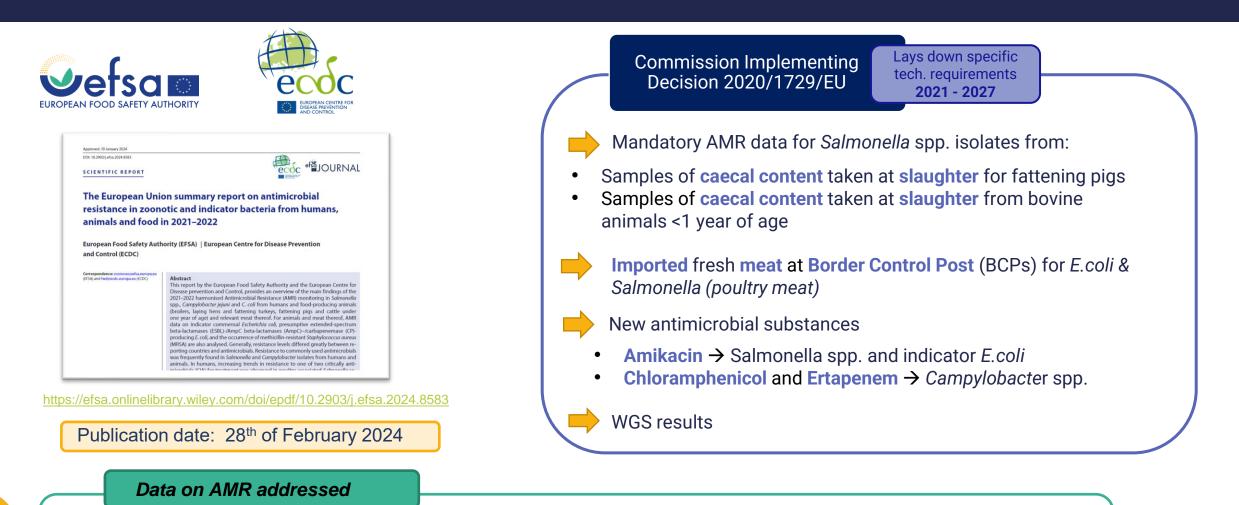
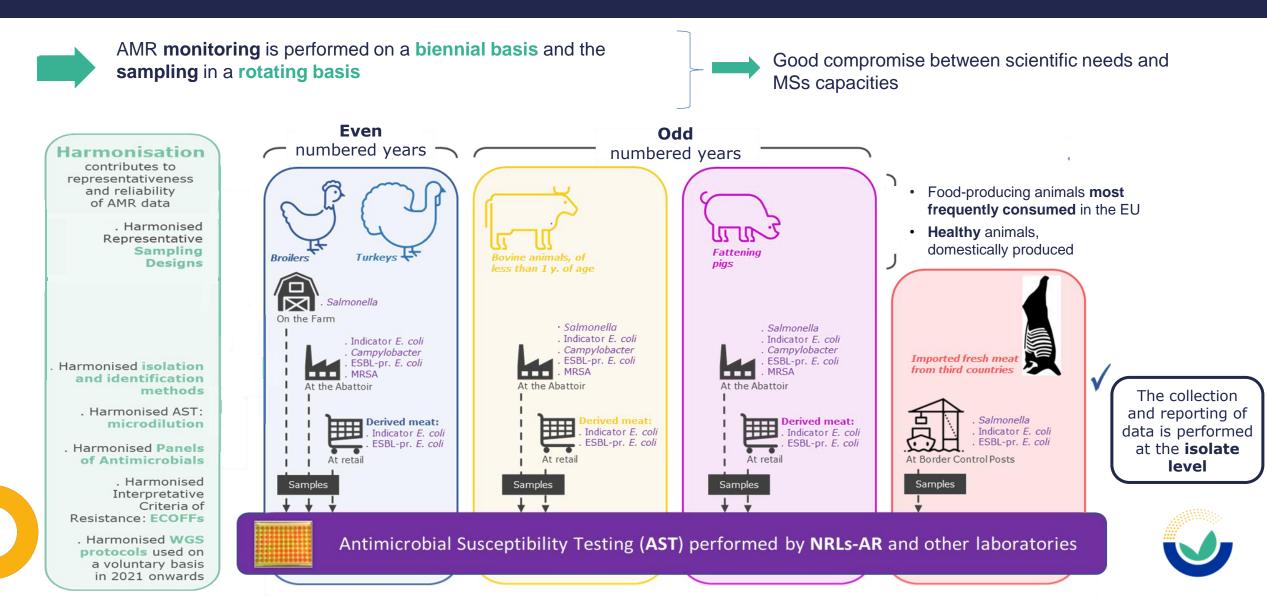
8-9 October 2024

18th EURL-AR Workshop


Monitoring AMR in food-producing animals and food in the EU

2022 EUSR on AMR

Raquel García Fierro



2022 EUSR on AMR : New Requirements in the new AMR legislation

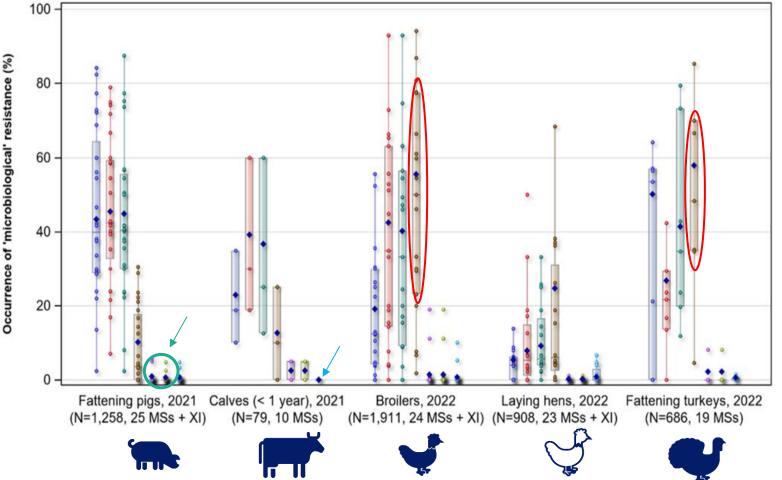
- AMR data received from 27 MSs, United Kingdom (Northern Ireland) and 4 non-Mss
- 2021 AMR from fattening pigs and calves and derived meat
- 2022 AMR data from poultry flocks and derived meat

AMR MONITORING

1. AMR - Salmonella spp.

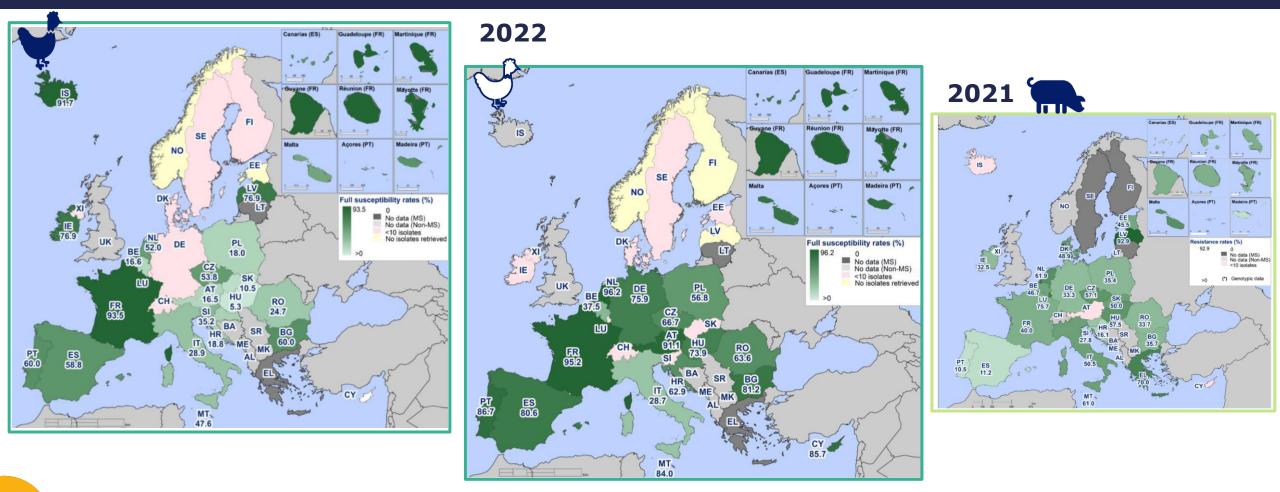
1.1 Levels of resistance

From <u>low</u> (laying hens) to <u>high</u> resistance to AMP, SUL and TET



- From moderate (laying hens, pigs and calves) to very high (broilers & turkeys) resistance to flouroquinolones (CIP)
- Very low/low resistance to third generation cephalosporins (CTX) in animals
- From very low (pigs, turkeys and laying hens) to low (broilers and calves) *combined resistance to CIP/CTX*

• Very low resistance to AMK in all animal populations and not detected in calves


Occurrence of resistance in Salmonella spp., food-producing animals, 2021-2022

Resistance to: 🛛 AMP 🔄 SMX 🛄 TET 🛄 CIP 🛄 CTX 🛄 CIP/CTX 🛄 AMK

1. AMR - Salmonella spp.

1.2 Complete susceptibility (CS)

Marked variations in the levels of CS between reporting countries, particularly in pigs and broilers and turkeys
 Generally, CS spanned higher levels among isolates from laying hens

1. AMR - Salmonella spp.

1.3 Phenotypic characterisation

Resistance to 3rd Generation cephalosporins

- Presumptive ESBL- and/or AmpCproducers were observed at <u>very low</u> levels in pigs, and laying hens
- Presumptive ESBL and/or AmpCproducers were observed at <u>low</u> levels in broilers, turkeys and bovines

Carbapenem resistance

In 2020 and 2021:

 None of the Salmonella isolates recovered from any of the animal populations exhibited 'microbiological' resistance to <u>meropenem</u> **TABLE 6** Summary of the presumptive ESBL-, AmpC- or CP-producing *Salmonella* spp. from humans and food-producing animals, subjected to supplementary testing (panel 2) or whole genome sequencing, EU MSs, 2021–2022.

	ESBL and/or AmpC ^a	ESBL ^b	AmpC ^c	ESBL + Ar	npC ^d CP ^e
Matrix	<i>n</i> (% R)	<i>n</i> (% R)	n (% R)	<i>n</i> (% R)	<i>n</i> (% R)
Humans 2021 (N=9787, 14 MSs)	88 (0.9)	76 (0.8)	12 (0.1)	0 (0)	0 (0)
Humans 2022 (N= 14,058, 26 MSs)	150 (1.1)	122 (0.9)	24 (0.2)	4 (< 0.1)	4 (< 0.1)
Fattening pigs, 2021 (N = 1258, 25 MSs + XI)	11 (0.9)	9 (0.7)	0 (0)	2 (0.2)	0 (0)
Calves, 2021 (N=79, 10 MSs)	2 (2.5)	1 (1.3)	0 (0)	1 (1.3)	0 (0)
Broilers, 2022 (<i>N</i> = 1911, 24 MSs + XI)	26 (1.4)	26 (1.4)	0 (0)	0 (0)	0 (0)
Fattening turkeys, 2022 (N=686, 19 MSs)	15 (2.2)	15 (2.2)	0 (0)	0 (0)	0 (0)
Laying hens, 2022 (<i>N</i> = 908, 23 MSs + XI)	2 (0.2)	2 (0.2)	0 (0)	0 (0)	0 (0)

Abbreviations: AmpC, AmpC beta- lactamase; CP, carbapenemase; ESBL, extended- spectrum beta- lactamase;

N, total number of isolates reported; n, number of isolates with the correspondent phenotype; %R, percentage of isolates resistant

^a According to EUCAST guidelines (EUCAST, 2017), only isolates showing MIC > 1 mg/L for CTX and/or CAZ or reported presence of ESBL-/AmpC- encoding gene were considered (see Appendix F).

^b All isolates showing clavulanate synergy with CTX or CAZ or both, suggesting ESBL phenotype, or reported presence of ESBL- encoding gene.

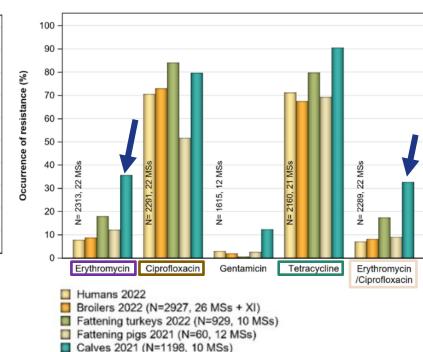
^c Isolates with cefoxitin resistance, suggesting AmpC phenotype, or reported presence of AmpC- encoding gene.

^d Isolates showing synergy with CTX or CAZ and cefoxitin resistance, suggesting ESBL- and AmpC- enzymes in the same isolates, or both ESBL- and AmpC- encoding genes reported.

^e Isolates with meropenem resistance or CP- encoding gene reported.

2. AMR – Campylobacter spp.

2.1. Levels of resistance

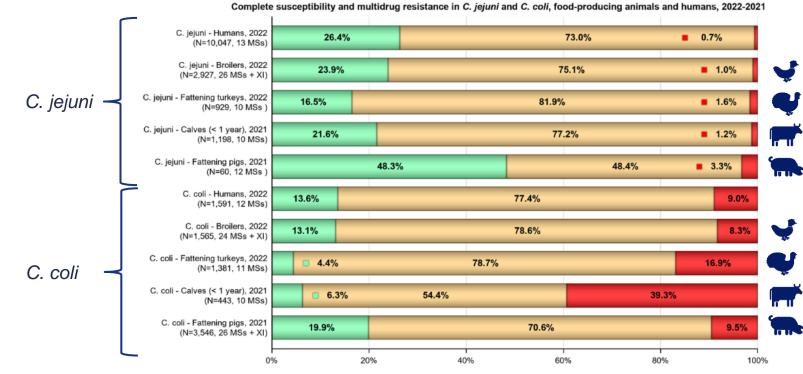

- The level of overall resistance to TET ranged from <u>high</u> to <u>extremely high</u> in foodproducing animals in *C. jejuni* and *C. coli*
- Very high resistance levels to CIP in C.jejuni and C.coli in food-producing animals
- Resistance to ERY at low levels in C.jejuni in animals, while higher levels of resistance detected in C. coli
 - Combined resistance to CIP/ERY:

Rare to low in *C. jejuni* from poultry, pigs and calves

Low in *C. coli* from pigs and broilers, and moderate in *C. coli* isolated from fattening turkeys and calves

C. jejuni 100 90 80 (%) 70 60 of 50 40 22 30 15467, 20 ₽ 10 Erythromycin Ciprofloxacin Gentamicin Tetracycline Ervthromycin /Ciprofloxacin Humans 2022 Broilers 2022 (N=2927, 26 MSs + XI) Fattening turkeys 2022 (N=929, 10 MSs) Fattening pigs 2021 (N=60, 12 MSs) Calves 2021 (N=1198, 10 MSs)

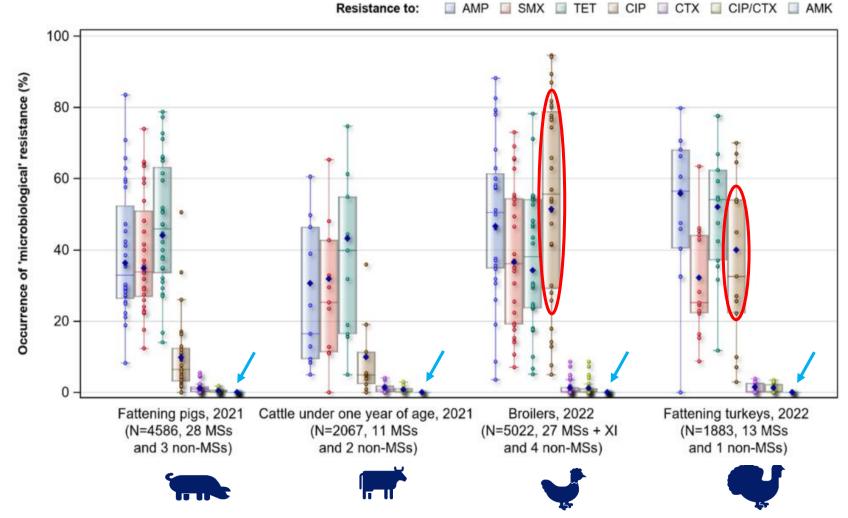
C. coli

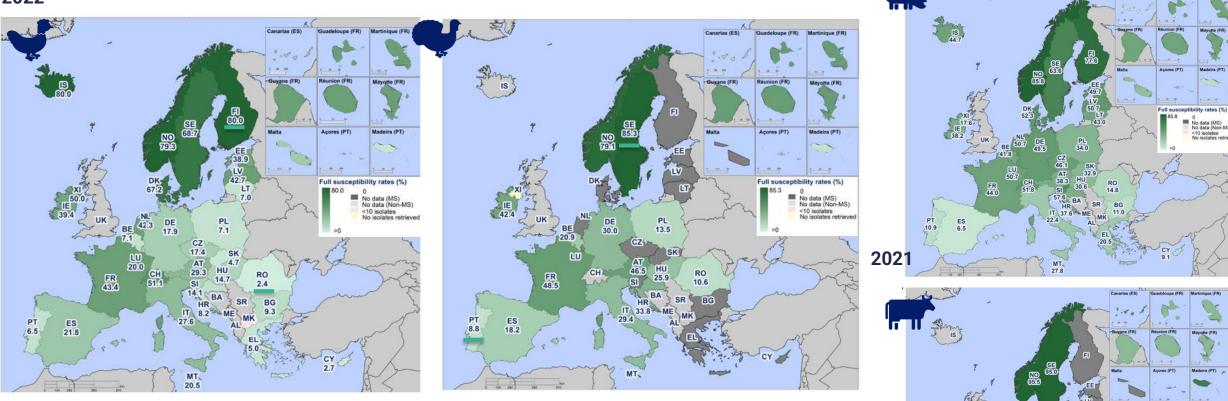


Resistance to **chloramphenicol** and **ertapenem** in isolates from pigs and calves was either **absent** or **very low**, except for an **unexpected higher level** of resistance to ertapenem reported in **C.** *coli* isolated from calves in 2021

2. AMR – Campylobacter spp. 2.2. MDR and CS

- Multidrug resistance: generally low for *C. jejuni* from animals, while it was markedly higher in *C. coli* isolated from calves, pigs and turkeys. These results agree with the higher levels of resistance to selected antimicrobials seen in *C. coli* isolates.
- Overall, complete susceptibility (i.e. defined in the report as susceptibility to CIP, ERY, TET and GEN) was higher in C. jejuni than in C. coli isolates in food-producing animals.


Completely susceptible isolates
Isolates resistant to 1 or 2 antimicrobial classes
MDR isolates


3.1 Levels of resistance

- **High** levels of resistance to commonly used antimicrobials (AMP, SMX, TET)
- Important resistance to fluoroquinolones (CIP) in broilers and turkeys
- Low resistance to cefotaxime (CTX)
- Combined resistance to third-generation cephalosporins and fluoroquinolones (CIP/CTX) was generally uncommon in all animal categories.
- Resistance to high priority critically important antimicrobials (HPCIA) was uncommon for colistin and azithromycin
- Very low levels of resistance to AMK

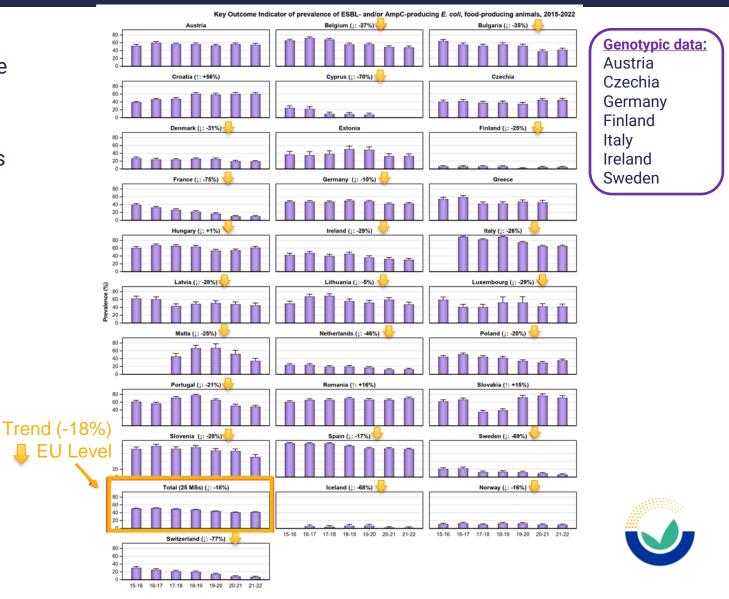
Occurrence of resistance in indicator commensal E. coli from food-producing animals, 2021-2022

3.2 Complete susceptibility (CS)

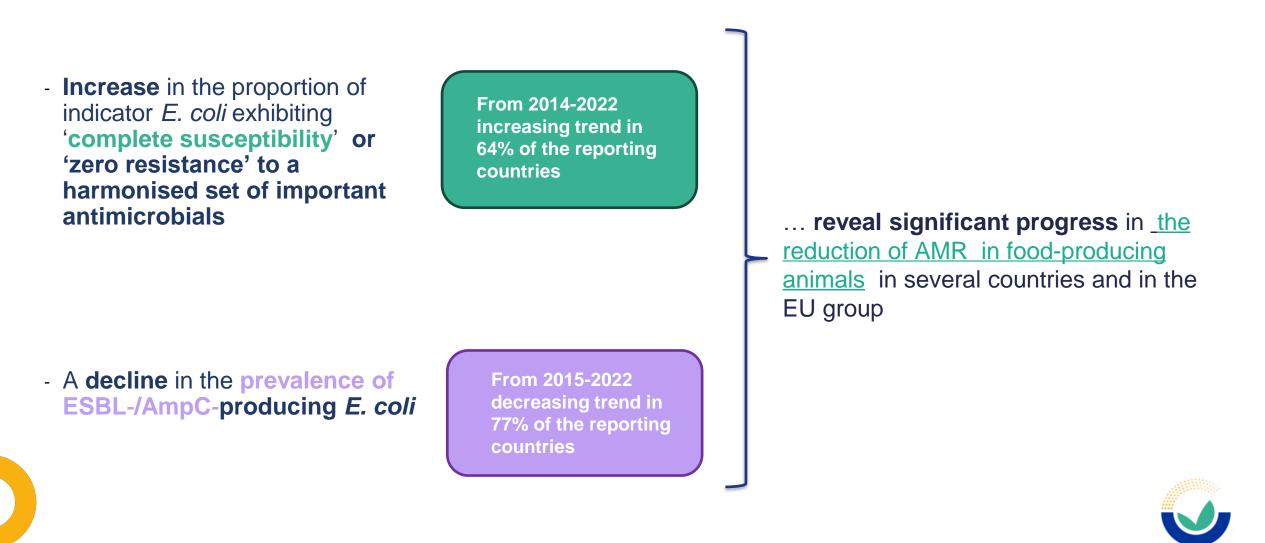


- **CS** more common in **fattening pigs** and **calves** than in broilers and fattening turkeys
- Marked variations between countries: a North to South gradient / an East to West gradient

3.2 Key Outcome indicator on Complete susceptibility (KOI_{cs})

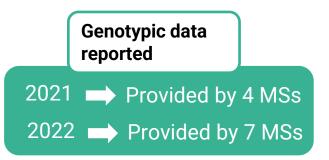

- Marked variations among the 28 reporting countries.
- Lower KOI_{cs} were generally observed in countries in eastern and southern Europe and the <u>highest</u> in countries in the northern Europe
- Levels of KOI_{CS} were:

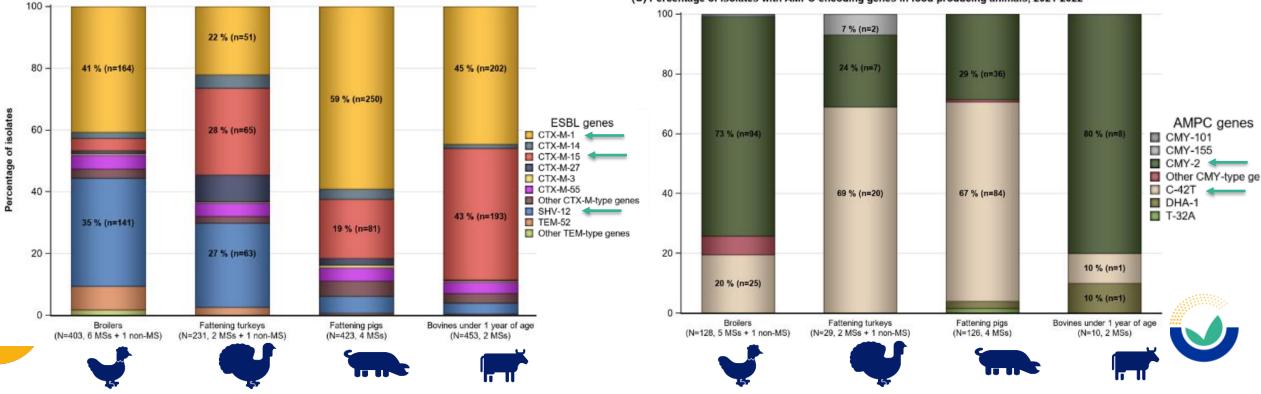
 <20% in six countries,
 20-40% in eleven countries,
 40-60% in seven countries,
 60-80% in two countries (FI, IS) and
 >80% in two countries (SE, NO)
- Statistically significant **decreasing** trends in 3 countries
- Statistically significant increasing trends (from 2014-2022) in <u>18 countries</u> → 64% of reporting countries



3.2 Key Outcome indicator on prevalence of ESBL-/AmpC- E.coli

- Marked variations in the prevalence of presumptive ESBL and/or AmpC-producers among the 31 reporting countries
- Lower KOI_{ESBL} were generally observed in countries in northern Europe and the highest in countries in the eastern and southern Europe
- Levels of KOI_{ESBL} were:
 <20% in nine countries,
 20-40% in five countries,
 40-60% in twelve countries,
 60-80% in four countries (SE) and
 >80% no countries
- Statistically significant **increasing** trends in 3 countries
- Statistically significant decreasing trends
 in 23 countries → 77% of reporting countries


3.2 Key Outcome indicators KOIs - Key messages


4. AMR - ESBL and/or AMPC- producing E.coli

4.2 WGS results

(C) Percentage of isolates with AMPC-encoding genes in food-producing animals, 2021-2022

(A) Percentage of isolates with ESBL-encoding genes in food-producing animals, 2021-2022

5. AMR – CP- producing E.coli

4.2 WGS results

4.Carbapenems a last resort antibiotics:

Salmonella spp.: Carbapenem-R was found in humans (4 confirmed isolates (*bla*_{OXA-48})) but **not** in food-producing animals

E. coli: Carbapenem-R was detected in foodproducing animals

Occurrence of carbapenem-R is still reported at very low levels

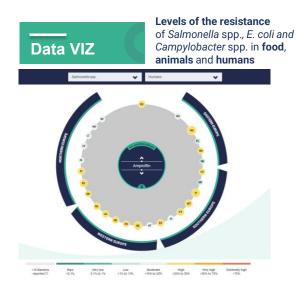
BUT

Presence of carbapenemase-producing bacteria in humans and in food-producing animals in

- Several countries
- Several animal species
- Several genes

Table 20: Summary table on carbapenemase-encoding genes reported in *Escherichia coli* sampled in the routine monitoring, the specific monitoring of ESBL-/AmpC-/CP-producers and the specific monitoring of CP-producers in 2021 and 2022.

Year	Matrix	Gene	Number of isolates	Number of countries detecting the isolates				
Routine monitoring of indicator E. coli								
2022	Fattening turkeys	blaoxA-181	1	1 (IT)				
Specifi	c monitoring of ESBL-/Amp	C-/CP-produ	cing <i>E. coli</i>					
2021	Pig meat at retail	bla _{NDM-5}	1	1 (HU)				
	Cattle meat at retail	bla _{NDM-5}	2	1 (HU)				
2022	Broilers	bla _{VIM-1}	3	2 (AT, IT)				
Specifi	c monitoring of CP-producin	ng E. coli						
2021	Fattening pigs	blaoxA-48	3	2 (ES, IT)				
		blaoxA-181	20	1 (IT)				
		bla _{NDM-5}	3	1 (CZ)				
	Cattle under one year of age	bla _{NDM-5}	1	1 (IT)				
	cattle ander one year of age	blaoxA-181	4	1 (IT)				
2022	Fattening turkeys	blaoxA-181	1	1 (IT)				



MODERNISATION - ONLINE VISUALISATION TOOLS: DASHBOARDS & STORY MAPS

2021 visualisation tools

• 2022 Visualisation tools

Monitoring AMR in indicator E. coli (update)

Thanks for your attention

Acknowledgements

Members of the EFSA Scientific Network on for Zoonoses Monitoring Data Members of the ECDC Food and Waterborne Diseases and Zoonoses Network, European Laboratory on Antimicrobial Resistance (EURL-AR) EFSA staff members, ECDC staff members EFSA's contractor: a consortium composed by SVA, DTU, NVI, Soladis and EFOR-CVO-Soladis

#OpenEFSA

STAY CONNECTED

SUBSCRIBE TO

3

0

efsa.europa.eu/en/news/newsletters efsa.europa.eu/en/rss Careers.efsa.europa.eu – job alerts

LISTEN TO OUR PODCAST Science on the Menu –Spotify, Apple Podcast and YouTub

OLLOW US ON TWITTER)efsa_eu (()plants_efsa

@methods_efs
@animals_efsa

FOLLOW US ON LINKEDIN Linkedin.com/company/efsa

in

 \bowtie

FOLLOW US ON INSTAGRAM @one_healthenv_eu CONTACT US efsa.europe.eu/en/contact/askefsa

