491289 2.335400

T<-qcornerseq(time,alpha,k,T0,seq,X,Y,Z)

Example:
> qcornerseq(2000,1.5e-7,1,20,c(0,100,1500,0),0:4/100,0.01,0.01)
[1] 22.63535 22.48721 22.17746 21.91359 21.76308

T<-qplatecorner(time,Q,alpha,k,Lp,x,Y,Z)

Corner of a plate made by combining a plate and two halfspaces. x is through
the plate.
Example:
> qplatecorner(2000,100,1.5e-7,1,0.04,0:4/4,0.01,0.01)
[1] 2.440697 2.528511 2.813562 3.348366 4.185934

T<-qplatecornerseq(time,alpha,k,Lp,T0,seq,x,Y,Z)

x is through the plate.
Example:
> qplatecornerseq(2000,1.5e-7,1,0.04,20,c(0,100,1500,0),0:4/4,0.01,0.01)
[1] 21.86802 21.95080 22.18895 22.49042 22.63676
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Appendix 8 

A8.1 Boiling induced heat transfer coefficients 

In this section the influence of induced boiling in a non-Newtonian liquid is studied in order to investigate 

the resulting fluid to particle heat transfer coefficient. The setup and model food dimension is not 

representative for suspended particles and the investigation is only comparative. 

A8.1.1 Experimental setup 

To investigate the heat transfer coefficients from fluid to particles during vessel-boiling, an experimental 

setup has been created based on the lumped capacitance determination with an aluminium block, presented 

in figure 6.4.  

 

 

 

The experimental setup presented in figure 1 is measuring the energy transferred from the liquid (a) to an 

aluminium block (c). The aluminium block is insulated with polystyrene (b) only exposing the surface 

contacting the liquid below it.  

Polystyrene is used in the experimental setup for two specific reasons; to enable the aluminium block to float 

and to insulate the other boundaries of the aluminium block.  

It is well acknowledged that the experimental setup will not determine the actual heat transfer coefficients 

for a suspended particle, as the flow pattern across a horizontal surface at the top of the liquid is different 

from a submerged particle. The goal of this experiment is to investigate at a comparative level the influence 

of boiling in media of different rheological characterization.  

Four different medias was investigated, water and three commercial soups; tomato soup, curry soup and a 

Tuscany soup (basically a tomato soup with a high concentration of small pieces of vegetables). The setup 

 

 

 

 

Vessel 

a 

b 

c 

 Applied heat source 

Figure 1  Schematic experimental setup for determination of heat transfer coefficients. Domain a is 
the heating media, for this experiment three different types of soups, and water was used. Domain b 
is a polystyrene mold used to insulate the aluminum block. Domain c is the aluminum block. 
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from figure 1 is placed on a temperature controlled frying rig, where the surface temperature of the heating 

source is controlled and the mass loss can be recorded (Ashokkumar and Adler-Nissen 2011). The 

temperature settings of the frying-rig resulted in a measured steady state temperature inside the vessel as 

reported in table 6.3. The temperatures chosen for the media was different because high temperatures of the 

frying rig created residues at the vessel bottom, due to the lack of agitation for especially the curry soup. 

Table 1 Experimental settings and resulting steady state temperatures in the liquid media below the aluminium block in the 

conducted experiments 

 Temperature setting of the frying rig, and resulting 

averaged temperature in the liquid media [°C] 

Frying rig settings 120 140 160 

Water temperature 86 97 100 

Frying rig settings 100 120 140 

Tomato soup temperature 63 85 100 

Frying rig settings 100 120 140 

Tuscany soup temperature 60 90 100 

Frying rig settings 80 100 120 

Curry soup temperature 37 55 100 

 

A8.1.2 Rheological characterization 

The rheological characterization of the soups was carried out on a Stresstech high resolution rheometer (ATS 

RheoSystems) in a bop-cup setup, where the rheolgical characterization was performed under assumption 

that a power law model could crudely describe the behaviour (equation 1). The rheometer was set to apply an 

increasing stress stepwise (0.01 – 273 [Pa] in 10 steps). The characterization was carried out at 25-95 [°C], 

with an increment of 5[°C].  

               [1] 

Where τ is the shear stress [Pa], γ is the shear rate [s
-1

], k is the consistency index [Pa
.
s

n
] and N is the power-

law exponent [-]. More elaborations on rheological characterization will not be expounded here as it is not 

the scope to make a deterministic model based on rheology, but to serve as a characterisation measure. 

The characterization of the water and the soups are carried out in the temperature range that was also 

investigated in the vessel. The characterization of the Tuscany soup cannot be conducted in a traditional 

rheometer due to the high concentration of particles and it was strained before the characterization. The 

viscous behaviour for water as a function of temperature is known, and since it is Newtonian it is presented 

as a viscosity. The rheological behaviour is presented in figure 2 for the consistency index K. The power-law 

exponent N was not significantly inflicted by the temperature increase. Because the experiments are 

conducted without agitation, the flow behaviour index is less important. 
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Figure 2 Consistency index for the characterization of the investigated soups 

From figure 2 it is seen that the consistency index is higher for the curry Tuscany soup and the curry soup. 

When the soup temperature approaches the boiling point, the difference in rheological behaviour is less 

significant. 

A8.1.3 Results from the determination of heat transfer coefficients 

The determination of the heat transfer coefficients is carried out using equation 6.1. The heat transfer 

coefficients are presented in figure 3-5(a, b) as a function of temperature and as a function of the rate of 

boiling. The rate of boiling is calculated is the effect [W] used for water evaporation based on measured 

mass loss from the liquid media, through equation 2. 

                
             

 
 [J/s]     [2] 

Where mevap [kg] is the mass-loss due to evaporation, ΔHevap [J/kg] is the specific energy needed for 

evaporation of water (2290 [KJ/kg]) and t is the time. The measured heat transfer coefficients are presented 

as a function of temperature and as a function of the rate of boiling in figure 3 for water, in figure 4 for 

tomato soup, and in figure 5 for Tuscany soup and curry soup (as they showed similar heat transfer). 

 

Figure 3 The heat transfer coefficient, h,  from water to the aluminium block measured at the surface as a function of the 

temperature (left) and the rate of boiling (right) 
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Figure 4 The heat transfer coefficient, h, from tomato soup to the aluminium block measured at the surface as a function of 

the temperature (left) and the rate of boiling (right) 

 

Figure 5 The heat transfer coefficient, h, from curry soup and Tuscany soup to the aluminium block measured at the surface 

as a function of the temperature (left) and the rate of boiling (right) 

The results presented in figure 3-5 show a huge difference in the heat transfer coefficient for different liquid 

media. At sub boiling temperature the heat transfer coefficient is primarily dominated by convection, thus a 

fluid with a higher viscosity (consistency index for non-Newtonian fluids) is promoting smaller heat transfer 

coefficients. For water the sub-boiling heat transfer coefficient is observed at a range of 700-1400 [W/m
2
K], 

60-100 [W/m
2
K] for tomato soup and 40-70 [W/m

2
K] for curry and Tuscany soup. The results also indicate a 

big increase in the heat transfer coefficient above the boiling point of the media. The increase in heat transfer 

coefficients induced by boiling is explained by two phenomena: condensation of vapour bubbles from the 

liquid to the solid and enhanced convection, (Incropera and DeWitt 1996).  

A8.1.4 Influence of the heat transfer coefficient on the resulting heating time of suspended particles 

The sensitivity of the uncertainty in hfp is investigated through a small theoretical study where four different 

food particles (green peas, frankfurter sausages, carrot cubes and potatoes) are heated with varying heat 

transfer coefficients. In the study only heat transfer is included as a phenomenon. The heating time for the 

particles is defined as: the time to reach 78°C in the centre. Heating time for the four particles is presented in 

figure 6. The calculations are performed by solving the series expansion recapitulated below. 

  (
    

     
)  ∑    

       
    

0

500

1000

1500

2000

50 60 70 80 90 100

h
 [

W
/m

2 K
] 

T(°C) 

a: Tomato heat transfer 

0

500

1000

1500

2000

0 100 200 300

h
 [

W
/m

2
K

] 

Eevap (W) 

b: Tomato heat transfer 

0

100

200

300

400

500

20 40 60 80 100

h
 [

W
/m

2 K
] 

T(°C) 

a: Toscany/curry heat transfer  

Curry

Tuscany

0

100

200

300

400

500

0 50 100

h
 [

W
/m

2 K
] 

Eevap (W) 

b: Toscany/curry heat transfer  

Curry

Tuscany



Appendix 8 
 

5 
 

Figure 6 represents the heating time to reach 78°C from an initial temperature of 20°C as a function of the 

heat transfer coefficient. The thermal properties of the particles are calculated from the composition. The 

characteristic dimensions of the investigated particles are: Peas (r=0.003 [m], sphere), frankfurters (r=0.095 

[m], infinite cylinder), carrot cubes (L=0.005 [m], cubic) and potatoes (r=0.02 [m], sphere). 

 

Figure 6 Heating time for selected food particles as a function of the fluid to particle heat transfer coefficient 

From figure 6 it can be observed that the heating time for investigated particles does not decrease 

substantially with an increase in the heat transfer coefficient above app. 500 [w/m
2
K]. This is an interesting 

result because the convective heat transfer coefficient in water at sub boiling temperatures can be above this 

value. In addition, it is observed that there is an increase in the heating time for heat transfer coefficients 

varying from 50-250 [W/m
2
K]. This is also an important observation because the fluid to particle heat 

transfer coefficients for commercial soups (the three tested) can be as low as 50 [W/m
2
K] at sub boiling 

temperatures. If a heat transfer coefficient higher than 50 [W/m
2
K] is wanted it could be necessary to either 

increase the convection through agitation or by inducing boiling.  

An important notice is that the conducted experiments can only be used for comparison because the 

geometry and position of the aluminium block is very different from a suspended food particle.  
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