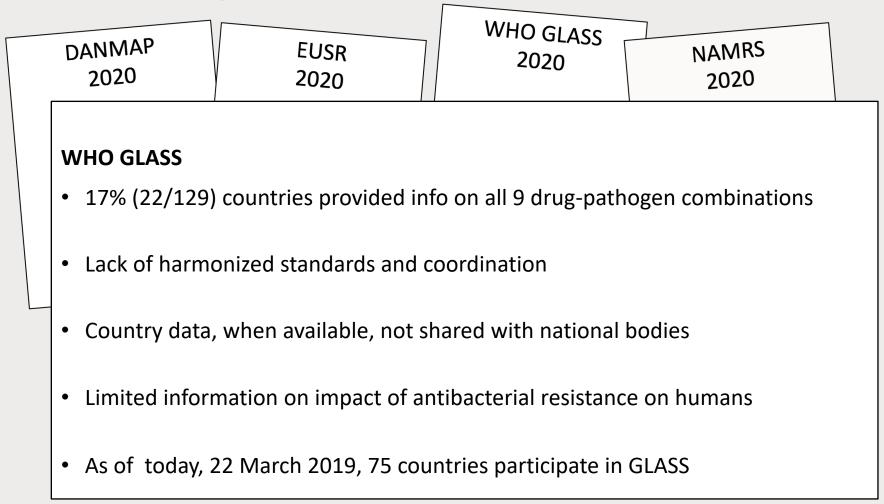


The present and future in antimicrobial resistance surveillance

Rene Hendriksen

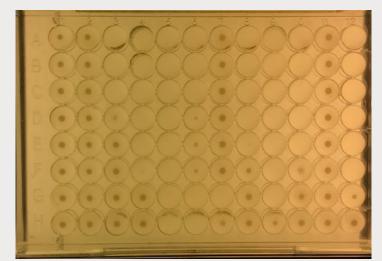
Global situation of antimicrobial resistance

"Antimicrobial resistance is a crisis that must be managed with the **outmost urgency**.....

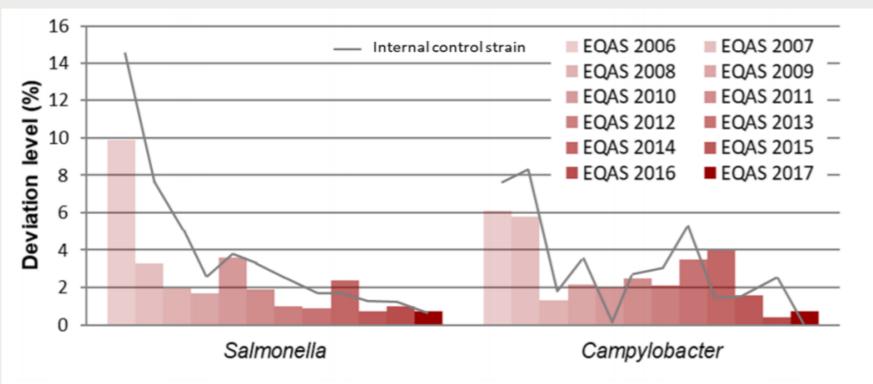

....Antimicrobial resistance threatens the very core of modern medicine and the sustainability of an effective, global public health response to the enduring threat from infectious diseases...

...Without harmonized and immediate action on a global scale, the world is heading towards a postantibiotic era in which common infections could once again kill"

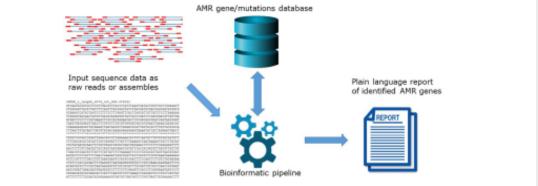
Dr Margaret Chan Director-General (former) World Health Organization


Surveillance systems in place

Phenotypic antimicrobial susceptibility testing - Methodology


- Well-tested standardized approaches
- Most variables harmonized e.g. drug panels, MIC, ECOFFs etc.
- Used to infer resistance (S/I/R)

Phenotypic antimicrobial susceptibility testing - Deviation level based on PTs


Figure 2: A comparison between the EURL-AR EQAS's since 2006, showing the total percentage of deviations for antimicrobial susceptibility testing performed by participating laboratories.

www.eurl-ar.eu

What is Whole Genome Sequencing?

- WGS is a molecular biology tool used to generate the complete DNA sequence of an organism
- Provide better understanding of the mechanisms of resistance and other markers incl. -the relatedness of strains for investigating the emergence and spread of AMR
- Offers a vast amount of information and the highest resolution for molecular subtyping of pathogens

Paradigm shift in surveillance – "Biggest revolution since Pasteur"

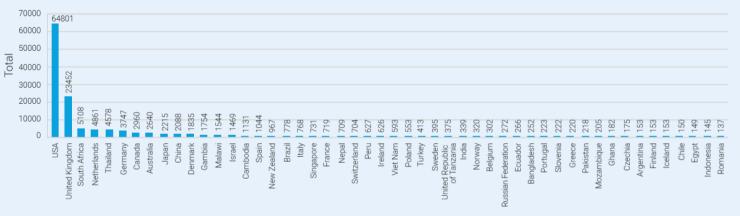
"It is likely that in 5 to 10 years, all clinical microbiological laboratories will have a DNA sequencer in use - the costs for a complete bacterial genome sequence might be less than 50 Eur/ US\$

What do we have in place?

The capacity to exchange – and manage - large data quantities over web-based systems has likewise increased dramatically over recent years

Enabling the potential creation of global databases consisting of DNA-codes of all relevant microbiological strains"

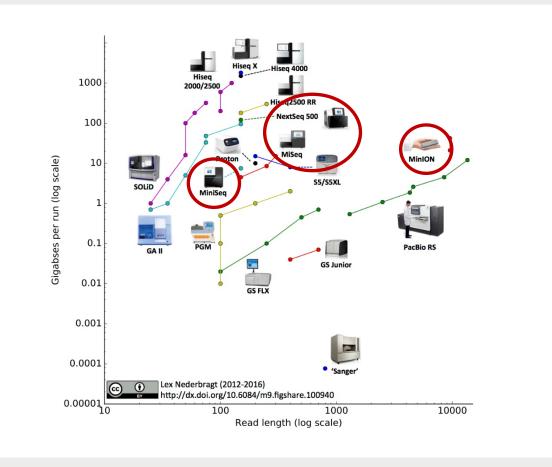
Source: Statement from the international expert meeting on GMI 1-2 September 2011 in Brussels, Belgium.



Use of WGS for AMR identification

5 100 Year

Figure 1. Annual numbers of publications on use of WGS for AMR surveillance of GLASS priority pathogens


Fig. 2. Numbers of sequenced isolates of GLASS priority pathogens by country of origin in the European Nucleotide Archive.

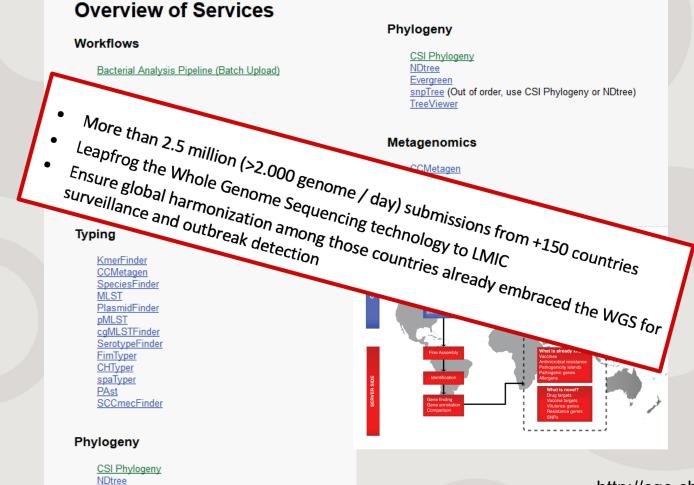
Only the first 50 countries in terms of isolate numbers are shown. Numbers above bars are the numbers of sequenced isolates. The Archive contained 141 210 sequences of GLASS priority pathogens from 126 countries as of July 2019.

Sequencing platform development

Tools to predict antimicrobial resistance genes

- App. 47 resources for *in silico* prediction of AMR determinants exists
- System features differ widely as to, in- and out-put format
- Web-based vs commandline (GitHub)
 - -Shield end-user from complexities
- Open access vs commercial available
- Computing time

ResFinderFG Galileo AMR (MARA, RAC) LREfinder MUBII-TB-DB Mykrobe TBDReaM PointFinder SCCmec Finder **U-CARE** ARGDIT ARG-miner **ResFinder (DTU CGE)** SRST2 **ARG-ANNOT ARIBA** CARD **Kmer resistance (DTU CGE) MEGARes (AMRplusplus)** NCBI AMRFinder



Building Global Capacity – CGE

Evergreen

TreeViewer

snpTree (Out of order, use CSI Phylogeny or NDtree)

http://cge.cbs.dtu.dk/services/all.php

Tools to predict antimicrobial resistance genes

Center fo	or Geno	mic Epide	emiolog	У	Username rshe Password New Reset Login
Home	Services	Instructions	Output	Overview of genes	Article abstract
ResFinder 4.1					
ResFinder identifies acquired of bacteria.	genes and/or finds chrom	osomal mutations mediating a	ntimicrobial resistance	in total or partial DNA sequence	The database is curated by: Frank Møller Aarestrup (click to contact)
Updates					
ResFinder and PointFinder so ResFinder database: (2020-1) PointFinder database: (2019-0	<u>2-01)</u>				
Chromosomal point mutatic	ons 🗆				
Acquired antimicrobial resis	stance genes 🗆				
Select species [Campylobacter spp.* *Chromosomal point mutation databa	✓ Se exists				
Select type of your reads Assembled Genome/Contigs	~				

https://cge.cbs.dtu.dk/services/ResFinder/ar

Tools to predict antimicrobial resistance genes

Antimicrobial	Class	WGS-predicted phenotype	Genetic background
emocillin	beta-lactam	No resistance	
efotaxime	beta-lactam	Resistant	blaCMY-2 (blaCMY-2_X91840)
profloxacin	fluoroquinolone	Resistant	gyrA (S83L)
efotaxime-clavulanic acid	NA	NA	Not in database
eftazidime	beta-lactam	Resistant	blaCMY-2 (blaCMY-2_X91840)
sulfamethoxazole	folate pathway antagonist	No resistance	
mipenem	beta-lactam	No resistance	
igecycline	tetracycline	No resistance	
gentamicin	aminoglycoside	No resistance	
cefepime	beta-lactam	No resistance	
chloramphenicol	phenicol	No resistance	
eftazidime-clavulanic acid	NA	NA	Not in database
neropenem	beta-lactam	No resistance	
etracycline	tetracycline	No resistance	
colistin	polymyxin	No resistance	
ertapenem	beta-lactam	No resistance	
nalidixic acid	fluoroquinolone	Resistant	gyrA (D87N)
cefoxitin	beta-lactam	Resistant	blaCMY-2 (blaCMY-2_X91840)
azithromycin	macrolide	No resistance	
rimethoprim	folate pathway antagonist	No resistance	
Impicillin	beta-lactam	Resistant	blaCMY-2 (blaCMY-2_X91840)

Phenotype / genotype concordance

- High concordance (> 96%) between acquired resistance genes / mutations and MIC
- High levels of sensitivity (>87%) and specificity (>97%) have been observed depending of the species analysed

Pathogen	No. of pathogens	AST method	No. of antimicrobials	Bioinformatic tool	Sequencing data	Concordance	Soncitivity	Specificit	v Comment	Reference
S. Typhimurium	49	ASTINEthou	untimerobiais	bioinformatic tool	Sequencing data	concordance	Sensitivity	Specificit	y comment	Reference
E. coli E. faecalis	48 50	MIC	17	-ResFinder	Assembled, Velvet	99.74%			Disagreement: 7 isolates: 6 E.coli to SPEC	Zankari etal., 2013
E. faecium	50		14							
E. coli (ESBL) K. pneumonia (ESBL)	74 69	DD	7	BLASTn, selected pane	l Assembled, Velvet		96%	97%	VM rate: 1.2%/ M rate: 2.1%	Stoesser et al., 2013
S. aureus	501	DD/ MIC (Vitek)	12	BLASTn, selected pane	l Assembled, Velvet		97%	99%	VM rate: 0.5%/ M rate: 0.7%	Gordon NC et al., 2014
C. jejuni <u>C. col</u> i	32 82	MIC	9	BLASTx	Assembled, CLC	99.2%			Lower concordance to Gen, Azi, Clin, Tel	Zhao et al., 2016
S. enterica	104 536	MIC	14	ResFinder/ ARG- ANNOT/ CARD/ BLAST	Assembled, CLC	99.0%	<u>99.2%</u> 97.6%	99.3% 98.0%	_Lower concordance to aminoglycosides / β-lactams	McDermott et al., 2016
E. coli K. pneumonia P. aeruginosa E. cloacae	31 24 22 13	MIC	4	Custom DB based on ARDB/ CARD/ β- lactamase allelles			87%	98%	Neg. predictive value: 97% Pos. Predictive value: 91%	Shelburne et al., 2017
S. enterica E. coli C. jejuni	50 50 50	MIC	4 6 4	ResFinder/ PointFinde	Assembled, ^r SPAdes	98.4%			Disagreement: 2/2 C.jejuni to FQ/ERY 5 E.coli to COL (pmrB)	Zankari etal., 2017
E. faecalis E. faecium	97 100	MIC	11	ResFinder/ NCBI Pathogen DB/ BLAST	Assembled, CLC	96.5%				Tyson et al., 2018
S. aureus	501 491	DD / MIC	12	GeneFinder/ Mykrobe Typewriter	/ fastq / assembled, BLAST	98.3%			Disagreements: 0.7% predicted resistant	Mason et al., 2018
	397	MIC		Typewriter	DEAST				0.6% predicted susceptible	
M. tyberculosis	10.209	MGIT 960	Isoniazid Rifampin Ethambutol Pyrazinamide	- Cortex	Assembled	89.5%			97.1%/ 99.0% predicted R/ S 97.5%/ 98.8% predicted R/ S 94.6%/ 93.6% predicted R/ S 91.3%/ 96.8% predicted R/ S	Walker et al., 2018
H. pylori	140	MIC (E-test)	5	ARIBA	fastq	99%			Phenotype issues to metronidaz	ole Lauener et al., 2019

Hendriksen et al., 2019 https://www.frontiersin.org/articles/10.3389/fpubh.2019.00242/full

Tools to perform phylogeny – CGE

Center for Genomic Epidemiology						
Home	Services	Instructions	Output	Article abstract		
C SI Phylogeny 1	.4 (Call SNPs &	Infer Phylogeny)				
Input data						
Upload reference genome (facts f Note: Reference genome must not be comp Choose File No file chosen	essed.					
Beleot min. depth at BNP position 10x Beleot min. relative depth at BNP 10 %	V					
Select minimum distance betwee 10 bp	n 8NPs (prune)					
8elect min. 8NP quality (30) 8elect min. read mapping quality (25)	~					
8elect min. Z-soore 1.96	v v					
Ignore heterozygous 8NPs Comment (to yourself) This connect will appear unattered on your	output page. It has no effect on the analy	vir.				

https://cge.cbs.dtu.dk/services/CSIPhylogeny/

AMR characterization according to surveillance objectives

Objectives that can be fully met with phenotypic methods:

- Trends of AMR rates
- Assessment of frequency of AMR infections
- Data to inform national list of essential antimicrobial medicines
- Treatment guidance

WGS as complement of phenotypic methods:

- To understand the genetic basis of AMR mechanisms and differentiate phenotypically identical isolates with the same AST profile.
- To allow the location of AMR determinants on the bacterial chromosome or in plasmids, which provides valuable information on the pathways of AMR spread.
- To facilitate linkages during the early investigation phase of outbreaks.

Potential uses of WGS for AMR surveillance

• Local uses of WGS for AMR surveillance include:

- detection of known AMR mechanisms
- identification of novel AMR mechanisms, with phenotypic AST data and characterization as e.g. plasmid-mediated or clonal
- analysis of an outbreak at a single centre, such as a hospital.
- Local, subnational or national uses of WGS for AMR surveillance include:
 - comparison of several genomes from different sites
 - analysis of local or subnational transmission networks
 - tracing sources of local or regional outbreaks
- International uses of WGS for AMR surveillance include:
 - monitoring of pathogen populations
 - detection of high-risk AMR clones
 - assessment of the impact of interventions
 - detection of multi-country outbreaks

Current limitations of WGS for AMR surveillance

- WGS technologies require substantial initial and sustained financial investments
- Procurement of instruments and consumables are a bottleneck
- Sequencing and bioinformatics are not part of the general knowledge or training of staff in laboratories in LMIC, and investment in training and continuous education of staff must be secured
- Standard operating procedures, QA protocols and evidence-based guidelines should be developed for use of WGS in AMR surveillance
- Data-sharing is not currently standard practice

Requirements needed to embark on WGS

- Timing of Introduction
- Infrastructure Requirements for whole-genome sequencing
 - Laboratory Capacity
 - Bioinformatics and computational capacity open / proprietary?
- Quality assurance, quality control and international standardization
 - Crucial requirements for international QC
 - Bioinformatics QC
- Procurement
- Training
- Data collection, sharing and storage of sequence and metadata

In summary

- WGS is rapidly entering diagnostic and public health, with near real time data generation
- WGS is bringing the opportunity to countries to enhance laboratory activities for surveillance and research
 - introduction of any new technology should consider the existing available resources and country needs
- WGS is a realistic alternative to conventional AMR surveillance
 - Powerful way to determine prevalence and differences of all genes
- Advantages to detect all known genes including AMR are an asset to understand the spread of AMR and taking action
- A need for better infrastructure and agreements to meet the coming demand

Thank you

www.antimicrobialresistance.dk

This programme is being funded by the UK Department of Health and Social Care. The views expressed do not necessarily reflect the UK Government's official policies.

