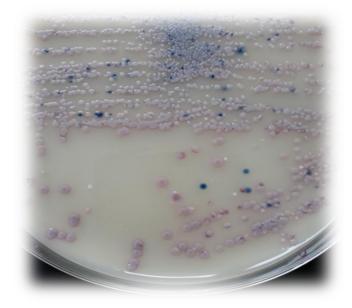
18th EURL-AR Workshop 2024 08 October 2024


TECHNICAL SPECIFICATIONS FOR A BASELINE SURVEY ON MRSA IN FATTENING PIGS

P-A Beloeil (EFSA) on behalf of the EFSA WG

Objectives

- 1. To assess MRSA prevalence in fattening pigs in the EU and in the EU MSs
- 2. To inform on genetic diversity, AMR and virulence factors of MRSA in pigs
- EU-wide cross-sectional survey at the slaughterhouse
- Should target slaughtered fattening pigs
- Should provide comprehensive, comparable and reliable information
- Should provide detailed characterisation of MRSA strains and lineages, virulence and host-adaptation factors

Sampling framework

- Sampling design: at the slaughterhouse
- Sampling approach **already in place** for routine AMR monitoring at the slaughterhouse
- Assessing MRSA prevalence
 in batches of slaughter pigs
- Sampling point: post-stunning
- Sample type: nostril swabs

Sampling concept	Sampling of nostril samples at slaughter
Target populations	Domestically produced fattening pigs (slaughtered in the SH representing 60% of fattening pigs slaughtered in the MS)
Strata (1 st stage)	Slaughterhouses (60% of domestic production of FP)
Proportional allocation	Sample size proportionate to the slaughterhouse throughput
2 nd stage	Batches of fattening pig carcases originating from the same herd of pigs
Epidemiological Unit	Slaughter batches of fattening pigs
Sample	4 pooled samples of 20 nostril swabs per epidemiological unit

Sample collection: Nostril swabbing of slaughter pigs

- The slaughter batch should be a of a sufficient size to allow the sampling of at least 20 carcases, given the speed of the slaughter line (to be pragmatic!: for small batches: 4 pooled samples of less than 5 swabs)
- To avoid any misidentification and mixing of batches, samples should be taken from the carcases situated around the middle of the given slaughter batch sampled
- For the operator/sampler's comfort and for proper sample handling, there is no need to sample successive carcases of the same slaughter batch
- To account for the speed of the slaughter line, to sample only one nostril per carcase
- To rotate 5 times the swab within the nostril sampled
- Sampling of nostril swabs shall be performed after stunning of the pigs but before scalding of the carcasses (to be pragmatic!):
 - Optimally **before** the **bleeding** post/ If not possible, after the bleeding post
 - To be recorded: a data element added.
- Unique numbering system of the 4 composite samples (identification of the batch, SH, sample)

Sample size

- Number of batches
 - **50%** (between) **batch prevalence** or if unknown prevalence:
 - \Rightarrow N_b=194 batches to be sampled (*vs.* 300 batches for ESBL)
 - Example: 77% (between) batch prevalence
 - \Rightarrow #batches = 97/pr -> e.g. 97/0.77=126 batches
 - Maximum number of batches: N_b=194 batches
 - Accounting for lost adjustment (+7%): 208 batches
 - + 5% to consider missing data
 - + 2% to consider possible loss of strains during storage
 - Finite population correction
 - Nb > 5% of the total population size of the batches of the MS
 - Downward adjustment
 - Required number of slaughter batches tabulated in MRSA Tech. Spec. (Table 2)
- Proportional allocation of sample size per strata and per quarter
 - > Proportional allocation of Nb per strata (slaughterhouse: ft: fraction of throughput): N_b*f_t
 - > Number of batches to be collected per quarter: $N_b * f_t/4$

. In the case of unknown prevalence of MRSA *a priori*, **a sequential quarterly procedure has been proposed.**

. A higher prevalence requests a lower sample size to be tested.

. The approach requires a thorough follow up all along the survey so that the adaptation is implemented every quarter of the survey!

. The adjustment needs to be performed after each quarter and can go in both directions

To be documented by quarterly exchange with EFSA

Cf. Table 3 of Tech. Spec.

Sample size

• At the batch level

- > 20 nostril swabs (individual samples) per batch
- > 4 pooled samples (of 5 nostril swabs) per batch
- > Batches with less than 20 pigs: 4 pooled samples

The sample size allows a sensitivity of 80% for detecting as positive a batch characterised with a within batch prevalence of 10%.

- Robust randomised sampling procedure currently in place for routine monitoring of AMR
 - > Even distribution over the quarter (-> over the year)

EXPECTED OUTPUTS

Data analyses

- $_{\odot}\,$ MRSA Prevalence assessment at MS-level and EU-level
- $_{\odot}\,$ Assessment of the diversity of MRSA
- $\,\circ\,$ Accounting for the hierarchical structure of the data

DATA REPORTING (1)

• Existing EFSA Data Models to be used with limited adaptations

Isolate-based Data Model

- $\ensuremath{\circ}$ Isolate-level quantitative AMR data
- WGS data: pre-defined list of genes in catalogues to facilitate the reporting
- \odot Reported according to the AMR data model of EFSA used in routine

Sample-based Data Model

- detailed analytical results of all samples taken (positive and negative) reported using the EFSA standard for reporting laboratory results (Standard Sample Description version 2 (SSD2))
- $\ensuremath{\circ}$ Limited number of epidemiological data to be reported
 - $\,\circ\,$ durations of transport
 - $\circ~$ duration of lairage
 - $\circ\,$ stunning method
 - $\circ~$ Sampling performed before or after bleeding

DATA REPORTING (2)

Data Model

- $_{\odot}\,$ To collect epidemiological information on Slaughterhouses and Farms
- $\circ~$ Number of animals in the farms involved
- $\circ\,$ Annual throughput of the slaughterhouses involved

\circ ... through XML files

- $\,\circ\,$ Like the reporting of AMR data from routine monitoring
- Reporting tools will be made available: from Excel file to XML file

INFO-SESSIONS

\circ Info Session 1

- \circ April 2024
- $_{\odot}$ To address points for harmonisation
- $_{\odot}$ Documentation available on Teams

$_{\odot}$ Info Session 2

- ${\scriptstyle \odot}$ Dedicated to data reporting
- $\circ \dots$ Last Questions

A EFSA info-session dedicated to data reporting is planned on 23 October 2024

Thank you for your attention!

Acknowledgements

- The EFSA Network
 - The EC

- The EURL-AR
 - The EFSA Working Group

