



# Update on Carbapenemase-producing *E.coli* from EU-harmonised AMR Monitoring in Italy, 2021-2023

18<sup>th</sup> EURL-AR Workshop 2024 9<sup>th</sup> October – Kgs. Lyngby, Denmark

P. Alba, PhD, Senior Scientist & Researcher

National Reference Laboratory for Antimicrobial Resistance

Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri"

Department of General Diagnostics, Rome, Italy





#### Carbapenemase-producing Enterobacteriaceae

**Carbapenemase-producing** *Enterobacteriaceae* (**CPE**) are gram-negative microorganisms resistant to **carbapenems**, considered "drug of last resort" or last choice antibiotic in human medicine (CIA)



#### Epidemiology and Diagnostics of Carbapenem Resistance in Gram-negative Bacteria 👌

Patrice Nordmann 🖾, Laurent Poirel

*Clinical Infectious Diseases*, Volume 69, Issue Supplement\_7, 1 December 2019, Pages S521–S528, https://doi.org/10.1093/cid/ciz824

Published: 13 November 2019

Istituto Zooprofilattico Sperimentale del Lazio e della Toscana *M. Aleandri* 

#### Carbapenemase-producing Enterobacteriaceae



Veterinary Microbiology Volume 256, May 2021, 109045



Short communication

Carbapenemase IncF-borne *bla*<sub>NDM-5</sub> gene in the *E. coli* ST167 high-risk clone from canine clinical infection, Italy

Patricia Alba ª, Roberta Taddei <sup>b</sup>, Gessica Cordaro ª, Maria Cristina Fontana <sup>b</sup>, Elena Toschi <sup>b</sup>, Paolo Gaibani <sup>c</sup>, Ilaria Marani <sup>a</sup>, Angelo Giacomi <sup>a</sup>, Elena L. Diaconu <sup>a</sup>, Manuela Iurescia <sup>a</sup>, Virginia Carfora <sup>a</sup>, Alessia Franco <sup>a</sup> <sup>Q</sup> <sup>®</sup>

Compared with international databases:

Very similar to:

- p51008369SK1\_E (Switzerland) (Peterhans et al., 2018)
- pNDM-5-IT, from a clinical human isolate (Italy) (Giufrè et al., 2018)

The plasmid harbouring bla NDM-5 has been frequently detected in Europe In Italy, it has been found in CPE of both human and animal origin





J Antimicrob Chemother 2020; **75**: 3475–3479 doi:10.1093/jac/dkaa374 Advance Access publication 24 August 2020 Journal of Antimicrobial Chemotherapy

#### Novel IncFII plasmid harbouring *bla*<sub>NDM-4</sub> in a carbapenem-resistant *Escherichia coli* of pig origin, Italy

Elena L. Diaconu, Virginia Carfora 💿 , Patricia Alba, Paola Di Matteo, Fiorentino Stravino, Carmela Buccella, Elena Dell'Aira, Roberta Onorati, Luigi Sorbara, Antonio Battisti\* and Alessia Franco

Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', National Reference Laboratory for Antimicrobial Resistance, Department of General Diagnostics, Rome, Italy



8 86

B 2021-02-14 RINNERIEUX DXA

Growth of *E coli* OXA-48-like on the OXA half

plate from ceacal content (monitoring)

### Commission Implementing Decision 2013/652/EC e Dec. (EU) 2020/1729 of 17 November 2020 on the monitoring and reporting of antimicrobial resistance in zoonotic and commensal bacteria

**APPENDIX 2** 

FLOW DIAGRAM for detection ESBL/AmpC/carbapenemases (including OXA-48 and OXA-48-like enzymes) in caecal samples

Non-selective pre-enrichment [item 1.4-1.5]

1 g of caecal sample in 9 mL of buffered peptone water (37°C ± 1°C, 18-22 h)

Selective isolation

→ of presumptive ESBL-/AmpC-/carbapenemase-producing E. coli [item 1.6] Streak 10 µL of the incubated pre-enrichment culture in BPW onto MacConkey agar plate supplemented with 1 mg/L of cefotaxime (incubate at 44°C ± 0.5°C for 18-22 h)

→ of presumptive carbapenemase (including OXA-48- and OXA-48-like)-producing <u>E. coli [item 3.1 + 3.2]</u>
Streak 10 µL of the incubated pre-enrichment culture in BPW onto suitable selective agar plate(s). (Commercially available chromogenic agar for isolation of carbapenemaseproducing *E. coli* (including isolates producing only OXA-48 and/or OXA-48-like enzymes). (incubation according to manufacturer's instructions)

Method: Same lab procedure since 2014: Specific monitoring of CPE-producing E. coli The EURL-AR protocol (by using commercial OXA-48-like + other Carbapenemases Biplate)



Update at December 2021  $\rightarrow$  25 isolates Oxa-48-like (24 OXA-181; 1 OXA-48) from EpiUnits sampled at slautherhouse (Dec (EU) 2020/1729) in 11 provinces (5 Regions) n=21 from pigs (6.98%; 95% CI 4.37-10.47%; 21/301) n=4 from bovines <12 months (1.29%; 95% CI 0.35–3.27%, 4/310)



Epidemiological investigation: for >80% the positive (2021) EpiUnits that were **investigated and sampled at the farm of origin**, an OXA-48-like producing E. coli (OXA-181) **has been isolated** 







Results of the survey at slaughter (short-read): Mash clusterization of the WGS complete genome, resistome and plasmidome of the n=25 OXA181-producing Escherichia coli



- ☆ A non-clonal population of OXA-181 producing *E. coli* in the dataset analyzed. However, the ST5229 is the most represented (9/25, 36% isolates).
- IncX3, IncX1, (one IncF) the replicons most represented.
- IncX3 or IncX1 harboured the OXA-181 gene. No specific pathotype found.
- ✤ The clusters were distributed according to the different Clonal Complexes (CCs) and STs.
- ✤ No clear region or host species correlation was observed.



#### Full plasmid sequencing: IncX1 plasmids



- ✓ All the 12 IncX1 resolved plasmids were almost identical with a 98-99% coverage and 99-100% sequence identity
- ✓ Novelty: No similar IncX1 plasmids were found in public available databases (around 50% identity with other publicly available plasmids).

IncX1 more stable than IncX3 because of the presence of the RelE/StbE toxin family and its antitoxin RelB?



#### Full plasmid sequencing: IncX3 plasmids



- ✓ All three resolved plasmids IncX3 harboring *bla*<sub>OXA-181</sub> from *E.coli* were very similar with a 90-91% coverage and 100% identity
- ✓ They shared a similarity of 99% with 89% of the plasmid covered, when compared with publicly available IncX3 plasmids containing *bla*<sub>OXA-181</sub> (from *E. coli*, *C. freundii*, *K. pneumoniae*), from human cases
- ✓ 100% coverage and identity of the IncX3 plasmid from *E. coli* ID 21019054 with a *bla*<sub>OXA-181</sub>-IncX3 plasmid of a *C. freundii* isolate (ID 22025451-20) from the same pig holding





#### Resistome

Resfinder Abricate

| Geni Resfinder                                                                                          | Mutation                   | PATTERN RESISTENZA                                          |
|---------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------|
| mdf(A)_1 tet(A)_6 dfrA12_8 aadA2_1 cmlA1_1 sul3_2 mef(B)_1 tet(M)_8 blaTEM-1B_1 blaOXA-181_1            |                            | AMP,CHL,SMX,TET,TMP,ETP,TRM                                 |
| floR_2 cmlA1_1 tet(A)_6 sul2_2 sul3_2 tet(M)_8 aac(3)-IId_1 dfrA12_8 lnu(F)_1 mdf(A)_1 blaOXA-181_1     | gyrA p.D87N parC p.S80I    | AMP,CHL,CIP,GEN,NAL,SMX,TET,TMP,FEP,ETP,MER,TRM             |
| blaOXA-181_1 mdf(A)_1 tet(A)_6 floR_2 sul3_2 lnu(F)_1 ant(3")-la_1 sul2_2 aac(3)-lld_1 aph(3')-la_1     | gyrA p.D87N parC p.S80I    | AMP,FOT,TAZ,CHL,CIP,GEN,NAL,SMX,TET,TMP,FEP,TAZ,ETP,MER,TRM |
| blaOXA-181_1 tet(M)_8 cmlA1_1 aadA2_1 dfrA12_8 mdf(A)_1 blaCTX-M-1_1 mph(A)_2 floR_2 sul2_2 sul3_3      | 2 gyrA p.D87N parC p.S80I  | AMP,AZI,FOT,TAZ,CHL,CIP,NAL,SMX,TMP,FEP,TAZ,ETP,MER,TRM     |
| qnrS1_1 blaOXA-181_1 sitABCD_1 dfrA5_1 sul2_3 aph(3")-Ib_5 aph(6)-Id_1 mdf(A)_1 blaTEM-1B_1             |                            | AMP,FOT,CIP,SMX,TMP,FEP,FOT,ETP,IMI,MER,TRM                 |
| mdf(A)_1 blaOXA-181_1 qnrS1_1 tet(M)_8 cmlA1_1 aadA2_1 dfrA12_8 blaTEM-1B_1 sul3_2 tet(A)_6 floR_2      | gyrA p.D87N parC p.S80I    | AMP,FOT,CHL,CIP,GEN,NAL,SMX,TET,TMP,FEP,FOX,ETP,IMI,MER,TRM |
| aph(3')-Ia_1 blaOXA-181_1 dfrA17_1 aadA5_1 sul1_5 armA_1 aph(4)-Ia_1 aac(3)-IVa_1 mph(G)_1 aac(3)-IIa   |                            | AMP,AZI,GEN,SMX,TMP,FOT,ETP,MER,TRM                         |
| blaOXA-181_1 tet(A)_6 floR_2 mdf(A)_1 sul2_2 sul3_2 ant(3")-Ia_1 lnu(F)_1 aac(3)-IId_1 aph(3')-Ia_1     | gyrA p.D87N parC p.S80I    | AMP,CHL,CIP,GEN,NAL,SMX,TET,ETP,MER,TRM                     |
| mdf(A)_1 tet(B)_1 floR_2 aac(3)-IId_1 tet(M)_8 sul3_2 dfrA12_8 lnu(F)_1 aadA2_1 blaOXA-181_1 blaTEM-1   | 3                          | AMP,CHL,GEN,SMX,TET,TMP,FEP,FOT,ETP,MER,TRM                 |
| blaOXA-181_1 sul2_2 floR_2 tet(A)_6 sul3_2 mdf(A)_1 ant(3")-Ia_1 lnu(F)_1 aac(3)-IId_1 aph(3')-Ia_1     | gyrA p.D87N parC p.S80I    | AMP,CHL,CIP,GEN,NAL,SMX,TET,ETP,MER,TRM                     |
| blaOXA-181_1 mdf(A)_1 blaTEM-1B_1 sul3_2 tet(A)_6 floR_2 sul2_2 lnu(F)_1 ant(3")-Ia_1 aac(3)-IId_1 aph( | gyrA p.D87N parC p.S80I    | AMP,FOT,CHL,CIP,GEN,NAL,SMX,TET,ETP,TRM                     |
| mdf(A)_1 blaOXA-181_1 blaTEM-1B_1 sul3_2 tet(A)_6 floR_2 sul2_2 ant(3")-Ia_1 lnu(F)_1 aac(3)-IId_1 aph( | gyrA p.D87N parC p.S80I    | AMP,CHL,CIP,GEN,NAL,SMX,TET,ETP,TRM                         |
| blaOXA-181_1 mdf(A)_1 cmlA1_1 tet(M)_8 sul3_2 blaTEM-1B_1 tet(A)_6 floR_2 sul2_2 aac(3)-IId_1 dfrA12_   | gyrA p.D87N parC p.S80I    | AMP,FOT,CHL,CIP,GEN,NAL,SMX,TET,TMP,FEP,ETP,MER,TRM         |
| blaOXA-181_1 sul3_2 blaTEM-1B_1 mdf(A)_1 floR_2 sul2_2 ant(3")-Ia_1 lnu(F)_1 aac(3)-IId_1 aph(3')-Ia_1  | gyrA p.D87N parC p.A56T pa | ar AMP,AZI,CHL,CIP,GEN,NAL,SMX,TET,TMP,FEP,ETP,MER,TRM      |
| blaTEM-1B_1 mdf(A)_1 blaOXA-181_1 sul1_5 aadA5_1 dfrA17_1 catA1_1 floR_2 aac(3)-IId_1 aph(6)-Id_1 ap    | gyrA p.D87N parC p.S80I    | AMP,FOT,CHL,CIP,GEN,NAL,SMX,ETP,MER,TRM                     |
| blaOXA-181_1 mdf(A)_1 tet(A)_6 sul3_2 blaTEM-1B_1 floR_2 sul2_2 lnu(F)_1 ant(3")-Ia_1 aac(3)-IId_1 aph( | gyrA p.D87N parC p.S80I    | AMP,FOT,CHL,CIP,GEN,NAL,SMX,TET,ETP,MER,TRM                 |
| mdf(A)_1 blaOXA-181_1 qnrS1_1 tet(A)_6 tet(M)_8 floR_2 sul2_2 cmlA1_1 aac(3)-IId_1 dfrA12_8 lnu(F)_1    | gyrA p.D87N parC p.S80I    | AMP,CHL,CIP,GEN,NAL,SMX,TET,TMP,ETP,TRM                     |
| mdf(A)_1 blaOXA-181_1 tet(A)_6 aph(4)-Ia_1 aac(3)-IVa_1 blaTEM-1B_1 aph(3')-Ia_1                        |                            | AMP,CHL,CIP,GEN,TET,ETP,TRM                                 |
| blaTEM-1B_1 aac(3)-lla_1 lnu(G)_1 mdf(A)_1 sul3_2 cmlA1_1 aadA2_1 dfrA12_8 blaOXA-181_1 tet(B)_2 flo    | R_2                        | AMP,CHL,GEN,SMX,TET,TMP,ETP,MER,TRM                         |
| floR_2 aac(3)-IIa_1 blaTEM-1B_1 lnu(G)_1 mdf(A)_1 dfrA12_8 aadA2_1 cmlA1_1 sul3_2 blaOXA-181_1 tet(B    | )_2                        | AMP,CHL,GEN,SMX,TET,TMP,ETP,TRM                             |
| mdf(A)_1 blaTEM-1B_1 blaOXA-181_1 lnu(G)_1 tet(A)_6 dfrA1_10 sul3_2 floR_2 catA1_1                      |                            | AMP,CHL,SMX,TET,TMP,ETP,MER,TRM                             |
| blaOXA-181_1 floR_2 dfrA12_8 aadA2_1 cmlA1_1 sul3_2 qnrS1_1 tet(A)_6 blaTEM-1B_1 mdf(A)_1               |                            | AMP,CHL,GEN,SMX,TET,TMP,ETP,MER,TRM                         |
| mdf(A)_1 blaOXA-181_1 aac(3)-IVa_1 aph(4)-Ia_1 floR_2 tet(A)_6 blaTEM-1B_1 aph(3')-Ia_1 qnrS1_1         |                            | AMP,CHL,CIP,GEN,NAL,SMX,TET,TMP,ETP,TRM                     |
| rmtB_1 mdf(A)_1 blaOXA-181_1 cmlA1_1 tet(M)_8 tet(A)_6 fosA3_1 floR_2 qnrS1_1 sul3_2 sul2_2 aac(3)-lic  | parC p.S80I                | AMP,FOT,TAZ,CHL,CIP,GEN,NAL,SMX,TET,TMP,FEP,TAZ,ETP,MER,TRM |
| blaOXA-181_1 blaTEM-1A_1 tet(A)_6 aph(6)-Id_1 aph(3")-Ib_5 dfrA1_8 aac(3)-IId_1 cmIA1_1 aadA2_1 mdf(    | /                          | AMP,CHL,CIP,GEN,NAL,SMX,TET,TMP,ETP,TRM                     |
| dfrA12_8 aadA2_1 cmlA1_1 blaTEM-1B_1 qnrS1_1 tet(A)_6 blaOXA-181_1 mdf(A)_1 sul3_2                      |                            | AMP,CHL,CIP,SMX,TET,TMP,ETP,MER,TRM                         |
| blaTEM-30_1 mdf(A)_1 blaOXA-181_1 qnrS1_1 tet(A)_6 cmlA1_1 aadA2_1 dfrA12_8                             |                            | AMP,CHL,CIP,SMX,TET,TMP,ETP,MER,TRM                         |
| mdf(A)_1 blaOXA-181_1 floR_2 sul2_2 cmlA1_1 tet(M)_8 tet(A)_6 sul3_2 aac(3)-IId_1 dfrA12_8 lnu(F)_1     | gyrA p.D87N parC p.S80I    | AMP,FOT,CHL,CIP,GEN,NAL,SMX,TET,TMP,FEP,ETP,MER,TRM         |
| blaOXA-181_1 mdf(A)_1 tet(A)_6 floR_2 sul2_2 sul3_2 ant(3")-Ia_1 lnu(F)_1 aac(3)-IId_1 aph(3')-Ia_1     | gyrA p.D87N parC p.S80I    | AMP,FOT,CHL,CIP,GEN,NAL,SMX,TET,ETP,TRM                     |
| blaOXA-181_1 sul2_2 floR_2 mdf(A)_1 tet(A)_6 sul3_2 blaTEM-1B_1 lnu(F)_1 ant(3")-la_1 aac(3)-lld_1 aph( | gyrA p.D87N parC p.S80I    | AMP,FOT,CHL,CIP,GEN,NAL,SMX,TET,ETP,MER,TRM                 |



OXA-181+ve isolates: ECOFFs and clinical breakpoints for carbapenems and temocillin with number (nR) and percentage (%) of resistant E. coli isolates

|                           |                  | R<br>(ECOFF) | R (CB) | nR (%)<br>ECOFF          | nR (%)<br>CB             | MIC Range<br>mg/L (Mode) |
|---------------------------|------------------|--------------|--------|--------------------------|--------------------------|--------------------------|
|                           | ETP (ertapenem)  | >0,06        | >0,5   | 25/25<br>( <b>100%</b> ) | 7/25 (28%)               | 0.12-4 (0.5)             |
|                           | IMI (imipenem)   | >0,5         | >4     | 5/25 (20%)               | 5/25(20%)                | 0.12-1 (0.25)            |
| The only<br>carbapenem in | MER (meropenem)  | >0,125       | >8     | 13/25<br>(52%)           | 0/25 (0%)                | 0.06-1(0.25)             |
|                           | TRM (temocillin) | >16          | >16    | 25/25<br>( <b>100%</b> ) | 25/25<br>( <b>100%</b> ) | 128-256 (256)            |

The hazard of carbapenemase (OXA-181)-producing *Escherichia coli* spreading in pig and veal calf holdings in Italy in the genomics era: Risk of spill over and spill back between humans and animals

🔊 Virginia Carfora<sup>1</sup> 💽 Elena Lavinia Diaconu<sup>1</sup> 💽 Angela Ianzano<sup>1</sup> 💽 Paola Di Matteo<sup>1</sup> 💽 Roberta Amoruso<sup>1</sup> 💽 Elena Dell'Aira<sup>1</sup> 💽 Luigi Sorbara<sup>1</sup> 💽 Francesco Bottoni<sup>1</sup> 💽 Flavia Guarmeri<sup>2</sup> 💽 Laura Campana<sup>3</sup> 📿 Alessia Franco<sup>1</sup>



# Isolation rates (prevalence) OXA-181 (OXA-48-like)-producing *E. coli* from caecal samples according to the National Monitoring Programme on AMR, Dec (EU) 2020/1729, Italy 2021-2023

| 2021 | Species      | Samples cultured | Samples positive | %     | 95% CI      |
|------|--------------|------------------|------------------|-------|-------------|
|      | Pigs         | 301              | 21               | 6,98% | 4,37-10,47% |
|      | Bovines <12m | 310              | 4                | 1,29% | 0,35–3,27%  |

| 2022 | Species         | Samples cultured | Samples positive | %     | 95% CI     |
|------|-----------------|------------------|------------------|-------|------------|
|      | Broiler chicken | 479              | 0                | 0,00% | N.A.       |
|      | Turkey          | 397              | 1                | 0,25% | 0,01-1,40% |

| 2023 |
|------|
|------|

| Species      | Samples culture | Samples positive | % |       | 95% CI     |
|--------------|-----------------|------------------|---|-------|------------|
| Pigs         | 300             | 19               |   | 6,33% | 3,86-9,71% |
| Bovines <12m | 301             | 4                |   | 1,33% | 0,36-3,37% |





National Monitoring Programme on AMR, Dec (EU) 2020/1729, Italy 2021-2023: Holdings of origin of samples (slaughter batches) found positive at slaughter





2021-2023: Almost all CPE-producing E. coli isolates are OXA-181-positive except one OXA-48, two NDM-5 (bovine <12m), one VIM-1 (broiler chicken)





## 2021-2023: NDM-producing E. coli from bovine <12m Sporadic isolation



NDM-2021: aadA2, aadA5, aac(6')-Ib-cr, bla<sub>OXA-1</sub>, bla<sub>CTX-M-15</sub>, bla<sub>NDM-5</sub>, catA1, catB3, dfrA12, dfrA17, mph(A), sul1, tet(B) IncFIA, IncFIB, IncI1-I, IncX4

NDM-2023: *aad*A2, *aph*(3")-Ib, *aph*(6)-Id, *bla*<sub>CTX-M-15</sub>, *bla*<sub>NDM-5</sub>, *bla*<sub>TEM-1B</sub>, *cat*A1, *dfr*A12, *qep*A4, *qnr*S1, *sul*1, *sul*2, *tet*(B) IncFIA, IncFIB, IncFII, IncY





#### Take home messages

- Harmonized european monitoring of antimicrobial resistance in zoonotic and commensal bacteria in Italy indicates an emergent OXA-48-like producing *E. coli* issue in pigs and, to a lesser extent in bovines < 12 mo.
- Harmonized european monitoring of antimicrobial resistance reveled also the sporadic presence of NDM- and VIM-producing *E. coli* in Italy.
- The prevalence of OXA-181-producing *E. coli* from pig and bovine in 2023 has remained stable.





#### A big thank you to all my colleagues of the Department of General Diagnostics and NRL-AR Italy (IZSLT), who have actually done all this amazing work

| Antonio Battisti | Paola Di Matteo     |
|------------------|---------------------|
| Alessia Franco   | Valentina Donati    |
| Andrea Caprioli  | Fabiola Feltrin     |
| Virginia Carfora | Angelo Giacomi      |
| Roberta Amoruso  | Angela Ianzano      |
| Franceso Bottoni | Manuela Iurescia    |
| Carmela Buccella | Serena Lorenzetti   |
| Tamara Cerci     | Daniele Smedile     |
| Gessica Cordaro  | Roberta Onorati     |
| Elena dell'Aira  | Luigi Sorbara       |
| Elena L. Diaconu | Fiorentino Stravino |





Centro di Referenza Nazionale per l'Antibioticoresistenza

https://www.izslt.it/crab/