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Summary

In the human gut the complex microbial community termed the gut microbiota reside.
In the present work the bacterial part of the gut microbiota is in focus. It interacts with
the host and is considered to have impact on host health. The gut microbiota specifically
interacts directly and indirectly with the intestinal epithelial cells that together with a
mucus layer functions as the final barrier between the luminal content and the underlying
host tissue. Maintenance of this barrier is extremely important, as impairment may lead
to inflammation and bacterial translocation resulting in adverse effects on host health.
The intestinal integrity is here considered to be mainly maintained through the mucus
layer covering the epithelial cells, and the epithelial cells, which forms the barrier through
interactions by tight junction proteins. Alterations of the intestinal integrity may arise
based on loss or altered proliferation of epithelial cells, alterations in the mucus layer
as well as altered permeability at the tight junctions. This may lead to inflammation,
hence causing more impairment of the barrier.
The gut microbiota is considered to be able to affect the intestinal integrity. Spe-

cifically some bacterial strains have been shown to affect barrier function both in vitro
and in vivo, and some studies have correlated specific bacterial groups with markers for
intestinal integrity. Therefore modulations of the gut bacterial composition may have an
effect on the intestinal integrity. In general an increase in barrier function is considered
beneficial, as it must limit translocation of lumen content to the underlying intestinal
tissue. In the present work the effect of modulating the gut bacterial community on the
intestinal integrity was evaluated by application of the in vitro setup the trans-epithelial
electrical resistance (TER) assay and by determination of FITC-dextran permeability in
vivo as well as gene expression analysis of genes relevant for intestinal integrity. Changes
in bacterial community were determined using culture-independent methods as quantit-
ative PCR and high-throughput sequencing of the V3-region in the 16S rRNA encoding
gene.
Changes in the faecal bacterial composition of postmenopausal women following a

dietary intervention with whole-grain or refined wheat and effects of faecal water on
TER were initially examined (manuscript 1). Whole grain wheat was shown to increase
the relative abundance of Bifidobacterium spp. during the intervention while refined
wheat reduced Bacteroides spp. Faecal water collected from both dietary intervention
groups increased TER, but no difference was found between the groups. However the
effect of faecal water on TER tended to correlate negatively with relative abundance of
Bifidobacterium spp.
Previous studies have connected modulation of the gut microbial composition by pre-

biotics to pathogen translocation, therefore the effect of modulating the gut bacterial
composition with prebiotics and the subsequent effects on intestinal integrity were ex-
amined. Initially human faecal bacterial community was modulated by in vitro batch
fermentations with prebiotics (manuscript 2). Effects of this modulation on TER were
hence to be determined. This work is still ongoing. The effect of the putative prebiotic
Xylo-oligosaccharides (XOS) on intestinal permeability of FITC-dextran was determ-
ined in rats (manuscript 3). In the same study the effects of increasing the abundance
of commensal Bifidobacterium spp. by supplementation of such a commensal strain (B.
pseudolongum) on intestinal permeability was examined. This was done as Bifidobac-
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terium are stimulated by prebiotics, and based on the correlation previously determined
in the work. Neither XOS nor B. pseudolongum affected intestinal permeability of 4 kDa
FITC-dextran or the effect of caecal water on TER. In the study only gene expression
of the tight junction protein occludin was affected by XOS supplementation. This was
connected to only minor alterations of the gut microbial composition, potentially causing
the lack of alterations in the intestinal integrity.
In order to modulate the gut microbial composition extensively rats were dosed with

antibiotics and permeability for FITC-dextran was determined (manuscript 4). These
treatments resulted in both increased as well as decreased intestinal permeability. Spe-
cifically cefotoximin and vancomycin decreased FITC-dextran permeability and modu-
lated the gut bacterial composition. Metronidazole was not shown to modulate the gut
bacterial composition, but it increased intestinal permeability. Finally, amoxicillin mod-
ulated the gut microbiota extensively but it did not affect FITC-dextran permeability.
Conclusively the present work shows that modulation of the gut microbiota may affect

the intestinal integrity. However, it can, as of yet, not be concluded in which direction
the gut microbiota should be modulated to increase or decrease intestinal integrity. In
conclusion the present work has led to results that extend knowledge within the research
field of intestinal integrity, but more research should be done in order to clarify which
bacteria or community structure have an effect on intestinal integrity.

ii



Resume

I menneskets tarmsystem er der et komplekst mikrobielt økosystem som betegnes tar-
mens mikrobiota. Her er den bakterielle del af tarmens mikrobiota i fokus. Det inter-
agerer med værten og anses for at have indflydelse på værts helbred. Tarm mikrobiotaen
interagerer direkte og indirekte med tarmens epitelceller, der sammen med et mucus lag
fungerer som den sidste barriere mellem det luminale indhold og det underliggende væv.
Vedligeholdelse af denne barriere er derfor yderst vigtig, da svækkelse af barrieren kan
føre til betændelse og bakteriel translokation, hvilket kan resulterer i skadelige virkninger
på værtens helbred. Tarmens integritet anses her for at være opretholdt primært gennem
mucus laget der dækker epitelcellerne, og epitelcellerne, der danner barrieren gennem
interaktioner ved tight junction. Ændringer i tarmens integritet kan opstå på grund
af tab eller ændret proliferation af epitelceller, ændringer i mucus laget samt ændret
gennemtrængelighed ved tight junctions. Dette kan føre til inflammation, og dermed
forårsager mere svækkelse af barrieren.
Tarm mikrobiotaen anses for at kunne påvirke tarmens integritet. Konkret har det

været vist at nogle bakteriestammer kan påvirke barriere funktion både in vitro og in
vivo, og nogle undersøgelser har korreleret specifikke bakterielle grupper med markører
for tarm integritet. Modulationer i sammensætninger af tarm mikrobiotaen kan have
en effekt på tarmens integritet. I almindelighed er en stigning i barriere funktion an-
set som gavnlig, da det kan begrænse translokation af lumen indhold til det underlig-
gende væv. I dette arbejde er effekten af at modulere tarm bakterie sammensætningen
på tarmens integritet blevet vurderet ved anvendelse af in vitro metoden trans- epitel
elektrisk modstand (TER) og ved bestemmelse af permeabilitet af FITC-dextran in vivo
samt genekspressions analyse af gener, der er relevante for tarm integritet. Ændringer i
sammensætningen af tarm bakterier blev bestemt ved anvendelse af kultur -uafhængige
metoder som kvantitativ PCR og sekventering af V3-regionen i det 16S rRNA kodende
gen.
Ændringer i bakterie sammensætningen i fækale prøver fra kvinder efter-overgangs-

alderen efter en kostintervention med fuldkorn- eller raffineret hvede og virkningerne af
fækalt vand på TER blev undersøgt (manuscript 1). Fuldkornshvede viste sig at øge den
relative mængde af Bifidobacterium spp. under interventionen, mens raffineret hvede
reducerede Bacteroides spp. Fækalt vand indsamlet fra begge kostinterventions grupper
øgede TER, men der var ingen forskel mellem grupperne. Effekten af fækalt vand på
TER havde imidlertid en tendens til at korrelere negativt med den relative mængde af
Bifidobacterium spp.
Tidligere undersøgelser har forbundet modulation af tarmens mikrobielle sammensæt-

ning af præbiotika med translokation af patogene bakterier, derfor blev virkning af at
ændret tarm mikrobiota sammensætning på grund af prebiotika og de efterfølgende
effekter på tarmens integritet undersøgt. Bakterie kompositionen i fækale prøver blev
moduleret in vitro ved batch fermenteringer med præbiotika (manuscript 2). Effek-
ter af inducerede ændringer på TER skulle efterfølgende undersøges. Dette arbejde er
endnu ikke afsluttet. Effekten af det formodede præbiotika Xylo-oligosakkarider (XOS)
på tarmens permeabilitet for FITC- dextran blev undersøgt i rotter (manuscript 3). I
samme studie blev virkningerne af øget mængde af kommensale Bifidobacterium spp.
på tarm integriteten undersøgt ved at dosere med en sådan kommensal stamme (B.
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pseudolongum). Dette blev gjort da Bifidobacterium bliver stimuleret af præbiotika, og
baseret på sammenhængen, der blev bestem tidligere i arbejdet. Hverken XOS eller
B. pseudolongum påvirkede tarm permeabilitet for 4 kDa FITC-dextran eller effekten af
caecal vand på TER. I studiet var det kun genudtryk for tight junction proteinet occludin
som var påvirket af XOS doseringen. Dette var forbundet med mindre ændringer i tar-
men mikrobiotaens sammensætning, hvilket kan have forårsaget den uændrede tarmens
integritet.
For at modulere tarmen mikrobiotaens sammensætning meget blev rotter doseret med

antibiotika og permeabiliteten for FITC-dextran blev bestemt (manuscript 4). Disse
behandlinger resulterede i både øget samt nedsat tarm permeabilitet. Specifikt faldt
FITC-dextran permeabilitet, og tarmens bakterie sammensætningen blev moduleret
efter dosering med cefotoximin og vancomycin. Metronidazol modulerede ikke tarmens
bakterie sammensætning, men det øgede tarm permeabiliteten. Endelig modulerede
amoxicillin tarmens mikrobiota meget, men det påvirkede ikke FITC-dextran permeab-
iliteten.
Arbejdet viser, at modulering af tarmen mikrobiota kan påvirke tarmens integritet.

Det kan dog endnu ikke konkluderes i hvilken retning tarmen mikrobiota bør ændres for
at øge eller mindske tarm integritet. Det præsenterede arbejde har ført til resultater,
der kan øge viden inden for emnet tarm integritet, men mere forskning er nødvendig for
at klarlægge, hvilke bakterier, eller bakterielle samfunds struktur, der har en effekt på
tarmens integritet.
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Chapter 1

Objectives of the study

Every day we consume foods that pass through the digestive system. During this passage
the food is processed by the different parts of the gastrointestinal tract (GIT), but also
the large microbial ecosystem in the GIT termed the gut microbiota. It consists of among
other fungi, viruses, and Archaea but predominantly bacteria, that are at focus in the
present work. These are separated from the underlying host tissue by the intestinal wall,
specifically by a layer of epithelial cells covered by a layer of mucus. The maintenance
of this epithelial barrier is therefore extremely important. Based on the close contact
between the bacterial community and the intestinal barrier, the bacteria may affect the
intestinal integrity. Modulation of the gut microbiota by for example dietary change or
antibiotic treatment may therefore affect the intestinal integrity, and in the end human
health, see fig. 1.1.

Figure 1.1: Hypothesis for interaction between gut microbiota and host health. The
main focus for the present work is illustrated in the green box. The figure is a modified
version of figure 8 in [1].

One of the objectives of the present study is to incorporate methods for determining
intestinal integrity both in vitro and in vivo in the Gut Ecology group at DTU Food,
National Food institute. Using these methods the effect of modulating the gut bacterial
composition by different means as prebiotics, antibiotics, and whole-grain and refined
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Chapter 1 Objectives of the study

wheat dietary interventions on intestinal integrity was examined.
The first part of the thesis gives an introduction to the human digestive system, the gut

microbiota, and the intestinal wall. Here the main focus is on the mucosa specifically the
mucus layer and the epithelial cells, as they form the main barrier towards the luminary
content. Epithelial cells interact through among other tight junctions. Modulation of
protein interactions in the tight junctions are important for intestinal integrity, hence
this complex is introduced. In addition intestinal integrity and modulation of such by
bacteria, products from the bacteria as well as mechanisms that the host may use is
described. Finally, modulation of the gut microbiota by prebiotics, putative prebiotics,
antibiotics, and whole-grain products, and its effects on intestinal barrier integrity are
presented. In the later parts of the thesis a section describes the methods used in the
present work. Manuscripts prepared during the work are included, before outcomes and
conclusions of the PhD study are discussed.
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Chapter 2

Introduction

2.1 The human gastrointestinal tract

Humans consume food and drinks daily, most of which the body utilise for energy. But in
and on these foods several different microorganisms resides, which are passed down the
gastrointestinal tract (GIT) with the food. The food is consumed through the mouth,
where it is chewed and swallowed, before passing through the eating tube down to the
stomach, see fig. 2.1. In the stomach digestive enzymes as pepsin are released, as well
as hydrochloride acid, which causes the pH to drop. The food content passes through
the different sections of the small intestine; the duodenum, jejunum, and further on to
the ileum, while pH increases (from 6.6 to 7.5 [2]) as bicarbonate is released. During
this passage more digestive enzymes are released resulting in cleavage and absorption of
carbohydrates, proteins, and lipids. Finally, the luminal content is passed to the colon
(pH 6.4-7 [2]), which is divided into ascending, transcending, descending, and sigmonal
parts. Here water and salts are absorbed. The remaining of the luminal content is
transported out of the body at rectum as faeces [3].

Figure 2.1: Overview of the human digestive system. The figure is a modified version
of a figure from [4]. The stated number of cells is the approximately number of microor-
ganisms per g or mL of content according to [5].
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Chapter 2 Introduction

The environment in the GIT is generally anaerobic, but environmental conditions
such as pH, transit times, and availability of nutrients or substrates change throughout
the GIT. This has an effect on the microbial ecosystem in the gut leading to different
numbers of microorganisms with an accumulation at the colon, see fig. 2.1.

2.2 Gut microbiota

The complex microbial ecosystem in the GIT is termed the gut microbiota. The gut
microbiota consists of the entire microbial community in the human gut including bac-
teria, yeast, fungi, Archaea, and viruses, resulting in 1013 to 1014 microorganisms [6].
In this thesis the main focus is on the bacterial part of the gut microbiota, as this is
predominant [6, 7, 8, 9]. This will accordingly be termed the gut microbiota or the gut
bacterial community.
The bacteria in the gut reside there due to utilisation of the available substrates,

but also based on natural selection from the host [9]. This has led to a relationship
between host and the gut microbiota that gives mutual benefits [10]. Specifically the
bacteria in the gut can form symbiotic and commensal relations with the host [11].
The host benefits from the bacterial community in the GIT, as it among other can
degrade otherwise in-digestible substrates for the host. The host may subsequently
use the produced metabolites. Additionally the gut microbiota protects the host from
pathogenic bacteria by reducing availability of substrates and space [10].
Despite the complexity of the ecosystem it is mainly represented by a limited number

of bacterial phyla, as Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, Verruco-
microbia, and Actinobacteria, with Firmicutes and Bacteroidetes as dominant phyla, see
fig. 2.2 [7, 8, 12]. Within the Firmicutes phyla the main genera found are Faecalibac-
terium, and Roseburia, see fig. 2.2 [8]. These genera include species that are able to
produce butyrate, as they belong to specific Clostridium clusters [7]. For example
Faecalibacterium and Roseburia belong to the Clostridium clusters IV and XIV, that
are considered to produce butyrate [13], which at low concentrations have been shown
to increase epithelial barrier function [14, 15]. Besides the butyrate producing bacteria
the Firmicutes also include the Lactobacillus genus. Specific strains of Lactobacillus are
used as probiotics. Probiotics was in 1998 defined as: "living micro-organisms, which
upon digestion in certain numbers exert health benefits beyond inherent basic nutrition"
according to [16]. Therefore are stimulation of these bacteria are considered to have
beneficial effects on host health [17].
The other predominant phylum is Bacteroidetes. The main genera within the Bac-

teroidetes phyla are Bacteroides, Alistipes and Prevotella [8], while Bifidobacterium and
Collinsella are the main genera representing the Actinobacteria, see fig. 2.2 [8]. Bi-
fidobacterium strains are also used as probiotics. Overall the gut microbiota consists of
different bacterial phyla and genera where some may affects the host.
The bacteria in the bacterial community do not only affect the host but also each

other. This can occur through production of toxins or competition for available sub-
strate but also through cross-feeding. In the colon the available substrate is mostly
the parts of the diet, which the host has not or cannot degrade, such as dietary fibers
and some proteins. These are degraded by saccharolytic and proteolytic fermentation,
respectively. Proteolytic fermentation is mainly conducted by bacteria from the bac-
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2.2 Gut microbiota

Figure 2.2: Diversity of bacterial genera in the human gut. The figure is a copy of figure
1B in [8]. *; indicates family level.

teroides and clostridia groups, while saccharolytic fermentation is mainly conducted by
genera as Bacteroides, Ruminococcus, Clostridium, Bifidobacterium, and Lactobacillus
leading to production of lactate and short chain fatty acids (SCFA) [5]. Some metabol-
ites as lactate are subsequently utilised by other bacteria in the ecosystem, hence causing
cross-feeding [18]. For example Bifidobacterium may degrade carbohydrates leading to
lactate formation that other bacteria can utilise, hence potentially producing SCFA [5,
18]. Based on cross-feeding, and the inhibitory effects the bacteria may have on each
other, dietary changes may modulate the abundance of specific bacterial groups that
subsequently affect host health directly or indirectly by stimulating or reducing other
bacterial groups, that then may affect host health.
There have been some discussions regarding the presence of a "core microbiome".

Such a "core microbiome" would be highly relevant for evaluation of gastrointestinal
disorders, and potentially increasing human health by modulating the microbiota in the
direction of such a “core microbiome”. However, there is a high inter-individual difference
between the gut microbiota of different humans, as the microbiota of an individual
over time is more similar than the microbiota between relatives [19]. This makes the
identification of a "core microbiome" difficult. Despite this Arumugam and coworkers in
2011 [8] published a study stating, that the human gut microbiome could be classified
into three groups termed enterotypes. These enterotypes were driven by the bacterial
genera Bacteroides, Prevotella, and Ruminococcus and seemed to be dependent on the
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Chapter 2 Introduction

substrates used to generate energy [8]. Hence not a direct core microbiota, but distinct
types of gut microbial compositions may exist. These may affect the possibility to
modulate the microbiota, and use it a therapeutic target.

The mucus-associated bacterial community

The intestinal wall has an outer layer of mucus, see section 2.3.1, leading to a sub-
environment within the intestinal lumen. Here bacteria can reside and utilize mucus for
energy [20]. For example Akkermansia muciniphila have been found to utilize mucus as
the sole energy source [21]. According to Van den Abbele bacteria residing in the mucus
are not targeted by the host immune system, while bacteria residing in the intestinal lu-
men are [22]. Hence a specific bacterial community must reside in the mucus layer; here
termed the mucus-associated bacterial community. The mucus-associated community is
in close contact with the epithelial cells in the intestinal wall making these bacteria and
their metabolites important for barrier function. Specifically these bacteria may produce
SCFA, stimulate the immune system, and limit pathogen adhesion to the mucus layer
[20]. This may all be important for maintaining barrier integrity.
In general, the mucus-associated bacterial community is considered to be different

from the faecal bacterial community [7, 23, 24]. But of course the faecal bacterial com-
munity contains some of the bacteria found in the mucus, as these are transported out
of the intestine with the faecal. In the stomach the mucus-associated community was
found to include the phyla Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria,
and Fusobacteria with a decreasing number of sequences in mucosal biopsies [25]. In
mucosal biopsies from jejunum, distal ileum, ascending colon, and rectum Firmicutes
and Bacteroidetes were the predominant phyla, but Proteobacteria, Fusobacteria, and
Verrucomicrobia were also identified [26]. In distal ileum, ascending colon and rectum
sequences belonging to the Clostridium clusters IV and XIVa were predominant [26]. Ad-
ditionally in colon mucosal samples Firmicutes, Bacteroidetes, and Proteobacteria were
predominant, but Fusobacteria, Cyanobacteria, Verrucomicrobia, Actinobacteria, Len-
tisphaera and TM7 have also been identified [27, 28]. In colonic mucosa genera such as
Clostridium, Faecalibacterium Ruminococcus, Lactobacillus, and Bacteroides have been
identified [24, 27]. Finally in rectal biopsies Firmicutes and Bacteroidetes were predom-
inant, while Proteobacteria was present in lower levels in faeces than in rectal biopsies.
Actinobacteria, Fusobacteria, Gemmatimonadetes, Lentisphaerae, Tenericutes and Ver-
rucomicrobia were detected in the rectal biopsies, however lower levels were detected in
faeces [23]. Hence in general the mucosal-associated microbiota consists of phyla and
genera that can also be found in the intestinal lumen, hence the general gut microbiota.
But the distribution or abundance of these is different than in faeces. The presence of
among other Actinobacteria, Clostridium, Ruminococcus and Lactobacillus indicates that
the mucus-associated community may affect the intestinal barrier through production of
SCFA directly or through cross-feeding.
As the mucus-associated bacteria are in close contact with the epithelial cells, changes

in the bacterial composition or dysbiosis in this niche may have direct effect on the epi-
thelial cells, subsequently human health. For example patients with colorectal adenomas
(tumor) have been shown to have a higher abundance of Proteobacteria and lower abund-
ance of Bacteroidetes in the mucus-associated community than healthy participants [27].
The mucus-associated community has also been shown to be different in Crohn's dis-

6
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ease (CD) and Ulcerative Colitis (UC) patients with a tendency for lower abundance of
Firmicutes and higher abundance of Bacteroidetes than healthy individuals [28]. Ad-
ditionally inflammatory bowel disease (IBD) patients had a lower bacterial diversity in
colon mucus than healthy individuals [28]. As the stated disorders have been connected
to impaired intestinal integrity [29], the dysbiosis in the mucus-associated community
may have affected the barrier function.

2.3 The intestinal wall

The intestinal wall is the sole barrier between the luminal content including the gut
microbiota and the underlying tissue. The intestinal wall is build up by four layers; the
mucosa, submucosa, muscularis, and serosa, as illustrated in fig. 2.3. The serosa and the
muscularis, consist of muscular tissue, and form the outer layers of the intestine. Closer
to the lumen, the submucosa is found. It consists of connective tissue, blood vessels, and
lymph vessels. The mucosa is in close contact with the gut microbiota and the luminal
content [3], making it the main focus in the present work.

Figure 2.3: Cross section of the colon. The mucosa is at main focus here. It consists
of a mucus layer covering the underlying layer of epithelial cells. Beneath the epithelial
layer the lamina propria reside. The figure is copied from [30].

The mucosa has two purposes; to protect against luminal content and secondly to work
as a selective barrier for nutrients, water, ions etc. Maintenance of the mucosal barrier
is therefore extremely important. The mucosa is highly folded in the small intestine
resulting in the formation of crypts and villi, while there are no villi in the colon [3,
31]. The mucosa consists of a layer of intestinal epithelial cells (IEC), which is covered
by a mucus layer, see fig. 2.4. Under the epithelial cells in the Lamina propria the
host immune cells reside in the gut-associated lymphoid tissue (GALT). The GALT is
outside the main focus here, and is therefore not described. The mucus and IEC layer
are described below.
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2.3.1 The mucus layer

The IEC are covered by a mucus layer that protects IEC from the luminal content,
including irritants, microbial attachment, and invasion [10, 32]. This layer consists of
mucin, IgA, trefoil factor, antimicrobial peptides, water and ions, and has a gel-like
structure, see fig. 2.4 [10, 32, 33, 34]. The antimicrobial peptides must help to limit
microbial growth in the mucus layer, hence limiting direct contact between bacteria and
IEC. Mucin, more precisely mucin-2 (MUC2), is the main component of the mucus layer
in the intestine, and is secreted by goblet cells in the epithelial layer. When MUC2 is
released from the goblet cells its volume increase, and it immediately becomes part of
the mucus layer [34].
In the small intestine the mucus layer is not well defined, whereas it is well-defined

and dense in the colon, see fig. 2.4 [34, 35]. It has been suggested, that the thickness
of the mucus layer is correlated to the bacterial load [10]. In the colon, the mucus layer
can be divide into two layers. A firm layer close to the IEC, where no bacteria reside,
and a loose layer above, where bacteria can reside, see fig. 2.4 [36]. Accordingly the
mucus-associated microbiota must be found in this looser part of the mucus layer. This
loose top layer is considered to arise by proteolytic cleavage of MUC2 [36]. Despite the
presence of bacteria in the loose part of the mucus layer, the IEC are still protected from
the majority of the luminal content. As the mucus protects the IEC, the maintenance
of the mucus layer is important for the intestinal integrity.

Figure 2.4: The epithelial layer in the small and colon (large intestine). The figures are
copy of figure 2 in [10]. The blue rods represent the gut microbiota.

2.3.2 The epithelial layer

The only 20 µm thick epithelial layer is the outer cell layer of the intestinal wall, making
it the final cell barrier between the luminal content and the host [37]. In general IEC
are polarised cells with an apical surface towards the intestinal lumen with microvilli,
while the basolateral surface, towards the underlying tissue, does not have villi, see
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fig. 2.4. The selective barrier is constructed by the IEC and contact between adjacent
cells. IEC have to initiate an immune response upon bacterial invasion, but also maintain
homeostasis upon contact with the gut microbiota [37], as it otherwise could lead to a
constant inflammatory state. In order to have this complex barrier function, as well
as absorb nutrients from the lumen, the epithelial layer consists of several cell types
each with their own specific task. These include M cells, goblet cells, Paneth cells, and
absorptive cells termed enterocytes in the small intestine and colonocytes in colon, see
fig. 2.4 [10, 31]. Also enteroendocrine cells, that secrete hormones are part of the IEC
layer [31]. The IEC emerges from stem cells, that differentiate to the different cell types
during the migration from the crypt to the villi[31, 38]. The different IEC cell types are
shortly introduced.

Enterocytes

Enterocytes (and colonocytes) are highly polarised and are the main cell type in the
epithelial barrier constituting up to 80 percent of IEC in the epithelial layer [31]. As the
enterocytes are the predominate cells in the epithelial barrier, they and their interactions
are mainly responsible for maintaining the barrier integrity. Besides this important task,
the enterocytes absorb and transport nutrients from the intestinal lumen and into the
blood stream [31], and secretes antimicrobial peptides as β-defensins and cathelicidins
[37].

Goblet cells

Goblet cells are the main mucin producers in the epithelial layer. After differentiation
they contain granules with mucin, which they release during migration from the crypt.
Once reaching the villi the goblet cells have secreted the mucin granules, but also or-
ganelles trap between the granules, hence the goblet cell are released into the intestinal
lumen, leading to a constant replacement of the goblet cells [32]. Goblet cells are found in
the entire intestine, but the number of goblet cells increases during the passage through
the GIT [32]. Subsequently the level of mucin and thickness of the mucus layer also
increases leading to the thick mucus layer in the colon. In addition to secreting mu-
cin goblet cells also release intestinal trefoil factor (TFF) and Resistin-Like Molecule-β
(RELM-β) that is part of the innate immune system [39].

Paneth Cells

Paneth cells are a pyramid shape cell type that does not migrate from the crypt towards
the villi but reside at the crypt in the small intestine, see fig. 2.4 [31, 38, 40]. In the
crypt the Paneth cells take part in the innate immune system as they have granules
containing lysozymes, α-defensins, and antimicrobial peptides that are released upon
close contact with bacteria but also by cytokine and hormones stimuli [31, 37, 40].
These anti-microbial peptides are considered to be important for maintaining intestinal
homeostasis, since they in several studies have been shown to be important for defense
against inflammation [41]. In addition to the antimicrobial peptides, Paneth cells have
been suggested to produce cytokines [40], making them important for communication
between the epithelial layer and the underlying immune system.
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M cells

In addition to the already stated cells, a cell type with a different structure termed M
cells is found. In humans they do not have microvilli, but microfolds on the apical side
of the membrane. These cells are mainly placed above the Peyer's patches in the small
intestine, which are part of the GALT. But M cells are also found in the colon. M
cells are filled with lymphocytes, as the basolateral side of the M cells has pockets that
the lymphocytes can reside in [42]. Antigens are transported from the intestinal lumen
across the M cells to the immune cells, resulting in antigen presentation and activation
of immune cells e.g. B cells that then secrete IgA [42, 43]. M cells are therefore rather
important for the communication between the luminal environment and the immune
system.

In summary the main barrier between the luminal content and the underlying host
tissue is a layer of IEC covered by a mucus layer. Maintenance of this barrier is therefore
important for intestinal integrity. Impairment of the barrier may occur by changes in the
thickness of the mucus layer, loss of IEC, or decreased interaction between the epithelial
cells. The specific proteins involved in IEC interaction are described in the following
paragraph.

2.3.3 Tight junction proteins

Interaction between IEC is important for maintaining intestinal barrier integrity. IEC
interacts through tight junctions (TJ), desmosomes, adhesion junctions, and gap junc-
tions, see fig. 2.5 [39, 44]. TJ are mainly responsible for controlling the paracellular flux
between the epithelial cells, hence the permeability of the epithelial barrier, while des-
mosomes and adhesion junctions are important for communication and binding between
the cells [44]. Therefore only the TJ are presented here.
TJ is a complex of several proteins that reside in the apical section of the epithelial

cell, see fig. 2.5 [44]. These proteins includes both membrane bound and intracellular
proteins that interact between adjacent cells, but also with the cytoskeleton in the cell
[39, 44]. This helps stabilising the TJ, but also makes it possible for the cytoskeleton to
regulate interactions between IEC [44]. The most relevant TJ proteins, for the present
work, are introduced.

Occludin

Occludin (Ocln) is a transmembrane protein with four transmembrane regions, that are
linked with two extracellular loops, and one intracellular loop, see fig. 2.5. The extra-
cellular loops of occludin interact between adjacent IEC, forming a barrier between the
cells. On the cytoplasmic side occludin has a short N-terminal and a longer C-terminal
that interacts with the intracellular proteins in the TJ [44].
The importance of occludin in the formation and maintenance of TJ has been examined

in occludin-deficient mice models and Caco-2 cells [45, 46, 47]. Occludin deficiency did
not affect electrical resistance across intestinal sections, or mannitol permeability in mice
[45, 47]. But the mice suffered from chronic inflammation in the gastric epithelium [47]
and had decreased secretion of gastric acids [45]. Based on these results the authors
considered occludin to have a regulatory function in the TJ or regulation of IEC differ-
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Figure 2.5: Interaction between epithelial cells through tight junction (TJ), adherens
junction, and desmosome. The figure is a copy of figure 2 in [44].

entiation, but occludin was not considered to be essential for formation of TJ [45, 47].
Contradictory to this, Al-Sadi and co-workers found that depletion of occludin in mice
and Caco-2 cells increased the flux of macromolecules, indicating that occludin is import-
ant for the paracellular flux of macromolecules [46]. However, this was not connected
to a decrease in electrical resistance across the cell layer [46]. Since electrical resistance,
must indicate the permeability of ions, which are be able to pass through the same areas
as macromolecules, it is puzzling that Al-Sadi and co-works did not observe changes in
this parameter.

Based on these studies it is difficult to clarify if occludin is essential for the formation
of the TJ. However, as depletion of occludin affected the expression of another TJ protein
claudin-2 at mRNA and protein level [46], and occludin-deficient mice had inflammation
in the gastric epithelium [47], occludin may have importance for intestinal integrity.

Regulation of occludins interactions and localisation have been linked to phosphoryla-
tion [44]. For example some studies have shown that phosphorylation and de-phos-
phorylation of occludin by protein kinase C isoforms and the phosphatases PP2A and
PPI regulates the assembly and disassembly of the TJ complex, respectively [48].

11



Chapter 2 Introduction

Claudins

In general the claudins (Cldn) are considered to be the backbone of the TJ complex
[44], making these proteins very important for maintaining the intestinal integrity. The
claudins are all membrane spanning with a short intracellular N-terminal and a long in-
tracellular C-terminal, an intracellular loop, two extracellular loops, and domains span-
ning the membrane four times, see fig. 2.5 [49]. On the cytoplasmic side the claudins
interact with zonula occludens (ZO) at the C-terminal, anchoring the claudins to the
cytoskeleton, see fig. 2.5 [49, 50].
Through the extra cellular loops the claudins from adjacent cells interact with each

other or other proteins, forming a barrier or pores [44, 50]. Specifically the first loop
is considered to influence charge selectivity [49]. It seems that the claudins can be
subdivided into two groups, based on whether they are part of forming a barrier or
pores. The barrier-forming claudins are considered to be claudin-1, 3, 4, 5, 8, 9, 11, and
14. While the pore-forming claudins are claudin-2, 7, 12, and 15 [44]. The pore forming
claudins may form a pore in the TJ, where molecules or ions of specific charge and size
can pass. For example the number of pores that transport small molecules are increased
by the induction of claudin-2, while mannitol flux is unaffected [51].
The expression level of claudins varies throughout the GIT [29, 44]. In duodenum and

colon mainly the barrier forming claudins, as claudin-1, 3, 4, 5, and 8 are expressed while
in ileum and jejunum the pore-forming claudins, as claudin-2, 7, and 12 are expressed
more [29]. However, both pore- and barrier-forming claudins seem to be expressed in all
the sections in the GIT [29]. This makes sense biologically, since nutrients are mainly
absorbed in the small intestine, while the absorption is low in the colon.
The regulation of the claudins still needs to be elucidated. However phosphorylation

of claudins is considered to affect localization and the interaction with other proteins,
hence affect the permeability of the intestine [44, 50]. Claudins must be important for
the intestinal integrity, as up-regulation of claudin-2 have in some studies been connected
to CD and UC, while other claudins, as claudin-1 was down-regulated [29].

Zonula occludens

Zonula occludens (ZO) proteins are the intracellular proteins in the TJ, see fig. 2.5.
There are three ZO proteins; ZO-1, ZO-2, and ZO-3, where ZO-1 have been studied
most regarding effect on intestinal integrity. The ZO proteins have several domains all
important for the regulation and maintenance of the TJ structure, see fig. 2.6.
The domains include three PDZ1 domains, a SH32 domain, and a GUK3 domain.

Membrane proteins in the TJ interact with ZO through these domains, for example
the claudins binds to ZO-1 at the PDZ1 domain, see fig. 2.6 [44]. Subsequently all the
membrane proteins in the TJ can interact with one or more of the ZO proteins. Since
ZO proteins also are able to bind to each other and the actin skeleton, see fig. 2.6 [44],
the TJ proteins seem to interconnect with each other and the actin skeleton. The ZO
proteins are therefore important for the assembly of the TJ complex, but also for the
interaction between the different proteins in the TJ and the actin skeleton.

1Post-synaptic density 95/Drosophila discs large/zona-occludens 1
2Src homology-3
3region homolog to guanylate kinase
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Figure 2.6: Structure of Zonula occludens proteins and which regions that interact with
other proteins in the TJ. The figure is a copy of figure 3 in [44].

Other TJ proteins

In addition to the already mentioned TJ proteins, Junction Adhesion Molecule (JAM),
tricellulin, and cingulin are also proteins part of the TJ. These are only mentioned
here, as they either have not been examined in the present work, or their relevance for
intestinal integrity have not been examined that intensively.

2.3.4 The selective barrier
The intestinal barrier needs to function as a selective barrier. Luminal bacteria should
not cross the barrier, but nutrients, ions, vitamins etc. need to be absorbed or trans-
ported across the IEC barrier before utilisation by the host. This can occur through
transcellular transport or paracellular transport across the epithelial layer, all leading
to a selective barrier. Transcellular transport occurs through specific transport pro-
teins or pores, while the paracellular transport occurs between the epithelial cells, hence
across the TJ. Regarding intestinal integrity the paracellular transport is at main focus.
Transport through the paracellular route is dependent on

• concentration gradient,

• surface area,

• time,

• the permeability of the barrier [52].

Regulation of the paracellular route is mainly through the interaction between adjacent
cells so through the TJ. Alterations in TJ structure is therefore in main focus here.
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Pore and leak pathway

There has been some evidence, that the TJ is not merely static, and that it may have
different sizes of pores that molecules can pass through. This has led to the hypothesis
of existence of two pathways within the TJ; the pore and the leak pathway.
In the 1970'es Claude [53] found an exponential relation between the number of TJ

strands and electrical resistance across the epithelial layer. As the electrical resistance is
a measure for the ion flux, the TJs across the epithelium had been considered to form a
series of resistors across the epithelial layer. This would lead to a linear relation between
number of TJ and resistance. But as the relation was shown to be exponential, Claude
considered the TJ to contain pores for ions that could be opened or closed [53]. Later
glucose was found to increase the flux of mannitol but not CrEDTA and inulin across
intestinal tissue [54]. Hence the glucose must have affected pores of different sizes in the
tissue. The authors therefore suggested a 2-3 pore system [54].
The existence of two pathways in the TJ was supported by determining permeability of

probes or tracer molecules of different sizes simultaneously across cell lines as Caco-2 and
T84 and pig ileum [51, 55, 56]. Tracers below 4 Å had a high flux, while larger molecules
had a very low flux. Exposure to agents (EGTA, sodium caprate, and IFN-γ) that
disturbed the TJ, showed that permeability for the different sizes probes, were affected
differently by these agents [55]. EGTA and IFN-γ caused increased permeability for all
size probes but especially larger probes, while sodium caprate caused an increase in flux
for all probes [55, 56]. Based on these results, the authors supported the hypothesis
of two pathways for permeation; one for small molecules, and one for larger molecules
[55, 56]. Later the two types of pathways have been termed pore and leak pathway [57].
Whether the authors considered the two pathways to be based on presence of different
types of TJ e.g. some that after stimuli results in flux of larger probes while other TJ
would result in increased flux of smaller molecules, or if different agents caused different
modulation of a general TJ complex leading to either of the pathways is unclear. In
general a common TJ complex that is regulated by specific stimuli seems most preferable.
However, as the expression of claudins changes through the GIT, this could indicate
different structures of the TJ leading to the two pathways.
The presence of the pore and leak pathways in the TJ complex mean that changes in

the TJ complex affects flux of different sized molecules. A change in the pore pathways
will affect the ion conductance, hence uptake of e.g. calcium. It will also affect the
electrical resistance across the epithelial layer. A change in the leak pathway would
affect flux of larger molecules and electrical resistances [58]. In addition an increase in
the leak pathway may increase translocation of luminal content, that may stimulate an
immune response that could result in an inflammatory state. But the leak pathway is
not large enough to let whole bacteria pass through the TJ [59]. However changes in
the leak pathway may cause more adverse effects to the host, than changes in the pore
pathway would, as an immune response may be induced, that potentially could lead
inflammatory state and subsequent bacterial translocation.

2.4 Interaction between host and gut microbiota
The gut microbiota is in close contact with the mucosa. Therefore the gut microbiota
and its products must affect the host, and vice versa. Of course the mucus-associated
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Table 2.1: Ligand MAMPs for TLR and NOD-like receptors. The table is a modified
version of table 1 in [60].

TLR MAMPs Bacteria Location on IEC
TLR1 Triacyl lipopeptides Mycobacteria Surface membrane
TLR2 Peptidoglycan

lipoteichoic acid
Gram-positive Surface membrane

TLR4 LPS Gram-negative Basolateral
membrane,
endosomal membrane

TLR5 Flagellin Bacteria Basolateral membrane
TLR6 Diacyl lipopeptides Mycobacteria Surface membrane
TLR9 cytosine-phosphate-guanosine

oligodeoxynucleotides
(CpG-ODN)

Bacteria Endosomal membrane

NOD-like
receptor

MAMPs Bacteria Location on IEC

NOD1 Meso-lanthionine
meso-diaminopimelic acid

Bacteria Cytoplasm

NOD2 Muramyl dipeptide Bacteria Cytoplasm

bacteria must be in closer contact with IEC, than bacteria only residing in the lumen.
Mucus-associated bacteria may therefore be very important for stimulation of the host
immune system [22], but also intestinal integrity. However, bacteria residing in the
lumen may also have an effect. Interaction between gut microbiota and IEC is therefore
important for intestinal integrity. This interaction is based on a balanced system, where
the host must not induce inflammation upon contact with commensal bacteria, as it
would result in a constant inflammatory state, hence impaired intestinal integrity. But
the host must induce an immune response upon bacterial invasion. Therefore the host
cells need to differentiate between bacteria in the gut microbiota.
Epithelial cells and dendritic cells have receptors that can recognize microorganism-

associated molecular patterns (MAMPs) [22]. MAMPs include peptidoglycans, lipopro-
teins, flagellins, lipopolysaccharides (LPS), and teichoic acids [22]. These comes from
different types of bacteria, see table 2.1 [22]. Hence, the host cells distinguish between
bacteria from the gut microbiota based on different compounds from the bacteria. The
receptors on the epithelial cells, that recognize the MAMPs are the Toll-like recept-
ors (TLR) and the nucleotide-binding oligomerization domain (NOD) like receptors, see
table 2.1 [22]. TLR are situated on the outer surface of the epithelial cells, both on the
apical and the basolateral side, but also on endosomal membranes, while NOD-like re-
ceptors are present on the cytoplasmic side of the cells, see table 2.1 [60]. Host cells can
therefore identify MAMPs and/or bacteria that have translocated across the epithelial
layer to the basolateral side of the epithelial cells, or have been engulfed by the host
cell, as well as MAMPs or bacteria residing in the intestinal lumen [10]. Bacteria and/or
MAMPs can make such translocations across the epithelial barrier through engulfment
by immune cells, as dendritic cells, through M cells, and potentially through loose TJ
[22].
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In general, when MAMPs bind to TLR or NOD-like receptors it starts a signaling
cascade involving NF-κB [22, 37]. The following response has been found to depend on
what kind of MAMPs or bacteria that bind. Activation of TLR or NOD-like receptors by
a pro-inflammatory stimuli leads to a cascade of phosphorylations, resulting in ubiquit-
ination and degradation of IκB, so it disassociate from NF-κB. NF-κB then translocate
to the nucleus where it functions as a transcription factor for pro-inflammatory genes
[37]. This reaction may occur continuously in the intestine, as luminal bacteria may
stimulate TLR on the epithelial cell apical surface constantly. Conditioned media from
some commensal bacteria and/or the commensal bacteria itself have been found to stim-
ulate NF-κB activity in vitro, an example being Bacteroides uniformis and Clostridium
sardiniensis [61]. Other commensal bacteria as Bifidobacterium breve, Bacteroides thet-
aiotaomicron, and Ruminococcus gnavus did not affect NF-κB activity, while Collinsella
aerofaciens inhibited NF-κB activity [61]. The commensal bacterium Bacteroides thetai-
otaomicron, has also been found to induce an anti-inflammatory response by increasing
the export of the NF-κB subunit (RelA) from the nucleus, so NF-κB had limited effect
as a pro-inflammatory transcription factor [62]. Non-pathogenic Salmonella can also
limit NF-κB activation by inhibiting degradation of IκB [63]. Based on this the com-
mensal bacteria may modulate immune response in the epithelial layer through their
interactions with the TLR, leading to an anti-inflammatory response, no response or
a pro-inflammatory response, it is depending on the bacteria and MAMPs. This must
limit the constant pro-inflammatory stimuli other bacteria in the gut microbiota have
leading to homeostasis.
The homeostasis in the epithelial layer must also be affected by the placement of the

TLR and NOD-like receptors, see table 2.1, as well as the expression of these. It has
been suggested that epithelial cells have a lower response to TLR2 ligands (Gram-positive
bacteria), see table 2.1, as TLR2 are expressed lower here [64]. Location of the receptors
must also have an effect. For example TLR4 is located on the basolateral side of the
epithelial cell, hence only bacteria or MAMPs reaching the basolateral side of the IEC
may stimulate TLR4. While NOD-like receptors are activated by bacteria or MAMPs
that reach the cytoplasm, see table 2.1. Therefore an immune response must be initiated
if bacteria pass the epithelial barrier.
Conclusively the host can sense the bacterial community, this may in some cases cause a

pro-inflammatory response, while an anti-inflammatory response is induced by other bac-
teria. However overall the host mucosa does not seem to be in a constant inflammatory
state, hypothesising that the microbiota may not induce or counteracts pro-inflammatory
stimuli, until a pro-inflammatory suppress this effect e.g. during pathogenic infection.
The interaction between epithelial cells and the gut microbiota is of course important
for intestinal integrity. If inflammation arises it may cause impairment of the epithelial
barrier hence affecting intestinal integrity.

2.5 Intestinal integrity

The epithelial layer is the final barrier between the luminal content and the host. Main-
tenance of this barrier is therefore extremely important. Imbalance in barrier function
has been connected to diseases as IBD, irritable bowel syndrome, and Celiac disease [29,
65]. Due to the close connection to gastrointestinal disorders, intestinal integrity may
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become a very relevant research field within gut ecology, gastrointestinal disease, and
effects of functional foods.

2.5.1 Definition of intestinal integrity
The word "integrity" is defined as

"The state of being whole and undivided" [66].

Considering the definition of the word integrity, intestinal integrity is here defined to
deal with maintaining the intestinal barrier whole and assembled. This occurs through
the mucus layer, the epithelial cells, and the connection between the IEC by TJ. Changes
in intestinal integrity may therefore arise by

• changes in the mucus layer,

• changes in epithelial cell proliferation or cell death,

• changes in connection between adjacent cells by the TJ.

The term intestinal integrity is quite often used in connection with intestinal permeab-
ility. These two terms must be closely related, however they do not cover the same.
Intestinal integrity is defined above, while intestinal permeability here is considered to
reflect the passage of molecules across the IEC layer. Such a passage can be affected by
the epithelial cells forming the barrier, but also interactions by TJs. However, changes
in mucus layer alone may not affect the permeability. Hypothesizing that intestinal in-
tegrity is accomplished by the mucus layer, the epithelial layer, as well as TJs, while
permeability does not cover the mucus layer. Based on this assumption, alterations in
intestinal permeability must indicate altered intestinal integrity. One should however
be aware that unaltered permeability for selected tracer molecules does not necessarily
imply that intestinal integrity is not impaired, since the tracer molecule may be too large
to pass across the impairment. Alterations of barrier functions are often measured by
trans-epithelial electrical resistance (TER) in vitro that must be a measure of barrier
integrity. Additionally as it measure both the leak and the pore pathway [58], alterations
in this parameter must indicate alterations in the barrier integrity.
Bacterial translocations are by some also used to indicate impairment of intestinal

integrity [67, 68, 69]. If bacteria should cross the intact epithelial layer through the
TJ complex it should be through the leak pathway. But some state that the passage
between the TJ is too narrow for bacteria to cross [59]. Therefore increased bacterial
translocation is here not considered to initially occur through increased permeability
at TJ. Additionally inflammation may lead to increased permeability as specific pro-
inflammatory cytokines increases permeability (see section 2.5.3), this might result in
complete disruption of the TJ or loss of epithelial cells, hence leading to bacterial trans-
location. In a recent study translocation of bacterial DNA and a labeled E. coli from
the intestinal lumen into tissue was higher in mice fed a HF diet than mice fed a normal
diet [67], hence considered to have impaired intestinal permeability. This support the
hypothesis that impairment of intestinal integrity may lead to bacterial translocation.
Conclusively bacterial translocation are here considered to result from decreased intest-
inal integrity, however the barrier impairment is not initially caused by transport of
bacteria across the TJ.
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2.5.2 Effect of changed intestinal permeability

Impairment of intestinal integrity is connected to inflammation and gastrointestinal dis-
orders, hence impairment of intestinal integrity can cause adverse effects. Impaired
intestinal integrity or altered intestinal permeability has been connected to among other
CD, UC, Celiac disease, irritable bowel syndrome, necrotizing enterocolitis (NEC), and
obesity [1, 29, 65, 70]. But what came first? The increased intestinal permeability or the
disease? Patients with diseases such as CD have a barrier defect before clinical disease is
initiated, while enteropathogenic E. coli infection leads to a defect barrier then disease
according to [59]. Additionally some pathogenic bacteria have been shown to decrease
TER, see table 2.2, indicating that increased permeability may be exploited by such
pathogens, hence leading to bacterial translocation. In mice with induced NEC intest-
inal permeability was also increased before the disease onset [70]. This indicates that
permeability may be increased before disease onset. Based on a literature review Turner
[59] stated that disease may not be caused by only changes in the TJ, but such changes
would increase immune response in the host, hence increasing the risk of disease. This
occurs potentially by an increased inflammatory state. Others support this hypothesis.
The permeability for fluorescein isothiocyanate-dextran (FITC-dextran) was positively
correlated to plasma LPS [71], indicating that LPS can translocate together with FITC-
dextran. This was by the authors in another paper suggested to lead to inflammation
[1] and hence bacterial translocation.
The epithelial layer must however exploit the opening of the TJ complex during e.g.

nutrient uptake. One may argue that increased permeability leading to increased flux
of specific ions or nutrients across the epithelial layer may be beneficial. For example
an increased flux of calcium may be beneficial as it would increase its uptake. It should
however subsequently not result in an inflammatory stated, barrier impairment, and
bacterial translocation. Changes in permeability up to a certain size or a specific dur-
ation may therefore be favorable. It is therefore relatively difficult to state if changes
in intestinal permeability are beneficial or not; it depends on how much the integrity
subsequently is changed. If the integrity is impaired leading to inflammation and dis-
ease the altered permeability is adverse, however if integrity is maintained following the
altered permeability, host health may not be affected.

2.5.3 Alteration of intestinal integrity

The intestinal integrity can be modulated by affecting the interactions between TJ pro-
teins, affecting the mucus layer thickness, and affecting IEC proliferation and death
among other. The scope of the project is the effect of the bacteria on the intestinal
permeability. In the intestinal lumen a wide range of bacteria may have an effect. How-
ever the host may also modulate the intestinal permeability. In the following paragraph
the effect of bacteria on the intestinal integrity, as well as metabolites produced by the
bacteria are described. Selected host mechanisms to regulate intestinal permeability are
also briefly introduced, as these may be used by the bacteria.

Gut microbiota

The gut microbiota can affect the intestinal integrity [1]. This can occur by
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• peptides or toxins,

• cellular structural components,

• metabolites [65].

Several studies have examined the effect of bacteria on the intestinal integrity both in
vitro and in vivo. These studies have mainly been conducted with probiotic or potentially
probiotic bacteria in connection to decreasing adverse effects of pathogens or induced
intestinal disorders, see table 2.2 and 2.3. They do however indicate if and how bacteria
may affect the intestinal integrity.
Several studies, see table 2.2 and 2.3, have examined the effect of the probiotic mix-

ture VSL#3 that contains Bifidobacterium longum, B. infantis, B. breve, Lactobacillus
acidophilus, L. casei, L. delbrueckii subsp. L. bulgaricus, L. plantarum and Streptococcus
salivarius subsp. Thermophilus [72]. This mixture of bacterial strains and conditioned
media (CM) from it have been shown to decrease permeability in vitro [72, 73]. This
indicates that VSL#3 affects the epithelial cells by a soluble factor [72, 73]. The mech-
anism behind these effects have been shown to be connected to increased expression of
mucin encoding genes, and reduce effects of pathogen exposure by limiting mammalian
cell death and redistribution of ZO-1 introduced by the pathogen, see table 2.2 [73]. In
vivo, see table 2.3, VSL#3 was shown to protect against increased intestinal permeability
in gastrointestinal disease models [72, 74, 75]. This was connected to among other lim-
iting apoptosis of epithelial cells and decreased levels of TJ proteins, that DDS-induced
colitis had caused [75]. An in vitro study with mono-cultures of bacteria from the VSL#3
mixture has shown that conditioned media from B. infantis increased TER the most of
the bacterial strains, as well as increased the protein expression of occludin and ZO-1
[76]. B. infantis has also been found to inhibit increased intestinal permeability in NEC
animal models in vivo [70]. The probiotic VSL# 3 mixture may hence affect the in-
testinal integrity by limiting mammalian cell death induced by pathogens, increase the
interaction between epithelial cells, affect mucin production, and limit adverse effects
of induced NEC. All these effects seem to occur through soluble factors that may be
produced by one or more of the bacteria in the mixture. Fermented dairy products with
among other B. lactis and L. lactis can also decrease impairment of the epithelial barrier
that was induced by stress in rats [77]. Hence different mixtures of bacteria may affect
intestinal integrity. Overall the applied mixtures included Bifidobacterium spp. and
Lactobacillus spp. are generally considered beneficial for host health.
Potential effects of bacterial strains of Lactobacillus plantarum have also been ex-

amined individually. This has led to indications of strain specific effects. For example
mono-cultures of specific L. plantarum strains (MB452 and NF1298) were shown to in-
crease TER in vitro [78, 79], while another strain (WCFS1) did exhibit this effect, see
table 2.2 [80]. This effect on TER seemed to be dependent on the viability of the bacteria
[78]. The different strain also seemed to affect the barrier function by different mech-
anisms. L. plantarum MB452 increased the staining ZO-1, ZO-2, occludin and cingulin
[79], while L. plantarum WCFS1, which did not increase TER, moved ZO-1 closer to the
TJ in vitro as well as increased the ZO-1 and occludin levels in vivo [80]. These studies
indicate a strain difference for the effect of L. plantarum on the intestinal integrity. This
may therefore also be valid for other bacterial species.
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2.5 Intestinal integrity

The idea behind probiotics is that they should increase host health. Therefore some
studies examine if probiotics can limit adverse effects of pathogens on barrier function, as
shown by improvement of TER in vitro [73, 81, 82] and limiting epithelial cell apoptosis
in vivo [83]. These probiotics have been suggested to introduce this effect by affecting
gene expression of ZO-2, location of ZO-1 and ZO-2, as well as limiting mammalian
cell death, and increased mucin gene expression, see table 2.2 and 2.3 [73, 82, 83].
Other probiotics have been examined for capability to reduce adverse effects of induced
gastrointestinal disorders. An example is the probiotic E. coli Nissle 1917, which has
been shown to increase the expression of ZO-1 and limit the effects of induced-colitis
on permeability in vivo [84]. Additionally CM from Bifidobacterium infantis has also
been found to decrease intestinal permeability in a colitis mode [76], while B. animalis
reduced bacterial translocation [67].

It is however not only probiotics, that may affect intestinal integrity. Other bacteria,
that are not considered probiotics, have also been found to affect intestinal integrity.
For example administration of Akkermansia muciniphila to mice fed a high-fat (HF)
diet resulted in an increase in mucus layer thickness, that the HF diet had reduced [87].
Additionally administration of this bacterium was also found to reduce serum LPS levels
[87]. This was not linked to change in other bacterial groups than the specific bacteria
[87]. Hence the mucin degrading A. muciniphila might stimulate mucus production,
hence increasing intestinal integrity.

As the intestinal integrity may be affect by several bacteria or their interplay, it is
relevant to determine effects of the complete community or bacterial groups on the in-
testinal integrity. A few studies have tried to correlate specific bacterial groups from
the complex gut microbiota with markers for intestinal integrity. A negative correlation
between bifidobacteria and plasma LPS levels in ob/ob mice have been shown [71]. In-
dicating that Bifidobacterium spp. may increase intestinal integrity, as also seen with
mono-cultures, see table 2.2 and 2.3. Other studies have shown Lactobacillus positively
and Oscillibacter negatively correlated with TER in the colon of diet-induced obese mice
[88]. In fact Oscillibacter was also negatively correlated with the mRNA expression of
ZO-1 [88]. As only a few studies have done such analysis, it is not possible to declare
which bacteria in the complex gut microbiota that has an effect on the intestinal integ-
rity. However these studies indicates that the gut microbiota indeed has an effect on the
intestinal integrity.

The mechanism by which the gut microbiota affects the intestinal integrity has not
been fully elucidated yet. However, LPS has been shown to cause metabolic endotoxemia
in the same manner as HF diet in mice [89]. Additionally ZO-1 and occludin mRNA rel-
ative expression have been shown negatively correlated with FITC-dextran permeability
[1, 71] indicating that altered expression of these TJ proteins may have an effect on per-
meability. It was suggested that the bacterial community caused the effect [1, 71]. It has
later been suggested that the gut microbiota controls the intestinal permeability trough
the endocannabinoid (eCB) system [90]. The gut microbiota is suggested to activate the
eCB system, hence increasing intestinal permeability by alterations of localisation and
distribution of ZO-1 and occludin [90]. This may however not be the sole mechanism
for regulating intestinal integrity by bacteria in the gut microbiota, as mucin production
and epithelial cell proliferation and death may be regulated by other mechanisms.
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Chapter 2 Introduction

In conclusion, bacteria may affect the intestinal integrity directly or by production
of specific compounds. This can affect the viability of the epithelial cells, the gene
expression, protein level, and localization of TJ proteins, as well as expression of mucin
genes. All factors that is relevant for intestinal integrity.

Metabolites

The studies represented above illustrate that some bacteria affect the intestinal integrity
by direct interactions or through metabolites. Bacteria degrade substrates in the luminal
content resulting in production of different metabolites and potentially cross-feeding.
Commane and co-workers [85] examined the effect of supernatants from mono-cultures
of probiotic strains and carbohydrates (putative prebiotics) on TER, see table 2.2. Here
e.g. L. rhamnosus fermentations with some carbohydrates increased TER while other
carbohydrates and bacterial strains had no effect [85]. This clearly illustrates that the
effect of the bacteria metabolic compounds on the intestinal integrity is dependent on
the available substrate. In addition the study indicated that the substrates themselves
can affect intestinal integrity [85].
Studies have also determined the effect of specific metabolites known to be found in the

GIT on intestinal integrity. SCFA are produced during fermentation in the GIT. These
are used as an energy source by the IEC [10]. Butyrate has been shown to decrease
intestinal permeability in both in vitro [91] and in vivo setups by limiting increased
intestinal permeability induced in disease models [92]. High concentrations of butyrate
(8-10mM) have however resulted in increased permeability, see fig. 2.7 [14, 15]. This was
caused by a dose-dependent induction of apoptosis in epithelial cells [15]. Therefore low
concentrations of butyrate are considered beneficial, while high levels may have adverse
effects. Specifically butyrate has been shown to increase ZO-1 and occludin staining as
well as increasing claudin-1 expression [91], indicating increased integrity. Other SCFA
such as acetate and propionate have also been found to increase TER in vitro [93].
Acetate was also reported to reduce the decrease in TER, that the pathogenic E. coli
O157:H7 caused [83]. Finally, a mix of SCFA including acetate, propionate, and butyrate
caused a decrease in intestinal permeability in vivo [93]. The mechanism behind the effect
of SCFA on intestinal permeability still needs to be examined further. But as they are
used for energy by the IEC, they must be beneficial, however the stated studies must
indicate that it is only up to a certain concentration. Stimulation of SCFA producing
bacteria, as bacteria belonging to the Clostridium clusters IV and XIV, as well as lactate
producing bacteria as Bifidobacterium and Lactobacillus, that may cause cross-feeding
leading to stimulation of SCFA producing bacteria may therefore be beneficial.
The bacterial community in the GIT also produces indole, see fig. 2.7. Indole is

produced during catabolism of the amino acid tryptophan by both Gram-positive and
Gram-negative bacteria [94]. Indole concentrations are lower in germ-free mice than
specific pathogen free mice [94]. In connection the germ-free animals had a lower mRNA
expression of claudin-7, occludin, and TJP1 (ZO-1) [94]. Additionally indole increased
TER in vitro as well as increasing the expression of genes relevant for the organization
of TJ proteins [95]. Hence the host seems to increase intestinal integrity by sensing this
bacterial product.
The mentioned studies merely determine the effect of single metabolites or a relatively

small mix of metabolites on the intestinal integrity in in vitro or in vivo setups. This
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2.5 Intestinal integrity

does not mimic the complex metabolite profile in the GIT. In order to have a mixture
resembling the metabolite profile in the GIT it may be use full to apply faecal or caecal
water in for example in vitro setups. This must include several compounds, as SCFA
and indole, that could have effects on intestinal integrity. Previously a study has applied
faecal water in the TER setup. This study showed that faecal water from elderly people
increased the permeability in vitro while faecal water from adults had the opposite effect.
Differences between the two types of faecal water were considered to potentially arise
due to different composition in the bacterial community and hence metabolite profile
[96]. Faecal or caecal water may hence be useful for mimicking the complex metabolite
profile.
Overall metabolites formed in the GIT can affect the intestinal integrity. Modulation

of the metabolite profile through modulation of the gut microbiota or administration
of specific compounds known to increase integrity might therefore be used as a poten-
tial mode of action against intestinal disorders known to be associated with impaired
intestinal integrity.

Figure 2.7: Overview of potential effects of metabolites, cytokines and zonulin on intest-
inal integrity as described in section 2.5.3. The arrow indicates increased(↑) or reduced
(↓) expression. cldn; claudin, ocln; occludin.

Host

It is not only the gut microbiota and its metabolites that may affect the intestinal in-
tegrity. The host may also regulate the intestinal integrity. This can be as a response
to the gut microbiota and its metabolites, as well as a response to inflammation. The
reasoning for host regulation of intestinal permeability could be that immune cells then
can sample from the intestinal lumen environment, or that more nutrients can be ab-
sorbed. Here the effect of cytokines, that bacteria may affect through interactions with
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the epithelial cells, and zonulin are introduced, as these are often considered within the
field of intestinal integrity.

Cytokines

The immune system and the epithelial layer communicate through among other cytokines
making these molecules important for the regulation of intestinal integrity. Additionally
epithelial cells sense bacteria and/or MAMPs through TLR and NOD-like receptors,
that can lead to a pro-inflammatory or anti-inflammatory response, see section 2.4.
Here effects of a limited number of cytokines on intestinal integrity are presented.
Several studies have examined effects of pro-inflammatory cytokines on intestinal per-

meability. Mainly tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) have been
studied. The level of these cytokines are elevated in some gastrointestinal disorders [29],
hence their effect on intestinal integrity may be important. TNF-α was shown to in-
duced apoptosis, and decrease TER in vitro, see fig. 2.7 [76, 97, 98]. However a single
study did not find any change in TER or permeability after exposure to TNF-α [99].
Changes in permeability due to TNF-α were connected to increased mRNA expression
for claudin-2, caused by an increased promoter activity for the gene encoding claudin-2
[98], as well as redistribution of occludin and claudin-1 towards the cytoplasm [76]. IFN-
γ was also found to decrease TER [56, 76, 99] as well as increasing the permeability of
larger probes [56]. This indicates that IFN-γ may affect the leak pathway. The effects of
IFN-γ on TJ protein levels are contradictory, as protein levels of claudin-1 and occludin
were decreased in one study [56] and were not affected in another [99]. But claudin-1,
claudin-4, JAM-1 (JAM-A), and occludin have been shown to be re-distributed towards
the cytoplasm by IFN-γ exposure [76, 99]. IFN-γ may therefore affect the intestinal
permeability by changing the localization of TJ proteins, hence decreasing the interac-
tion between adjacent cells. Whether TJ protein levels are affected by these cytokines
is unclear. When combining the two cytokines TER was found to decreased and the
permeability was increased [99, 100]. Bruewer and co-workers [99] found that the com-
bination of the two cytokines affected the distribution of TJ proteins in a similar manner
as IFN-γ alone, where claudin-1, claudin-4, JAM-1 (JAM-A), and occludin were relo-
cated towards the cytoplasm. Re-localization of occludin caused by combination of the
two cytokines was also shown by Li and co-workers [100], here resulting in irregularit-
ies of the cell membrane. These studies support that the pro-inflammatory cytokines
TNF-α and IFN-γ increases the intestinal permeability. These effects seem to occur
through among other increased apoptosis in the epithelial cells, increased expression of
claudin-2, decreased expression of occludin, and re-distribution of several TJ proteins
away from the TJ complex. Redistribution of TJ proteins may be caused by activation
of Myosin light chain kinase (MLCK) by the stated cytokines [59], potentially causing
the cytoskeleton to pull in the TJ proteins, and relocate them.
It is not all cytokines, that result in increased permeability of the intestinal wall.

The cytokine transforming growth factor-β (TGF-β) was shown to increase TER but
not affect the permeability of a macromolecule [101]. In addition this cytokine could
limit the adverse effects IFN-γ had on TER. This effect was however counteracted by
increased levels of IFN-γ [101].
The outlined cytokines illustrates that cytokines produced by the host may have differ-

ent effects on the intestinal permeability, potentially helping in maintaining intestinal
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integrity. There are more cytokines, than the above mentioned, that can affect the in-
testinal integrity. These are not all included here, as it is outside the main scope of
the thesis. But further information can be found in a paper by Al-Said and co-workers
[102], where research regarding the effect of cytokines on the epithelial barrier is collec-
ted. Here it is stated that in general it seems that pro-inflammatory cytokines cause
increased permeability, while anti-inflammatory cytokines have the opposite effect [102].

Zonulin

Zonulin is a human protein, that has evoked interest within the field of intestinal integrity,
since it was identified as the human analog to zot (Vibrio cholera toxin), that is known
to modulate permeability [103]. Zonulin has since been identified as the precursor for
haptoglobulin-2 (HP2) [104]. Zonulin is considered to regulate the TJ, consequently
being a modulator for the permeability of the epithelial barrier. Specifically zonulin has
been connected to Celiac disease, where zonulin mRNA expression is higher in intestinal
tissue in patients suffering from acute Celiac disease compared to healthy individuals
[105].
The effect of zonulin on intestinal permeability has been examined ex vivo and in

vivo. Initially zonulin was shown to decrease the electrical resistance in rhesus monkey
jejunum and ileum tissue, while colon tissue was not affected, thus it was speculated that
there is no specific receptors for zonulin in the colon [103]. In vivo zonulin was found to
increase permeability in the small intestine as well as the gastroduodenal in mice [104].
Here merely the permeability in the stated sections were examined, making it difficult to
exclude that zonulin may have an effect in the colon. It seems that the effect of zonulin
on barrier integrity is reversible [106], hence removal or limitation of zonulin, may limit
adverse effect on permeability. This could potentially be used for therapeutic means.
Zonulin may not be released constantly, but potentially under specific conditions, for

example during bacterial exposure. The release of zonulin has indeed been shown to
be stimulated by pathogenic and non-pathogenic bacteria in a range of animal tissue
segments. A study was conducted with three Escherichia coli strains isolated from
healthy infants and one pathogenic Salmonella enterica typhimurium strain. These are
all Gram negative bacterial strains, hypothesizing that zonulin is released upon contact
with Gram negative bacteria [106]. Indeed a Gram positive potential probiotic strain
L. plantarum strain PP-217, was shown to decrease the release of zonulin in rabbit
intestinal tissue stimulated by E. coli, in addition to limit the adverse effects on TER
[107]. Based on the effect of bacteria on zonulin release it may be hypothesised, that
bacteria can affect the intestinal permeability by inducing zonulin in the host. It has
been suggested that zonulin may regulate bacterial colonization in the small intestine, as
increased zonulin levels would open the TJ leading to water flowing into the lumen, hence
flushing the bacterial community [107]. This hypothesis needs further examination.
The mechanism behind zonulins opening of the TJ has not been fully determined.

Zonulin has been shown to redistribute ZO-1 away from the membrane in epithelial cells
[106], as a result it reorganizes the TJ complex. The mechanism behind zonulins effect
on permeability has been suggested to arise by activating PAR2 causing phosphorylation
of the epidermal growth factor receptor (EGFR) [104]. The bacterial analog to zonulin,
zot, has been suggested to activate proteinase-activated receptor 2 (PAR2) leading to
phosphorylation of ZO-1 by PKC-α [108]. ZO-1 was subsequently found to disassociated
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from claudin-1 and occludin causing the TJ complex to disassemble [108]. Zonulin have
also been shown to induce disassembly between ZO-1 and the actin skeleton by inducing
myosin phosphorylation, leading to disassociation of the TJ [108].
Conclusively, zonulin is produced by the host making it possible for the host to regulate

intestinal permeability. Zonulin seems to regulate TJ by phosphorylation of ZO-1 and
myosin. The cause of zonulin production may be bacterial contact, but further studies are
needed to determine which bacteria, that may affect the zonulin production. However,
it is clear that permeability of the TJ is not only regulated by zonulin, as TNF-α, that
is known to reduce TER, does not induce zonulin production [106]. Therefore several
mechanisms must be involved in TJ permeability regulation.
Collectively intestinal integrity can be modulated by the gut microbiota, its meta-

bolites, cytokines and zonulin. It seems that the bacteria can modulate cytokines and
zonulin, hence the intestinal integrity. The changes in intestinal integrity described here
include redistribution of TJ proteins as well as altered expression of these at gene and
protein level.

2.5.4 Application of different models for studying intestinal integrity

Studies examining the effects of e.g. bacteria, their metabolites, and cytokines on in-
testinal permeability and integrity apply both healthy and disease models, see table 2.2
and 2.3. Selection of which model to use depends on the aim of the study. Disease mod-
els have the clear advantaged that it can be determined if a treatment can counteract
potential adverse effects the induced disease has on the intestinal integrity. But as the
mechanisms behind most gastrointestinal disorders still needs to be elucidated, the dis-
ease models may not mimic the disease sufficiently [59]. Therefore, potential beneficial
effects of a treatment found using a disease model, may not be functional in a patient.
Additionally, disease models such as DSS-induced colitis may cause damages to epithelial
cells leading to cell death, and not merely affect the TJ complex [59]. Hence the changed
permeability in these models is a combination of epithelial cell death and changes in TJ
and not merely changes in TJ [59]. Application of disease models is however useful as
it can be elucidated if a treatment can limit adverse effect on intestinal permeability
induced by disease.
Other studies apply healthy or non-challenge models, see table 2.2 and 2.3. Here it

can be determined if e.g. a bacterial strain, specific compounds etc. affect intestinal
permeability in a healthy gut. It can however not be excluded, that a treatment, with
no effect in a healthy model, may have an effect in a disease model, as treatment may
affect a state in a disease model, that is not present in the healthy model. The opposite
can also be valid. In general it is difficult to determine a "more healthy state" in a
healthy model, hence alterations leading to adverse effect or limiting induced adverse
effects is easier to identify. The application of different models also means that they
have different microbial composition. This may hence affect the outcome, potentially
resulting in differences in experimental outcome determined between different models.
The scope of the current work was to determine if modulation of the "normal" gut mi-

crobiota had an effect on intestinal integrity, therefore healthy models were applied. Ad-
ditionally alterations of the complete microbiota were used, and not just mono-cultures.
This gives a more elaborate view of how this complex system affects the host intest-
inal integrity. Additionally the interplay between the bacteria in the gut microbiota is
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included in this.

2.6 Modulation of the gut microbiota

Modulation of the gut microbial composition through intake of probiotics and prebiotics
is considered to have beneficial effects on human health. The gut microbiota is however
also affected by the consumed diet, dietary changes, antibiotic treatment etc. As the
gut microbiota and its metabolites affect intestinal integrity, modulation of the gut
microbiota may also affect the intestinal integrity. Modulation of the gut microbiota
and intestinal integrity by antibiotics and selected prebiotics or putative prebiotics and
whole-grain products are the main focus, as these have been applied in the study.

2.6.1 Antibiotics

Antibiotics are commonly used in treatment of bacterial infections in humans and anim-
als. Antibiotics are compounds that kill or inhibit bacteria. They have different targets
within the bacterial cell, see fig. 2.8, like

• DNA replication,

• transcription,

• protein synthesis,

• cell wall,

• cytoplasmic membrane [109].

Mechanisms behind the effects of antibiotics are outside the scope of the current pro-
ject, however due to these different bacterial targets, antibiotics must modulate the gut
microbiota differently. For example an antibiotic targeting Gram-positive bacteria may
cause a decrease in the relative abundance of such, while potentially increasing the re-
lative abundance of Gram-negative bacteria. Different antibiotics may therefore cause
different effects on the gut microbiota and hence intestinal integrity.

Effect of antibiotics on intestinal integrity

The effect of antibiotic administration on the gut bacterial composition and intestinal
integrity has been examined. Here beneficial effects of antibiotic treatment on intestinal
integrity have been shown. For example antibiotic (ampicillin and neomycin) treatment
was able to counteract a reduced mRNA expression of ZO-1, reduce plasma endotoxin,
and increased intestinal permeability in HF diet mice [1]. A similar effect was seen in
ob/ob mice following antibiotic treatment [1]. In the study, administration of antibiotics
was shown to change the gut microbiota in mice, mice fed HF diet, and ob/ob mice result-
ing in a reduction in Lactobacillus spp., Bifidobacterium spp., and Bacteroides-Prevotella
spp. compared to mice not administered antibiotics [1]. Hence the antibiotics reduced
adverse effect on intestinal integrity potentially caused by obesity, but they also reduced
bacteria that are considered health beneficial as Bifidobacterium spp. and Lactobacillus
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Figure 2.8: Antibiotic targets within the bacterial cell. The figure is a copy of figure 1
in [110].

spp.. Other studies have also examined effects of antibiotic administration. Admin-
istration of antibiotics ampicillin, neomycin and metronidazole has also been shown to
reduce LPS levels in plasma in HF diet feed mice [111]. Increased levels of LPS in plasma
have previously been considered to indicate increased intestinal permeability [1]. The
antibiotics was shown to cause a change in the gut microbiota leading to an increase in
Proteobacteria as well as a reduction in aerobic and anaerobic bacteria compared to the
control [111]. Neomycin has also been found to increase Proteobacteria in water avoid-
ance stressed rats, while rifaximin increased Lactobacillus [112]. Here Rifaximin was
shown to reduce mucosal inflammation induced by the water avoidance stress, but neo-
mycin did not have this effect [112]. Overall these stated studies indicate that antibiotics
can modulate the gut microbiota leading to increases intestinal integrity.
Administration of antibiotics has also been found to have adverse effects on intestinal

integrity. Administration of metronidazole to mice prior to infection with Citrobacter
rodentium has been found to lead to impairment of intestinal integrity compared to
streptomycin administration and no antibiotic treatment. Specifically metronidazole
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pretreatment caused a reduction in mRNA expression of MUC2, TFF3 and Relmβ, that
all take part in the mucus layer. This led to a thinner mucus layer, Citrobacter rodentium
attached more to the mucosal layer, and inflammation was higher than in the control and
streptomycin animals [113]. All indicating an impairment of intestinal integrity. The
metronidazole was shown to stimulate Lactobacilli, while Clostridium coccoides group
and Bacteroidales were reduced by the antibiotic [113].
Not all antibiotics seem to affect intestinal integrity. For example streptomycin did

not affect mucus layer thickness in mice [113]. This may arise due to modulation of
bacteria, that does not have an effect on the intestinal integrity, or that the induced
modulations counteract each other, at the level of intestinal integrity.
Conclusively the application of antibiotics in treatment of bacterial infections may

modulates the gut microbiota leading to increased, decreased or unaltered intestinal
integrity, all dependent on the applied antibiotic.

2.6.2 Prebiotics

The gut microbiota may, in addition to antibiotic administration, be modulated by pre-
biotics, see fig. 2.9. Prebiotics are defined as “selective fermented ingredients that cause
specific changes in composition and/or activity in the gastrointestinal microbiota that
confers benefits upon host well-being and health” [114]. An increase in Bifidobacterium
and Lactobacillus by such substrates are therefore considered to be a prebiotic effect
[17].
In the present work a selection of prebiotics were used. These were selected based

on previous studies linking these to altered intestinal integrity. These are only shortly
introduced. The selected prebiotics are fructo-oligosaccharides (FOS) and inulin, as well
as the putative prebiotics xylo-oligosaccharides (XOS). Inulin consists of β2,1-linked
fructofuranose residues with a high degree of polymerization (DP). FOS has a quite
similar structure but it has a lower DP (2-7 DP) [17]. While XOS are β1,4-linked
xylo-oligosaccharides with a DP around 2-4 [17]. These are, due to their prebiotic or
putative prebiotic status, considered to stimulate bifidobacteria and lactobacilli, but they
may also affect other bacteria in the gut microbiota potentially through cross-feeding.
Therefore prebiotic treatment may lead to effects on intestinal integrity.

Figure 2.9: Overview of changes in the gut microbiota by prebiotic and antibiotic ad-
ministration. The blue circles, red rods, and green y-shaped shapes illustrate bacteria.
More specifically Bifidobacterium is illustrated by the green y-shaped bacteria.
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Effect of prebiotics on intestinal integrity

Prebiotics and putative prebiotics can modulate the gut microbial composition, which
may affect intestinal integrity. Both in vitro and in vivo studies have been conducted in
order to determine if changes in the gut microbial composition due to such substrates
could affect intestinal integrity.

In vitro studies have included the formally mentioned study by Commane and co-
workers, see table 2.2 [85]. Others have also examined the effect of prebiotics on intest-
inal integrity by applying in vitro models. These studies have included fermentations
with complex faecal bacterial communities, and subsequently applied supernatant from
these batch in vitro faecal fermentations or continues systems with putative prebiotics
or prebiotics. Here fermentation supernatant from the proximal and distal vessel in the
Human Intestinal Microbial Ecosystem (SHIME) with branched fructans was shown to
increased TER [115]. As were supernatant from batch fermentations with human fae-
ces and resistant starches [116]. All illustrating that fermentation of prebiotics with a
complex bacterial community may increase the intestinal integrity.
Other studies have examined if prebiotics affects the intestinal integrity in vivo. Several

studies have determined if prebiotics affects infection by pathogenic bacteria, this can be
used as an indicator for changes in intestinal integrity. It has led to contradicting results,
where prebiotics and putative prebiotics have both increased and decreased pathogenic
infection, in addition to some not having an effect on intestinal integrity.
Lactulose administration to rats has resulted in limited Salmonella enteritidis trans-

location, when lactulose was administered with a high calcium diet [117], while lactu-
lose administration resulted in increased inflammation, when the diet was not high in
calcium [69, 117]. Hypothesizing, that calcium may counter act or limit effects of lac-
tulose [117]. Sole lactulose also resulted in increased cytotoxicity of faecal water and
excretion of mucus [69, 117], indicating impaired intestinal integrity caused by lactulose
administration. Lactulose was shown to stimulate Enterobacteria, Bifidobacterium and
Lactobacillus [69]. This indicates, that stimulation of bacteria considered to be health
promoting, as Lactobacillus and Bifidobacterium, may be connected to adverse effects.
Stimulation of Enterobacteria could of course have resulted in the adverse effects, but
Enterobacteria was also stimulated by another carbohydrate, that did not result in in-
creased S. enteritidis translocation, mucus secretion, or faecal water cytotoxicity [69].
As the authors merely determined the effect of lactulose on selected bacterial groups, it
cannot be excluded, that bacterial groups, which were not examined during the study,
were affected by lactulose, leading to adverse effect, or that combination of stimulation
of specific bacterial groups simultaneously causes the adverse effects.
The effect of other prebiotics on Salmonella translocation has also been examined.

FOS was also shown to increase S. enteritidis translocation in rats [69, 118, 119] in a
dose-dependent manner [118]. A similar effect was also determined in mice for Salmon-
ella Typhimurium SL134 [68]. Indicating that FOS decrease intestinal integrity, as was
confirmed by an increased permeability for CrEDTA following FOS administration in
rats [120]. FOS stimulated bifidobacteria [69, 118, 120, 121], lactobacilli [69, 119, 120],
Enterobacteria [69, 118, 119], E. coli [120], and Bacteroides fragilis group in the rodents.
However it also reduced the Firmicutes in mice [121]. Stressing that stimulation of
specific bacterial groups considered to be beneficial may not always result in beneficial
effects. Besides stimulating these bacterial groups FOS also increased cytotoxicity of
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faecal water, decreased faecal pH, and increased excretion of mucus [69, 118, 119, 120].
The increase in Salmonella translocation, faecal water cytotoxicity and decreased faecal
pH may all cause adverse effects on the host, as it may irritate the mucosal barrier. An
increase in mucin secretion is, however, not that straight forward. It may be indicating
an increased mucin production, or an increased irritation of the mucosa leading to mucus
release. Here the mucus concentration in caecum was increased by FOS [120], combined
with the other outcomes it may indicating that the fermentation of FOS could irritate
the mucosa resulting in increased mucus production. Administration of high calcium
together with FOS resulted in no drop in the caecal pH, and limited faecal water cyto-
toxicity and mucin excretion [119]. Indicating that high calcium can limit adverse effects
of FOS. It could however only reduce Salmonella translocation, not inhibit it [119].
Effects of FOS on intestinal permeability have also been examined in non-challenge

studies. FOS was found to increase CrEDTA permeability in rats, but not permeability
in the small intestine [122]. The effect was not due to faecal water composition, as faecal
water from FOS feed animals was not found to affect the permeability for FITC-dextran
across colonic tissue [122]. The lack of effect of the faecal water could be due to loss
of volatile compounds during faecal water preparation, or that potential metabolites in
faecal water was utilized or absorbed by host tissue before the faecal was transported
out of the GIT at rectum.
The effect of FOS on intestinal integrity has also been found to be beneficial or have no

effect. Contradictory to the adverse effects of FOS on intestinal integrity in rodents, FOS
was not found to change CrEDTA permeability in humans even though it stimulated
Bifidobacterium spp. and Lactobacillus spp., as well as mucin secretion [123]. The effect
of FOS in humans was suggested to be caused by the high level of calcium present in the
human gut that could counter act the effect of FOS, leading to no changes in intestinal
permeability [123]. In addition to not affecting intestinal permeability in humans, admin-
istration of fermentable dietary fibers (oligo-fructose) to mice fed a HF diet was found to
stimulate Bifidobacterium as well as decrease plasma endotoxin levels compared to mice
fed HF diet [124], indicating increased intestinal integrity. Additionally ob/ob mice fed a
HF diet supplemented with oligo-fructose had decreased permeability for FITC-dextran
compared to ob/ob mice fed a HF diet, furthermore the LPS in blood decreased [71].
Hence FOS can limit effects caused by a HF diet. These beneficial effects were linked
to stimulation of Lactobacillus spp. Bifidobacterium spp. and C. coccoides-E. rectale
group, specifically Bifidobacterium spp. abundance was negatively correlated to plasma
LPS levels [71]. Indicating, that stimulation of these bacterial groups, have beneficial
effects, if the gut microbiota have been modulated by a HF diet before administration.
Recently it have been suggested that the beneficial effects of prebiotic oligo-fructose in
HF diet mice may be caused by stimulation of A. muciniphila normalising its abundance
[87]. Hence potentially the FOS merely resulted in a gut microbial composition close to
the normal microbial composition in mice, leading to normal intestinal permeability.
The mechanisms behind the effect of FOS on intestinal integrity are not elucidated yet.

No changes were detected in the gene expression of TJ proteins, when FOS increased
intestinal permeability in rats. An altered energy metabolism in the colon affecting the
intestinal permeability was suggested to cause the effect [125]. The decrease in per-
meability in ob/ob mice fed a HF diet and FOS was connected to an increased mRNA
expression of ZO-1 and occludin, as well as localization of these proteins closer to the
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cell membrane [71]. The stated studies indicate that TJ may be affected by the prebiotic
treatment. Differences between these studies may be caused by differences in the an-
imal model, the diet, and the gut microbial composition before administration of FOS.
Others have shown that FOS increased MUC2 gene expression in rats with experimental
induced colitis compared rats not fed FOS [126]. Administration of A. muciniphila that
is stimulated by oligo-fructose, was also shown to increase mucus layer thickness in HF
diet mice [87]. Hence, FOS may stimulate specific bacterial groups that stimulate the
mucin production.
The adverse effects of FOS on intestinal permeability have been suggested to arise

based on a fast fermentation in the gut, leading to low pH that impaired the barrier
[118]. This hypothesis was however disregarded as inulin that should be fermented at a
lower rate than FOS, increased Salmonella levels in caecum after Salmonella challenge
as well as increased Salmonella translocation, increased faecal cytotoxicity, and mucus
secretion as FOS in rats [119]. Again high calcium dosing could limit the effect in rats
[119]. Inulin has also increased Listeria monocytogenes infections in guinea pigs [127].
The bacterial community in rats was shown to be affected by inulin in a similar manner
as FOS, since Lactobacillus and Enterobacteria were stimulated in the rats [119] . Based
on these studies, it seems that the adverse effects of FOS were not due to fast ferment-
ation. The adverse effect of inulin on intestinal permeability was not supported by a
human intervention study. Here inulin-enriched pasta was found to decrease intestinal
permeability in healthy humans and decreased zonulin in serum [128].
FOS, inulin and lactulose are not the only prebiotics that have been shown to increase

pathogenic translocation. An increased bacterial translocation has also been reported in
newborn rats fed galacto-oligosaccharide (GOS) and inulin together. This was connected
to a reduced mRNA expression of ZO-1 [129]. In mice XOS increased Salmonella infec-
tion, while also reducing Clostridium coccoides group and the Firmicutes phyla, while
the Bacteroidetes phyla, Bacteroides fragilis group and the Bifidobacterium spp. were
stimulated by XOS [68, 121]. Contradictory to this XOS limited Listeria monocytogenes
infections in guinea pigs [127]. It is therefore relevant to determine if the putative prebi-
otic XOS has an effect on intestinal integrity. This is to be evaluated during the present
work.
In conclusion prebiotics modulate the gut microbial composition. This has in some

animal models led to increased pathogen translocation that in some cases could be
counteracted by high calcium, while it has limited pathogen translocation in other animal
models. In humans it seems that prebiotics do not affect the intestinal permeability.
It is therefore not possible to conclude if prebiotics have adverse or beneficial effects
on intestinal integrity. An explanation for the different experimental outcomes could
be different gut microbiota, or different effects of microbial changes on the epithelial
cells in the different models. The studies do show, that impairment of the intestinal
integrity can occur even when bacteria as Bifidobacterium, that are considered to be
health promoting, are stimulated. Hence, an increase in such bacterial groups may not
be linked to increased intestinal integrity.

2.6.3 Whole-grain products

In the entire world grains are consumed as part of the habitual diet from rice in China
to rye in rye bread in Denmark. A grain consists of the outer layer called the bran,
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the endosperm, and the germ, see fig. 2.10. The bran consists of fibers, minerals, vit-
amins, and phenolic compounds; the endosperm contains starch, proteins, minerals and
vitamins, while the germ consists of vitamins, protein, minerals, and fat [130]. Grains
are processed before consumption resulting in either whole grain or refined grains. Ac-
cording to the AACC whole grains are defined as "Whole grains shall consist of the
intact, ground, cracked or flaked caryopsis, whose principal anatomical components —
the starchy endosperm, germ, and bran — are present in the same relative proportions
as they exist in the intact caryopsis” [131]. So whole grain contains all the vitamins,
fibers, proteins etc. that are found in the complete grain. Whereas in refined grains the
bran is removed, so the minerals, fibers, and vitamins from the bran are not present in
refined grain products as e.g. white flour [130]. For several years whole-grain products

Figure 2.10: Structure of grain. Figure is modified from [132].

have been considered to have a beneficial effect on human health, by among other de-
creasing the risk of cardiovascular disease by unknown mechanisms. Due to the higher
level of dietary fibers in whole-grain products, these may have a prebiotic potential, by
stimulation of specific bacterial groups considered to have beneficial effects. It is there-
fore highly relevant to determine what effect whole grain products have on gut bacterial
composition, and if these potentially can be linked to increased human health. In the
following sections effects of whole grain products on the faecal bacterial composition
in in vitro systems and human intervention studies, are described, as well as potential
effects on intestinal integrity.

In vitro studies

There have been a limited number of in vitro studies examining the effect of whole-
grain products on the gut microbial composition, see table 2.4. Connolly and cowork-
ers did studies examining the effect of different types of oat, whole-grain cereals, and
toasted wheat grains on the faecal bacterial composition in batch fermentations follow-
ing stimulated human digestion, see table 2.4 [133, 134, 135]. These studies showed that
whole-grain products in general increased the Bifidobacterium genus, while some also
stimulated Lactobacillus. In addition to affecting the bacterial composition, also the
SCFA level were increased, see table 2.4. This all support a potential prebiotic effect
of whole-grain products. The flake size was found to affect the type and availability of
fibers in the whole-grain products, as a large oat grain increased Bifidobacterium genus
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more than a smaller oat flake did [133]. Hence less treatment or refinement of the grain
may increase the prebiotic potential, stressing that whole-grain products may have a
larger prebiotic potential than refined products.
The stated studies did not determine if there were any effects of these fermentation

products on intestinal integrity. But as they modulated the bacterial composition, it is
highly likely that they could affect intestinal integrity especially as some of the whole-
grain products led to an increase in SCFA, see table 2.4.

Human intervention studies

The prebiotic potential of whole-grain products has also been determined in human
dietary interventions, see table 2.5. Whole grain products seem to affect the bacterial
composition differently. Whole grain wheat and maize based cereals have been found
to increase Bifidobacterium spp. [137, 138] stressing a prebiotic potential of whole-grain
products. Whole grain wheat also increased Lactobacilli/Enteroccoi as did wheat bran
to a less extent [137]. Other whole-grain products did not affect Bifidobacterium and
Lactobacillus [139, 140, 141] however an increase in butyrate producing bacteria was
seen following whole-grain intake, see table 2.5 [140, 141].
The difference in experimental outcome between the human interventions described

above may be due to use of different types of participants, (healthy versus metabolic
disorder), different types of whole grains (different types of cereals), different study design
(cross-over study versus parallel study), different durations (2 weeks versus 12-weeks)
and use of different methods for bacterial composition determination (quantitative PCR
versus HITchip). Hence, comparison between the different studies and their effect on
bacterial composition needs to consider these differences between the studies. However,
overall these studies, in connection to the in vitro studies, indicate a prebiotic potential
of whole-grain product.

Effect of whole-grain products on intestinal integrity

As formally stated the effect of whole-grain products determined in vitro only considered
effects on the bacterial community and SCFA, see table 2.4. But as the whole-grain
products modulated the bacterial community as well as SCFA it may have effect on
intestinal integrity. For the human intervention studies intestinal integrity was not
determined. It is therefore relevant to determine if whole-grain products has an effect
on intestinal integrity in addition to examining the effect of whole-grain products on the
gut microbiota.
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2.6 Modulation of the gut microbiota
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Chapter 3

Methodology part

Methods applied in the present PhD study were selected based on application of methods
previously applied in our research group, establishment of new methods, as well as
utilization of available samples from collaborators. The applied methods are introduced
and discussed here.

3.1 Modulation of the gut microbiota
The gut microbiota can be modulated in in vitro and in vivo models, and in human
interventions. In vitro models can be used for initial screening of for example putative
prebiotics, while in vivo studies including animal models and human interventions, are
used to determine effects of the host on the gut microbiota and vice versa.

3.1.1 In vitro models

Several studies have examined the effect of whole-grain products on the microbial com-
position with in vitro fermentations [133, 134, 135, 136], as well as the effect of prebiotics
and prebiotic candidates [142, 143, 144].
In the present work in vitro anaerobic batch fermentations with commercial and putat-

ive prebiotics were conducted for 24 hours (manuscript 2). Faeces samples collected from
healthy humans were used as inoculum. The in vitro batch fermentation was applied
as it has been used for several studies in our research group [142, 143, 144]. Here the
reaction volume was increased 10-fold (from 2 ml to 20 ml) compared to previously in or-
der to have sufficient supernatant for the downstream experiments. Fermentations were,
due to the larger volume, rocked to have sufficient mixing. The pH was not controlled
during the fermentation, as it reached levels similar to the small-scale fermentations
(manuscript 2) [142].
Application of in vitro batch fermentations merely mimics potential changes in the

microbial community. It does not take into account effects of host response as absorption
of e.g. SCFA, buffering, or immune responses. However by applying such fermentations
it is possible to determine production of e.g. SCFA that would be absorbed, and therefore
difficult to determine, in vivo. In vitro fermentations in general are highly useful when
initially testing the capability of substrates to alter the bacterial community.

3.1.2 In vivo models

Animal models are often used following in vitro models, as the interaction between
host and microbial community can be determined. Animal models can be subdivided

41



Chapter 3 Methodology part

into disease and healthy models. In the present work healthy animal models were used
in order to determine effects of changes in the gut microbiota on intestinal integrity
during healthy conditions (manuscript 3 and 4). Wistar rats were selected, as changes
in intestinal permeability and bacterial translocation following prebiotic treatment have
previously been determined in rats [69, 117, 118, 119, 120]. Furthermore we were able
to isolate Bifidobacterium spp. from faeces from Wistar rats (manuscript 3).
Use of animal models has the great advantage, that the interplay between host and

gut microbiota is determined. In vivo studies are however more expensive than in vitro
studies. Additionally from an ethical point of view in vivo studies should be limited and
only conducted if necessary.

3.1.3 Human dietary interventions

Within the field of gut microbiology human dietary interventions are often used to link
effects of diet on the gut microbiota and host health. Here the dietary interventions
quite often include alterations of the commensal diet with a commonly consumed food
product e.g. whole-grain products [145].
There are mainly used two setups for human dietary intervention studies; cross-over

and parallel. In cross-over studies the same person receives for example two types of
diet in two subsequent periods with e.g. a wash out period between them. Potential
inter-individual effects are therefore minimized. In a parallel study design two groups
of participants receives different types of diet, and then groups are compared. Inter-
individual effects can therefore have an effect on the experimental outcome. An obstacle
with cross-over studies is the longer duration of the intervention, leading to risk of drop
outs. Limiting the intervention period may increase risk of limited or no response to the
treatment.
The application of human intervention studies in gut microbiota examinations have

the clear advantage that effects of host and bacterial interaction on the gut microbiota
is included. However often only faecal samples are collected during these studies, as this
does not require invasive methods. Samples of the mucus-associated community may
also be relevant, but as it require invasive methods these are often not included. A clear
disadvantage of human dietary intervention studies are the need for a large number of
participants', based on the large inter-individual variation in the gut microbiota and as
there is a high risk of drop outs. This leads to increased costs. Furthermore participants
habitual diet differs, which affect the results.

3.2 Studying the gut microbiota

Initially bacterial ecosystems were explored by culturing on selective and non-selective
media. However it has become clear, that most of the habitants of the gut microbiota are
not culturable, therefore culture-independent methods were used in the present work.
Initially DNA was extracted from the complex environmental samples. Subsequently,
the relative abundance of bacterial families was determined by amplicon sequencing of
the 16S rRNA encoding gene. Additionally the relative abundance of specific bacterial
groups were determined by quantitative PCR.

42



3.2 Studying the gut microbiota

3.2.1 DNA extraction
There is a range of commercial kits as well as non-commercial methods for extracting
DNA. In the present work all DNA extractions from faecal and caecal samples were
conducted with the commercial kit PowerSoil ®DNA Isolation Kit from MoBio (manu-
script 1 to 4). This kit was applied as it gives a high yield [146] in addition to being
column based, as is recommended for DNA extractions for downstream sequencing.

3.2.2 Quantitative real-time PCR
The relative abundance of selected bacteria groups was determined using quantitative
PCR (qPCR) (manuscript 1 to 3). Quantitative PCR is based on PCR, but the level of
PCR product is monitored throughout the reaction, in the present work by the double-
stranded DNA binding dye SYBR green. Following the qPCR reaction the amplification
curve, see fig. 3.1, is applied to determine the initial DNA concentration (N0) based on

Nq = N0 ∗ (1 + E)Cq (3.1)

Here Nq is the amount of DNA at threshold, while E is the efficiency of the reaction,
and Cq is the cycle number at the threshold, see fig. 3.1.

Figure 3.1: Quantitative PCR amplification curve.

In order to automate data analysis the LinRegPCR software was applied. LinRegPCR
estimates the mean PCR efficiency (Emean) for each amplicon group (primer set), and
applies this to calculate N0 for each reaction [147]. Relative abundance for each bacterial
group was subsequently determined by comparison to the N0 for total bacteria;

N0, bacterial group
N0, total bacteria

(3.2)

Application of qPCR to determine the relative abundance of bacterial groups has
the advantage that bacterial groups with low abundance (down to 0.001 percent of
total bacteria) can be determined [148]. A clear disadvantage is, that only differences
or changes in selected bacterial groups are identified, causing a potential bias in the
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Chapter 3 Methodology part

Figure 3.2: The 16S rRNA encoding gene and it variable regions are illustrated(top).
The figure is a copy of figure 3B from [149]. Bottom: The applied setup for targeting the
V3-region in the 16S rRNA encoding gene with primers for Ion TorrentTM sequencing.
Blue; primers, green; A-adapter + key, yellow; barcode, red; trP1-adaptor

experimental outcome. Additionally only the bacterial community is examined, hence
alterations in Archaea, fungi, yeast, and viruses are not determined in this set up.

3.2.3 Amplicon sequencing

Compositions of the microbiota in faecal and caecal samples were determined using
amplicon sequencing in the V3-region of the 16S rRNA encoding gene (manuscript 3
and 4). All bacteria encode the 16S rRNA gene, and it contains both conserved and
variable regions, see fig. 3.2. Amplification and subsequent sequencing of variable regions
are therefore used for identifying the bacterial composition in a complex environment.

Preparation of samples

Initially DNA was extracted from faecal samples. The V3-region of the 16S rRNA encod-
ing gene, see fig. 3.2, was selected as targets for amplification and sequencing using the
Ion TorrentTM platform, as done by others [150]. Universal bacterial primers targeting
the flanking conserved regions of the V3-region were applied to amplify the V3-region
in each sample with PCR. The applied forward primer contained a A-adaptor + key
as well as a 10-12 bp barcode, while the reverse primer had a truncated P1-adapter
(trP1-adapter), see fig. 3.2. These are used for the down-stream processing during se-
quencing as well as data analysis. After PCR amplification the products were run on
an agarose gel, and products (approximately 260 bp), were extracted for each sample.
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3.2 Studying the gut microbiota

The products from the samples were mixed, so there were equal levels of DNA from each
sample.

Sequencing using the Ion TorrentTM Platform

Initially DNA is hybridized to beads based on the adapter added during PCR amplific-
ation. Using emulsion PCR each PCR product is amplified, and the formed products
attach to the specific bead [151]. All the beads are subsequently distributed into indi-
vidual wells in a chip. Here an Ion 318TM chip for the Ion Torrent platform was used.
The Ion TorrentTM platform is a semiconductor platform, that utilizes the release of
protons upon nucleotide binding. Sequencing is initiated by flushing the chip with one
nucleotide at a time. If a nucleotide bind to the DNA sequence on the bead a proton
is released resulting in a voltage change. If two identical bases occur next to each other
two protons are released leading to a higher voltage changes. These voltage changes are
detected for each well in the chip by the Ion TorrentTM platform. Hence during the
DNA synthesis the sequence is monitored [152].

Data analysis

Sequencing data is initially analysed in the CLC bio genomic workbench (Qiagen). Se-
quences are di-multiclassified by sorting based on barcodes, hence sequences from the
same sample is collected together. The barcode, primer sequence, and adapter are re-
moved. The data is trimmed, so it only includes sequences with a length of 110-180 bp.
Furthermore the confidential interval on correct base parring during sequencing is chosen
to 95 percent corresponding to a Phred quality score above Q = 13 (Q = −10 · log 0.05)
and ambiguous nucleotide is set to 2. The sequences for each sample are then classified
to a bacterial taxa using the Multiclassifier tool from the Ribosomal Database Project
[153, 154]. A bootstrap cut-off above 0.5 is chosen, since such classifications based on
the 16S rRNA encoding V3-region have resulted in correct classification for 95 percent
of the sequences previously [155]. Finally based on the sequence length (110-180 bp)
the sequences can be classified accurately down to family level [153]. Unclassified and
other bacteria are calculated as the difference between total number of bacterial reads
and classified reads. The relative abundance of the bacterial families is then determined
compared to the number of total bacterial reads, as

Readsbacterial family
Readstotal bacteria

(3.3)

Determination of the microbiota by amplicon sequencing has the same limitation as the
qPCR based method, since only the bacterial community is determined, hence changes
in Archaea, fungi, and viruses are not determined. It does however have the advantage
over qPCR, that the whole bacterial community is examined. The depth of the analysis
is however lower, than the qPCR based method, as sequences cannot be classified below
family level based on the length of the sequence [153].
Determination of the gut microbiota by amplicon sequencing and qPCR are both

based on prior knowledge of bacterial genome sequences, as primers are applied as well
as sequences are classified based on comparison to known sequenced bacteria or 16S
rRNA encoding regions. Therefore the large proportion of unidentified bacteria, that
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Figure 3.3: Instruments used to determine trans-epithelial resistance. On the left the
Millicell ERS-2 Volt-Ohm Meter [156] on the right the cellZscope® from nano Analytics
[157]

has not been cultured or sequenced yet, cannot be identified by either method. These
may have impact on host health, it is therefore relevant to identify these.

3.3 Studying intestinal integrity

Intestinal integrity can be determined both in vitro and in vivo. As for modulation of
the intestinal microbiota, the in vitro models can be used as a measure for screening
potential effects on intestinal integrity. While the use of in vivo models gives a more
elaborate view of how the entire system is affected. Here the applied in vitro model and
in vivo model are described.

3.3.1 In vitro model

Trans-epithelial resistance

Trans-epithelial resistance (TER) is determination of electrical resistance across a mono-
layer of epithelial cells. TER indicates the flux of ions, hence it measures both the leak
and pore pathway, see section 2.3.4, as ions can pass the epithelial lining by both path-
ways [58]. Basically it means that an increase in TER indicates, that the epithelial layer
is more tight, but it cannot be concluded, which pathway is affected.
Practically TER is determined using a voltmeter. In the current work two types of

voltmeters have been used; the manual Millicell ERS-2 Volt-Ohm meter (Merck Mil-
lipore) and the cellZscope® (nano Analytics), see fig. 3.3, (manuscript 1 to 4). The
Millicell ERS-2 Volt-Ohm meter requires, that cell culture plates are removed from the
incubator while measuring, potentially affecting the mammalian cells. Additionally the
electrode is held manually which may cause a bias in the measurements. Instead the
cellZscope® measures TER automatically in the incubator. Hence a large number of
samples can be examined at the same time. Both setups gives the same type of data,
but the cellZscope® is less time consuming for the user and affects the cells to a less
extent.
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3.3 Studying intestinal integrity

TER have been used in a range of studies to examine the effect of probiotics, pathogenic
bacteria, CM from bacterial cultures, mucin etc. on intestinal integrity in vitro [72, 73,
76, 78, 79, 81, 82, 85, 96, 158, 159]. These studies have mainly used the mammalian
cell line Caco-2, but also T84 and HT29. As Caco-2 is the mostly used cell line for
TER measurements it was also used in the present work. Here changes in TER were
determined following exposure to faecal water and caecal water (manuscript 1 and 3).
Others have also applied such substances [96] or supernatant from in vitro fermentation
models [115, 116].
TER is a good method for determining intestinal integrity in vitro, but it does have

clear disadvantages. Culturing of the mammalian cells is rather time consuming, as the
cells are seeded 3 weeks before use and medium has to be changed often. Furthermore,
the cells are seeded and cultured on Transwell membranes ®, that are rather expensive.
Collectively this means that the TER assay is rather expensive and time consuming. Ad-
ditionally it requires an automatic system, as the CellZscope, to have a high throughput.
It may however be a good method for initial screening of effects of bacterial strains or
substrates on intestinal integrity, as well as a measure for effects of changes in metabolite
profile in faeces on intestinal integrity following an in vivo experiment if this has not
been determined in vivo.

3.3.2 In vivo model

Determination of intestinal integrity in vivo may be achieved by determining the per-
meability of tracer molecules. Some studies do however also use the Ussinger chamber,
where the electrical resistance across an intestinal section ex vivo is determined. In the
present work the permeability of a tracer molecule has been determined (manuscript 3
and 4).

Transfer of tracer molecules

Tracer molecules can be used both in humans and in animals, but also in in vitro mod-
els. In general the used tracer molecules should be small, water soluble, non-toxic,
non-charged, not metabolized after absorption, and not degraded by the gut [52]. In
addition to this the tracer molecule should be cleared by the kidney if the tracer mo-
lecule is to be measured in the urine [52]. The application of different tracer molecules
results in permeability measures of different regions of the intestinal sections [52]. For
example sucrose, lactulose, mannitol, rhamnosus, and cellobiose are degraded by the
luminal content, hence they can only be used to determine the permeability of the small
intestine, while CrEDTA and sucrolase are not degraded, so they can be used for measure
of permeability in the colon [52].
In the present study intestinal permeability have been determined in an animal model.

Previous animal studies have applied tracer molecules as CrEDTA [120, 160] and FITC-
dextran [1, 71]. FITC-dextran was selected as a tracer for intestinal permeability in this
work, as FITC-dextran is measured in the plasma. Collection of blood was considered
more favorable than collection of urine samples from the animals. Animals were dosed
with 600 mg/kg by oral gavage two hours before euthanasation. The dosing level has
previously been applied by Cani and co-workers [1, 71]. In the present work FITC-
dextran levels were determined in the plasma two hours after administration, while Cani
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and co-workers determined the levels one and four hours after administration [1, 71].
Plasma FITC-dextran concentrations were hence determined by comparison to a stand-
ard curve. Increased levels of FITC-dextran in plasma compared to the control group
were considered to be a result of increased intestinal permeability.
FITC-dextran is available in different sizes dependent on the branching on the dextran.

Subsequently, use of different sizes molecules illustrates differences in pore size forming
the intestinal permeability. Here 4 KDa FITC-dextran was applied as in [1, 71]. This is
a relatively large molecule, so changes in permeability for this molecule must illustrate
a change in the "leak" pathway [58]. Changes in intestinal integrity merely affecting
the permeability for ions are therefore not identified by such assays. Hence it can,
based solely on a FITC-dextran permeability assay, not be excluded that permeability of
smaller molecules or ions has changed. It may therefore be favorable to use a combination
of several assays e.g. FITC-dextran assay and TER to determine changed intestinal
integrity for a range of different size molecules. Others have used PEG (polyethylene
glycol) oligomers of different sizes and hence determined permeability of tracer molecules
using liquid chromatography-mass spectrometry [55, 56].
Application of FITC-coupled molecules is rather expensive, as the molecule itself is

expensive. Additionally in the present work animals were housed in pairs. One animal
from each cage were used in the FITC-dextran assay, while standard curves were prepared
with plasma and tissue collected form the other animal. It may therefore be necessary
to include more animals in each group causing an increase in expenses.

3.3.3 Gene expression
Gene expression analysis of selected TJ proteins and mucin was conducted in order
to determine if changes in gut microbiota affected intestinal integrity by modulating
gene expression of these genes. Gene expression analyses using quantitative reverse
transcription PCR were selected as our research group have had good experiences with
this setup [161]. Primers were selected based on a literature review. Each primer set was
verified by blasting, and the size of the amplicon was verified by running on an agarose
gel.
A limited number of relevant genes were selected for analysis. The mucin MUC2

encoding gene Muc2 was selected as it is the main mucin producing gene. Genes en-
coding ZO-1 (ZO-1) and occludin (Ocln) were selected as ZO-1 and occludin are major
components of the TJ protein complex. Finally, claudin-1 (Cldn-1) was selected as a
representative for the barrier forming claudins. The relative expression was compared
to the two reference genes encoding glyceraldehyd-3-phosphate (Gapdh) and beta-actin
(Actb). These have been used as single reference genes in other studies [91, 162, 163,
164]. Here two reference genes were used to limit potential biases due to effects from the
experimental setup on the expression of the reference genes.
The use of gene expression analysis to examine effects on the TJ, does not reveal if

changes in the distribution or the TJ proteins has occurred or if the protein level of
specific proteins have changed. Such changes could have been examined with Western-
blotting and fluorescent labeling of the specific proteins followed by microscopy.
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Manuscript 1 Bifidogenic effect of whole-grain wheat during a 12-week energy-restricted
dietary intervention in postmenopausal woman

Introduction
The aim of this study was to determine if refined wheat (RW) and whole-grain wheat
(WW) modulated the gut microbial composition in postmenopausal women during a
12-week dietary intervention following a 2-week run-in period. In addition the effect of
faecal water on trans-epithelial electrical resistances (TER) was determined.

Flowsheet
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ORIGINAL ARTICLE

Bifidogenic effect of whole-grain wheat during a 12-week
energy-restricted dietary intervention in postmenopausal women
EG Christensen1, TR Licht1, M Kristensen2 and MI Bahl1

BACKGROUND/OBJECTIVES: Consumption of whole-grain products is known to have beneficial effects on human health.
The effects of whole-grain products on the intestinal microbiota and intestinal integrity have, however, only been studied limitedly.
We investigate changes of the human gut microbiota composition after consumption of whole-grain (WW) or refined wheat (RW)
and further study effects on gut wall integrity.
SUBJECTS/METHODS: Quantitative PCR was used to determine changes in the gut bacterial composition in postmenopausal
women following a 12-week energy-restricted dietary intervention with WW (N¼ 38) or RW (N¼ 34). Intestinal integrity was
determined by measuring trans-epithelial resistance (TER) across a Caco-2 cell monolayer, following exposure to faecal water.
RESULTS: No significant differences in microbiota composition were observed between the two dietary groups; however, the
whole-grain intervention increased the relative abundance of Bifidobacterium compared to baseline, supporting a prebiotic effect of
whole-grain wheat. Faecal water increased TER independent of dietary intervention, indicating that commensal bacteria produce
metabolites that generally provide a positive effect on intestinal integrity. Combining microbiota composition data from the run-in
period with its effect on TER revealed a tendency for a negative correlation between the relative abundance of Bifidobacterium and
TER (P¼ 0.09). This contradicts previous findings but supports observations of increased Salmonella infection in animal models
following treatment with bifidogenic prebiotics.
CONCLUSIONS: The present study shows that whole-grain wheat consumption increases the abundance of bifidobacteria
compared to baseline and may have indirect effects on the integrity of the intestinal wall.

European Journal of Clinical Nutrition (2013) 67, 1316–1321; doi:10.1038/ejcn.2013.207; published online 23 October 2013

Keywords: whole grain; gut microbiota; intestinal integrity; Bifidobacteria.

INTRODUCTION
Consumption of whole-grain products is considered to have a
beneficial effect on human health, by reducing the risk of
developing cardiovascular disease, obesity, type II diabetes and
specific types of cancer.1,2 The observed beneficial effects of
whole-grain products on human health may in part be caused by
modulation of the gut bacterial composition. Intake of whole-grain
products provides substrate to specific groups of naturally
colonizing bacteria, including groups generally considered to be
positively associated with a healthy intestinal environment, such
as bifidobacteria and lactobacilli.3 Bifidobacteria have been shown
to have beneficial effects on intestinal homeostasis either through
direct contact with the epithelium or by production of specific
metabolites. For example, conditioned media from B. infantis has
been shown to decrease intestinal permeability in both in vitro
and in vivo models, and the effect was attributed to peptide
bioactive factors produced by bifidobacteria.4 A bifidogenic effect
is thus commonly interpreted as a prebiotic effect. In humans, use
of whole-grain products as prebiotics has only been examined in a
limited number of controlled dietary intervention studies.
Increased numbers of faecal bifidobacteria and lactobacilli
associated with consumption of whole-grain wheat (WW) cereals
compared to wheat bran have been reported5 and also a

bifidogenic effect of maize-based whole-grain breakfast cereal
has also been found.6 Other studies do however not find any
effect of whole-grain products on levels of bifidobacteria and
lactobacilli, including a recent study of obese participants (BMI of
26–39 kg/m2) with metabolic syndrome.7,8 A number of in vitro
fermentation and colonic model studies also indicate a prebiotic
effect of whole-grain products.9–12 Further investigations are
needed to verify the potential prebiotic effect of whole-grain
products compared to refined grain products. The effect of WW is
especially important, as wheat is one of the most consumed grains
world-wide.2

Changes in bacterial composition in the gut may directly affect
the host through interaction with the cells in the intestinal
epithelium. Additionally, modulation of gut bacterial composition
will result in changes in the metabolite profile in the intestine,
which may also affect the intestinal epithelial cells and, potentially,
intestinal integrity.13 The epithelial cells in the intestinal wall and
their lateral connection mediated by tight junction proteins
provide a selective barrier. Permeability has been suggested to be
determined by a pore pathway, which allows ions and uncharged
solutes to cross the epithelial barrier and a leak pathway through
which larger molecules may pass.14 An increase in the leak
pathway may thus increase translocation of macro-molecules and
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pathogens, resulting in adverse effects. Consumption of the
bifidogenic prebiotic fructo-oligosaccharide is known to increase
calcium uptake, but has also been connected to increased
Salmonella translocation and/or infection in rodent models.15–18

Also, electrical conductance across rat caecum and colon has been
positively correlated to calcium flux.19

Previously, we reported the findings on the primary endpoints
(adiposity and cardiovascular risk markers) of a randomized energy-
restricted dietary intervention (refined vs whole-grain wheat20).
In the present study, we explored changes in gut bacterial
composition caused by the energy-restricted diet enriched with
WW or RW. In addition, we investigated correlations between
abundances of specific bacterial taxa with anthropometric and
clinical measures and evaluated effects of faecal water on intestinal
integrity using trans-epithelial resistance (TER).

MATERIALS AND METHODS
Study design
The study was conducted subsequent to an open-label parallel interven-
tion study of 12-weeks duration.20 Briefly, 79 overweight or obese
postmenopausal women (BMI, 27–37 kg/m2, age 45–70 years) were
randomly allocated to consume either WW or RW for 12 weeks after a
2-week run-in period, during which all participants were provided with RW.
In total, 72 participants completed the study (WW; N¼ 38, RW; N¼ 34),
with no difference between the groups in any of the determined baseline
characteristics.20 During the study, all participants consumed an energy-
restricted diet (deficit of at least 1250 kJ/day). The intervention foods were
designed to replace approximately 2 MJ of the participant’s habitual diet
and consisted of bread, pasta and biscuits providing 105 g of whole grain
daily (WW) or no whole grain (RW). This study was conducted according to
the guidelines laid down in the Declaration of Helsinki and all procedures
involving human subjects were approved by the Ethical Committee of the
Capital Region of Denmark (KF 01 290502). Written informed consent was
obtained from all participants.

Collection and handling of faecal samples
Participants collected one or two faecal samples in 48 h during the last
week of the run-in period and the intervention period. Samples were
homogenized 1:1 in water and stored at � 80 1C until analysis.20 This study
includes the analysis of the first sample from both time points for 37

participants from the WW group and 33 participants from the RW group.
Faecal homogenates were thawed and centrifuged (18 500 g, 15 min, 4 1C).
Pellets were used for DNA extraction using Mobio PowerLyzer PowerSoil
DNA isolation Kit (MO BIO Laboratories, Carlsbad, CA, USA). Faecal water
was obtained by combining faecal water from the same time point and
following a second centrifugation of the supernatants (13 000 g, 15 min,
4 1C), sterile filtration and frozen at � 20 1C. Faecal water from 14 (WW)
and 11 (RW) participants were used for further analysis.

Quantitative PCR
Relative abundances, prevalence and fold changes were determined for 11
bacterial taxa (Table 1) by use of quantitative PCR (qPCR) targeting regions
within the 16 S rRNA genes as described for the Gut low-density array.21

Seven primer sets were selected to determine the overall composition of
the bacterial community. Four species-specific primer sets targeting
bifidobacterial species were included to determined prevalences within
this genus. The primers Prev-F and Prev-R were designed based on
alignments of 16 S rRNA genes from type species within the Prevotella
genus and other genera within the Bacteroidetes phylum by use of the CLC
Main Workbench software (CLC bio, Aarhus, Denmark). Primers were tested
for specificity both in silico by use of Primer-BLAST22 and by qPCR. Data
obtained from qPCR were analysed as described21 by use of the SDS 2.2
(Applied Biosystems, Foster City, CA, USA) and LinRegPCR version 11.1
software using default settings.23,24 Average N0-values were determined
for two technical replicates. The relative abundance for each specific
bacterial group was calculated by division with the average N0-value
obtained with a universal bacterial primer set on the same community
DNA target. A calculated relative abundance of 0.001% was used as
detection limit. For fold change calculations and correlations the relative
abundance was set to 0.0005% for bacterial groups not reaching the limit
of detection. Fold changes were not calculated if both samples were below
the detection limit.

Cell culture
The Caco-2 cells (passage 29–45) were routinely cultured in MEM media
(Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum
(Lonza, Basel, Switzerland), 1% non-essential amino acids (Invitrogen) and
100mg/ml gentamicin in 5% CO2 atmosphere at 37 1C with media change
every second or third day and passed when above 70% confluence. For
TER, Caco-2 cells were trypsinized, centrifuged (800 g, 10 min) and diluted
to 2� 105 cells/ml in media without gentamicin. A volume of 500ml cell
suspension was seeded in the apical compartments of Transwell perme-
able supports (Corning, New York, NY, USA, 3460, 0.4mm, diameter 12 mm)

Table 1. Primers used for quantitative PCR

Target Primer Primer sequence (5’–3’) Amplicon size (bp) Reference

All bacteria HDA1 5’-ACTCCTACGGGAGGCAGCAGT-3’ 174–199 Walter J et al.36

(V3 16S rRNA region) HDA2 5’-GTATTACCGCGGCTGCTGGCAC-3’
Bacteroidetes phylum Bact943F 5’-GGARCATGTGGTTTAATTCGATGAT-3’ 126 Guo X et al.37

Bact1060R 5’-AGCTGACGACAACCATGCAG-3’
Firmicutes phylum Firm934F 5’-GGAGYATGTGGTTTAATTCGAAGCA-3’ 126 Guo X et al.37

Firm1060R 5’-AGCTGACGACAACCATGCAC-3’
Bacteroides spp. B3F 5’-CGATGGATAGGGGTTCTGAGAGGA-3’ 238 Bergström et al.21

B3R 5’-GCTGGCACGGAGTTAGCCGA-3’
Prevotella spp. Prev-F 5’-GATGGGGATGCGTCTGATTAG-3’ 290 This study

Prev-R 5’-CTGGCACGGAATTAGCCGG-3’
Lactobacillus spp. Lacto-F 5’-AGCAGTAGGGAATCTTCCA-3’ 341 Walter J et al.38

Lacto-R 5’-CACCGCTACACATGGAG-3’ Heilig HG et al.39

Enterobacteriaceae Eco1457F 5’-CATTGACGTTACCCGCAGAAGAAGC-3’ 194 Bartosch S et al.40

Eco1652R 5’-CTCTACGAGACTCAAGCTTG-3’ (Slightly modified)
Bifidobacteria spp. F-bifido 5’-CGCGTCYGGTGTGAAAG-3’ 244 Delroisse JM et al.41

R-bifido 5’-CCCCACATCCAGCATCCA-3’
B. bifidum BiBIF-1 5’-CCACATGATCGCATGTGATTG-3’ 278 Matsuki T et al.42

BiBIF-2 5’-CCGAAGGCTTGCTCCCAAA-3’
B. adeolescentis BiADO-1 5’-CTCCAGTTGGATGCATGTC-3’ 279 Matsuki T et al.42

BiADO-2 5’-CGAAGGCTTGCTCCCAGT-3’
B. catenulatum group BiCATg-1 5’-CGGATGCTCCGACTCCT-3’ 289 Matsuki T et al.42

BiCATg-2 5’-CGAAGGCTTGCTCCCGAT-3’
B. longum A5F 5’-GGATGTTCCAGTTGATCGCATGGTC-3’ 286 Bergström et al.21

A5R 5’-TCACTCSCGCTTGCTCCCCGAT-3’
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with 1.5 ml cell free growth media in the basolateral compartments. Two
inserts in each plate, not seeded with cells, were used for background
resistance. Cells were cultured for 21 days, allowing cell differentiation. The
day before, the TER assay media was changed and 400ml growth media
was added to the apical compartment.

Trans-epithelial resistance assay
Differentiation of the Caco-2 cells was monitored in one well by measuring
TER using a Millicell ERS-2 volt-ohm meter (Millipore, Billerica, MA, USA)
following the manufacture’s instructions but with pre-heating of the
electrode. Wells with absolute TER4900O were deemed fully confluent
and differentiated and thus included in the experiments. TER was
measured at time 0 and 24 h, following addition of 100ml pre-heated
faecal water or sterile MilliQ water (control). Faecal water collected from
the same person was used in the same plate. Experiments were conducted
in duplicate or triplicate in different plates. The measured TER for each
sample was corrected by subtracting the mean resistance in the two blank
wells in the plate. The unit area TER was determined by multiplying with
the membrane surface area (1.12 cm2). Fold changes in TER over 24 h were
subsequently determined and normalized to the changes in TER of the
controls. For each collection time and each individual an average of the
normalized change in TER was calculated.

Anthropometric and clinical measures
Anthropometric and clinical measures were all obtained as previously
described.20

Statistical methods
Statistical analysis was conducted in GraphPad Prism 5.0. D’Agostino &
Pearson omnibus normality test were used. Differences in fold changes for
bacterial groups between the groups were evaluated with one-way ANOVA
with Kruskal–Wallis test and Dunns post-test. Changes in the relative
abundance of bacterial groups during the intervention were assessed with
the Wilcoxon Signed Rank test, by comparing the mean log 2 transformed
fold changes to a hypothetical value of zero (indicating no change).
Changes in TER were assessed by one-sample t-test comparing with a
hypothetical mean of 1. Differences in TER between dietary groups were
determined by unpaired t-test. Correlations between relative abundances
of bacterial groups and TER, faecal pH and cardiovascular risk markers were
determined using Pearson’s correlations. Correlations with Po0.05 were
considered significant and Po0.10 a trend.

RESULTS
Faecal bacterial composition
Fold changes of the seven bacterial groups were determined for
each individual and mean log 2 transformed fold changes were
calculated (Figure 1). No significant differences in microbiota
composition were observed between the two dietary groups. The
WW intervention, but not the RW intervention resulted in an
increase in abundance of Bifidobacterium (P¼ 0.04) compared to
baseline. A decrease in abundance of Bacteroides (P¼ 0.04)
compared with baseline was found in the RW group. None of
the other five bacterial groups showed significant changes in
abundance following the 12-week intervention; however, a
decrease in abundance was observed for Firmicutes (P¼ 0.02),
when data for all individuals were analysed collectively.

The prevalences of the genus Bifidobacterium and four
bifidobacterial species were determined (Figure 2). Individuals
found to harbour specific bifidobacterial species before the
intervention period mostly harboured the same species after the
12-week intervention (data not shown).

Trans-epithelial resistance
The exposure of a Caco-2 cell monolayer to faecal water resulted
in a significant mean increase in TER for WW and RW samples
obtained at run-in and after the intervention (Figure 3). There was
no difference in the effect of faecal water between the dietary
groups after the intervention (P¼ 0.76). Overall, a 7.5% increase in

Figure 1. Observed fold changes in bacterial groups following
intervention with whole-grain wheat (WW; grey) and refined wheat
(RW; white). Mean log 2 transformed fold changes for the individuals
in the two dietary groups are shown with error bars for s.e.m.
No differences between dietary groups were found. * significant
differences from a hypothetical value of 0 (change compared with
baseline) according to the Wilcoxon Signed Rank test (P¼ 0.04 for
Bifidobacterium (WW) and P¼ 0.04 for Bacteroides (RW)).

Figure 2. Prevalence of Bifidobacterium ssp. (%) for the whole-grain
wheat group (WW; N¼ 37) at run-in (white) and after the
intervention (light grey) and for the refined wheat group (RW;
N¼ 33) at run-in (dark grey) and after the intervention (black).

Figure 3. Trans-epithelial resistance fold change after 24 h of
exposure to faecal water compared to the control. Mean values
for individuals at run-in (N¼ 25) and following the intervention
(N¼ 25) are illustrated collectively for the whole-grain wheat (WW;
grey) and the refined wheat (RW; white). *** significant differences
from a hypothetical value of 1 (no change), Po0.0001.
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TER was found following addition of faecal water as compared to
water. TER changes measured for two samples from different
individuals were considered outliers due to their extreme values
(0.51 and 1.44) and were excluded from the data analysis,
resulting in normal distribution of the data.

The effect of faecal bacterial composition on TER
The relative abundance of Bifidobacterium showed a tendency to
correlate negatively with TER (P¼ 0.09, Pearson’s r¼ � 0.342) in
samples obtained during run-in (Figure 4). No other significant
correlations were found between the microbial composition and
fold change in TER. Faecal pH of the original sample did not
correlate with TER (P¼ 0.6, Pearson’s r¼ � 0.122), but does
correlate positively with the relative abundance of Bacteroidetes
(P¼ 0.02, Pearson’s r¼ 0.285) (Supplementary Figure 1).

Correlations between gut bacterial composition and
cardiovascular risk markers
A significant negative correlation was observed between the
relative abundance of the phylum Bacteroidetes and fat mass
percentage (P¼ 0.04, Pearson’s r¼ � 0.244) and trunk fat
percentage (P¼ 0.01, Pearson’s r¼ � 0.299) (Figure 5). Conversely,
relative abundance of Bifidobacterium was positively correlated
with fat mass percentage (P¼ 0.02, Pearson’s r¼ 0.282) and trunk
fat percentage (P¼ 0.009, Pearson’s r¼ 0.312), with a trend
observed for fat mass (P¼ 0.07, Pearson’s r¼ 0.220) (Figure 5),
sagittal abdominal diameter (P¼ 0.05, Pearson’s r¼ 0.245) and
BMI (P¼ 0.1, Pearson’s r¼ 0.201) (Supplementary Figure 1). Both
the systolic and diastolic blood pressure was found to be
negatively correlated with the relative abundance of Firmicutes
(P¼ 0.02, Pearson’s r¼ � 0.281 and P¼ 0.002, Pearson’s
r¼ � 0.367, respectively) and also Firmicutes correlated negatively
with Il-6 (P¼ 0.01, Pearson’s r¼ � 0.296) (Supplementary
Figure 1). None of the other bacterial groups showed significant
correlations with the determined anthropometric measures.

DISCUSSION
In the present study, intake of the WW diet, but not the RW diet,
was shown to increase the mean relative abundance of bifido-
bacteria compared to baseline after the 12-week dietary interven-
tion study, indicating a prebiotic effect of WW (Figure 1). This
finding is consistent with a recent cross-over study (N¼ 31) in
humans receiving wheat bran or WW breakfast cereals for 3 weeks5

and further supported by in vitro studies.11,12 Together with our
findings this supports the prebiotic potential of WW products.

In the present study, the abundance of the Bacteroides genus
was reduced in the RW group following the intervention but did
not change in the WW group. This is consistent with another
recent study, which reports decrease in abundance of Bacter-
oidetes spp. following intake of white wheat bread but not whole-
grain and fiber-rich rye bread.7 The authors suggest this to be
caused by removal of rye bread from the diet. The decrease in
relative abundance of Bacteroides indicates that the two-week run-
in period was not sufficient to allow a steady state for the gut
microbiota potentially due to the energy-restricted diet. The
observed changes in bacterial composition in this study may thus
be caused by the different types of wheat, the energy restriction
or their combination. Combining fold-change data of bacterial
groups for all participants irrespectively of diet showed a decrease
in the relative abundance of Firmicutes compared with baseline,
which could be attributed to the energy-restricted diet and
subsequent weight loss in both groups.20 This finding is consistent
with the previous finding that ob/ob mice had higher levels of
Firmicutes compared to lean mice25 and that obese humans have
a higher abundance of Firmicutes than lean humans.26 The overall
prevalence of the four bifidobacterial species (Figure 2) was not
altered by the dietary intervention and showed that B. longum and
B. adolescentis were the most prevalent, which is consistent with
previous reports for the adult populations.27,28

Faecal water on average increased TER by 7.5% irrespectively
of intervention diet, indicating that the complex community in
the gut may in general cause increased intestinal integrity. Faecal
water recovered from adults and elderly (both males and
females) have in a recent study been assessed in a very similar
assay, revealing an average increased TER by 4% in adults
(39±9.7 years) and decrease by 5% in elderly (76±7.5 years).29

Here, subjects included in the faecal water analysis had an
average age of 60.0±5.6 years, placing them between the two
mentioned age groups, indicating that the previously reported
negative effect of faecal water may be associated with age above
60 years. Higher concentrations of acetic- and propionic acid and
total SCFA in adults compared to the elderly have previously
been found, which may result from an age-dependent change in
gut bacterial composition.29

A tendency for a negative correlation between TER and relative
abundance of Bifidobacterium was shown in the present study. This
contradicts previous in vitro studies, which have shown a positive
effect of whole-cell Bifidobacterium and conditioned media on TER in
cell assays.4,30,31 Other studies have attributed increased levels of
bifidobacteria in the gut to increased gut integrity. One example of
this is a study showing that an increase in Bifidobacterium in ob/ob
mice due to prebiotic treatment resulted in a decrease in gut
permeability.32 However, several studies15–18,33,34 also observe
increased Salmonella translocation and/or infection in rodents
in vivo following intake of bifidogenic oligosaccharides, which
could be caused by a reduction in epithelial integrity in the gut, as
shown by Ten Bruggencate et al.17 We speculate that any negative
correlation between Bifidobacterium and TER may be connected to
metabolic cross-feeding between different bacterial groups, resulting
in changed abundances of other bacteria that may influence TER.
Such effects will not be revealed in in vitro fermentation models
based on bifidobacterial monocultures. Links between fiber-induced
increased levels of Bifidobacterium and intestinal permeability in
healthy human males have been studied previously, but no
alterations of intestinal permeability were reported.35 It should be
noted that increased intestinal permeability may in some
circumstances be beneficial to the host organism, as, for instance,
calcium flux has been shown to be positively correlated to the
conductance across intestinal sections from rats.19

We looked for correlations between anthropometric and bio-
chemical measures and relative abundances of the seven bacterial
groups quantified from faecal samples collected during the run-in
period and thus occurring independently of diet. The relative

Figure 4. Correlation between trans-epithelial resistance (TER) fold
change and relative abundance of Bifidobacterium (P¼ 0.09, Pear-
son’s r¼ � 0.342). The linear regression line is included to illustrate
the correlation.
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abundance of Bifidobacterium was found to be positively correlated
to body fat mass percentage and trunk fat percentage, and a similar
tendency was observed for fat mass (Figure 5). These findings
suggest that high numbers of bifidobacteria are associated with
adiposity, which could be explained by better utilization of energy
due to metabolism of, for example, dietary fibres. Additionally, we
found a negative correlation of the relative abundance of
Bacteroidetes to body fat mass percentage as well as to trunk fat
percentage (Figure 5). Consistently, we found a reduction of
Bacteroides in the RW group, which is previously reported to have
a smaller reduction in body fat percentage than seen in the WW
group during the intervention.20 Lastly, we observed a negative
correlation between Firmicutes and both systolic and diastolic blood
pressure, which warrants further study. Overall, the identified
correlations between members of the gut microbiota and host
anthropometric and biochemical measures provide interesting new
insights into bacterial/host interactions; however, more focused
studies are needed to address issues of causality.
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Abstract 

The present study was conducted to determine if prebiotics and putative prebiotics modulated the 

bacterial composition in in vitro batch fermentations and if such modulations would affect intestinal 

integrity in vitro determined by the trans-epithelial resistance (TER) assay.  This could subsequently 

be applied in future studies when testing prebiotic candidates.  

Initially in vitro batch fermentations with Fructooligosaccharide (FOS), Xylooligosaccharide (XOS), 

inulin, and no substrate controls (CON) were conducted with inoculum of human faeces from three 

healthy donors. Following 24 hours, changes in bacterial composition in the fermentations were 

determined by quantitative PCR. FOS significantly increased the relative abundance of Lactobacillus 

ssp. and Bifidobacterium ssp. compared to the CON and Lactobacillus ssp. more than XOS and inulin, 

while XOS increased the abundance of Lactobacillus ssp. compared to the CON. Supernatants were 

obtained from in vitro fermentation vessels and stored for future use in TER assays with Caco-2 cells. 

This experimental work is still in progress due to unforeseen delays and therefore results of TER 

analysis are not included here. As the experimental work with the TER assay has not been 

completed, it cannot be concluded if supernatants from in vitro fermentations can be used for 

investigating effects of prebiotic-mediated bacterial modulation on TER.  
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Introduction 

The gut microbiota has in recent years become acknowledged to affect human health (reviewed by 

[1]). Modulation of the gut microbiota can occur through dietary changes. For example a high-fat 

diet is considered to modulate the gut microbiota, hence increasing intestinal permeability and 

cause inflammation [2].  Other dietary interventions are considered to have beneficial effects on 

host health including consumption of probiotics and prebiotics. They may increase the abundance of 

certain bacterial taxa that are considered to have beneficial effects on human health including 

Lactobacillus spp. and Bifidobacterium spp. [1]. In addition to this an increase in butyrate producing 

bacteria such as bacteria belonging to Clostridium clusters IV and XIVa [3] may also cause beneficial 

effects, as butyrate has been shown to increase barrier function [4]. In general, any change in the 

microbial profile has a direct effect on the metabolite profile in the gut. Collectively, these affect the 

epithelial cells in the intestinal wall, the immune system, and subsequently human health[5]. It is 

therefore highly relevant to determine if prebiotic-mediated modulation of the gut microbiota has 

an effect on health.  

In the present study the main focus is on the effect of prebiotic treatment on intestinal integrity. 

Prebiotics are defined as “selective fermented ingredients that cause specific changes in composition 

and/or activity in the gastrointestinal microbiota that confers benefits upon host well-being and 

health” [6]. During the initial screening of prebiotics stimulation of growth of specific bacteria are 

examined [1], [6]. But it is also highly relevant to determine if the modulations of the bacterial 

community and its metabolites affect the host. Here effects of these on the epithelial barrier 

integrity are to be examined. Alterations in the barrier function of the epithelial cells in the mucosa 

are important as impairment of the epithelial barrier is connected to gastrointestinal disorders such 

as inflammatory bowel diseases[7]. Furthermore if prebiotic treatment can modulate the gut 

microbiota leading to an increase in barrier function it may be used for therapeutic means for such 

disorders.  

The epithelial lining in the intestine is the main physical barrier between the luminal bacteria and the 

host. Epithelial cells interact with each other through tight junction proteins, hence forming a 

selective barrier [8], [9]. The intestinal integrity is mainly determined by the tight junctions between 

the epithelial cells. Paracellular transport can occur though the tight junction complex. It has been 

suggested that there are two pathways, where molecules can cross the tight junction complex; the 

leak pathway, where larger molecules pass through, and the pore pathway, where small molecules 

and ions pass at a high capacity (reviewed by [10]). Changes in either pathway affect barrier integrity 

and can be determined by measuring the trans-epithelial electrical resistance (TER). In general an 

increase in TER is considered to be beneficial [11]–[14], as it indicates increased interaction between 
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epithelial cells, hence limiting potential translocation of bacterial compounds such as LPS. Here we 

want to implement the TER assay when screening prebiotics and prebiotic candidates for their effect 

on microbial communities in in vitro batch fermentations. Previously supernatants from in vitro 

fermentation models have been used in the TER assay [12], [15], [16].  

The aim of the present study was to determine if prebiotics (FOS and inulin) and a putative prebiotic 

(XOS) changed the bacterial composition in in vitro batch fermentation of human faecal bacterial 

communities. This was determined by quantitative PCR. Subsequently, it was to be determined if 

supernatants from such in vitro fermentations had an effect on epithelial integrity in an in vitro 

assay.  

Materials and methods 

Collection of faecal samples  

Faecal samples were collected from three healthy Danish volunteers, a 27 year old male, a 42 year 

old male, and a 22 year old female. None of the volunteers had received antibiotics for about two 

months prior to the collection time. Samples were collected in plastic containers, and transferred as 

fast as possible to an anaerobic chamber (Macs Work Station; Don Whitley, 10% H2, 10% CO2, and 

80% N2). The outer layers of the faecal samples were scraped away with a sterile scalpel or spoon to 

remove parts that had been exposed to oxygen. The remaining parts of the faecal samples were 

collected in pre-weighed tubes. These were tightly sealed and rapidly weighed outside the anaerobic 

chamber, before transport back into the chamber. Here an equal volume of 50% glycerol 

supplemented with 0.5 µg/mL resazurin was added to each sample and homogenised. This resulted 

in a 50% faecal solution that was aliquotet out with 6 mL in 50mL Falcon tubes. The tubes were 

sealed tightly and rapidly transported to -80˚C for storage.  

In vitro fermentation 

In vitro fermentations were conducted in minimal media with final concentrations of 2g/l buffered 

peptone water (Oxoid CM0509), 1 g/l yeast extract (Oxoid, LP0021), 0.1 g/l NaCl, 0.04 g/l K2HPO4, 

0.04 g/l KH2PO4, 0.01 g/l MgSO4 • 7H2O, 0.01 g/L CaCl2 • 2H2O, 2 g/l NaHCO3, 0.5 g/l bile salt (Oxoid, 

LP0055), 2 mL/l Tween 80, and 0.5 mg/l Resazurin (sterile filtered solution). The pH was adjusted to 

7 and autoclaved. Solutions of Hemin (sigma, H-55533), L-cystein HCL (Sigma, C7477), and Vitamin 

K1 (Sigma, V3501) were prepared in sterile milliQ water and 96% ethanol, respectively, and sterile 

filtered. The solutions were added to the minimal media resulting in a final concentration in 

fermentations of 5 mg/l Hemin, 0.5 g/l L-cystein HCL, and 10 µl/l Vitamin K1.  

Solutions of FOS (Orafti ®P95, bene Orafti) and XOS (Shandong Longlive bio-technology Co., LTD.) 

were prepared in sterile MilliQ water (100 mg/mL), sterile filtered, aliquoted, and stored at 5˚C. FOS 
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solution, XOS solution, and sterile milliQ water (CON) was added to minimal media in equal volumes. 

For FOS, XOS and CON four 50mL tubes with 18mL of media were reduced in the anaerobic chamber 

for 26-27 hours. Inulin solution (dahlia tubers, Sigma, DP36) was made on the day of the 

fermentation and added to the minimal media in the same manner as the FOS, XOS and CON 

solution, but in milliQ water that has been reduced in the anaerobic cabinet. The inulin was not 

dissolvable in water therefore mixing was conducted every time inulin solution or media with inulin 

was transferred. Four Falcon tubes with 18 mL of media with inulin were prepared.  

Faecal samples were thawed in the anaerobic chamber and diluted in reduced PBS (Oxoid, Br0014G) 

supplemented with 0.5 mg/L Resazurin resulting in 10% w/v faeces inoculums. 2 mL of inoculums 

were added to 18 mL of minimal media with substrate or no substrate (CON), resulting in 1% w/v 

faeces and 10 mg/mL prebiotic. All fermentations were conducted in triplicates. Additionally 2 mL of 

reduced PBS supplemented with Resazurin was added to one tube with 18 mL of minimal media with 

substrate for each prebiotic and the CON (no faeces added to fermentation (N.F.)). The pH was 

determined with pH strips (range 1-14). All fermentations were kept in the anaerobic chamber for 24 

hours with constant shaking on a rocking table (Biosan rocking table). 

After 24 hours all tubes were sealed tightly, stored on ice and centrifuged (18.500 g, 15 min, 4˚C). 

200 µl supernatant was used for pH determinations, while the remaining supernatant was sterile 

filtered (0.2 µm) before storage at -20˚C. Supernatants from replicate fermentations were later 

defrosted, mixed in equal volumes, aliquoted, and stored at -20⁰C.  Pellets were used for DNA 

extraction.  

DNA extraction 

DNA was extracted from the pellet using Mobio PowerLyzer PowerSoil DNA following the 

manufacture’s recommendations with minor modifications. Bead-beating was conducted at highest 

speed (on a MM 300 Mixer mill (Retsch)) for 4 minutes. The DNA concentrations were determined 

fluorometrically (Qubit ®dsDNA HS assay, Invitrogen). DNA was stored at -20˚C until further use.  

Quantitative PCR 

Relative abundance of bacterial taxa in the in vitro fermentations was determined for 7 bacterial 

taxa (Table 1) using quantitative real-time PCR (qPCR) targeting the 16S rRNA genes as described by 

[17]. Briefly, qPCR was performed on an ABI prism 7900HT (Applied Biosystems) using 384-well 

MicroAmp® Optical reaction plates and SYBR-green chemistry. The qPCR reactions contained 5.5 µL 

of 2x SYBR Green PCR Master Mix (Applied Biosystems), 0.2pmol/µl of both the forward and reverse 

primer (Eurofins, mwg operon), and 2 ng of template DNA in a total volume of 11 µL reaction mix. 

Liquid handling was performed with an epMotion 5075 robot (Eppendorf, Hørsholm, Denmark). The 
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thermo-cycling program consisted of initial heat-treatment and denaturation at 50°C for 2 minutes 

and 95°C for 10 minutes, followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute and 

finally dissociation curve analysis for assessing amplicon specificity (95°C for 15 seconds, 60°C for 15 

seconds, then slowly increasing to 95°C (ramp rate 1.9°C/min)). Each reaction was conducted in 

duplicates. For each donor the quantification of all bacterial taxa for all fermentations were 

conducted in the same reaction plate.  

Initially amplification curves and melting curves were evaluated in the SDS 2.2 software. Non-

baseline corrected data was then exported to excel before data analysis in LinRegPCR using default 

settings [18], [19](dr. J.M. Ruijter, Heart Failure Research Center Acadmic Medical Center, 

Amsterdam, The Netherlands) as previously published [17]. Here baseline correction was conducted 

for the individual reactions, before a window of linearity was determined. Following individual PCR 

efficiencies for each reaction was calculated. Based on this a mean PCR efficiency for the amplicon 

group was calculated and used together with the Cq value to determine N0 for each reaction [19]. For 

each fermentation and amplicon average N0 values were calculated for the duplicates. N0 values 

below 0.001% of the calculated N0 for total bacteria (universal primer), was set to 0.0005% of N0 for 

the total bacteria. Replicates were allowed to differ by maximally 2 Ct values. The relative abundance 

for each amplification group for each of the fermentations was calculated by division with average 

N0 for total bacteria. For each donor an average of the relative abundance for the three replicate 

fermentations were calculated. Fold changes compared to the CON were calculated for each donor 

and log 2 transformed. Changes in the bacterial taxa due to fermentation with the specific substrate 

were evaluated with a one sample t-test compared to a hypothetical mean of 0 corresponding to no 

change. Differences between treatments were evaluated with one-way ANOVA with Bonferroni's 

Multiple Comparison Test.  

Results 

In vitro fermentations 

Triplicate fermentations were conducted for CON and for each of the three substrates FOS, XOS, and 

inulin for each donor. Additionally a single fermentation without faeces was conducted for CON, 

FOS, XOS and inulin. After 24 hours all fermentations with faeces had cloudy supernatants, while 

fermentations without faeces did not. At inoculation all fermentations had a pH of 7. After 24 hours 

of incubation the fermentations without faeces maintained a pH of 7, as did CON (Table 2). All 

fermentations with substrate and faeces had lower pH (Table 2).  

DNA extraction 
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DNA was extracted from each of the fermentations and used downstream for quantitative PCR. In 

general the DNA yield was relatively lower for donor B compared to donor A and C (Table 3). 

Bacterial composition 

Changes in the relative abundance of bacterial taxa were determined by qPCR targeting the 

Firmicutes phyla, Lactobacillus spp., Clostridium cluster IV, Clostridium cluster XIV, Bacteroidetes 

phyla, Bifidobacterium spp., and the Enterobacteriaceae familiy. To limit the effect of differences in 

bacterial composition between the three donors, log2 transformed fold changes (compared to CON) 

were used for comparison. Lactobacillus spp. was significantly increased by FOS (P=0.03) and XOS 

(P=0.02) compared to the CON (see figure 1). For Lactobacillus spp. FOS resulted in a higher fold 

change than XOS and Inulin compared to CON (P<0.05). Bifidobacterium spp. was also significantly 

increased by FOS (P=0.005) compared to CON, while XOS tended to have an effect (P=0.05) (Figure 

1). The remaining bacterial taxa did not show any significant changes. 

Trans-epithelial resistance 

Work with determining the effect of supernatants from the in vitro batch fermentations on TER is 

still ongoing. Results can therefore not be included. However preliminary data indicated that the 

application of the supernatants in the TER assay gave useful results (data not shown).  

Discussion 

The present study was conducted to determine if in vitro batch fermentations with the prebiotics 

FOS and inulin, and the putative prebiotics XOS affected the bacterial composition in human faeces. 

Subsequently effects of supernatants from such fermentations on barrier function were to be 

determined in the TER assay.    

During the fermentation with faeces and all substrates the pH dropped from 7 to between 4 and 5 

for all donors. The drop in pH indicates fermentation and acid production by the bacterial 

communities. Negative controls without faeces and CON (no substrate) did not have any change in 

pH indicating no bacterial growth. It is therefore proposed to be valid to use CON for the individual 

donors as controls. As the fermentations with substrate are compared to the 24-hour fermentation 

without supplementation of substrate (CON), changes in the microbial composition must arise due 

to utilization of the applied substrate. Hence the determined changes in bacterial composition are 

due to the substrate.  

Concentrations of DNA seemed to differ between the donors and between the fermentations with 

and without substrate (Table 3). The differences in DNA concentration may be due to differences in 

compounds that can inhibit the DNA extraction process, or different numbers of bacteria in faeces 
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from the different donors. However, as the relative abundance of bacterial taxa was determined by 

comparison to the total bacteria, as previously described [17], the differences in DNA concentration 

was not considered to be a problem.  

Significant increases in both Lactobacillus ssp. and Bifidobacterium spp. were found for FOS, and 

Lactobacillus spp. was stimulated by XOS. No change in relative abundance was found after inulin 

fermentation for these two bacterial taxa. FOS and inulin are prebiotics, while XOS has not been 

declared as such yet, but is considered to be a putative prebiotic [6], [20]. These substrates are 

therefore all expected to stimulate Bifidobacterium spp. and Lactobacillus spp. [1]. The lack of a 

stimulation of these bacterial taxa by inulin may be caused by the specific community composition 

of the relative few donors included in the present work.  

For the remaining bacterial taxa it is difficult to make any conclusions on the effect of the three 

substrates, as the effect highly differs between the three donors. For example it seems that the 

Enterobacteriacae family is decreased for donor A and C by all three substrates, while no effect was 

found for donor B (see Figure 1). Differences in the bacterial composition within the 

Enterobacteriacae family between the three donors could have caused this effect. Another example 

is donor C that showed an increase in Clostridium cluster XIVa, while donor A and donor B had a 

decrease for all substrates. This highlights the need for including a higher number of donors. Others 

that used in vitro fermentations to determine effects of substrates on bacterial composition in our 

research group have usually included a higher number of donors [21], [22], but three donors have 

also been used successfully [23]. As the aim of the present study merely was an initial screening only 

three donors were included.  

The work with the TER assay is still in progress. Initial work with the supernatants in the TER assay 

did show that the supernatants could be applied in the system (data not shown). However issues 

with the cell cultures resulted in the need to run the experimental work again. Consequently, it can 

at the present state not be concluded if fermentation media from in vitro batch fermentations can 

be used to assess the effect of prebiotics in the TER assay. Commane and co-workers have previously 

applied the TER assay to determine effects of probiotics and prebiotics on intestinal integrity [12]. 

Additionally others have shown that supernatants from 24 and 48 hours of in vitro batch faecal 

fermentations with resistant starches increased TER [16]. Here supernatants from continuous 

fermentation model were toxic for the Caco-2 cells, while supernatants from batch system were not 

[16].  Supernatants from a continuous fermentation system; the Simulator of Human Intestinal 

Microbial Ecosystem (SHIME), have also been applied successfully in the TER system [15]. It indicates 

that the applied fermentation model might affect the downstream TER assay and mammalian cell 

viability. Based on these former studies we consider it likely that combination of in vitro batch 
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fermentations with human faeces followed by use of the TER assay can be applied for screening for 

the effect of prebiotics and putative prebiotics on intestinal integrity. This would be highly relevant 

in the initial screenings of such substrates.    
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Tables 

Table 1. Primer sets used for determination of relative abundance of bacterial taxa. Primer name, sequence, bacterial 
target, product size, and references are stated. 

Name Bacterial target Primer sequence ( 5'-3')  Amplicon 

size (bp) 

Reference 

116 

 

All bacteria ACTCCTACGGGAGGCAGCAGT 

GTATTACCGCGGCTGCTGGCAC 

174-199 [24] 

164 Firmicutes phylum TGAAACTYAAAGGAATTGACG 

ACCATGCACCACCTGTC 

157 [25]  

32 Lactobacillus ssp.  AGCAGTAGGGAATCTTCCA 

CACCGCTACACATGGAG 

341 [26]  

[27]  

60 Clostridium Cluster IV 

(C. leptum group) 

GCACAAGCAGTGGAGT 

CTTCCTCCGTTTTGTCAA 

239 [28]  

69 Clostridium Cluster XIVa 

(C. coccoides) 

AAATGACGGTACCTGACTAA  

CTTTGAGTTTCATTCTTGCGAA 

438-441 [29]  

114 Bacteroidetes phylum GGARCATGTGGTTTAATTCGATGAT 

AGCTGACGACAACCATGCAG 

126 [30]  

140 Bifidobacterium ssp GCGTGCTTAACACATGCAAGTC 

CACCCGTTTCCAGGAGCTATT 

126 [31]  

134 Enterobacteriaceae family CATTGACGTTACCCGCAGAAGAAGC 

CTCTACGAGACTCAAGCTTGC 

195 [32] 

 

Table 2. pH of supernatants after 24 hours of fermentation (24 h). All replicate fermentations had the same pH. CON; no 
substrate added. The pH was determined using pH strips (range 1-14). N.F.: No faeces added to this fermentation.   

 

 Donor 

Substrate A B C N.F. 

CON 7 7 7 7 

FOS 4 4 4 7 

XOS 4 4 4 7 

Inulin 4 4 4-5 7 

 



11 
 

Table 3. DNA concentrations (ng/µl) following extraction from fermentations.   

  DNA (ng/µl) 

  Donor 

Substrate Fermentation No. A B C 

CON 1 40.1 6.23 29.2 

 2 38 6.01 19.1 

 3 10.4 7.27 18.9 

FOS 1 2.96 1.31 6.03 

 2 2.02 0.83 5.07 

 3 2.17 0.78 5.57 

XOS 1 2.83 0.973 19.2 

 2 2.41 1.26 6.62 

 3 2.59 0.91 7.53 

Inulin 1 6.13 1.16 6.32 

 2 8 0.94 30.1 

 3 5.17 2.49 26.9 
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Figure 1. Log 2 (fold change) in bacterial taxa. Mean for the three donors are illustrated. The change for each donor is 
labelled with the donor name *; significant different from hypothetical mean of 0 according to one sample t-test (P<0.05), 
# significant difference based on one-way ANOVA (P <0.05) 
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The aim of the present study was to determine if the commercial putative prebiotic XOS
affected the intestinal integrity in rats. As XOS is considered to increase the abundance
of Bifidobacterium it was also examined whether increased abundance of commensal
Bifidobacterium affected the intestinal integrity.

Flowsheet

76



 

1 
 

Effect of Xylo-oligosaccharides and commensal bifidobacteria on gut microbial 1 

composition and intestinal integrity in male Wistar rats. 2 

 3 

Ellen Gerd Christensen1, Tine Rask Licht1, Thomas Dyrmann Leser2, Martin Iain Bahl1* 4 

 5 

1 Division of Food Microbiology, National Food Institute, Technical University of Denmark 6 

Søborg, Denmark 7 

2 Chr. Hansen, Bøge Alle 2, Hørsholm, Denmark 8 

*corresponding author: Martin Iain Bahl, Mørkhøj Bygade 19, building D, DK-2860 Søborg, 9 

Denmark, email: mbah@food.dtu.dk, fax +45 35887001, phone +45 35887036  10 

 11 

Ellen Gerd Christensen: elgch@food.dtu.dk 12 

Tine Rask Licht: trli@food.dtu.dk 13 

Thomas Dyrmann Leser: dktdl@chr-hansen.com 14 

 15 

Key words: Xylooligosaccharides, Bifidobacterium, gut microbiota, intestinal integrity 16 

 17 

Running title: XOS and Bifidobacterium; effect on gut microbiota and intestinal integrity 18 



 

2 
 

Abstract 19 

Background: Consumption of prebiotics modulates the gut microbiota, subsequently affecting the 20 

bacterial composition, metabolite profile, and human health. Previous studies indicate that also 21 

changes in intestinal integrity may occur. In order to explore this further we have investigated the 22 

effect of the putative prebiotic xylo-oligosaccharides (XOS) on the gut microbiota and intestinal 23 

integrity in male Wistar rats. As changes in intestinal integrity may be related to the expected 24 

bifidogenic effect of XOS, we additionally addressed effects of supplementation with a commensal 25 

Bifidobacterium pseudolongum (BIF) isolated from the same breed of laboratory rats.  26 

Results: Changes in faecal and caecal bacterial composition determined by 16S rRNA gene 27 

sequencing and quantitative PCR for selected bacterial groups revealed that the overall bacterial 28 

composition did not differ markedly between the control (CON), XOS, and BIF groups, when 29 

correcting for multiple comparisons. However as hypothesised, the relative abundance of 30 

Bifidobacterium spp. was increased in XOS-fed rats as compared to CON in faecal samples after the 31 

intervention. Also Lactobacillus spp. was increased in both the XOS and BIF groups in caecum 32 

content compared to CON. Intestinal permeability determined in vivo by FITC-dextran permeability 33 

and in vitro using extracted caecum water in trans-epithelial resistance (TER) assay showed no 34 

effect on intestinal integrity in either the XOS or the BIF groups. However, the expression of 35 

occludin, which is part of the tight junction complex, was increased in the XOS group compared to 36 

the CON group.  37 

Conclusions: Supplementation of XOS and a commensal Bifidobacterium pseudolongum did not 38 

have conclusive effects on intestinal integrity in rats as only significant change in expression of a 39 

single tight junction protein gene was found for the XOS group.  40 
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Background 41 

The complex microbial community of the gut environment is thought to interact with the host 42 

organism and to affect human health [1]. Modulation of the gut microbial composition by 43 

consumption of specific substances such as prebiotics and probiotics may therefore affect intestinal 44 

and systemic health. Previous studies of the modulatory effect of established prebiotics as well as 45 

putative prebiotics have mainly focused on Bifidobacterium ssp. and Lactobacillus ssp. in the 46 

microbiota [2-5] as these are considered to have beneficial effects on health [6]. Effects on other 47 

bacterial groups, potentially with adverse effects on health, may thus have been overlooked. The 48 

development of high-throughput sequencing techniques now makes it feasible to survey the entire 49 

microbiota. In addition to determining the effect of pre- and probiotics on the complete gut 50 

microbiota, it is important to understand how such effects influence host health. An important 51 

marker for health is intestinal integrity, as increased intestinal gut permeability previously has been 52 

connected to intestinal disorders including inflammatory bowel diseases  and celiac disease [7,8]. 53 

Gut wall permeability can be determined in vivo by examining the permeability of molecules with a 54 

defined size, such as FITC-dextran [9] and CrEDTA [10]. In addition, effects on intestinal integrity 55 

can be estimated by determining the expression and localization of tight-junction proteins. Effects 56 

of gut content on intestinal integrity may also be assessed in vitro by examining the effect of 57 

metabolites from the community found in e.g. faecal water on trans-epithelial resistance (TER) in 58 

epithelial cell monolayers [11,12].  59 

Several previous studies have examined the effect of prebiotic supplementation on pathogen 60 

invasion in animal challenge studies. Prebiotic fructo-oligosaccharides (FOS) and the putative 61 

prebiotic xylo-oligosaccharides (XOS) [13] have previously been found to stimulate translocation 62 

of Salmonella in rats [14,15] and mice [16]. Here the prebiotics also stimulated increase in 63 

Bifidobacterium spp. [14,17] and Lactobacillus spp. [14,15], which are both considered to have a 64 
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beneficial effect on host health. In connection to this, FOS has been found to increase permeability 65 

of CrEDTA in rats, while also stimulating these two groups of bacteria [18]. Also, we have recently 66 

shown a trend for an inverse association between the relative abundance of Bifidobacterium spp. in 67 

human faeces and the effect of faecal water on trans-epithelial resistance (TER) [11]. This however 68 

does not necessarily implicate that bifidobacteria or lactobacilli are involved in the observed 69 

adverse effects, but the effects could be attributed to other factors, such as changes in non-70 

investigated bacterial groups. The modulation of the microbiota as whole by prebiotics may thus 71 

result in adverse effects on the intestinal integrity. Also in vitro studies show that B. infantis 72 

produce compounds that increase TER [19] and that UV-killed B. bifidum and B. breve increase 73 

TER [20]. Furthermore in vivo studies show that bifidobacteria increase intestinal integrity in 74 

animal disease models [21,22]. We hypothesize, that an increase in Bifidobacterium ssp. caused by 75 

e.g. consumption of prebiotics may affect the intestinal permeability indirectly through the effect on 76 

other bacteria, causing conditions that allow increase in Salmonella translocation upon challenge. 77 

The aim of the present study is thus to determine effects of XOS and commensal bifidobacteria on 78 

the gut microbiota and the intestinal integrity in healthy, unchallenged rats using high throughput 79 

16S rRNA gene sequencing quantitative PCR and three different methods to determine intestinal 80 

permeability. The study provides new insights into understanding interactions between gut bacterial 81 

community composition and intestinal integrity.  82 

Methods 83 

Isolation of a commensal Bifidobacterium spp. from rats 84 

Faecal samples from Wistar rats were obtained prior to the animal studies from the same facility 85 

(Taconic, Lille Skensved, Denmark). Bifidobacteria were isolated from the faecal samples by 86 

plating on Bifidus Selective Medium (BSM) agar (Fluka), incubation anaerobically at 37oC for 87 

three days, selection for correct colony morphology (pink or dark brown colonies) and verification 88 
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by PCR using bifidobacteria-specific primers BifF/BifR (Table 1). Universal primers 27F (5’-AGA 89 

GTT TGA TYM TGG CTC AG-3’) and 907R (5’- CCG TCA ATT CMT TTG AGT TT-3’) were 90 

used for sequencing. The PCR products obtained with the universal primers were purified by gel-91 

electrophoresis and the 16S rRNA gene partially sequenced using the same primers. Four isolates 92 

were found to be identical and have 99.4 % sequence homology over 726 bp to Bifidobacterium 93 

pseudolongum subsp. globosum strain JCM 5820 by BLAST search [23]. Since the four isolated 94 

strains were identical, we chose a single strain, designated B. pseudolongum TR2_39 for this study. 95 

Aliquots of TR2_39 (1 ml) were frozen in 7.5% glycerol and stored at -80oC.  96 

Animals and housing 97 

6 week-old male Wistar rats were purchased from Taconic (Lille Skensved, Denmark) and 98 

originated from the same stable where faecal samples used to isolate TR2_39 were collected. On 99 

arrival the animals were housed in pairs and had ad libitum access to chow (Altromin 1324) and 100 

drinking water throughout the experiment. The environment was controlled with 12-hour light/dark 101 

cycles, temperature at 22 ± 1⁰C, relative humidity at 55±5% and 8-10 air changes per hour. Animals 102 

were observed twice a day. The animal experiment was carried out under the supervision of the 103 

Danish National Agency for Protection of Experimental Animals.    104 

Experimental design 105 

Four days after arrival the animals were weighed and cages were allocated randomly to the three 106 

experimental groups, namely CON (dosed with sterile water), XOS (dosed with XOS), and BIF 107 

(dosed with B. pseudolongum TR2_39) with 16 animals (8 cages) in each group. The XOS was 108 

obtained from Shandong Longlive Bio-Technology CO. Ltd, China as 95% pure powder extracted 109 

from corncob (zea). To limit potential effects of co-housing and coprophagia on the gut microbial 110 

composition, the animals were housed together for additionally 2 weeks before the dosing period 111 
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was initiated. During the acclimatization period the weight of the animals, and the water and feed 112 

intake was monitored as intake per cage per day.  113 

During the intervention period the animals were given oral gavage with 1ml milliQ water (CON), 2 114 

ml 500mg/ml XOS (XOS) or 1 ml B. pseudolungum TR2_39, approximately 2.2-6.2*108CFU/ml 115 

(BIF) every second day for 14-16 days. The inoculum was prepared fresh for each dosing day from 116 

one aliquot of glycerol-frozen TR2_39, by anaerobic cultivation in four tubes with 45 ml BSM 117 

broth for approximately 48 hours followed by wash in reduced PBS and resuspension in PBS. The 118 

optical density was adjusted to OD600 = 10. Half of the animals were euthanized (CO2 chamber and 119 

decapitation) on day 14 and the remaining on day 16 after the initial dosing. Animals in the same 120 

cage were euthainised sequentially. Weight, water, and feed intake was monitored during the 121 

intervention period, as described for the acclimation period. Faecal samples were collected on Day 122 

0 prior to initial dosage, and the day before euthanisation (Day 13 or 15) by collecting defecate 123 

directly in tubes. Samples were stored at -80⁰C until analysis. 124 

In vivo intestinal permeability assay 125 

On the day of euthanisation, intestinal integrity was determined by measuring the permeability of 126 

FITC-dextran, using a similar approach as previously described [9]. Animals were fasted for at least 127 

9 hours before the assay. From each cage, one animal was orally dosed with 0.5 ml 120 mg/ml 128 

FITC-dextran (4 kDa, Sigma-aldrich FD-4) per 100 g (corresponding to 600 mg/kg animal) 129 

bodyweight while the other was dosed with 0.5 ml PBS per 100 g bodyweight. Two hours after 130 

dosage, animals were euthanized and blood was collected from the neck directly into 50 ml Falcon 131 

tubes with 100 µl EDTA (0.5M, pH 8, Ambion).  Blood samples were immediately centrifuged 132 

(3800 rpm, 5 min) to collect plasma. Plasma was centrifuged again, diluted 1:1 in PBS and stored at 133 

5⁰C until analysis on the same day. Analysis of each sample was done in triplicate by transferring 134 
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volumes of 60 µl plasma-PBS solution to a black 96-well microtiter plate (Proxiplate-96 F, Perkin 135 

Elmer) and measuring the florescence at excitation 485 nm / emission 535 nm (Victor TM X4, 136 

Perkin Elmer). Standard curves were prepared for each of the euthanisation days, by adding fixed 137 

concentrations of FITC-dextran to plasma-PBS prepared from animals dosed with PBS.   138 

Dissection of animals 139 

Only animals not dosed with FITC-dextran were dissected to exclude potential effects of FITC-140 

dextran in the down-stream analysis. Abdomens were rinsed in 70% ethanol and dried with a paper 141 

towel before the incision. Approximately 2.5-4 cm from the caecum, an ileal section (0.5-1.0 cm) 142 

was removed and rinsed in PBS before storage in 1 ml RNAlater® (Life Technologies). Colonic 143 

sections were taken where the first pellet of content was visible (often 4-5 cm from caecum), and 144 

treated the same way as ileal samples. Finally, contents from the caecum were collected, where after 145 

the ceacal tissues were washed in PBS and stored in RNAlater®. Caecal contents were stored at -146 

80⁰C, while tissues in RNAlater® were stored at 5⁰C overnight, and then transferred to -80⁰C.  147 

Collection of caecal content and cecal water 148 

Caecal contents were weighed and homogenized 1:1 in MillliQ water. Slurries were centrifuged 149 

(11.000g, 15min) and the pellets stored at -80⁰C in aliquots of approximately 250mg. Supernatants 150 

were centrifuged again and the pH was determined (Thermo, Orion star) before sterile filtration 151 

(0.2µm pore size, Sarstedt) and storage at -20⁰C.  152 

Extraction of bacterial DNA 153 

DNA was extracted from faecal samples collected before the initial dosing (Day 0), the day before 154 

euthanisation (Day 13 or Day 15), as well as from caecal samples using the MoBio PowerLyzer® 155 

PowerSoil® DNA isolation kit (Mobio) following the recommendations of the manufacturer. DNA 156 
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concentrations were determined using Qubit ds DNA HS assay kit (Invitrogen). DNA was stored at 157 

-20⁰C until further analysis.   158 

Ion Torrent sequencing 159 

The bacterial composition was determined by sequencing of the V3-region of the 16S rRNA gene in 160 

bacterial DNA extracted from caecal contents, and from faecal samples collected before (Day 0) 161 

and after the intervention (Day 13 and Day 15) originating from animals not used for the FITC-162 

dextran permeability assay (i.e. total of 24 animals). Amplification of the V3-region and subsequent 163 

sequencing was performed using the Ion Torrent PGM platform essentially as previously published 164 

[24]. Briefly, the V3-region of the 16S rRNA gene was amplified using a universal forward primer 165 

(PBU 5’-A-adapter-TCAG-barcode-CCTACGGGAGGCAGCAG-3’) with a unique 10-12 bp 166 

barcode for each bacterial community (IonXpress barcode as suggested by the supplier, Life 167 

Technologies) and a universal reverse primer (PBR 5’-trP1-adapter-ATTACCGCGGCTGCTGG-168 

3’). PCR reactions were conducted with 4µl HF-buffer, 0.4µl dNTP (10mM of each base), 1µM 169 

forward primer, 1µM reverse primer, 5ng template DNA, and 0.2µl Phusion High-Fidelity DNA 170 

polymerase (Thermo Scientific) in a reaction volume of 20µl. Reactions were run at 98⁰C for 30 171 

seconds followed by 24 cycles of 98⁰C for 15 seconds and 72⁰C for 30 seconds, before 72⁰C for 5 172 

minutes and cooling at 4⁰C. Products were separated on a 1.5% agarose gel with SYBR-safe at 173 

100V for 90 minutes, visualized with the Safe Imager™ 2.0 (Invitrogen) and bands of expected size 174 

(approximately 260bp) were excised from the gel. DNA was extracted using MinElute Gel 175 

extraction kit (Qiagen) following the recommendations of the manufacturer. DNA concentrations 176 

were determined with Qubit HS assay and a library constructed by mixing an equal amount of PCR 177 

products from each original community. Sequencing was performed on a 318-chip for Ion Torrent 178 

sequencing using the Ion OneTouchTM 200 Template Kit v2 DL. Sequence data were obtained in 179 
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FASTQ format and further processed using CLC bio genomic workbench (Qiagen) in order to de-180 

multiplex and remove sequencing primers. Further quality trimming using default settings (quality 181 

score = 0.05, trim ambiguous nucleotides=2) and selection of reads with a final length between 182 

110bp – 180bp was performed before exporting reads in FASTA format. The number of good 183 

quality reads used for taxonomical assignment ranged from 46,877 to 100,000. All sequence reads 184 

were taxonomically classified using the Ribosomal Database Project Multiclassifier tool [25]. A 185 

bootstrap cut-off ≥ 50%, was chosen as recommended for fragments below 250bp and previously 186 

shown to be effective [26]. Relative abundance of bacterial taxa (family level) were determined for 187 

each community by comparing the number of reads assigned to a specific family to total number of 188 

reads assigned to the bacterial root. To limit variation between animals, the fold-change during the 189 

intervention was determined by calculating relative abundance before divided by relative abundance 190 

after, and log 2 transformations of these data. Bacterial taxa that were detected either before or after 191 

the intervention, but not in the corresponding before/after-sample from the same animal were set to 192 

0.0005% analogous to 1 read in 200,000 reads.  193 

Quantitative PCR 194 

The relative abundances of Bifidobacterium spp., Lactobacillus spp., and Akkermensia muciniphila 195 

in faecal samples from all animals as well as caecal samples were determined using quantitative 196 

PCR in a total reaction volume of 11 µl in 384-well microtiter plates using a LightCycler 480 II 197 

(Roche Applied Science). Each reaction contained 1X SYBR green mix (Roche Applied Science), 198 

0,2 pmol/µl of each primer (Table 1), and 2 µl template DNA (1ng/µl) and setup in four technical 199 

replicates with DNA from faecal samples collected before and after the intervention run on the 200 

same plate. Reaction conditions were: 95⁰C for 5 min, 40 cycles of 95⁰C for 10 sec, 60⁰C for 15 201 

sec, and 72⁰C for 45sec, followed by melting curve generation (95⁰C for 5 sec, 65 for 1 min and 202 
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increasing the temperature to 98⁰C with a rate of 0.11⁰C/sec with continuous fluorescence 203 

detection). Data was initially analysed in the LightCycler® 480 software. Noise band and threshold 204 

was set automatically using the LightCycler® 480 software. Average Cq-values of the four technical 205 

replicates calculated by the software were used for data analysis. Single Cq values differing by 206 

more than 2 cycles were considered outliers.  The relative abundances of each gene target 207 

normalized to the total number of 16S rRNA genes (universal bacterial primer) were calculated as 208 

(1+Euniversal)
Cq_universal/(1+ Etarget)

Cq_target
.  Mean PCR efficiency (E) for each primer set was calculated 209 

by use of the LinRegPCR software [27]. If the relative abundance was calculated to be below 210 

0.001% of the total bacteria (corresponding to the ratio being below 10-5), it was set to half this 211 

value.  212 

RNA extraction and cDNA preparation.  213 

Total RNA was extracted from approximately 20mg of ileum, caecum, and colon tissue using the 214 

RNeasy mini kit (Qiagen) following the suppliers recommendations. RNA concentration and purity 215 

was determined using Nanodrop Spectrophotometer ND-1000 (Thermo Scientific). Samples with 216 

A260/A280 between 1.8 and 2.1 were used in the further analysis. RNA was stored at -80⁰C. The 217 

cDNA was prepared immediately from 500ng RNA in 20µl reactions using the SuperScript VILO 218 

cDNA Synthesis Kit (Life technologies) following the suppliers recommendations and stored at -219 

20⁰C until further use.   220 

Gene expression analysis 221 

The relative expression of the tight junction proteins claudin-1 (CLDN1), ZO-1, and occludin 222 

(OCLN), and mucin 2 (MUC2), involved in mucin production, were determined with quantitative 223 

PCR using actin beta (ACTB) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as 224 

reference genes (table 1). Reaction conditions were as above and the reactions run under the 225 
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following conditions; 95⁰C for 5min, 40 cycles of 95⁰C for 10 sec, 60⁰C for 10 sec, and 72⁰C for 226 

30sec, followed by melting curve preparation 95⁰C for 5sec, 65 for 1min and 98⁰C continually. As 227 

template, 2µl 10-fold diluted cDNA was used. The relative expression was calculated using the 228 

geometric mean of the two reference genes.  229 

Trans-epithelial resistance  230 

The mammalian cell line Caco-2 (passage 15-25) were cultured in DMEM (Gibco) supplemented 231 

with 20% heat inactivated fetal bovine serum  (Gibco), 1X Non-essential amino acids (Thermo 232 

Scientific), and 1X Pen/strep (Biological industries) at 37⁰C and 5% CO2. Cells were trypsinized 233 

when 60-80% confluent. A cell suspension of 105 cells/ml was prepared and 500µl was seeded in 234 

the apical compartment of 12mm, 0.4µm pore size Transwell® polyester membrane inserts 235 

(Corning, USA), while 1.5ml medium was added to the basolateral compartment. Cells were 236 

cultured on the inserts for 21 days with change of medium twice a week. At day 21 the cells were 237 

moved to the cellZscope  (nanoAnalytics, Germany). Culture medium was changed, and 238 

accordingly 760µl and 1.65ml medium was added to the apical and basolateral compartment, 239 

respectively. TER was monitored for 20-23 hours. 76µl medium was then replaced with caecal 240 

water, sterile milliQ water (water) (control of the dilution of the cell culture media), or standard cell 241 

culture media (cell media control) (control of the cells), resulting in exposure to 5% caecal water. 242 

TER was subsequently measured every hour for 24 hours. All treatments were conducted in three 243 

replicates. All caecal water samples obtained from a given animal were analysed on the same day. 244 

Caecal water from the animals were used randomly, and placed randomly in the cellZscope . The 245 

percentage changes in TER were determined based on the last measured TER before exposing the 246 

cells (t = 0). In most cases an average of the three replicates was calculated; however for a few 247 

samples only two replicates were used. 248 
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Statistics 249 

All data analysis was conducted in GraphPad Prims version 5.0 for Windows (GraphPad Software, 250 

CA, USA.) if not otherwise stated. Differences in animal weight, water intake, feed intake, FITC-251 

dextran plasma concentrations, and caecal water pH between groups were assessed by one-way 252 

ANOVA with Bonferroni post-test or Kruskal-Wallis Dunns post-test for non-normally distributed 253 

data. The Metastats tool [28] was used for 16S rRNA gene sequence analysis using non-parametric 254 

t-tests based on 1000 permutations and setting the false discovery rate q = 0.05 as significant. For 255 

selected bacterial groups the relative abundances and fold-changes, determined by both 16S rRNA 256 

gene sequencing and qPCR, were also compared between CON and both XOS and BIF using 257 

Mann-Whitney U-test. Log 2 transformed fold changes were compared to a hypothetical median of 258 

zero using the Wilcoxon signed rank test. Differences in gene expression of tight junction proteins 259 

and MUC2 between different types of tissue were determined for the CON group by one-way 260 

ANOVA with Bonferroni post-test or Kruskal Wallis test with Dunns post-test (not normally 261 

distributed data). Differences between CON and XOS or BIF for the individual tissues were 262 

determined using Mann-Whitney U-test. Correlation analysis was determined using the Spearman 263 

correlation, considering P < 0.05 to be significant. The Χ
2-test was used to compare the number of 264 

observed differences between faecal and caecal samples in the three groups.  265 

Results 266 

Animal growth, feed, and water intake. 267 

There were no significant differences in animal weight gain between the three groups (Figure 1). 268 

Additionally, no significant differences in water and feed intake between the three groups were 269 

recorded (data not shown).  270 
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Bacterial composition 271 

Bacterial community analysis at phylum level based on 16S rRNA sequencing of 24 animals (one 272 

from each cage) before intervention revealed variation in the relative abundance (Figure 2A), and 273 

markedly Actinobacteria varied approximately 100-fold from 0.085% to 10.9% and 274 

Bifidobacteriaceae 10,000-fold from 0.001% to 10.7%  between individual animals (Figure 2B). 275 

Significant negative correlations were found between Bacteroidetes and Firmicutes (P < 0.0001, R 276 

= -0.82) and Firmicutes and Actinobacteria (P = 0.019, R = -0.48) and also a negative correlation 277 

between Bacteroidetes and Actinobacteria (P = 0.023, R = 0.46). No significant differences in 278 

relative abundances before and after intervention were found between any of the detected bacterial 279 

families in faecal samples from the two intervention groups as compared to the CON group after 280 

correction for multiple testing (Figure 3). Neither did principal component analysis of sequencing 281 

data at the family-level show any clustering of samples according to intervention group (data not 282 

shown). Additionally, no differences in the fold-change (after/before) of any of the detected 283 

bacterial families were found between the groups after correction for multiple testing (data not 284 

shown). We did however observe differences in the mean relative abundances of several bacterial 285 

families between faecal samples and caecal content samples (Table 2). 286 

Analyses of relative abundance and fold-change during the intervention for bacteria belonging to 287 

the Bifidobacteriaceae and Lactobacilliaceae were conducted separately as we hypothesized these 288 

groups to be affected and also included qPCR-based assessment of the relative abundance of 289 

Bifidobacterium spp., Lactobacillus spp., and Akkermansia muciniphila (Figure 4). Taken together, 290 

results obtained by qPCR (Figure 4B, D, and F) appeared very similar to the sequencing data 291 

(Figure 4A, C, and E). Fold-change data show that Lactobacillus ssp. increased in the CON group 292 

(P = 0.014) and the BIF group (P = 0.0018) compared to baseline (qPCR data). In addition, A. 293 

muciniphila significantly increased compared to baseline in the XOS intervention group (P = 294 



 

14 
 

0.014). There were no significant differences in fold-change for either of the bacterial taxa between 295 

the control and the two treatment groups. Sequencing data revealed a trend for a larger fold-change 296 

of Bifidobacterium spp. in the XOS group than in the CON group (P = 0.10), however this was not 297 

confirmed by qPCR (P = 0.19). Nevertheless, qPCR showed that the relative abundance of 298 

Bifidobacterium spp. in faeces (Figure 4D) was higher in the XOS group than in the CON group (P 299 

= 0.044), while this was not confirmed by sequencing data (Figure 4C, P = 0.23).  300 

In caecal content (Figure 4E and 4F) both the XOS and BIF groups had higher relative abundance 301 

of Lactobacillus spp. than the CON group (XOS; P = 0.04, BIF; P = 0.03) according to qPCR, while 302 

a tendency for this was confirmed by sequencing analysis (XOS; P = 0.08, BIF; P = 0.08). 303 

Additionally, XOS tended to increase Bifidobacteriacae in caecum content (P = 0.10) detected by 304 

sequencing.  305 

Intestinal permeability 306 

No differences in FITC-dextran concentration in the plasma were observed between the three 307 

groups (Figure 5A). The results from two animals, one from the CON group, and one from the BIF 308 

group, were excluded due to technical errors.  309 

The average caecal water pH was 7.53 ± 0.15 (SD), 7.48 ± 0.23, and 7.58 ± 0.20 for the XOS 310 

group, BIF group, and CON group, respectively with no significant differences between the groups. 311 

Caecal water from all three groups on average increased TER as compared to the controls exposed 312 

to diluted cell media or normal cell media (Figure 5B), but no significant differences were found 313 

between the three experimental groups after 24 hours of exposure (Figure 5C), although the TER 314 

was consistently lower in all time points between 12 and 24 hours after exposure to caecal water 315 

from either of the treatment groups as compared to CON (Figure 5B).    316 
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Gene expression 317 

Differences in gene expression between tissue types were determined for the CON group (figure 6). 318 

Expression of MUC2 was higher in the colonic tissue than in ileal (P < 0.01) and caecal tissue (P < 319 

0.001), and also expression of ZO-1 was higher in colon than ileum (P < 0.001). The expression of 320 

claudin-1 and occludin did not differ between the intestinal sections. The relative expression of 321 

occludin in colon was higher (P = 0.04) in the XOS group than in the CON group (Figure 6C). No 322 

other significant differences between the groups were found. 323 

Correlations between gene expression of epithelial cells, measures of intestinal integrity and 324 

relative abundance of selected bacterial groups.  325 

No significant correlations were found between the relative abundance of Bifidobacterium spp., 326 

Lactobacillus spp. or Akkermansia muciniphilla in caecal content and faecal samples (qPCR), and 327 

relative expression of CLDN-1, ZO-1, MUC2, and OCLN in ileal, caecal and colonic tissue, as well 328 

as plasma FITC-dextran concentrations and TER, irrespective of experimental group (data not 329 

shown).  330 

 331 

Discussion 332 

Changes in the gut microbial composition have been proposed to affect intestinal integrity [9]. The 333 

present study was designed to address this issue further by focusing on the effects of bifidobacterial 334 

abundance on microbial community composition and intestinal integrity in male Wistar rats. Two 335 

different approaches were used to increase levels of bifidobacteria, namely (i) oral dosage with live 336 

cultures of an endogenously isolated strain (probiotic approach) and (ii) oral dosage with XOS, 337 

which has previously been shown to stimulate bifidobacterial growth in a mouse model [17] 338 

(prebiotic approach).  339 
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Experimental animals bred and treated under standardized conditions are generally expected to 340 

exhibit less inter-individual variation than a free-living human population and consequently it 341 

should require fewer individuals to find effects in dietary intervention studies. Comparison of the 342 

animals at base-line (Figure 2A) revealed less variation within the two most abundant phyla, 343 

Firmicutes and Bacteroidetes, than reported in human studies [29], but interestingly, for bacteria 344 

belonging to the Actinobacteria, a more than 100-fold difference in relative abundance was 345 

observed between animals. For the Bifidobacteriaceae family, belonging to the Actinobacteria, we 346 

observed approximately 10,000-fold difference in relative abundance before the intervention 347 

commenced (Figure 2B). The high initial level of variation within the Bifidobacteriaceae in this 348 

study may impede detection of the expected XOS or BIF driven increase in relative abundance of 349 

this bacterial group during the intervention, as such an increase was only detectable by qPCR, and 350 

not by sequencing of community-derived 16S genes. The increased relative abundance of 351 

bifidobacteria following intake of XOS is consistent with a previous study in male Sprague-Dawley 352 

rats, which showed increase in both faecal and caecal levels of bifidobacteria following a 14-day 353 

intervention with XOS added to feed at 6% [30] and also an increase is reported in XOS-fed mice 354 

[17]. Animals in the BIF group received approximately 2.2-6.2*108 B. pseudolungum cells every 355 

second day during the intervention. This did however not result in higher levels of bifidobacteria in 356 

either caecum content or faecal samples at termination. In spite of the fact that the bifidobacterial 357 

strain applied was isolated from similar rats, we speculate that the strain did not colonize and/or 358 

proliferate in the rat gut, resulting in washout before faecal samples were obtained approximately 359 

24 hours after the last dosage. A study addressing  intestinal transit of B. bifidum following gavage 360 

in mice showed a peak in the abundance of this strain in faeces at around 6 hours after dosage and 361 

subsequently a significant reduction after 18 hours [31]. Alternatively, the dosing level was too low 362 
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to have an effect or bifidobacterial cells may not have survived passage through the acidic 363 

environment of the rat stomach. 364 

Quantitative PCR as well as 16S rRNA amplicon sequencing revealed higher caecal levels of 365 

Lactobacillus spp. in both the XOS and BIF groups compared to the CON groups after intervention 366 

(Figure 4E-F). This is consistent with a prebiotic effect of XOS [6] and confirms that increasing the 367 

abundance of one bacterial group may influence the abundance of another through e.g. metabolic 368 

cross-feeding processes [32] or by changing environmental conditions such as pH. Detection of 369 

significant differences in the relative abundance of Lactobacillus spp. between the groups was 370 

facilitated by a relatively low initial variation of Lactobacilliaceae (approximately 70-fold) 371 

compared to Bifidobacteriaceae (Figure 2B). Quantatative PCR is anticipated to result in better 372 

quantification than amplicon sequencing, especially for low-abundant bacterial groups, due to the 373 

low absolute number of sequence reads in the latter. In the present study we observe only slightly 374 

more significant differences by the qPCR approach compared to the sequencing approach (Fig. 4) 375 

indicating only marginally higher power. 376 

The mucin degrading species A. muciniphila was included in the qPCR analysis, due to its status as 377 

potential marker for intestinal health (reviewed by [33]). An increase in levels of A. muciniphila 378 

after the intervention compared to baseline was found only in the XOS group (Figure 4B). This may 379 

be explained by a XOS-induced increased production of mucin, as A. mucinphilla is capable of 380 

degrading mucin as sole carbon source [34]. Also A. mucinphilla is reported to be reduced in 381 

patients suffering from disruption of the gut mucus layer due to mucosal inflammation [35] as well 382 

as in ob/ob mice [36]. Prebiotics have previously been shown to normalize, hence increase, A. 383 

muciniphila abundance in obese and type 2 diabetic mice and also administration of viable A. 384 

muciniphila was connected to improvement of metabolic disorders in mice fed a high-fat diet, 385 

potentially due to reestablishment of the mucus layer [36]. Nevertheless, we observed no 386 
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differences in expression of the mucin gene (MUC2) between the three experimental groups in any 387 

of the intestinal segments (Figure 6B).  However, as the actual amount of mucus was not 388 

determined, this does not exclude the possibility of increased mucin levels in the XOS group due to 389 

post-transcriptional alterations and/or increased expression of other mucin encoding genes. 390 

Previously increased levels of mucin secretion were reported in animals fed FOS [14,18,37]. 391 

Mucins secretion was also increased in humans, but this was not connected to altered permeability 392 

for CrEDTA [38]. 393 

The overall mean gut microbiota composition in faecal samples was very similar in all three groups 394 

before the intervention and remained so during the intervention (Figure 3). No differences in 395 

microbiota composition after the interventions were observed between treatment groups after 396 

correction for multiple comparisons (Figure 3). We observed several bacterial families which 397 

differed in mean relative abundance in cecum content compared to faecal samples, including higher 398 

levels of Actinobacteria and lower levels of Peptostreptococcaceae and Veillonellaceae associated 399 

with faecal samples in all three intervention groups (Table 2). We observed fewer families that 400 

differed in relative abundance between faces and cecum content in the XOS and BIF groups than in 401 

the control group but this was not significant (Χ
2-test). 402 

Measures of rat gut integrity were obtained by three independent measures namely (i) permeability 403 

of FITC-dextran molecules across the epithelial barrier (Figure 5A), (ii) trans-epithelial resistance 404 

of Caco-2 cells after exposure to caecal water (Figure 5B-C), and (iii) relative expression of genes 405 

encoding tight junctions proteins or mucin (Figure 6). These measures were selected to collectively 406 

cover different aspects of gut permeability. Intestinal permeability is mainly determined by 407 

paracellular transport between epithelial cells, which has been suggested to be divided into two 408 

pathways: The high-capacity “pore pathway” where small molecules (below 4Å) can pass, and the 409 

low-capacity “leak pathway” where larger molecules may pass (reviewed by [39]). Changes in 410 
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FITC-dextran permeability indicate a change in the leak-pathway, while changes in TER may 411 

indicate changes in both pathways [39]. We found no statistically significant effect on either FITC-412 

dextran permeability or TER after 24 hours between treatment groups and the CON group of 413 

animals (Figure 5A and C). Nevertheless, TER was observed to be consistently higher in the CON 414 

than both the XOS and BIF groups from around 12 hours until termination at 24 hours, indicating 415 

an increase in permeability in the Caco-2 monolayer during exposure to caecal water from XOS and 416 

BIF (Figure 5B). This is consistent with a previously observed trend for a negative correlation 417 

between TER and relative abundance of bifidobacteria [11]. Caecal-water collected from CON, 418 

XOS of BIF animals increased TER during 24-hours significantly more than water, which was used 419 

as control. This suggests that caecal water positively affects tight-junction interaction, which is 420 

consistent with similar observations on faecal-water [11]. Expression levels of occludin genes in 421 

colonic tissue were significantly higher in the XOS group than in the CON group. Changes in 422 

expression of ZO-1 and occludin in ob/ob mice after consumption of prebiotics have previously 423 

been studied showing that prebiotic treatment increased levels of  Bifidobacterium spp. as well as 424 

occludin and ZO-1 expression in jejunum, and also decrease FITC-dextran (4kDa) permeability 425 

[40]. Additionally, high-fat feeding was reported to decrease Bifidobacterium spp., increase 426 

intestinal permeability and decrease the expression of ZO-1 and occludin [9]. It should be noted that 427 

specific strains of bifidobacteria may have varying effects on markers of intestinal integrity 428 

[19,41,42], which could explain the relatively low effect of the B. pseudolongum isolate in the 429 

current study. 430 

CONCLUSION 431 

The present study was designed to address the hypothesis that increased levels of bifidobacteria are 432 

linked to decreased intestinal integrity caused by modulation of the microbiota, as indicated by 433 

previous studies showing increased Salmonella translocation following intake of prebiotics in 434 
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rodents [14-17]. However, this hypothesis was not confirmed, perhaps because the limited effects of 435 

XOS and dosage of bifidobacteria on intestinal bifidobacterial loads were insufficient to induce 436 

measurable changes in intestinal integrity. Our observations of increased occludin expression after 437 

XOS consumption seem to contradict the hypothesis, while the consistent decrease in TER caused 438 

by caecal water from BIF and XOS rats, although not significant, points in a confirmatory direction.  439 
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Tables 453 

Table 1. Primers used for PCR and quantitative PCR 454 

Target Primer Primer sequence (5’-3’) Size (bp) Ref 

Bifidobacterium spp. BifF GCGTGCTTAACACATGCAAGTC 126 [43] 

BifR CACCCGTTTCCAGGAGCTATT  

Lactobacillus spp. LactoAll_1F AGCAGTAGGGAATCTTCCA 341 [44] 

[45] LactoAll_1R CACCGCTACACATGGAG  

Akkermansia muciniphila AM1 CAGCACGTGAAGGTGGGGAC 327 [46] 

AM2 CCTTGCGGTTGGCTTCAGAT  

Universal bacteria HDA1 ACTCCTACGGGAGGCAGCAGT 200 [47] 

HDA2 GTATTACCGCGGCTGCTGGCAC  

Beta-actin (Actb) ACTB_A CACCCGCGA GTACAACCTT  207 [48] 

ACTB_B CCCATACCCACCATCACACC  

Glyceraldehyd-3-phosphate (Gadph) 

 

GAPDH2_A CAAGTTCAACGGCACAGTCAAG 123 [49] 

GAPDH2_B ACATACTCAGCACCAGCATCAC  

Mucin 2 (MUC2) 

 

MUC2_A TCCCTCTTACAAGGGCAATG 123 [50] 

MUC2_B TTCCAGCTGTTCCCAAAGTC  

Claudin-1(CLDN-1) 

 

CLDN-1_A TGTCCACCATTGGCATGAAG 118 [51] 

CLDN-1_B GCCACTAATGTCGCCAGACC  

Occludin (OCLN) 

 

OCLN_A GCCTTTTGCTTCATCGCTTC 125 [49] 

OCLN_B AACACCATGATGCCCAGGAT  

Zonula occludens-1 (ZO-1) 

 

ZO-1_A AAGCCAGTCACGATCTCCCG 106 [49] 

ZO-1_B GCGCTCTTCCTCTCTGCTCC  

 455 

  456 
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Table 2. Differences detected between caecal and faecal samples.  457 

Mean ± SEM are shown and coloured for those families with significant differences after correction 458 

for False Discovery Rate (q < 0.05). Green: Mean higher in faecal sample and Red: Mean higher in 459 

caecal sample. 460 

*Note that the family Hyphomicrobiaceae contains the genera Gemmiger, which shows high 16S 461 

rRNA gene sequence homology to members of the Ruminococcaceae family (Firmicutes), and may 462 

thus be taxonomically misplaced. 463 

CON XOS BIF 

Phylum Family Sample mean ± SEM mean ± SEM mean ± SEM 

Firmicutes Lachnospiraceae Faecal 3.6E-01 ± 3.6E-02 2.9E-01 ± 3.7E-02 3.2E-01 ± 4.5E-02 

Caecal 4.3E-01 ± 4.4E-02 4.5E-01 ± 3.0E-02 4.4E-01 ± 2.8E-02 

Peptostreptococcaceae Faecal 7.7E-03 ± 2.2E-03 8.2E-03 ± 3.0E-03 7.0E-03 ± 2.0E-03 

Caecal 2.4E-02 ± 8.7E-03 2.4E-02 ± 4.9E-03 2.6E-02 ± 5.0E-03 

Erysipelotrichaceae Faecal 1.2E-02 ± 3.6E-03 1.1E-02 ± 2.9E-03 1.1E-02 ± 2.5E-03 

Caecal 3.9E-03 ± 8.9E-04 6.1E-03 ± 2.7E-03 3.8E-03 ± 6.3E-04 

Lactobacillaceae Faecal 3.4E-02 ± 8.0E-03 8.5E-02 ± 2.7E-02 9.7E-02 ± 3.4E-02 

Caecal 5.9E-03 ± 3.4E-03 6.0E-03 ± 8.0E-04 1.5E-02 ± 6.6E-03 

Streptococcaceae Faecal 3.6E-04 ± 6.9E-05 3.8E-04 ± 1.1E-04 2.2E-04 ± 5.2E-05 

Caecal 1.3E-04 ± 3.6E-05 2.1E-04 ± 8.3E-05 1.9E-04 ± 7.1E-05 

Staphylococcaceae Faecal 1.2E-04 ± 3.3E-05 8.0E-05 ± 1.2E-05 1.2E-04 ± 1.4E-05 

Caecal 3.6E-05 ± 9.0E-06 4.0E-05 ± 1.1E-05 6.2E-05 ± 2.2E-05 

Veillonellaceae Faecal N.D.     N.D.     N.D.     

    Caecal 2.6E-04 ± 1.6E-04 9.5E-04 ± 7.5E-04 4.8E-04 ± 3.2E-04 

Bacteroidetes Rikenellaceae Faecal 3.0E-02 ± 5.6E-03 2.4E-02 ± 5.7E-03 1.9E-02 ± 4.6E-03 

    Caecal 8.6E-02 ± 2.1E-02 5.3E-02 ± 1.2E-02 4.0E-02 ± 9.4E-03 

Actinobacteria Micrococcaceae Faecal 2.6E-04 ± 5.4E-05 1.4E-04 ± 3.1E-05 1.7E-04 ± 2.3E-05 

Caecal 3.1E-05 ± 1.1E-05 2.8E-05 ± 1.0E-05 6.5E-05 ± 1.7E-05 

Corynebacteriaceae Faecal 6.6E-05 ± 1.5E-05 5.9E-05 ± 2.0E-05 5.4E-05 ± 1.1E-05 

Caecal 1.9E-05 ± 6.3E-06 1.0E-05 ± 4.6E-06 5.8E-05 ± 3.9E-05 

Coriobacteriaceae Faecal 1.5E-03 ± 3.2E-04 1.7E-03 ± 1.9E-04 1.9E-03 ± 4.6E-04 

    Caecal 2.4E-04 ± 6.1E-05 2.5E-04 ± 4.8E-05 5.5E-04 ± 1.4E-04 

Proteobacteria Desulfovibrionaceae Faecal 1.3E-03 ± 4.9E-04 9.9E-04 ± 5.6E-04 1.1E-03 ± 5.6E-04 

Caecal 5.9E-03 ± 1.1E-03 5.7E-03 ± 3.1E-03 6.5E-03 ± 2.2E-03 

*Hyphomicrobiaceae Faecal N.D.     N.D.     1.9E-06 ± 1.9E-06 

Caecal 3.2E-05 ± 9.8E-06 4.2E-05 ± 1.9E-05 3.9E-05 ± 2.1E-05 

Deferribacteres Deferribacteraceae Faecal 1.0E-04 ± 2.4E-05 1.3E-04 ± 6.0E-05 1.1E-04 ± 2.0E-05 

    Caecal 4.1E-04 ± 9.2E-05 4.1E-04 ± 1.3E-04 3.5E-04 ± 8.3E-05 
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Figure Legends 464 

Figure 1. Animal weight gain during the study. Mean with SD is illustrated for each treatment 465 

group; CON (circles), XOS (triangles), and BIF (squares). The arrow indicates initiation of the 466 

dosing period.   467 

Figure 2: Bacterial community composition of individual animals before intervention based 468 

on 16S rRNA gene sequencing. A: Bacterial community composition at phylum level for one 469 

animal from each of the 24 separate cages. Columns are ordered with increasing relative abundance 470 

of Firmicutes. B: The relative abundance for selected phyla and families are shown as dot-plots 471 

with geometric average indicated by a horizontal line. 472 

Figure 3. Bacterial community composition in faecal and caecum content samples based on 473 

16S rRNA gene sequencing. The mean bacterial composition is shown at the family level for 474 

faecal samples obtained before intervention (A-C), after intervention (D-F) and caecal content 475 

samples (G-I) for animal in CON, XOS and BIF groups. Differences in mean relative abundances 476 

were only observed between faecal and caecal samples as detailed in table 2.  477 

Figure 4. Fold changes and relative abundances determined by 16S rRNA gene sequencing 478 

and qPCR. Columns show means with SEM (A-B) or box and whisker plots with full range (C-F) 479 

for Bifidobacteriaceae (dark grey) and Lactobacillacae (light gray) determined by high through-put 480 

sequencing (A, C & E) and for Bifidobacterium spp. (dark grey), Lactobacillus spp. (light gray) and 481 

Akkermansia muciniphilla (white), determined by qPCR (B,D and F). Akkermansia muciniphilla 482 

was not included in 16S sequencing due to low abundance. Analysis were performed on community 483 

DNA extracted from faecal samples (A-D) or cecum content (E-F). In panels A and B, significant 484 

differences from baseline are indicated with asterisks (p<0.05). Observed differences between 485 

groups are indicated with P-values.  486 
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Figure 5. Gut integrity as determined by FITC-dextran permeability and Trans-Epithelial 487 

Resistance (TER). FITC-dextran concentrations in plasma (A) and relative TER across Caco-2 488 

cells exposed to caecal water during the 24-hour exposure period (B) and at 24 hours after exposure 489 

(C). Dot plots with means indicated by horizontal lines (A and C) and mean values with SEM for 490 

groups CON (blue circles), XOS (green squares), BIF (red triangles) as well as water (grey circle) 491 

and cell media control (black squares) are shown (B). 492 

Figure 6. Relative expression of MUC2, CLDN-1, OCLN, and ZO-1. Mean relative gene 493 

expression compared to the geometric mean of the reference genes GAPDH and ACTB in tissue 494 

samples obtained from ileum, ceceum and colon from animals in CON (dark gray), XOS (light 495 

gray) and BIF (white) groups. Observed differences between groups are indicated with p-values. 496 

Error bars indicate SEM. 497 

 498 

  499 
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Abstract 18 

Introduction: Antibiotics are frequently adminitered orally to treat both systemic and localized 19 

bacterial infections in almost any body location. As a consequence of this the commensal gut 20 

microbiota is very often affected as well. This may disrupt the normal balance and subsequently 21 

affect intestinal integrity and host health.  22 

Methods: Female Wistar rats (n=60) were dosed with amoxicillin (AMX), cefotaxime (CTX), 23 

vancomycin (VAN), metronidazole (MTZ), or water (CON) every day for 10-11 days (n=12 in each 24 

group). Changes in bacterial composition in faecal and caecal content were determined by partial 25 

sequencing of the 16S rRNA gene. Intestinal permeability was determined in vivo by measuring 26 

permeability of 4kDa FITC-dextran.  27 

Results: Intestinal permeability was increased by administration of MTZ, while CTX and VAN 28 

decreased intestinal permeability. Bacterial composition was significantly influenced by AMX, 29 

CTX and VAN but not by MTZ. In all groups with significant changes compared to CON, 30 

Firmicutes was reduced while Bacteroidetes and Proteobacteria were increased. For CTX 31 

abundance of Bifidobacteriaceae in the caecum content increased significantly while in the VAN 32 

group Lactobacillaceae increased in both caecal and faecal samples. Administration of AMX, CTX 33 

and MTZ resulted in increased water intake, while only AMX affected feed intake. Caecum weight 34 

was increased by AMX and VAN and the latter also increased caecum pH.  35 

Conclusion: Specific antibiotics were shown to affect intestinal permeability in either a positive or 36 

negative direction dependent on the class of antibiotic. Changes in gut microbial composition, 37 

which were also observed, could be linked to intestinal permeability, although changes in 38 

permeability did not always result from major changes in microbiota and vice versa. 39 

 40 

Introduction 41 

The gut microbiota is considered to have great impact on host health through either direct 42 

interaction with host cells or through production of metabolites such as short chain fatty acids (1). 43 

Modulation of the gut microbiota can therefore potentially affect host health, which may occur 44 

through alterations of intestinal integrity (2). At present bacterial infections in human are very often 45 

treated with orally administered antibiotics irrespective of the actual location of the infection. These 46 
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antibiotics will inevitably affect the complex and finely tuned microbial ecosystem residing in the 47 

gut (3). At present numerous studies have examined effects of different antibiotics on the gut 48 

microbiota (4–7), but very few have focused on effects on intestinal integrity and the cause of any 49 

such effects (8). Intestinal permeability is an frequently employed maker for intestinal health, as 50 

increased intestinal permeability may lead to inflammation caused by bacterial components, such as 51 

lipopolysaccharide (LPS), crossing the epithelial barrier (8). Intestinal permeability is mainly 52 

controlled by the interaction between tight junction proteins in epithelial cells. Small molecules, 53 

such as ions, are considered to pass through a high conducting ‘pore’ pathway in the tight junctions, 54 

while larger molecules, including LPS, may pass through the ‘leak’ pathway as previously defined 55 

(2, 9). Intestinal permeability, by the ‘leak’ pathway, can be assessed by determining the 56 

permeability of FITC-dextran with a defined molecular size (2, 8, 9).    57 

The effect of antibiotics on intestinal integrity has previously been studied in connection with high 58 

fat diet (8). Here high-fat diet increased intestinal permeability, but subsequent antibiotic treatment 59 

was shown to reduce the intestinal permeability again. Others have shown that antibiotic treatment 60 

in childhood is associated with Crohn’s disease (10), which is one of the gastrointestinal disorders 61 

that is connected to increased intestinal permeability (11). Hence antibiotics may affect intestinal 62 

permeability and host health. The effect of antibiotics on the bacterial composition and the intestinal 63 

permeability must however be dependent on the specific targets of the antibiotics, therefore 64 

different classes of antibiotics must have different effects on intestinal health.  65 

In the present study we examined how four antibiotics, namely; amoxicillin (AMX), cefotaxime 66 

(CTX), vancomycin (VAN), and metronidazole (MTZ) affected the gut microbial composition and 67 

intestinal integrity in female Wistar rats. These antibiotics represent different classes and were 68 

chosen due to their common oral use in humans and varying bacterial targets (Table 1). Changes in 69 

bacterial composition was determined using high-through put sequencing of the V3-region of the 70 

16S rRNA encoding gene, while changes in intestinal permeability were determined in vivo by 71 

FITC-dextran permeability assay.      72 

Materials and methods 73 

Animals and housing 74 

8-week old specific pathogen free female Wistar Hannover rats (n =60) were purchased from 75 

Taconic (Lille Skensved, Denmark). Animals were housed in pairs under controlled environmental 76 
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conditions (12-hours light/dark cycles, temperature 21.5 ± 0.3⁰C, relative humidity 51.3 ± 3.1%, 8-77 

10 air changes per hour). Animals had access to ad libitum water and feed (Altromin 1324) 78 

throughout the experiment. Animal weight as well as feed and water intake was monitored weekly 79 

during the invention period. Animals were monitored twice a day. The animal experiment was 80 

carried out under the supervision of the Danish National Agency for Protection of Experimental 81 

Animals.  82 

Experimental design 83 

Upon arrival animals were housed in pairs. The following day animals were weighed and the cages 84 

were randomly allocated into five groups (with six cages in each group) based on weight. Animals 85 

were housed together for 2 weeks, before the experimental period was initiated to limit effects of 86 

co-housing and coprophagia. During the experimental period animals received a daily dosage of 0.5 87 

mL of antibiotic solution (Table 1) AMX; 60 mg/mL amoxicillin (Sigma-Aldrich, A8523), CTX; 8 88 

mg/mL cefotaxime (Sigma-Aldrich, C7912), VAN; 8 mg/mL vancomycin (Sigma-Aldrich, 89 

861987), MTZ; 8 mg/mL Metronidazole (Sigma-Aldrich, M1547) or water (CON) by oral gavage 90 

for 10 or 11 days. Faecal pellets were collected directly from the individual rats before the initial 91 

dosing (day 0) and the day before euthanization of the first animals (day 10) and immediately 92 

frozen at -20
o
C. 93 

In vivo intestinal permeability assay 94 

Intestinal permeability was determined on the day of euthanization by measuring the permeability 95 

of FITC-dextran by an approach similar to previous studies (8, 12). Briefly, animals were fasted for 96 

at least 9 hours before the assay. For each cage one animal was dosed with 0.5 mL 120 mg/mL 97 

FITC-dextran (4kDa, Sigma-Aldrich, FD-4) per 100 g body weight (corresponding to 600 mg/kg 98 

animal), while the other animal was dosed with a corresponding dose of phosphate buffered saline 99 

(PBS). Exactly two hours after dosing animals were euthanized (CO2 and decapitation), and blood 100 

was collected from the neck into 50 ml Falcon tubes containing 100µl EDTA (0.5M, pH 8, 101 

Ambion). Blood was centrifuged (1500 G, 10 min, 4
o
C), and plasma collected. Plasma was 102 

centrifuged again (5 min) before mixing 1:1 with PBS. Plasma-PBS solutions were stored dark at 103 

5⁰C, until analysis the same day. Fluorescence was measured in three replicate wells for each 104 

sample (75 µl) in black 96-well microtiter plates (Proxiplate-96 F, Perkin Elmer) using a Victor TM 105 

X4 Plate reader (Perkin Elmer) with excitation at 485 nm and emission at 535 nm. FITC-dextran 106 

concentrations in plasma were calculated using a standard curve. 107 
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Dissection of animals 108 

Only animals that had not received FITC-dextran during the permeability assay were dissected (n 109 

=30). The caecum was removed, weighed, and caecal content was collected. Finally, pH was 110 

measured directly in the caecum content (Thermo Scientific, Orion 3 Star). 111 

Extraction of bacterial community DNA 112 

Gut microbiota composition was determined for animals, that had not been dosed with FITC-113 

dextran (n =30). DNA was extracted from faecal samples collected on the initial day of dosing (day 114 

0), and the day before the euthanization of the first animals (day 10), as well as from caecal content 115 

using the MoBio PowerLyzer® Power Soil® DNA Isolation Kit (MoBio Laboratories, Carlsbad, 116 

CA) according to the manufacturer’s recommendations with minor modifications. A maximum of 117 

200 mg samples was used for extraction and samples were heated to 65°C for 10 min after addition 118 

of the C1 solution. Bead beating was conducted at 30 cycles/s for 4 min (Retsch MM 300 mixer 119 

mill). DNA concentrations were measured with the Qubit dsDNA HS kit (Life Technologies). 120 

Amplicon sequencing of the 16S rRNA encoding gene 121 

The bacterial composition was determined by sequencing of the V3-region of the 16S rRNA gene in 122 

bacterial community DNA. Amplification of the V3-region and subsequent sequencing was 123 

performed using the Ion Torrent PGM platform (Life Technologies) essentially as previously 124 

published (13). Briefly, the V3-region of the 16S rRNA gene was amplified using a universal 125 

forward primer (PBU 5’-A-adapter-TCAG-barcode-CCTACGGGAGGCAGCAG-3’) with a unique 126 

10-12 bp barcode for each bacterial community (IonXpress barcode as suggested by the supplier, 127 

Life Technologies) and a universal reverse primer (PBR 5’-trP1-adapter-128 

ATTACCGCGGCTGCTGG-3’). PCR reactions were conducted with 4µl HF-buffer, 0.4µl dNTP 129 

(10mM of each base), 1µM forward primer, 1µM reverse primer, 5ng template DNA, and 0.2µl 130 

Phusion High-Fidelity DNA polymerase (Thermo Scientific) in a reaction volume of 20µl. 131 

Reactions were run at 98⁰C for 30 seconds followed by 24 cycles of 98⁰C for 15 seconds and 72⁰C 132 

for 30 seconds, before 72⁰C for 5 minutes and cooling at 4⁰C. Products were purified by gel 133 

electrophoresis and DNA concentrations were determined with Qubit HS assay, and a library was 134 

constructed by mixing an equal amount of PCR products from each original community. 135 

Sequencing was performed on a 318-chip for Ion Torrent sequencing using the Ion OneTouch
TM

 136 

200 Template Kit v2 DL. Sequence data were obtained in FASTQ format and further processed 137 

using CLC bio genomic workbench (Qiagen) in order to de-multiplex and remove sequencing 138 
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primers. Further quality trimming using default settings (quality score = 0.05, trim ambiguous 139 

nucleotides = 2) and selection of reads with a final length between 110bp – 180bp was performed 140 

before exporting reads in FASTA format. The number of good quality reads used for taxonomical 141 

assignment ranged from 17,205 to 96,897 (except for one faecal sample, from before the 142 

intervention, that was represented by only 2,555 reads). All sequence reads were taxonomically 143 

classified using the Ribosomal Database Project Multiclassifier tool (14). A bootstrap cut-off ≥ 144 

50%, was chosen as recommended for fragments below 250bp and previously shown to be effective 145 

(15). Relative abundance of bacterial taxa (family level) were determined for each community by 146 

comparing the number of reads assigned to a specific family to total number of reads assigned to the 147 

bacterial root. For log transformation of data a relative abundance of 0.0005% analogous to 1 read 148 

in 200.000 reads was applied as a minimum. 149 

Principal component analysis and statistics 150 

Principal component analysis was performed on log10-tranforemd relative abundance data using 151 

Latentix version 2.11. All Statistical analysis was conducted in GraphPad Prism 5 unless stated 152 

otherwise. Animal weight was compared using two-way ANOVA with Bonferroni post-test 153 

comparing each of the treatment groups with CON. Average feed and water intake per day during 154 

the intervention was calculated for each cage. Differences in FITC-dextran plasma concentrations, 155 

caecum weight, and pH between treatment groups and CON were determined using non-parametric 156 

Mann-Withney tests. Statistical analysis of the 16S rRNA gene sequencing data were done with the 157 

online version of the Metastats tool for detection of differentially abundant features 158 

(http://metastats.cbcb.umd.edu/detection.html) based on 1000 permutations and a q-value 159 

significance level of 0.05 (16).  160 

Results 161 

Animal weight, feed and water intake 162 

Animal weight did not differ between the CON group and any of the four treatment groups at any of 163 

the three time-points during the experiment (Figure 1A). Neither did weight gain during the 164 

intervention period (Fig 1B). Animals in the AMX group had a significantly lower average feed 165 

intake per day during the intervention period compared to CON (P = 0.017), while MTZ tended to 166 

have a higher feed intake (P = 0.054) (Figure 1C). Animals in the AMX, CTX, and MTZ groups 167 

had a higher average water intake per day, than animals in the CON group (P = 0.002, P = 0.0043, P 168 

= 0.0037, respectively) (Figure 1D). 169 
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Caecum weight and pH  170 

Administration of AMX and VAN resulted in increased caecum weight compared to CON (P = 171 

0.041 and P = 0.0022) (Figure 2A and 3). Additionally pH was higher in the caecum of the VAN 172 

group compared to the CON group (P = 0.0022). 173 

Intestinal permeability 174 

The intestinal permeability was determined in vivo by determining FITC-dextran permeability 175 

(Figure 4). Antibiotics CTX and VAN both resulted in a lower FITC-dextran plasma concentrations 176 

compared to CON (P = 0.041, and P = 0.045, respectively), hence decreased intestinal permeability. 177 

Administration of MTZ increased permeability compared to CON (P = 0.015).  178 

Gut microbial composition 179 

The bacterial composition in the AMX, CTX, and VAN groups differed significantly from the CON 180 

in both caecum content and faeces samples, while MTZ did not affect the bacterial composition 181 

significantly (Figure 5 and Table 2). Principal component analysis (PCA) (Figure 6) showed that 182 

animals dosed with AMX, CTX, and VAN each formed a separate cluster with faecal and caecal 183 

samples clustering together (Figure 6a). Only a slight difference was observed for MTZ compared 184 

to CON. In the CON group faecal and caecal samples clearly clustered separately, with fecal 185 

samples having a lower PC#1 score. The PCA loading plot (Figure 6b) indicated that Proteobacteria 186 

and specifically Enterobacteriaceae may be causing the shift towards higher PC#1 score for 187 

antibiotics AMX, VAN and CTX.  188 

Significant differences in bacterial families, in faeces and caecum between treatment groups and 189 

CON, are calculated as log2 (fold-changes) in Table 2. AMX overall decreased the relative 190 

abundance of Firmicutes families while Bacteroidetes families were increased (Figure 5), 191 

specifically Bacteroidaceae. Families belonging to Proteobacteria were also increased; here 192 

Enterobacteriaceae was increased in both caecum and faeces while Desulfovibrionaceae was only 193 

increased in caecum (Table 2). For CTX Bacteroidetes families were increased in both caecum and 194 

faeces, especially Bacteroidaceae, while Rikenellaceae was only increased in caecum. In the 195 

caecum content the relative abundance of Enterococcaceae and Bifidobacteriaceae increased 196 

significantly while especially the Ruminococcaceae were decrease by CTX. In the VAN group 197 

Lactobacillaceae increased in both caecal and fecal samples and Peptococcaceae in caecum, while 198 

the Firmicutes overall decreased.  Proteobacteria families were significantly increased by VAN. 199 

Here Desulfovibrionaceae, Sutterellaceae and Enterococcaceae in both faeces and caecum 200 
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increased. Additionally Verrucomicobria were increased significantly. Overall faeces and caecum 201 

samples within the same treatment group show similar changes in bacterial composition compared 202 

to CON (Figure 6). In all the groups with significant changes the Firmicutes were reduced while 203 

Bacteroidetes and Proteobacteria were increased (Figure 5).  204 

 205 

Discussion 206 

Our study showed that both VAN and CTX caused a decrease in intestinal permeability of 4 kDa 207 

FITC-dextran, thus indicating a strengthening of integrity. This was correlated to changes in 208 

bacterial community composition in both faecal and caecum samples, which were very similar 209 

within an antibiotic group, but different between groups as shown by principal component analysis 210 

(Fig. 6). As expected VAN, known to target Gram positive bacteria, reduced the relative abundance 211 

of several bacterial families within the Firmicutes and Actinobacteria phyla and increased the 212 

relative abundance of several Gram negative bacterial families within the Proteobacteria as well as 213 

Verrucomicrobiaceae consistent with previous studies (17). A reduction of the Gram negative 214 

Porphyromonadaceae and notably also an increase in relative abundance of Lactobacillaceae was 215 

also observed (Table 2).  The latter of these is consistent with the observed decrease in intestinal 216 

permeability as Lactobacillus spp. have previously been shown to increase intestinal integrity in in 217 

vitro models (18–20). For animals dosed with CTX we observed fewer significant changes in 218 

relative abundance of bacterial families than for VAN, however an increase in Bifidobacterium spp. 219 

was seen, which again is consistent with the observed positive effect on permeability, as 220 

Bifidobacterium spp. have also been shown to increase integrity in both in vitro and in vivo models 221 

(21–25). The relative abundance of Proteobacteria was also generally increased by VAN, which 222 

could lead to increased levels of lipopolysaccharide (LPS) crossing the intestinal barrier thus 223 

causing inflammation (8). Since increased intestinal permeability is considered to initiate this 224 

cascade, the increased abundance of Proteobacteria found here, may not affect the intestinal 225 

permeability. Finally, bacterial families within the Firmicutes were reduced by VAN including 226 

Rumincoccaceae and Lachnospiraceae, which belong to the butyrate producing Clostridium 227 

clusters IV and XIVa (26). This reduction could explain the increase in pH in the caecum. 228 

Previously butyrate has been shown to decrease intestinal permeability in in vitro and animal 229 

disease models (27, 28). The reduction of butyrate producing bacteria did, however not seem to 230 

increase the intestinal permeability in VAN in the present study.  231 
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The antibiotic MTZ caused an increase in the intestinal permeability, but very little change in the 232 

microbiota composition was seen in both cecum and colon compared to CON. The observed lack of 233 

effect on the microbiota is supported by the literature, and is due to low concentrations of active 234 

metronidazole reaching the cecum and colon because the agent is generally well absorbed (29). This 235 

indicates that MTZ may cause alterations to the intestinal permeability independent of the gut 236 

microbiota. However, in the present study the bacterial community was only examined in the 237 

caecum and in faecal samples, hence alterations in bacterial composition in the small intestine were 238 

not determined. Thus, MTZ could potentially affect the bacterial composition and the intestinal 239 

integrity in the small intestine. Others have also shown that MTZ can affect intestinal integrity in 240 

mice, showing that it caused a decrease in the mucus thickness, down regulation of Muc2, TFF3, 241 

and Relmβ gene expression and interestingly also changes in the colonic microbiota (30). This could 242 

lead to an impairment of the intestinal epithelial barrier, based on a reduced mucus layer, leading to 243 

the increased intestinal permeability found in the present study. 244 

Of the four antibiotics investigated in the present study, only AMX was found not to affect the 245 

intestinal permeability. This is interesting because AMX resulted in major changes in the bacterial 246 

composition, including reduction of butyrate producing bacteria (Ruminococcaceae and 247 

Lachnospiraceae) as well as increase of Enterobacteriaceae (Table 2 and Fig 6) and also 248 

enlargement of the caecum was observed similar to VAN, which may be caused by depletion of 249 

bacteria as seen in germ-free mice (31). Finally, opposite VAN, AMX caused a reduction of 250 

Lactobacillacae in faeces, which as previously mentioned could affect intestinal integrity. 251 

In the present work MTZ, that did not affect the gut microbiota, had the highest impact on the 252 

intestinal permeability, while AMX, that modulated the gut microbiota significantly, had no effect 253 

on the intestinal permeability. This may contradict the hypothesis, that changes in the gut 254 

microbiota modulate the intestinal integrity. It should however be noted, that in this study intestinal 255 

integrity was only evaluated by the permeability of 4 kDa FITC-dextran. This is a relatively large 256 

molecule that is considered to pass through the ‘leak’ pathway in the tight junction protein complex 257 

(9). Alterations in the ‘pore’ pathway, where smaller molecules and ions can pass are therefore not 258 

identified in the current work. Amoxicillin could therefore potentially alter the intestinal 259 

permeability for molecules smaller than FITC-dextran. Additionally, the remaining antibiotics could 260 

also affect the permeability for such molecules in addition to the observed effects on FITC-dextran.  261 
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In conclusion, the present study shows, that antibiotic treatment has a major effect on the gut 262 

microbiota composition, which is very similar for separately housed rats within the same treatment 263 

group but varies between antibiotics. The observed varying effects of different classes of antibiotics 264 

on intestinal integrity warrants further investigation and could be considered during selection of 265 

appropriate treatment for bacterial infections.   266 
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Tables 276 

Table 1. Characteristics of the applied antibiotics.  277 

Antibiotic Abbr. Class Bacterial targets (3) 

Amoxicillin AMX Penicillin Moderate spectrum, Gram-positives 

Cefotaxime CTX Cephalosporin (3
rd

 gen.)  Broad-spectrum, Gram-positives and Gram-negatives 

Vancomycin VAN Glycopeptide Gram-positives 

Metronidazole MTZ Nitroimidazole Broad-spectrum anaerobes. 
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Table 2. Log2 (Fold change) of bacterial families for treatment groups compared to CON in 278 

caecum and faeces. 279 

Phylum Family AMX    CTX VAN MTZ 

 
 

C F C F C F C F 

Bacteroidetes Bacteroidaceae 6.5* 5.3* 5.1* 4.2* 4.4 2.8 0.5 -0.3 

 
Rikenellaceae -1.5 -5.3* 2.6* 1.9 -0.3 -0.3 -0.6 -1.6 

  Porphyromonadaceae -6.5* -11.8* -1.2 -2.2* -11.5* -12.6* 0.2 0.0 

Firmicutes Ruminococcaceae -10.5* -12.1* -2.1* -3.6* -9.9* -10.8* 0.1 0.1 

 
Lachnospiraceae -3.5* -8.4* -0.6 0.3 -6.6* -1.1* -0.1 0.0 

 
Eubacteriaceae ≤-8.4 ≤-9.3 1.8 -1.4 ≤-8.4 ≤-9.3* 0.6 -0.1 

 
Peptostreptococcaceae 1.7 1.6 -0.3 2.6 -5.4* -0.5 -1.1 -2.3 

 
Peptococcaceae 1 -10.5* -9.4* -1.4 -3.5* -11.0* ≤-9.2* 0.6 1.0 

 
Cl. Incertae Sedis XI ≤-1.4 ≤-2.7* -1.3 -1.7 ≤-1.4 ≤-2.7* 1.7 -3.1 

 
Erysipelotrichaceae -1.9 -4.9* 2.6 2.9 2.9 2.8 0.7 0.5 

 
Lactobacillaceae 0.8 -2.3* 0.5 1.5 4.4* 3.2* 0.0 1.7 

 
Enterococcaceae 8.5* 3.0 8.3* 4.8 2.1 -1.7 0.8 -1.2 

  Streptococcaceae ≤-2.3 -4.7* 1.4 -1.0 0.4 -1.3 0.5 0.6 

Proteobacteria Desulfovibrionaceae 4.7* 1.2 3.6 1.7 5.5* 3.4* 0.9 -0.8 

 
Sutterellaceae 2.5 -0.3 1.2 0.3 5.8* 3.2* 1.5 0.4 

  Enterobacteriaceae 9.9* 8.8* 7.9 4.5 10.6* 9.2* 2.5 2.0 

Actinobacteria Coriobacteriaceae -2.6* ≤-8.6* 0.2 -2.5* ≤-5.6* ≤-8.6* 2.2 0.5 

 
Bifidobacteriaceae -1.0 1.2 4.8* 9.6 -2.2 1.5 ≤-2.8 0.5 

 
Micrococcaceae -1.3 ≤-5.5* 2.7 -1.3 1.9 -2.1 -0.9 -0.7 

  Deferribacteraceae ≤-6.4 -5.2* ≤-6.4 ≤-5.0* 4.3 2.1 -2.1 -0.9 

Verrucomicobria Verrucomicrobiaceae ≤-1.2 ≤-2.2 2.7 1.7 9.1* 6.0* 4.3 1.9 

Other Other/Unclassified -2.1* -4.9* -2.3* -3.8* 0.9 -3.5* -0.3 -0.3 

 280 

Values show log2(fold-change) in relative abundance of bacterial families in caecum (C) and faeces 281 

(F) of antibiotic treated groups (ABX) compared to the same bacterial groups in the CON group 282 

(log2(ABX/CON)). Intensity of green/red shading indicates level of increase/decrease and asterisks 283 

indicate significant differences (q<0.05). When no reads were observed for specific families a value 284 

of 0.0005% was applied as a lower detection limit for calculations (fold-changes indicated with ≤ or 285 

≥).  286 
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Figures 287 
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 291 

Figure 1. Animal weight, food and water intake. (A) Mean animal weight during the acclimation 292 

and intervention period. The arrow indicates the initial dosing. No significant differences were 293 

determined between the CON and either of the treatments at day -13, 0 and 9 according to a two-294 

way ANOVA. (B) Mean weight gain during the intervention with antibiotics (day 0 to 9). (C) Mean 295 

feed intake per day during the intervention period and (D) mean water intake per day during the 296 

intervention. Bars show averages for each group and error bars show SEM. Significant differences 297 

from CON group are indicated by asterisks (*; P < 0.05, **; P < 0.01). 298 

  299 
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Figure 2 300 
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Figure 2: Characteristics of cecum. (A) Weight of caecum and (B) pH in caecum. Each point 305 

represents an individual animal. Horizontal lines and error bars show means and SEM, respectively. 306 

Significant differences from CON group are indicated by asterisks (*; P < 0.05, **; P < 0.01). 307 
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Figure 3 309 

 310 

 311 

 312 

 313 

 314 

Figure 3. Size of caecum. Representative photographs of a caecum from an animal in the CON 315 

group (5.06 g) and from the VAN group (10.14 g). 316 

 317 

  318 
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Figure 4 319 

 320 

 321 

C
O
N

A
M

X
C
TX

V
A
N

M
TZ

0.0

0.5

1.0

1.5

* *

*

P
la

s
m

a
 F

IT
C

-d
e
x
tr

a
n

 (
µ

g
/m

l)

 322 

Figure 4: Plasma FITC-dextran concentrations.  Each point represents an individual animal. 323 

Horizontal lines and error bars show means and SEM, respectively. Significant differences from 324 

CON group are indicated by asterisks (*; P < 0.05).  325 
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Figure 5 326 

 327 
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 346 

 347 

Figure 5. Bacterial community composition in faeces and caecum content samples based on 348 

16S rRNA gene sequencing. The mean bacterial composition is shown at the family level for 349 

faecal samples (day 0 and 10) and caecal content samples for animal in CON, AMX, CTX, VAN 350 

and MTZ groups. The most abundant bacterial phyla are represented by Firmicutes (blue colors), 351 

Bacteroidetes (red colors), Proteobacteria (green colors), Actinobacteria (yellow colors), and 352 

unclassified bacteria (black). 353 
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Figure 6 354 
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 369 

 370 

 371 

Figure 6: Principal component analysis (PCA) of the relative abundances of detected bacterial 372 

families in faecal and caecal samples. (A) The score plot shows samples grouped according to 373 

treatment groups CON (black), AMX (blue), CTX (green), VAN (yellow) and MTZ (red) groups, 374 

with six animals in each group. ○: Cecal samples; +: Feces samples. (B) Loading plot indicating 375 

each of the bacterial families colored according to phylum. Firm, Firmicutes (blue); Bact, 376 

Bacteroidetes (red); Prot, Proteobacteria (green), Acto, Actinobacteria (yellow); Tene, Tenericutes 377 

(orange); Defe, deferribacteres (pink) and Verr, Verrucomicrobia (light pink).   378 
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Chapter 4

Discussion

The gut microbiota is important for host health. In the present work the interaction
between the gut microbiota and intestinal integrity has been studied, specifically during
the experimental work the effect of modulating the gut microbiota and the subsequent
effects on intestinal integrity have been studied.

4.1 Effect of modulating the gut microbiota on intestinal
integrity

In order to determine if the gut microbiota affects the intestinal integrity it is helpful
to modulate the gut microbiota in a given direction, and determine if this has an effect
on intestinal integrity. In the present work the gut microbiota was modulated by three
different means namely; dietary whole-grain or refined wheat intake, prebiotics and
supplementation with commensal bacterial strain, and antibiotics. These modulations
were further conducted using different models. Specifically:

• Supplementation of whole-grain and refined wheat products to the diet of post-
menopausal women (manuscript 1).

• Modulation of human faecal bacterial composition by prebiotic and putative pre-
biotics (manuscript 2).

• Modulation of the rat gut microbiota with XOS and a commensal B. pseudolongum
(manuscript 3).

• Modulation of the rat gut microbiota with antibiotics (manuscript 4).

Modulation of the gut microbiota with whole-grain and refined wheat products were only
identified to affect Bifidobacterium spp. and Bacteroides spp. during the intervention
period, respectively, whereas there was no difference in effect of faecal water on TER
between the two dietary groups (manuscript 1). Therefore dietary intervention with
whole-grain products may not be sufficient to alter the intestinal integrity. This can
however not be excluded as determinations of effects on intestinal integrity was determ-
ined ex vivo. More clear conclusions could have been made, if the intestinal permeability
had been determined during the dietary intervention, but such analysis were not con-
ducted. To the best of my knowledge the effect of whole-grain products on intestinal
integrity has not been examined previously. However whole-grain products have been
shown to increase SCFA among other butyrate in vitro, see table 2.4 and as butyrate
has been found to increase barrier function in some studies [91, 92] whole-grain products
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may increase intestinal integrity. Therefore the effects of intake of whole-grain products
need further investigation.
Others have shown, that administration of prebiotics and putative prebiotics may

cause both increased and decreased pathogen translocation in rodents [68, 69, 118, 119,
127], as well as altered intestinal permeability [120, 122]. This indicates an impairment of
the intestinal barrier when some prebiotics are applied. In some of these studies the pre-
biotic administration resulted in a stimulation of bifidobacteria [69, 118, 120, 121]. Since
we also showed a negative trend between Bifidobacterium spp. and TER (manuscript 1)
it was examined, if stimulation of this bacterial group by a bifidogenic putative prebiotic
XOS or administration of a commensal Bifidobacterium spp. had an effect on intestinal
integrity (manuscript 3). This potential effects may arise not due to the bifidobacteria
them self, but based on cross-feeding leading to stimulation of other non-determined
bacteria that could affect intestinal integrity. The modulations introduced in this study
did not alter permeability for FITC-dextran in vivo and caecal water from the different
experimental groups did not have different effect on TER in vitro (manuscript 3). But
only slight modulations of the gut microbial composition were identified, potentially
resulting in the limited effects on intestinal integrity. Based on these stated studies it
does not seem that XOS or administration of a commensal bifidobacteria affected intest-
inal integrity. This contradicts the observed effects of XOS on Salmonella translocation
in mice [68], but is supported by the limited Listeria monocytogenes inflammation in
guinea pigs [127]. The different experimental outcomes may be dependent on the applied
animal model, its gut microbiota and to what extend the gut microbiota is modulated.
In addition to the stated study, the effect of modulation of the gut microbiota with

prebiotics and putative prebiotics, using batch in vitro fermentations, were conducted
(manuscript 2). Supernatants from these fermentations were to be applied in the TER
assay, to determine if the modulation of the gut microbiota had an effect on TER. The
work is however still ongoing, hence this is not discussed further.
The final method applied for modulating the gut microbiota was antibiotic adminis-

tration that resulted in much larger modulations of the gut microbiota and intestinal
permeability, than the other studies conducted in the present work. Here the intestinal
permeability for FITC-dextran was decreased following cefotaxime and vancomycin (ma-
nuscript 4). This was connected to an increase in bacterial families belonging to the Pro-
teobacteria and a reduction in bacterial families belonging to the Firmicutes, specifically
the Lactobacillaceae for vancomycin (manuscript 4). While cefotoxime administration led
to an increase in relative abundance of families belonging to the Bacteroidaceae bacterial
family in faeces and caecum, and Bifidobacteriaceae in caecum (manuscript 4). Increased
relative abundance of Bifidobacteriaceae and Lactobacillaceae could potentially explain
the decreased intestinal permeability for FITC-dextran, as these previously have been
shown to increase barrier function, see table 2.2 and table 2.3. Other studies have also
shown an increased intestinal integrity following antibiotic administration. Previously
a mixture of ampicillin and neomycin have been shown to reduce increased intestinal
permeability in HF diet mice and ob/ob mice [1]. This was connected to a reduction
in Bifidobacterium spp., Lactobacillus spp. and Bacteroides-Prevotella spp. [1] Addi-
tionally a mixture of ampicillin, neomycin, and metronidazole has been shown to reduce
plasma LPS levels in HF diet mice, as well as increasing the level of Proteobacteria and
decreasing aerobic and anaerobic bacteria [111]. This collectively indicate, that some an-
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tibiotics may modulate the gut microbiota and subsequent increase intestinal integrity.
However not all the applied antibiotics decreased intestinal permeability. One antibi-
otic, that modulated the gut microbiota extensively, more specifically amoxicillin, did
not alter FITC-dextran permeability. Additionally metronidazole, that increased FITC-
dextran permeability did not have an effect on the gut microbiota at bacterial family
level (manuscript 4). The results for amoxicillin and metronidazole could indicate, that
changes in intestinal permeability are not always connected to the gut microbiota. How-
ever, it cannot be excluded that amoxicillin altered permeability for molecules smaller
than FITC-dextran, see section 4.2, or that metronidazole altered the gut microbiota in
other sections in the GIT e.g. the small intestine, than investigated in the study, or that
changes occurred at lower bacterial order than family level. This would not be identified
by the applied methods. Previously metronidazole has been shown to stimulate Lactoba-
cillus and reduce Clostridium coccoides group and Bacteroidales [113]. Furthermore this
antibiotic caused reduced mucus layer thickness as well as increased inflammation [113].
Collectively this indicates that methronidazole may cause impaired intestinal integrity,
while vancomycin and cefotoximin increased barrier function (manuscript 4).
In conclusion these studies and literature show that the intestinal integrity may be

affected by modulations of the gut microbiota through dietary changes, prebiotics, and
antibiotics. The outcome is dependent on the extend that the gut microbiota is altered,
but potentially also if only a limited number of bacterial groups are affected. On the
basis of these studies it is hypothesised, that intestinal integrity may be affected when
the gut microbiota is highly modulated away from the stable microbiota. This may
explain why intestinal integrity is altered in gastrointestinal disorders, where the gut
microbiota may be in dysbiosis.

4.2 Means of determining the intestinal integrity

Intestinal integrity was in the present study considered to be defined as "maintain-
ing the intestinal barrier whole and assembled", see section 2.5. Changes in intestinal
integrity was on this basis considered to arise due to changes in IEC apoptosis and
proliferation, alterations of the protective mucus layer, or altered interaction between
adjacent IEC through the TJ. The main focus was here on the intestinal permeability for
FITC-dextran, but also barrier function based on TER determinations was considered.
Alterations in FITC-dextran permeability may arise due to altered interactions in TJ,
specifically in the leak pathway [58]. Therefore it can not be excluded, that a treat-
ment affect intestinal permeability of smaller molecules, despite of the permeability of
4kDa FITC-dextran being unaltered. Loss of epithelial cells may also cause increased
FITC-dextran flux, hence altered FITC-dextran permeability can indicate alterations in
both the leak pathway in the TJ and loss of IEC. However, TER, that measure electrical
resistance, hence ion conductance, must determine both the pore and the leak pathway
[58], as well as loss of IEC. It is therefore relevant to combine these two methods as
done in the present work (manuscript 3). In other studies the permeability of molecules
of different size have been determined simultaneously [55, 56]. This would be useful in
future work, as changes in both the pore and leak pathway in the TJ may be identified.
In order to have an additional measure for intestinal integrity the gene expression

of genes encoding TJ proteins and the mucin MUC2 encoding gene were determined

141



Chapter 4 Discussion

(manuscript 3). Connected to no alterations in FITC-dextran permeability only minor
changes as decreased occludin gene expression by XOS was determined (manuscript 3).
Previously FITC-dextran plasma concentrations have been correlated with ZO-1 and
occludin mRNA expression in mice fed a HF diet [1, 71]. This was not seen in the
present study (manuscript 3). As FITC-dextran is to cross at the leak-pathway it seems
valid that alterations of TJ proteins that make up the major structure of the TJs are
linked to permeability of this molecule. However changes in permeability at the TJs
may also arise by re-localisation of TJ proteins or altered levels of these proteins. Hence
further work within this field would lead to additional knowledge by including such
measures. In addition to this it could also be recommended to include analysis of several
of the claudins, both at mRNA expression and protein level, as they can be barrier and
pore forming, see section 2.3.3. Additionally they are considered to be the backbone of
the TJ. Alterations of the pore forming claudins may therefore potentially be used as a
measure of the pore pathway.
Intestinal integrity is also dependent on the mucus layer, as this protects the IEC

against hazardous substances. Alterations in the mucus layer thickness as well as mu-
cus secretion could therefore be relevant to determine. Increased mucus secretion may
indicate an impairment of the epithelial barrier, as it has been connected to increased
Salmonella translocation [69, 118] and intestinal permeability in rats [120]. However,
increased mucus secretion could also indicate an increased mucus production, hence a
potential increase in the mucus layer that could be beneficial.
Overall intestinal integrity is the result of interaction between the gut microbiota,

the consumed diet, the IEC, and the host immune system. This is a very intertwined
and complex system. It is therefore very difficult to determine a single measure that
determined the overall intestinal integrity. Therefore several measures for intestinal
integrity, as well as determination of permeability of different size molecules should be
included in further work regarding intestinal integrity.

4.3 Impact of altered intestinal integrity
Altered intestinal permeability has been connected to gastrointestinal disorders [29].
Therefore an impairment of intestinal integrity may cause inflammation and subsequent
bacterial translocation leading to adverse effects for the host. In literature one hypothesis
is, that permeability of the IEC barrier is first altered and then the inflammation arise
[59]. On this basis an increase in intestinal permeability can cause adverse effects.
However this must depend on for how long the permeability is altered and to what
extent. Large impairments caused by loss of TJ function or IEC may of course result
in luminal content crossing the IEC barrier and lead to inflammation. Alterations for
shorter time spans, which only led to minor molecules or less luminal crossing the IEC
barrier, may only cause adverse effects if it results in a massive inflammatory response
leading to further impairment. In fact permeability of specific molecules, for example
ions, may be beneficial, as it would increase the uptake. Hence the consequence of
altered intestinal integrity is dependent on the severity, the duration, and the following
host response.
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Conclusion

The work in this thesis leads to further knowledge regarding the interaction between
gut microbiota and intestinal integrity. Specifically effects of modulations of the gut
microbiota on intestinal integrity have been examined, leading to these main conclusions:

• Whole-grain wheat products increase the relative abundance of Bifidobacterium
spp. while refined wheat products reduce the relative abundance of Bacteroides
spp. in post-menopausal women during the intervention. This did not change
effects of faecal water on TER (manuscript 1).

• Relative abundance of Bifidobacterium spp. tended to correlate negatively with
TER, indicating that stimulation of Bifidobacterium spp. may be connected to
decreased intestinal barrier function (manuscript 1).

• XOS and a commensal B. pseudolongum did not have an effect on the gut micro-
biota or intestinal permeability, and caecal waters effect on TER in male Wistar
rats (manuscript 3).

• Antibiotic administration modulated both gut microbial composition and intestinal
permeability in female Wistar rats (manuscript 4).

• Relatively large modulations of the gut microbiota may have an effect on intestinal
integrity, while minor modulations may not have an effect.

Intestinal integrity is a very complex field, since it is affected by the connection between
the host, the bacterial community and the diet. Therefore the field still needs more
examination. During this work it would be highly recommended to include several
markers for intestinal permeability, examine the mucus layer, and extensively evaluate
the gut microbiota, as this would highly extend the current knowledge within this field.
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