

NOGUCHI

Memorial Institute for Medical Research

University of Ghana

Outline

☐AMR menace

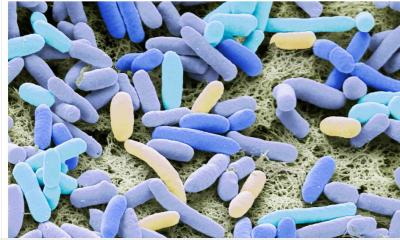
■NMIMR SeqAfrica activities

☐ Case studies: AMR WGS data to support IPC and AMS

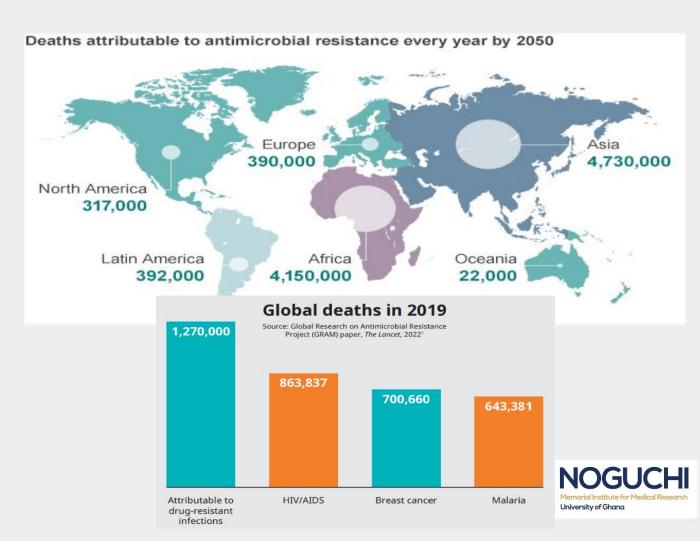
□Lessons learned

Questions

Menace: Antimicrobial Resistance



- ☐ AMR is still a critical global health challenge
- ☐ Recent WHO report-1 in 6 infections worldwide- now resistant to antibiotics.
- ☐ Heaviest in the LMICs



Sharp global rise in antibiotic-resistant infections in hospitals, WHO finds

Experts describe findings as deeply concerning and predict 70% increase in related deaths by 2050

Menace of Antimicrobial Resistance

- ☐ A case in a hospital in Ghana
- ☐ Klebsiella pneumoniae/Blood sample- 23 day old-NICU
- ☐ Ampicillin and gentamicin were administered
- Resistant to all (13) antimicrobials tested including: *Gentamicin, ciprofloxacin and meropenem*.

ST	Resistance genes/Implication
	 ✓ Ext. resistant <i>K. pneumonaie</i> ✓ carbapenemase genes (<i>blaNDM-1,blaOXA-232</i>) ✓ ESBL, broad aminoglycoside and fluoroquinolone resistance markers (<i>blaCTX-15, aac(3)-lla,aac(6')-lb-cr,aadA2,aph(3")-lb,aph(6)-ld,armA, qnrB</i>) ✓ High risk clone- nosocomial transmission and poor clinical outcomes ✓ public health threat that calls for IPC and AMS intervention
	outcomes

Menace of Antimicrobial Resistance

☐ A case in a hospital in Ghana

- ➤ A blood sample was taken for testing from a day-old baby
- > Flucloxacillin and cefotaxime were administered

- ➤ Test results revealed ESBL-producing *Klebsiella* pneumonaie
- ➤ Baby passed away

GLOBAL

A failure to address the problem of antibiotic resistance could result in:



\$100
trillion

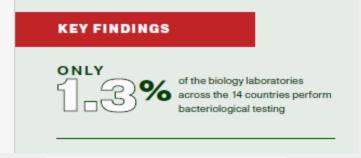
Actions include....

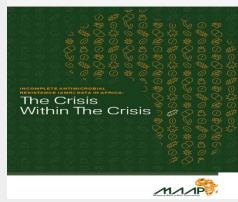
□ Antibiotic stewardship- done to ensure responsible use of antibiotics eg. using the right antibiotic or using it when its is only needed

□ Capacity building (laboratory infrastructure and personnel)

□ Sustainable investment in countering antimicrobial resistance

□Surveillance.....

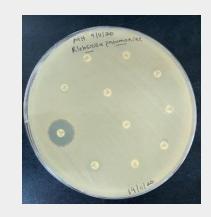




Surveillance

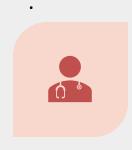
☐ One of the biggest challenges in addressing AMR in Africa is the lack of data.

☐ MAAP REPORT:



- ☐ Policy frameworks are in place, but real-time data to drive IPC and AMS is missing
- ☐ Very few labs in Africa can perform bacteriological testing.
- Data on AMR is still limited
- ☐ Genomic data to understand the mechanisms of resistance is also scarce
- □ Surveillance data is key to inform treatment decisions, antibiotic stewardship programs and Infection prevention and control efforts.

Whole Genome Sequencing (WGS): Importance


Phenotypic AST: shows what is resistant, but not how or where it's spreading

WGS: high resolution to see beyond the petri dish: to detect outbreaks, trace resistance, and guide stewardship.

To determine virulence mechanisms

Development of point-of-care tests for AMR-novel diagnostics

Support vaccine development

To determine pathogen evolution

Identification of new targets for antimicrobials and vaccines

SeqAfrica Consortium

- □July, 2020-Noguchi Memorial Institute for Medical Research joined the SeqAfrica consortium
- ☐ Sequencing bacteria isolates from humans, animals and environment (in West Africa)-to understand the pathogens better
- Training of lab staff/students-sequencing and sequence analysis

INSTITUT

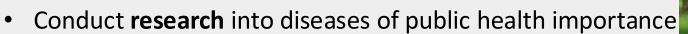
Pernille

Christa

Iruka

Yakhya

Beverly


Anthony

Noguchi Memorial Institute for Medical Research

- ✓ Animal Experimentation
- ✓ Bacteriology
- ✓ Virology
- ✓ Parasitology
- ✓ Epidemiology
- ✓ Immunology
- ✓ Nutrition
- ✓ Clinical pathology
- ✓ Electron Microscopy

- Provide Training opportunities for students (UG/PG)
- Provide cutting edge laboratory diagnostic and surveillance services (MoH and GHS and others)

Work Areas

Hamilton for library preps

Workflow and Methodology- At NMIMR

Isolates submitted

Sequencing DNA libraries Illumina NextSeq / GridIon

QC, De novo **Assembly**

reads Illumina: Trimmomatic, fastqc, multiqc, unicycler/skesa. Nanopore: Fastp, porechop, fastqc, flye, Medaka.

Analysis of DNA Sequencing

Identification MALDI-TOF-MS

DNA Library Preparation

Illumina library prep / Rapid Barcoding kit

Extraction and Purification of Genomic DNA

Qiagen DNA Extraction Kits

Antimicrobial Susceptibility **Testing**

BD Phoenix, Disk Diffusion (CLSI Guidelines)

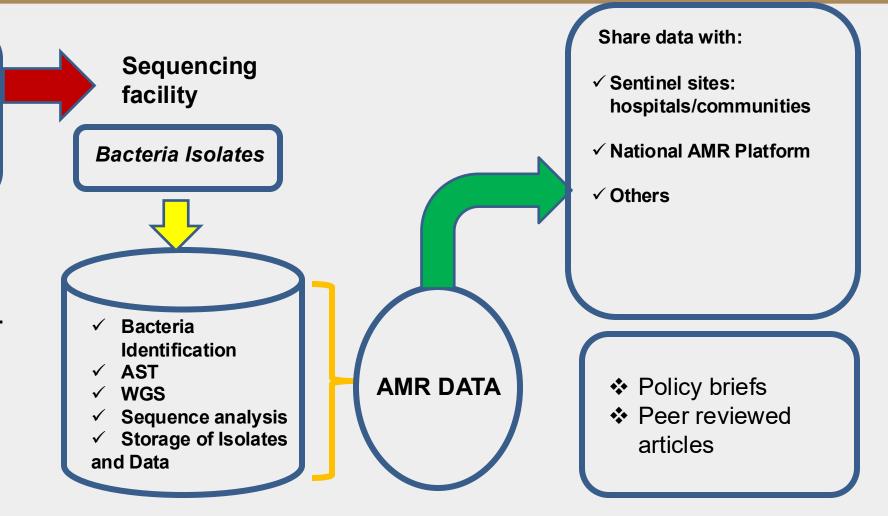
Resistance genes Virulence genes Serotypes **Plasmids MLST**

CGE, Pathogenwatch, CARD, VFDB

Training of Scientists from 11 African countries (WGS/Analysis-Hands on- Wet and Dry Lab)

Hosting/Training of Fleming Fellows....

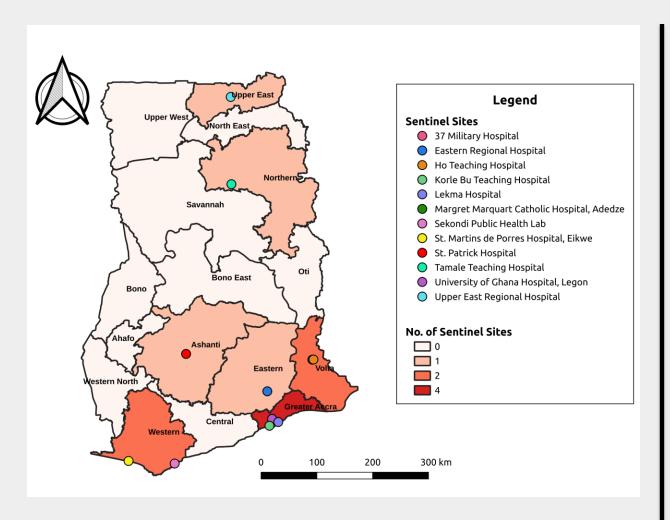
Bacterial genomes sequenced...4,300



SI	<u>:</u>	٨١	П	ቦ /	
ગા	٠Ų	ΑI	١I	U <i>F</i>	١

	OLŲAI MIDA — 7			
Owners	Country	Organism	Source	Total
FF-Fellows	Ghana and Nigeria	ESBL positive <i>E. coli Salmonella,</i> Shigella	Humans and animals	351
Small projects (individual/students)	Benin, Ethiopia, Ghana, Namibia, Niger, Nigeria, Zambia	E. coli, Salmonella spp, S. aureus, Klebsiella spp, Enterococcus spp, Acinetobcater spp, Aeromonas spp, Candida spp, Streptococcus spp.	Humans, animals and aquaculture	1,966
Ten African Countries (FAO-SeqAfrica Trainees)	Benin, Cameroon, Eswatini, Ghana, Kenya, Malawi, Nigeria, Sudan Zambia, Zimbabwe	ESBL E.coli	Animals, Environment and Humans	188
Country Grant	Ghana	K. pneumoniae, S. aureus, E. coli, A baumannii, S pneumo, Burkholderia spp, P aeruginosa	Humans	225
Tricycle	Ghana	ESBL-positive <i>E. coli</i>	Animals, environment and humans	201
National Pilot	Ghana	Klebsiella spp, E. coli, S. aureus, Acinetobacter spp, P. aeruginosa, Vibrio cholerae, others	Humans, (from 12 Hospitals across Ghana)	1,369

National Pilot -AMR Surveillance Workflow


- Sentinel sites/ Network of labs (ID and AST)
- transport isolates to sequencing facility
- 1. Tamale Teaching Hosp.
- 2. St Patrick's Hosp.
- 3. Eastern Regional Hosp.
- 4. Effie Nkwanta Regional Hosp.
- 5. St Martins de Porres (Eikwe)
- 6. UG-Legon Hosp.
- 7. Lekma Hosp.
- 8. KBTH –Hosp.
- 9. 37 Military Hosp.
- 10. Bolga Hosp.
- 11. Ho Teaching Hosp
- 12. Margaret Marquat Hosp.

bloodstream infections, wound swabs, urine, etc

National Pilot: 12 Sentinel Sites in Ghana

✓ 1,369 Genomes sequenced on Genomic Surveillance project from 12 sentinel sites

Sentinel Site	No of Isolates Sequenced
St Patrick Hospital	251 (18.3%)
Eastern Regional Hos.	180 (13.1%)
37 Military Hospital	156 (11.4%)
Legon Hospital	148 (10.8%)
St Martin De Porres E.	126 (9.2%)
Ho Teaching Hospital	101 (7.4%)
Upper East Regional Hos.	98 (7.2%)
Sekondi Public Health Lab	89 (6.5%)
Korle-bu Teaching Hos.	81 (5.9%)
Tamale Teaching Hospital	55 (4.0%)
Lekma Hospital	44 (3.2%)
Margaret Marquat	40 (2.9%)

Overview: National Pilot Sequence types and Resistance genes

Organism	Characteristics		
	Common Sequence types	Resistance genes	
Klebsiella pneumoniae	ST17, ST39, ST15	Quinolone (OqxA, OqxB, aac(6')-Ib-cr, qnrS1) Fosfomycin (fosA) ESBL (blaCTX-M-15)	
Staphylococcus aureus	ST152 , ST3249, ST5	Methicillin (mecA) Tetracycline (tetK) macrolide (ermC)	
Acinetobacter baumannii	ST164, ST744, ST1418	tetracyclines [tet(39), tet(B), tet(X3)], aminoglycosides [aac(3)-la, aac(3)-lid, ant(2")-la, ant(3")-la, aph(3")-lb], carbapenems (blaNDM-1 and variants of blaOXA)	

K. pneumoniae:

- *Isolates harboured* carbapenem resistance genes (*bla*NDM-1, *bla*OXA-181, *bla*OXA-232)
- Wound Isolate carried colistin resistance gene (mcr-10)

WGS DATA, IPC and AMS

☐ Data is required to inform AMS and IPC efforts

☐ AMR data is only valuable when it leads to action

- And for the *needed action to be taken, DATA has to be* shared with the *relevant* stakeholders: for e.g. clinicians, pharmacists, and hospital administrators.
- WGS data can only be useful when it leaves the *sequencers* to the *wards*

☐ AMR DATA IN ACTION SAVES LIVES

Case Study 1: Dissemination at Eastern Regional Hospital

- ☐ Secondary level referral facility
- ☐ Serve all districts in Eastern Region
- ☐ 462 bed capacity

Target audience:

IPC and AMS committee members, hospital administrators, clinicians, nurses, pharmacists, public health personnel among others

Message: Isolates, clinical sources AST, genomic content, public health impact, importance of genomic data

Dissemination: Eastern Regional Hospital

Data category	Data shared	
Clinical Sources	Wound, urine and blood	
Bacteria spp	S. aureus, K. pneumoniae and E coli	
AST	 40% cefoxitin resistance among S. aureus (MRSA) 71% K. pneumonaie & 40% E. coli- ESBLs 40%- quinolone resistant Enterobacterales 7%- meropenem resistant Enterobacterales 	
Genomic Data	 42% mecA gene among S. aureus (MRSA) high risk-clones ST 152 MRSA associated with outbreaks/necrotizing pneumonaie High risk clones of K. pneumonaie -ST39, ST17 and ST307 ESBL gene bla_{CTX-M-15} and carbapenemase gene bla_{NDM-1} Clustered genomes showing SNP differences of <10 	
10/21/2025	 Haemolysin genes: (hlgA, hlgB, hla, hlb)/Biofilm forming genes 	

Dissemination: Eastern Regional Hospital

Dissemination: Eastern Regional Hospital			
Clinical Implication	What has changed/impact		
 Isolates resistant to multiple antimicrobials- 	 Awareness was created among all staff: prescribers, administrators, and lab staff 		
 Finding ESBL, MRSA and Carbapenemase genes-means limited 	Management showed more commitment to tackle AMR		
therapeutic options	• The AMS committee audits antibiotic prescriptions (e.g. cut down unnecessary cephalosporin use)		
 High risk clones associated with severe 			
infections and outbreaks	 Antibiogram for the hospital is being compiled by the lab (80% complete) 		
 SNP difference of <10, indicating 			
possible outbreaks	• IPC coordinator organized training for all heads of units and wards		
Biofilm forming genes lead to persistent infections	 Intense collaboration between clinicians, lab staff and pharmacists 		
10/21/2025	• Lab now screens for ESBL, MRSA and other resistant phenotypes		

Case Study 2: Disseminations at Effia Nkwanta Hospital

Dissemination: Effia Nkwanta Regional Hospital

Data category	Data shared
Clinical Sources	Sputum, wound, and blood
Bacteria species	S. aureus, K. pneumoniae and E. coli
AST	 8% cefoxitin resistance 50% ESBL among Enterobacterales 33-50%- quinolone resistance among Enterobacterales
Genomic Data	 high risk-clones, K. pneumonaie -ST39, ST17, ST147, and ST307 ESBL gene bla_{CTX-M-15}
	 A. baumannii isolates harboured carbapenemase genes (blaOXA-121, blaOXA-91, blaOXA-51, blaNDM-1)
10/21/2025	Biofilm forming genes

Dissemination: Effia Nkwanta Regional Hospital

Clinical Implication	What has changed/impact
 Isolates resistant to multiple antimicrobials- 	 Awareness was created among all staff: prescribers, administrators, and lab staff
 ESBL, MRSA and Carbapenemase genesmeans limited therapeutic options High risk clones associated with severe infections and outbreaks 	 Renewed commitment among the hospital staff to tackle AMR Generated research ideas for collaboration
• Biofilm forming genes lead to persistent infections 10/21/2025	Lab screens for ESBL, MRSA and other resistant phenotypes

Case Study 3: Disseminations at St Martins Depores Hospital

- **□ 200** bed capacity
- ☐ **Serve** several districts in the Western region
- ☐ Audience: Clinicians, nurses, lab scientists, and other stakeholders
- ☐ Shared their site-specific data- AMR profiles, resistance and virulence genes, and clonal diversity of bacterial species
- ☐ highlighted the impact of AMR and the role of sequencing to complement AST

Dissemination: St Martins De-porris Hospital

Data category	Data shared	
Clinical Sources	Wound and blood	
Bacteria species	S. aureus, K. pneumoniae and E coli	
AST	 37% cefoxitin resistance 50% K. pneumonaie ESBLs 40%- quinolone resistant Enterobacterales 7%- meropenem resistant Enterobacterales 	
Genomic Data	 35% mecA gene (MRSA) Clustered genomes showing SNP differences of <10 high risk-clones ST 152 MRSA, K. pneumoniae clones ST39, and ST307 Acinetobacter baumanii- carbapenemase genes (blaNDM-1 	
10/21/2025	Biofilm forming genes	

Dissemination: St Martins De-porris Hospital

Clinical Implication	What has changed/impact
Isolates resistant to multiple antimicrobials- ESBL MPSA and Carbananasa ganes	 Awareness was created among all staff: prescribers, administrators, and lab staff
 ESBL, MRSA and Carbapenemase genes limited therapeutic options 	 An engaging discussion-led to an appointment of an AMR Champion to coordinate AMR activities within the
 High risk clones associated with severe infections and outbreaks 	 Enhanced Surveillance- swabbing various wards (NICU) for IPC purposes
 SNP difference of <10, indicating possible outbreaks 	Established AMS committee to oversee-provide guidance on appropriate antibiotic use.
 Biofilm forming genes lead to persistent infections 	Lab now screens for ESBL, MRSA and other resistant phenotypes
10/21/2025	

Lessons Learned

- Finding of ESBLs, carbapenemase producing and fluroquinolone resistant Gram negatives and MRSAs- therapeutic options will be limited in several hospitals
- * High risk clones, and indications of outbreaks- outbreaks have gone un-noticed
- IPC teams acted on the genomic data and not just antibiograms.
- AMS teams had genomic evidence to support their guidelines.
- WGS must complement AST- to know how or where resistance is spreading
- Data utility depends on metadata: ward, date, clinical condition, etc. is essential for making IPC/AMS decisions from genomic data

Lessons Learned

- Hospital managers and clinicians don't need the raw sequence information, they need:
- What was found
- √ What it means
- What should be done next

Audience	Primary Concern	Key Message Example
Clinicians	Which drugs work	Carbapenems ineffective; switch to colistin.
Administrators	Risk, cost, safety	Outbreak confirmed — isolate and decontaminate.
IPC	Transmission control	Same clone in Ward B; screen patients.
AMS 10/21/2025	Prescribing patterns	Increase in ESBLs — update empiric therapy.

Reflections

☐WGS is not only about reading DNA-. It's also about rewriting the story of infection prevention and stewardship

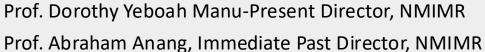
□ Continuous engagement/sharing of data with hospital staff is required to support IPC and AMS- to tackle AMR

☐ If we want to win against AMR, we must turn AMR data into action

Acknowledgements

- Prof. Rene S. Hendriksen, (DTU)
- Dr. Pernille Nilsson (DTU)
- Dr. Christa Twyford Gibson (DTU)
- Dr. Natasia Rebeka Thornval (DTU)
- Prof. Iruka Okeke (UI)
- Dr. Marco van Zwetselaar (KCRI)
- Dr. Anthony Smith (NICD)
- Dr. Niamh Lacy-Roberts (DTU)
- Dr. Yakhya Dieye (IPD)

NMIMR SEQAFRICA Team


- Dr. Bright Adu,
- Christian Owusu Nyantakyi
- Grebstad Rabbi Amuasi
- Quaneeta Mohktar
- · William Boateng
- Alfred Bortey
- John Hagan
- Felicia Owusu
- Agnes Oclu
- Justice Danso
- Angela Appiah Kubi
- Gabriella Acquah

Prof. Kwadwo Ansah Koram, Past Director, NIMIMR

Management staff, NMIMR

UNIVERSITY OF GHANA

