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Summary 

Vitamin D is considered a key fat-soluble vitamin critically important for good bone- and overall 

health throughout life. Vitamin D deficiency increases the risk of developing rickets, osteomalacia 

and osteoporosis, and moreover increases the risk of various non-skeletal adverse health outcomes 

including cardiovascular diseases, autoimmune diseases, some cancers and overall mortality. In 

humans, vitamin D is mainly synthesized in the skin after solar exposure and only a small amount is 

obtained through the diet.  

!
An inter-individual variation in vitamin D status exists, which may be explained by genetic 

variation in vitamin D modulating genes. Twin and family-based studies indicate that genetic 

variation may have an appreciable influence on vitamin D status. Moreover, several candidate gene 

studies including two genome-wide association studies (GWAS) have found single nucleotide 

polymorphisms (SNPs) in CYP2R1, CYP24A1, CYP27B1, C10orf88, DHCR7/NADSYN1, GC and 

VDR genes to be associated with vitamin D status. The main hypothesis of this work was that 

genetically determined variation in vitamin D metabolism would influence the effect of vitamin D 

sources (vitamin D-supplementation and ultraviolet (UV)-B) on vitamin D status. 

!
This was done by assessing the association between 25 SNPs located in the CYP2R1, CYP24A1, 

CYP27B1, C10orf88, DHCR7/NADSYN1, GC and VDR genes and vitamin D status in 756 

participants in the VitmaD study in late summer (paper I), at the end of a winter season (paper II), 

after 6 months intake of vitamin D3-fortified bread and milk (paper II) and in 92 participants in the 

VitDgen study after artificial UVB irradiation during winter (paper III). 

!
Common genetic variations in the CYP2R1 and GC genes were found to be important determinants 

of vitamin D status in three out of four scenarios: in late summer, after 6 months intake of vitamin 

D3-fortified bread and milk and after artificial UVB irradiation, but not at the end of winter when no 

artificial vitamin D sources (vitamin D3-fortification or UVB irradiation) had been given. 

!
Overall, a general negative gene-dose dependent relationship was observed between increasing 

numbers of risk alleles of CYP2R1 and GC and lower vitamin D status, and moreover an additive 

effect of CYP2R1 and GC polymorphisms on vitamin D status was observed. Genetically 

predisposed individuals carrying all risk alleles of CYP2R1 and GC had the lowest vitamin D status 

in late summer, the largest decrease in vitamin D status after intake of vitamin D3-fortified bread 
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and milk during winter and the smallest increase in vitamin D status after artificial UVB irradiation 

compared to individuals carrying fewer or no risk alleles of CYP2R1 and GC. 

 

Based on the studies included in this thesis, it is concluded that genetically predisposed individuals, 

with a genetic profile of CYP2R1 and GC leading to low vitamin D status, had the lowest vitamin D 

status in late summer and responded the least to increased exposure of the vitamin D sources, 

vitamin D3-fortification and UVB irradiation. Genetically determined variation in CYP2R1 and GC 

may potentially be used as a biomarker to identify at-risk individuals who have substantially 

increased risk of having low vitamin D status.   
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Dansk resumé (summery in Danish) 

D-vitamin er et vigtigt fedtopløseligt vitamin der livet igennem har stor betydning for 

opretholdelsen af stærke knogler og for den generelle sundhed. D-vitamin-mangel øger ikke kun 

risikoen for at udvikle rakitis, osteomalaci og osteoporose, men også ikke-knoglerelateret 

sygdomme såsom hjerte-kar sygdomme, autoimmune sygdomme, visse kræftformer samt total 

dødelighed. D-vitamin dannes primært i huden efter soleksponering i sommermåneder og kun en 

lille mængde D-vitamin optages gennem kosten.  

Der ses en inter-individuel forskel i D-vitamin status, som måske kan forklares af genetisk variation 

i D-vitamin modulerende gener. Tvillinge- og familiebaserede studier har vist at genetisk variation 

kan have mærkbar indflydelse på D-vitamin status. Derudover har kandidat-gen studier, herunder to 

genom-wide association studier (GWAS), fundet en sammenhæng mellem enkelt nukleotid 

polymorfier (SNP) i CYP2R1, CYP24A1, CYP27B1, C10orf88, DHCR7/NADSYN1, GC and VDR 

generne og D-vitamin status. I denne afhandling var den overordnet hypotese at genetisk bestemt 

variation in D-vitamin metabolismen ville influere effekten af D-vitamin kilder (D-vitamin 

berigelse og ultraviolet (UV)-B) på D-vitamin status. 

 

Dette blev undersøgt ved at vurdere association mellem 25 SNPs lokaliseret i CYP2R1, CYP24A1, 

CYP27B1, C10orf88, DHCR7/NADSYN1, GC og VDR generne og deres indvirkning på D-vitamin 

status hos 756 deltagere i VitmaD studiet i sensommeren (artikel I), i slutningen af vinteren 

(artikel II), efter 6 måneders indtagelse af D3-vitaminberiget brød og mælk (artikel II) og hos 92 

deltagere i VitDgen studiet efter kunstig UVB-bestråling (artikel III). 

Almindelige forekomne genetiske variationer i CYP2R1 og GC generne var vigtige determinanter 

for D-vitamin status i tre ud af fire scenarier: i sensommeren, efter 6 måneders indtag af D3- 

vitaminberiget brød og mælk, og efter kunstig UVB-bestråling, men ikke i slutningen af vinteren, 

hvis D-vitamin ikke blev kunstigt tilført (D3- vitamin berigelse eller UVB-bestråling).  

Overordnet var der en generel negativ gen-dosis afhængig sammenhæng mellem stigende antal 

risiko alleler af CYP2R1 og GC og lavere D-vitamin status. Ydermere sås en additiv effekt af 

CYP2R1 og GC på D-vitamin status. Genetisk disponerede individer som var bærere af alle risiko-

alleler af CYP2R1 og GC, havde den laveste D-vitamin status i sensommeren, det største fald i D-

vitamin status efter indtagelse af vitamin D3-beriget brød og mælk i løbet af vinteren, og den 
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mindste stigning i D-vitamin status efter kunstig UVB-bestråling i forhold til individer, som var 

bærere af færre eller ingen risiko-alleler af CYP2R1 og GC. 

 

På grundlag af de undersøgelser, som indgår i denne afhandling, kan det konkluderes, at genetisk 

disponerede individer, med en genetisk profil i CYP2R1 og GC, som fører til lav D-vitamin status, 

havde den laveste D-vitamin status i sensommeren og reagerede mindst på en øget D-vitamin 

eksponering, D3-berigelse og UVB-bestråling. Genetisk bestemt variation i CYP2R1 og GC generne 

kan potentielt anvendes som biomarkør til at identificere udsatte personer, der har en væsentligt 

forhøjet risiko for at udvikle lav D-vitamin status.  
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Abbreviations 
ACADSB 

CYP2R1 

Acyl-Coenzyme A dehydrogenase  

Encoding 25-hydroxylase 

CYP24A1 Encoding 24-hydroxylase 

CYP27B1 Encoding 1α-hydroxylase 

C10orf88 Region harbouring the open-reading frame 88 on chromosome 10q26.13. 

DBP Vitamin D Binding Protein  

DEQAS 

EFSA 

Vitamin D External Quality Assessment Scheme 

European Food Safety Authority 

FFQ Food Frequency Questionnaire 

GC Encoding the vitamin D binding protein or GC, group-specific component 

GRS Genetic Risk Score 

GWAS Genome-Wide Association Studies 

IOM Institute of Medicine 

LC-MS/MS Isotope dilution liquid chromatography tandem mass spectrometry 

LD Linkage Disequilibrium 

mRNA Messenger RNA 

MS Multiple Sclerosis 

NADSYN1/DHCR7 Nicotinamide adenine dinucleotide synthetase-1/7-dehydrocholesterol reductase 

NIST National Institute of Standards and Technology 

NNRs Nordic Nutrition Recommendations 

PPF Pigment Protection Factor 

PTH Parathyroid Hormone 

RDA Recommended Dietary Allowance 

RI Recommended Intakes 

RXR Retinoid-X Receptor 

SED Standard Erythema Doses 

SNPs 

SZA 

Single Nucleotide Polymorphisms 

Solar Zenith Angle 

T1DM 

VitDgen 

VitmaD 

Type 1 Diabetes Mellitus 

Vitamin D in genes 

Food with vitamin D 

VDR Vitamin D Receptor 

VDRE Vitamin D Response Elements 

UL Tolerable Upper Intake Level 

UV Ultra-Violet  

25(OH)D 25-Hydroxyvitamin D 
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Definition of genetic terms  

Allele An individual inherits two copies (alleles) for each gene, one from each 

parent, that control the same trait. 

Genotype The genetic constitution of a particular individual that determinates a 

specific trait (SNP), a set of traits (several SNPs), or all traits (the DNA). 

Genetic risk score The joint effect of X SNPs, calculated as the sum of number of X risk 

alleles. 

Haplotype A combination of closely linked DNA sequences on one chromosome 

that are often inherited together. 

  States that genotype distribution remains constant in a randomly mating 

population.  

Heterozygote Individual carrying two different alleles.  

Homozygote Individual carrying two identical alleles.  

Linkage disequilibrium The alleles of a few SNPs on a haplotype predict the alleles of other 

SNPs, which provide redundant information.  

MM Homozygous major allele carriers or wild-type carriers. 

Mm Heterozygous carrier of one major and one minor allele. 

mm Homozygous minor allele carrier or variant. 

rs Reference sequence and a unique number for every known SNP e.g. 

rs4588. 

SNP Single nucleotide polymorphism; change in the DNA caused by a change 

in a single nucleotide (A, C, G or T). 

 
SNP illustration, adapted from (1).  
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1. Introduction 
In the 21st century, vitamin D deficiency has become a worldwide problem affecting 1 billion 

people (2). Severe vitamin D deficiency causes osteomalacia or childhood rickets, osteoporosis and 

bone fractures because of reduced calcium absorption (3). Besides its established role in skeletal 

health, low vitamin D status is discussed as a risk factor in relation to several non-skeletal health 

outcomes such as cardiovascular diseases (4), obesity (5), diabetes (6), asthma (7), multiple 

sclerosis (MS) (8), occurrence of a large range of cancer diseases (9) and overall mortality (10,11).  

Vitamin D status is modified by several external factors such as lifestyle, anthropometric factors, 

sun exposure and habits, latitude, diet, supplementation and fortification but also genetic variation 

in vitamin D modulating genes. A wide variability in heritability of 25-hydroxyvitamin D 

(25(OH)D, calcidiol) concentrations, ranging from 29 to 80 %, has been reported in twin and 

family-based studies (12–14) indicating that genetic factors may have an appreciable influence on 

vitamin D status, yet the genetic epidemiology of vitamin D or its metabolites has not been well 

studied. A better understanding of how genetic variation in the vitamin D modulating genes 

influences vitamin D status all year round and after fortification is needed and is the main objective 

of this thesis. Genetically determined variation in the vitamin D modulating enzymes may 

accelerate, or protect against, low vitamin D status and may help to identify who is most at risk of 

developing low vitamin D status. It may be used to prevent development of vitamin D deficiency in 

at-risk individuals and moreover preventing the development of vitamin D related diseases.  

!
A growing number of studies have uncovered single nucleotide polymorphisms (SNPs) related to 

vitamin D modulating genes that affect vitamin D status independently of latitude and diet. By 

candidate gene analysis, five vitamin D modulating genes have identified, including GC, CYP24A1, 

CYP2R1, CYP27B1 and VDR (15). Recently, two genome-wide association studies (GWAS) of 

vitamin D (16,17) confirmed the associations of common variants in GC and CYP2R1 genes but 

also that the nicotinamide adenine dinucleotide synthetase-1/7-dehydrocholesterol reductase 

(NADSYN1/DHCR7) (17) and the region harbouring the open-reading frame 88 (C10orf88) (16) 

were associated with vitamin D status. This thesis investigates 25 genetic variations located in the 

aforementioned 7 vitamin D modulating genes and their association with vitamin D status in a 

healthy Caucasian population in late summer, end of winter, after 6-months intake of vitamin D3-

fortified bread and milk and after artificial whole body UVB irradiation during winter.  
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2. Background – Vitamin D 
This section describes essential background information on vitamin D metabolism and biological 

functions, dietary recommendations, UVB exposure and genetic variations associated with vitamin 

D status. 

2.1 Sources, metabolism and functions of vitamin D 
In humans, vitamin D3 is primarily obtained through endogen synthesis in the skin initiated by 

exposure to UVB irradiation (280-315 nm), contributing up to 80-90% of acquired vitamin D3 in 

European populations (18) and characteristically smaller amounts are obtained through diet and 

supplements. Dietary vitamin D exists in two major native forms, vitamin D2 (ergocalciferol) 

derived from eating invertebrates such as plants, mushrooms and yeast and vitamin D3 

(cholecalciferol) derived from animal-based sources such as fish, meat, milk and eggs (19). Vitamin 

D2 differs structurally from vitamin D3 in that it has an additional double bond and methyl group 

(20). 

!
In the skin, UVB radiation converts 7-dehydrocholesterol (7-DHC) to pre-vitamin D3, which 

immediately undergoes a thermal isomerization to vitamin D3, and is completed within 2-3 days 

after initial sun exposure (21–23) (Figure 1).  

!
Dermally synthesized vitamin D3 diffuses via the blood to the liver tightly bound to vitamin D 

binding protein (DBP, also known as GC, group-specific component) whereas ingested vitamin D2 

and D3 are absorbed in the small intestine and transported by chylomicrons and lipoproteins to the 

liver (20) and thus are presented to the liver in a different way. Hereafter, the metabolism of 

dermally or dietary synthesized vitamin D2 or D3 is considered to be similar even though the 

bioavailability of vitamin D3 is considered to be better compared to that of vitamin D2 (24). A 

distinction between these two forms is not made in the general literature and in the following 

vitamin “D” refers to both D2 and D3. Vitamin D undergoes a series of enzymatic conversions in the 

liver and kidneys in order to become biologically active.  

!
In the liver, the hepatic enzyme 25-hydroxylase (encode by the CYP2R1 gene) converts vitamin D 

to 25(OH)D. The conversion is loosely regulated and seems to be primarily dependent on the 

vitamin D concentration (20). 

To become biologically active, 25(OH)D is converted into 1,25-dihydroxyvitamin D (1,25(OH)2D, 

calcitriol) mainly in the kidneys, but also in other tissues expressing the enzyme 1α-hydroxylase 
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(encode by the CYP27B1 gene). The conversion of 25(OH)D to 1,25(OH)2D is tightly regulated by 

calcium and phosphate concentrations through a negative feedback mechanism mediated by 

parathyroid hormone (PTH) (25).  

!
In the circulation, most of vitamin D, 25(OH)D and 1,25(OH)2D are transported and bound to DBP 

but a small fraction is  bound to albumin or exists in free form (26,27). DBP-bound 25(OH)D is the 

major circulation metabolite and with a relative long half-life of 2-3 weeks, DBP-bound 25(OH)D 

is the preferred biomarker of vitamin D status compared to 1,25(OH)2D which have a short half-life 

of 10-20 h (20). Recently, it has been questioned whether 25(OH)D is the best biomarker of vitamin 

D status. It has been suggested that free and bioavailable 25(OH)D, measured as albumin-bound 

and free 25(OH)D, may be a better and more informative marker for vitamin D status (26,27). 

!
DBP-bound 1,25(OH)2D enters the circulation and travels to target tissues where is can mediate 

both transcriptional and rapid non-transcriptional effects. The transcriptional effects of vitamin D 

are mediated by 1,25(OH)2D binding to nuclear vitamin D receptors (VDR), which then forms a 

heterodimer with the retinoid-X receptor (RXR) which binds to vitamin D response elements 

(VDRE) in the regulatory element region of vitamin D target genes (28). The rapid non-

transcriptional (rapid response) effect of 1,25(OH)2D is when 1,25(OH)2D acts like a steroid 

hormone through activation of signal transduction pathways at or near cell surface receptors (29). 

The non-transcriptional response is rapid i.e. acting within seconds to minutes, whereas the 

transcriptional response takes a few hours to days to elicit the response (30).  

!
To prevent excessive vitamin D signalling in target organs, both 25(OH)D and 1,25(OH)2D induce 

24-hydroxylase (encode by CYP24A1) leading to formation of  biologically inactive water-soluble 

metabolites which are eventually excreted in the bile (20,31,32). Additionally, as vitamin D is 

hydrophobic it can be stored in human adipose tissues as a “non-specific” store, but the extent of 

accumulation or mobilization during periods of shortages of vitamin D is unknown (33). 

 

 
'

'

'

'
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'
Figure'1.!Genetic!variations!related!to!the!vitamin!D!metabolism.!CYP24A1,!24Shydroxylase;!CYP27B1,!1αS
hydroxylase;!CYP2R1,!25Shydroxylase;!DHCR7,!7Sdehydrocholesterol!reductase;!GC,!vitamin D binding protein;!
RXR,!retinoidSX!receptor;!UVB,!ultraviolet!B;!VDR,!vitamin!D!receptor!(34).!!
 

The main biological function of vitamin D is facilitation of intestinal calcium absorption and 

maintenance of calcium homeostasis. Calcium is essential for development and maintenance of 

bone, cellular processes and neuromuscular functions (35). Low blood calcium concentrations 

induce the release of PTH from the parathyroid gland, which stimulates 1α-hydroxylase in the 

kidneys to produce 1,25(OH)2D, which then increases calcium concentrations through three 

separate targets: 1) by enhancing intestinal absorption, 2) interacting with PTH to stimulate 

reabsorption in the kidneys and 3) mobilization from bones (36). Under normal conditions, dietary 

calcium if favoured over bone-mobilization, but it has been suggested that bone cells can convert 

25(OH)D to 1,25(OH)2D when calcium supply is inadequate (37). 

 

High blood calcium concentrations and 1,25(OH)2D it self suppress PTH secretion and induce 24-

hydroxylase activity in the kidney converting 1,25(OH)2D to 24,25-dihydroxyvitamin D which is 

less biologically active than 1,25(OH)2D and is considered the first step of inactivation (29). 
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Existence of non-classical functions of vitamin D, not related to calcium homeostasis, has been 

suggested (30). In the human genome over 2700 VDR-binding sites have been identified in over 30 

cell types, including bone, intestine, immune, kidney, pancreas, lung, heart, muscle, brain and skin, 

supporting the wide-ranging influence of vitamin D in human metabolism (34,35). Non-classical 

function of 1,25(OH)2D may play a role in the innate immune system, insulin secretion, cell 

proliferation and differentiation (35).  
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2.2 Seasonal and individual variation of 25(OH)D concentrations 
The efficiency of the conversion of 7-DHC to vitamin D3 follows the seasonal variation in the solar 

zenith angle (SZA) inversely related to the amount of UVB photons in the solar spectrum. A small 

SZA results in an increased intensity of UVB photons reaching the earth and is prominently found 

in summer, at noon and near equator (38). In contrast, a large SZA results in less UVB photons with 

less intensity reaching the earth because more UVB photons are absorbed, redirected or attenuated 

in the atmosphere and is prominently found in winter, at early mornings, at late afternoons and at 

high latitudes (38). Therefore, cutaneous vitamin D3 synthesis is influenced by the time of the day, 

season of the year and latitude (39). Around equator (0°) a high amount of solar UVB radiation is 

present all year round, contrarily, at the poles (90°) solar UVB radiation is only present a few 

months of the year (40). Consequently, during winter months in latitudes above 40°N, cutaneous 

vitamin D3 synthesis is negligible from October to March and often referred to as the “vitamin D 

winter” (41). During the “vitamin D winter” period vitamin D must be acquired from dietary 

sources, supplementation or use of summer vitamin D storage. Vitamin D status is therefore 

associated with season, and hence solar UVB radiation, with the highest 25(OH)D concentrations 

observed during summer and the lowest 25(OH)D concentrations observed during winter (42). 

!
Humans respond differently to UVB radiation and a number of factors affect the cutaneous 

synthesis of vitamin D3. Cutaneous vitamin D synthesis is affected by geographic factors, sun-

seeking behavioural factors such as duration and time spent outside, area of exposed skin, use of 

sunscreen, sunny holidays and age (38,43). The skins ability to synthesize vitamin D3 decreases 

with age (44). It is controversial whether cutaneous vitamin D3 synthesis is more efficient in 

individuals with pale skin compared to individuals with dark skin (45,46). It is believed to be an 

evolutionary adaptation resulting from migration to more northern and less sunny climates (47,48).  

!!
Ambient ultraviolet radiation (UV)-R may cause erythema (temporary reddening) and can be 

measured as the standard erythema dose (SED). SED is a standardized measure of erythemal 

effective radiant exposures from natural or artificial sources of UVR (49). One SED is equivalent to 

an erythemal effective radiant exposure of 100 Jm-2 at 298 nm using the International Committee of 

Illumination (CIE) erythema action spectrum and corresponds to a UV dose that causes perceptible 

erythema in the most sun-sensitive individuals (49,50). The SED is independent of skin type and a 

particular exposure dose in SED may cause erythema in fair skin but not in darker skin. 
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2.3 Health benefits and risks of solar UV radiation 
Sunlight is the most prominent source of UVR, consisting of UVB and UVA radiation. Solar UVA 

and UVB radiation have different effects on skin. Solar UVB radiation contributes with 80% of the 

harmful effect of sun-exposure and solar UVA radiation with the remaining 20% (51). UVR has 

detrimental effects on human health and the dangers of overexposure to sunlight have been well 

established. Acute signs of solar UVR exposure are pigmentation (tanning) and erythema (sunburn). 

Chronic signs of solar UVR exposure are premature skin aging and increased risk of skin cancer 

due to DNA damage (52). Solar UVR is considered as a complete carcinogen and excessive solar 

UVR exposure causes 99% of non-melanoma skin cancers by initiating and promoting the 

carcinogenesis of squamous cell carcinoma and basal cell carcinoma (52). Furthermore, it is 

estimated that at least 20% of malign melanoma are causes due to excessive solar UVR exposure 

(40).  

!
Public health guidelines have the last 40 years warned against excessive solar UVR as it causes 

sunburn and increased risk of skin cancer (43). Less attention has been given to acknowledge the 

beneficial role of UVB radiation, that being the cutaneous synthesis of vitamin D3 (45). Adequate 

sun exposure is essential for human health and for most of the world’s population requirement of 

vitamin D3 is satisfied by photosynthesized vitamin D3 (40). A balance is required between 

avoiding the increase in skin cancer risk and achieving enough UVB radiation exposure to maintain 

adequate vitamin D concentrations. How this is balanced remains to be clearly defined and 

validated (53). Limited data exist for weighting risk against benefit when considering inadequate 

vitamin D status vs. overexposure to sunlight (54). There have been concerns that sun avoidance 

may lead to inadequate vitamin D status. The overall health benefit of an improved vitamin D status 

may be more important than the possible increased skin cancer risk resulting from carefully 

increasing UVR exposure (55). Besides vitamin D3 production, solar UVR has several beneficial 

effects. Heliotherapy (solar radiation) or phototherapy (artificial UVR) can treat several human skin 

diseases, like psoriasis, vitiligo, atopic dermatitis and localized scleroderma (56). Solar UVR may 

increase nitric oxide concentrations in the blood which may reduce blood pressure and improve 

cardiovascular health (56). Moreover, delayed tanning induced by UVB can act as a sunscreen and 

it has been hypothesized that vitamin D3 produced in the skin has a protective mechanism against 

UVR induced carcinogenesis (57). However, due to the well-known carcinogenicity and high 

frequency of acute side effects sunbed use as vitamin D source is generally not recommendable 

(58). 
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Safe sun practices, intake of vitamin D-rich foods and vitamin D supplements have emerged as an 

alternative strategy for optimizing one’s vitamin D status and may help to decrease skin cancer risk 

(59). A short daily sun exposure is recommended over a single long exposure regarding cutaneous 

vitamin D3 synthesis (38). After about 15 minutes of sun exposure the synthesis of previtamin D3 

reaches a plateau [57] and prolonged sun exposure leads to formation of biologically inactive water-

soluble metabolites to prevent reaching toxic levels of vitamin D3 (20,31,32). It have been 

suggested that in summer months in Denmark, 56°N, adequate vitamin D concentrations can be 

obtained from 20-30 minutes of sun exposure of hands, arms and face 2-3 times a week in the 

middle of the day (61).   
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2.4 Dietary vitamin D recommendations, measurement and cut-off limits 
Evaluation of vitamin D status is complex because it is modified by several external and lifestyle 

factors such as UVB and sun exposure habits, latitude, season, anthropometric factors, ethnicity, 

variation in vitamin D modulating genes, dietary vitamin D sources, vitamin D supplementation and 

vitamin D-fortified foods and drinks. Moreover, the optimal level of vitamin D is uncertain, which 

is further complicated by the lack of standardization in and between different methods for 

quantification of 25(OH)D concentrations (62). To compensate for method-related variability, an 

international standardization reference material was in 2010 introduced by the National Institute of 

Standards and Technology (NIST) (62). At present, 25(OH)D concentrations is generally accepted 

as the best biomarker of vitamin D status reflecting the sum of vitamin D from intake and cutaneous 

synthesis (63). 

Dietary vitamin D intake has become an increasingly important source during the winter season at 

higher latitudes when solar exposures are negligible and low vitamin D status is frequently 

observed. Relatively few foods naturally contain vitamin D and the actual vitamin D content may 

vary considerably due to breeding circumstances, feed, species, season and cooking method (39). 

The vitamin D content in wild caught salmon from Alaska was approximately 25% higher 

compared to farmed salmon. Furthermore, the vitamin D content between species varied from 2.5 to 

25 µg/100g and moreover the vitamin D content in fish decreased with 50% when fried in vegetable 

oil, but not when baked or microwaved (39). 

!

In Denmark, food fortification is not a significant source of vitamin D, as it is not mandatory or 

common as in Norway, Finland, Sweeden, Ireland, the United Kingdom, Spain, USA and Canada 

(64,65). In the Danish population, the primary dietary sources of vitamin D comes from intakes of 

fish (57%), meat (16%), eggs (10%), milk (7%), fats (4%), bread and cereals (2%) and cheese (2%) 

with a mean estimated dietary intake of 2.7 µg/day in children aged 4-9 years, 2.8 µg/day in 

children aged 10-17 years and 4.8 µg/day in adults aged 18-75 years (66). In Denmark, use of 

dietary supplements is common and 2% of children aged 4-10 years, 4.6% of children aged 10-17 

years and 8.5% of adults aged 18-75 years are supplement users (67). Among dietary supplement 

users, the total estimated vitamin D intake were 7.6-8.4 µg/day (68). Intakes are lower than the 

recommended intake (RI) of 10 µg/day defined by the Nordic Nutrition Recommendation (NNR) 

(69) as it is in most populations (70). 
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In Europe, vitamin D recommendations range from intakes of 2.5 to 22.5 µg/day (71), and no 

general agreement of which dietary vitamin D doses are needed to achieve sufficient 25(OH)D 

concentrations has been reached. The Institute of Medicine (IOM) recently reported that a 

Recommended Dietary Allowance (RDA) of 15 µg/day for individuals aged 1-70 y will cover the 

requirement for 97.5% of the population in the US and Canada, corresponding to 25(OH)D 

concentrations of at least 50 nmol/L (33). Recently, the RI for vitamin D intake in the Nordic 

countries was revised and increased from 7.5 μg/day to 10 μg/day for individuals aged 2-60 y to 

cover the requirement for 95% of the Nordic population (69,72). Both IOM and NNR 2012 based 

their RDA and RI on the relationship between 25(OH)D concentrations and bone health.  

The Danish National Board of Health defines vitamin D status above 50 nmol/L as vitamin D 

sufficiency, between 25-50 nmol/L as vitamin D insufficiency, below 25 nmol/L as vitamin D 

deficiency and below 12.5 nmol/L as severe vitamin D deficiency (73). These definitions will be 

used in the present thesis, except in paper II where the American definition of vitamin D deficiency 

was used. In America, vitamin D insufficiency was defined as 25(OH)D concentrations below 30 

nmol/L where adverse effects on bone health may be expected and vitamin D sufficiency was 

defined as above 50 nmol/L, which is the requirement for optimal bone health (33). No international 

standard has been accepted defining deficient and sufficient vitamin D status and there is an on-

going international discussion regarding which cut-off values should be used. There is a general 

agreement in Europe that a 25(OH)D concentrations of at least 50 nmol/L is sufficient (33). 

Concurrently, some experts argue that a 25(OH)D concentrations >75 nmol/L is necessary to 

achieve a sufficient vitamin D status and non-skeletal benefits (19,74).   
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2.5 Consequences of low and toxic vitamin D concentrations 
Vitamin D is essential in calcium homeostasis and in the development and maintenance of the 

skeleton. Low vitamin D status, caused by limited exposure to sunlight, poor nutrition and/or 

decreased dietary intake of vitamin D, has long been associated with the development of rickets in 

growing children or osteomalacia and osteroporosis in adults caused by an impaired mineralization 

of bone (75). In addition, studies have indicated that genetic factors in vitamin D modulating genes 

may play an important role in the susceptibility to rickets (75). Rickets, caused by failure in 

calcification of the growth plates, is characterized by growth retardation, muscle weakness, 

fractures, pain and skeletal deformities (soft bones) (76). In osteomalacia, un-calcified bone tissue 

gradually replaces old bone tissue, leading to weakened bone structure. The symptoms may be less 

pronounced in adults causing diffuse pain in bone and muscles (3,77).  

Prolonged and less severe degrees of vitamin D deficiency have been suggested to play a role in 

osteoporosis pathogenesis caused by elevated PTH concentrations, known as secondary 

hyperparathyroidism, calcium mal-absorption, increased bone turnover and bone loss. Osteoporosis 

is characterized by low bone mass, mineralization defects and muscle weakness causing falls and 

high fracture risk and in the long term leading to osteomalacia (3), (78).  

In Denmark, the prevalence of rickets or osteomalacia is low and mostly frequently found among 

immigrants (79,80). In contrast, the prevalence of osteoporosis is high in elderly, which has large 

public health implications (77,81). 

 

Importantly for public health, low vitamin D status may also be related to various non-skeletal 

health outcomes, including cardiovascular diseases (4), obesity (5), diabetes (6), asthma (7), 

multiple sclerosis (8), certain cancer types (9), autoimmune diseases (82) and overall mortality 

(10,11).  

 

Vitamin D is a fat-soluble vitamin and can be stored in human adipose tissues and this raises 

concerns about toxicity. In the general population, excessive vitamin D intakes from fortified foods 

and drinks or supplementation, but not endogenous synthesis, can potentially lead to a state of 

vitamin D “-intoxication-” or “-hypervitaminosis-” (83). In the literature there are no known cases 

of vitamin D toxicity resulting from extreme or unusually prolonged sun exposure, because thermal 

activation of pre-vitamin D3 in the skin gives rise to multiple non-vitamin D-forms (33). Acute 

vitamin D intoxication leads to hypercalcemia including pain, conjunctivitis, anorexia, fever, chills, 



!

! 12!

thirst, polyuria, vomiting and weight loss. Chronic vitamin D intoxication can lead to soft tissue 

calcification and resultant renal and cardiovascular damage (33). Vitamin D intoxication is rare and 

usually not seen with 25(OH)D concentrations <325 nmol/L or daily intake <250 μg/day (33), (83). 

Nevertheless, lower 25(OH)D concentrations than what caused acute vitamin D intoxication may 

potentially be associated with adverse health outcomes (84) and the health-consequences of 

prolonged/life-long intake of >25 μg/day of vitamin D are at present unknown (85). A U-shaped or 

reverse J-shape relationship between 25(OH)D concentrations and some adverse health outcomes 

such as certain cancers and all-cause mortality has been found (10,11,86,87). Based on the 

relationship between 25(OH)D concentrations and all-cause mortality, the US dietary committee 

suggested that potential adverse health outcomes may occur at 25(OH)D concentrations >125 

nmol/L (33). On the basic knowledge of hypercalcemia and impaired growth in children, the 

Tolerable Upper Intake Level (UL) for vitamin D was set to be 50 μg/day for children aged 1-10 

years and 100 μg/day for children aged 11-17 years and adults by the European Food Safety 

Authority (EFSA) (88).  
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2.6 Genetic variation influence on vitamin D status 
The concept of heritability contributing to disease susceptibility has been known for centuries. The 

study of genetic variation has a broad applicability, in elucidating disease susceptibility and in 

tailoring of personalised clinical strategies based on the individual’s genetic make-up. 

 

SNPs are stably inherited DNA-sequence variations, which occur when a single nucleotide (A, G, C 

or T) in the genome sequence is substituted for another nucleotide and occur in more than one 

percent of the general population. Studies of SNP variations in different ethnic groups may be 

essential because genotype frequencies differ between populations and could partly explain the 

difference in genetically determined disease susceptibility between populations. Different SNP 

versions state the individual’s genotype, which may lead to different phenotypes. Phenotype refers 

to the physical and behavioural characteristics of e.g. a protein (89).  

 

SNPs can occur in the protein-coding region of genes or between genes (intronic regions). SNPs 

located inside a protein-coding region can be silent (synonymous) without any functional 

consequence for the protein or it can change the amino acid (non-synonymous) and thereby change 

protein concentration and the catalytic property of the enzyme. SNPs located in the promoter region 

of a gene may affect the regulation of the gene and thereby affect protein concentration. Intronic 

SNPs may play a significant role in the stability or the slicing of the messenger RNA (mRNA), 

giving lower expression levels of the encoded protein. 

 

Recently, two GWAS (16,17) and an increasing number of candidate gene studies have identified 

vitamin D modulating genes that are associated with vitamin D status. The two independent 

GWAS, based on participants from European ancestry, both identified genetic variations in three 

genes: DHCR7, CYP2R1 and GC. Furthermore, Wang et al.(17) confirmed a genetic variant in 

CYP24A1 and Ahn et al.(16) confirmed a variant in C10orf88 to be associated with vitamin D 

status. From candidate gene studies CYP27B1 (90–93) and VDR (90,94,95) have also been 

associated with vitamin D status. 

 

In the following section a general introduction to the vitamin D modulating genes that have been 

linked to vitamin D status is described. The function and location of the genes in the vitamin D 

metabolisms is shown in Figure 1 (page 4).  
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DHCR7, located on chromosome 11q13.4 close to the NADSYN1 gene, encodes a reductase 

catalysing the conversion of 7-DHC to cholesterol, thus removing precholesterol which is the 

substrate for 25(OH)D synthesis. Two recent studies in healthy Chinese (96,97) confirmed the 

findings by GWAS (16,17). In animal studies DHCR7 inhibitors led to increased 7-DHC and 

25(OH)D concentrations (98). In human, mutations in DHCR7 are known to lead to Smith-Lemli-

Optiz syndrome, but it is unknown whether their vitamin D status is affected (99). Furthermore, 

evidence suggests that the DHCR7 gene is involved in the susceptibility to ocular Behçet disease 

(100), severity of liver fibrosis (101,102) as well as associated with risk of autoimmune diseases 

including rheumatoid arthritis (103), type 1 diabetes (T1DM) (104) and MS (105). 

 

CYP2R1, located on chromosome 11p15.2, is the primarily enzyme responsible for the 

hydroxylation of vitamin D to 25(OH)D. It yielded a high score in both GWAS (16,17) and was 

prior found in a candidate gene study (106) and subsequently replicated in several studies 

(96,97,107,108) to be associated with 25(OH)D concentrations. In addition, external sources of 

vitamin D, such as season, dietary and supplemental intake, seems to modify the genetic effects of 

GC and CYP2R1 (107,109). 

A known mutation in the CYP2R1 gene leads to vitamin D deficiency (110). Recently, a case-

control study conducted in north-eastern Han Chinese children confirmed that CYP2R1 and GC 

variation plays an important role in the susceptibility to rickets (75). Moreover, genetic variation in 

the CYP2R1 gene has been associated with a broad range of diseases including recurrence of colon 

cancer (111), pancreas cancer (112), testis cancer (113,114), T1DM (104,108,115), chronic liver 

disease (102),(116), asthma (117) and eczema (118) to mention a few. 

 

GC, located on chromosome 4q12–13, encodes the DBP, which is an albumin-like protein produced 

in the liver and acts as the major carrier protein for vitamin D and its metabolites. Apart from acting 

as the major transport carrier protein for vitamin D and its metabolites, DBP has several other 

important biological functions such as extracellular actin scavenging, leukocyte C5a-mediated 

chemotaxis, macrophage activation, stimulation of osteoclasts and transportation of fatty acids. 

DBP and vitamin D may jointly or independently affect disease susceptibility or resistance 

unrelated to their function in bone and mineral metabolism (119–121). DBP has independently been 

linked to bone metabolism, autoimmune disease, obesity, pulmonary disease, liver disease and MS 

(121) to mention a few. 
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There is accumulating evidence that genetic variation in the GC gene is associated with 25(OH)D 

concentrations. SNPs in the GC gene reached the highest score in both GWAS (16,17) and prior 

candidate gene studies have found evidence for association with 25(OH)D concentrations (122–

130). The human DBP protein is a highly polymorphic protein with more than 120 known variants 

(121). The most studied GC-variants are the two common missense mutations rs7041 (Asp432Glu) 

and rs4588 (Thr436Lys), which produce a highly polymorphic protein that give rise to three major 

DBP-phenotypes; Gc1F (rs7041-T, rs4588-C), Gc1S  (rs7041-G, rs4588-C), and Gc2 (rs7041-T, 

rs4588-A). Combinations of these three DBP-phenotypes give rise to six DBP-isotypes (Gc1F/1F, 

Gc1F/1S, Gc1F/2, Gc1S/1S, Gc1S/2, Gc2/2). They differ by amino acid substitutions and by 

glycosylation (128) and have different binding affinities for vitamin D metabolites inclusive 

25(OH)D (26,27). Vitamin D status differed significantly depending on rs4588 (or rs2282679, r2 > 

0.99) and/or rs7041 genotype, where the A-allele of rs4588 and/or the T-allele of rs7041 

consistently are associated with lower 25(OH)D levels (122–129). In Caucasian, rs4588 and rs7041 

are in almost complete linkage disequilibrium (LD) (Haploview software version 4.2). DBP-

phenotype is an independent predictor of 25(OH)D (122) and adjustment for DBP-phenotypes may 

therefore influence 25(OH)D concentrations. Moreover, it has recently been suggested that free and 

bioavailable 25(OH)D, measured as free and albumin-bound 25(OH)D, may be a more informative 

measure of vitamin D status than the currently used total 25(OH)D. Genetic differences in DBP 

phenotypes may affect the binding of 25(OH)D and, thereby, the amount of free and bioavailable 

25(OH)D (26,27,131).  

!
There is biological support that the affinity to both 25(OH)D and 1,25(OH)2D is higher for the 

rs4588 C-allele isoform than for the A-allele isoform (132). Based on glycosylation patterns, it is 

suggested that Gc2 enzyme metabolizes faster. Kawakami et al. (133) observed that the metabolic 

rate indeed was higher in Gc2/2 individuals than in Gc1/1 individuals. In addition, the Gc2 allele, 

which is associated with low 25(OH)D concentrations, is also associated with low mean DBP 

concentrations (122). Interestingly, the Gc2 allele frequency is higher in Caucasians and their 

derivatives (living in northern climates) than in the Black population indicative of an overall 

population variation (134).  

!
GC genotypes have in association with 25(OH)D concentrations been linked to PTH levels and 

bone mass accrual in adolescence (119), vitamin D insufficiency (135), and response to UV 

radiation (UVR) (136).  
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CYP24A1, located on chromosome 20q13.2, initiates degradation of both 25(OH)D and 

1,25(OH)2D, and was found in the GWAS of Wang et al. (17). Previous and recent candidate gene 

studies have not been able to find an association of variants at this locus with 25(OH)D 

concentrations in healthy populations (107,137,138). It has been found that baseline DNA 

methylation levels of CYP24A1 may predict variation in vitamin D response (139). 

!
In chronic kidney disease, vitamin D status is profoundly affected. Recent evidence suggests that 

increased CYP24A1 expression, which results in increased degradation of both 25-(OH)D and 1,25-

(OH)2D, is the main cause of the disturbed vitamin D status (140). In several human cancer diseases 

(141–144) an over-expression of CYP24A1 has been found, suggesting that CYP24A1 contributes to 

the diminished efficacy of 1,25-(OH)2D (145). Inhibition of CYP24A1 may potentially not only 

increase 1,25-(OH)2D concentrations but also inhibit intra-tumor degradation of 1,25-(OH)2D (145).  
!
CYP27B1, located! on! chromosome! 12q14.1,! converts 25(OH)D to the active hormone 

1,25(OH)2D, did not reach genome-wide significance (17) and has not consistently been association 

with 25(OH)D concentrations in candidate gene studies (90–93,106,126,146). A rare mutation in 

the CYP27B1 gene is known to lead vitamin D-dependent rickets type 1 (147,148). Vitamin D 

deficiency has been found as a risk factor for MS and rare variants in CYP27B1 are strongly 

associated with MS risk, supporting a causal role of vitamin D deficiency as a risk factor for MS 

(149,150). Moreover, genetic variation in the CYP27B1!has!been!associated!with!fracture!risk!in!

the! elderly! (151).! Like! CYP24A1, CYP27B1 is found to be up-regulated in breast tumours as 

compared with normal tissue (152).!

!
C10orf88, located on chromosome 10q26.13 in the vicinity of acyl-Coenzyme A dehydrogenase 

(ACADSB), is involved in cholesterol and vitamin D synthesis (16) was found in the GWAS by 

Ahn et al. (16), but has not since been found to contribute to variations in vitamin D status in 

replication studies (138,153).  

!
VDR, located on chromosome 12q13.11,!encodes the nuclear hormone receptor for 1,25(OH)2D, 

and variants at this locus have typically not been associated with 25(OH)D concentrations, although 

some evidence for Fok1 (rs10735810) has been found in studies on MS (90,95). A strong 

association between VDR and 25(OH)D would not be expected given the metabolic distance 

between them. The main focus on VDR has been on assessing disease associations (34).   
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3. Rationale and aims of project  
Genetic variation in vitamin D modulating genes has been associated to vitamin D status and a 

better understanding of how genetic variation in vitamin D modulating genes influences vitamin D 

status is needed. The overall aims of this thesis are: 

1. Elucidate the genetic influence of 25 SNPs, located in the CYP2R1, CYP24A1, CYP27B1, 

C10orf88, DHCR7/NADSYN1, GC and VDR genes on vitamin D status in a healthy 

Caucasian population at four different scenarios; in late summer, end of winter, after intake 

of vitamin D3-fortified bread and milk and after artificial UVB irradiation  

2. Identify predisposed individuals, who have substantially elevated risk of developing low 

vitamin D status. 

Paper I:  

The aims of paper I was to determine the influence of 25 common genetic variations located in 7 

vitamin D modulating genes on vitamin D status in late summer in Denmark. The aim was to 

identify genetically predisposed individuals that may have increased risk of developing low vitamin 

D status. 

Paper II:  

The aim of paper II was to assess the effect of real-life use of vitamin D3-fortified bread and milk 

on vitamin D status in relation to 25 common genetic variations in 7 vitamin D modulating genes in 

Danish families with dependent children during a 6-months winter period. Furthermore, to assess if 

vitamin D3-fortification will maintain vitamin D status during winter in those with genetically 

determined low vitamin D status. A secondary aim was to evaluate the amount of vitamin D needed 

in different genetic profiles to maintain a sufficient vitamin D status during winter. 

!
Paper III: 

In paper III, the aim was to analyze the association between the increase in vitamin D status after a 

given dose of artificial UVB irradiation and 25 common genetic variations in 7 vitamin D 

modulating genes. The aim was furthermore, to compare if vitamin D3 acquired by artificial UVB 

irradiation or from consumption of vitamin D3-fortified bread and milk during winter have similar 

effect on vitamin D status in relation to genetic variations in the CYP2R1 and GC genes. 

 

Publications are enclosed in the Appendix section and will be discussed in the following chapters.  
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4.#Overview#of#the#experimental#work#
The present thesis is based on three research publications based on the Food with vitamin D 

(VitmaD) study conducted at The National Food Institute, Technical University of Denmark and the 

Vitamin D in genes (VitDgen) study conducted at the Department of Dermatology, Bisperbjerg 

University Hospital. Papers I and II are based on the VitmaD study, whereas Paper III is based on 

both the VitmaD and VitDgen studies. An overview of the VitmaD and VitDgen studies is given 

here. 

4.1 The VitmaD study  
The VitmaD study was a double-blinded, randomized placebo-controlled intervention trial with 

apparently healthy ethnically Danish children and adults (4-60 y) recruited as 201 families (782 

participants) who were randomly allocated to either vitamin D3-fortified bread and milk or non-

fortified placebo bread and milk during a 6-months winter period (September 2010 to April 2011).  

 

During the intervention period, the adult participants were seen three times (month 0, 3 and 6) and 

children (4-17 years) were seen twice (month 0 and 6). Blood samples were collected at all visits 

and anthropometric measures (height and weight), blood pressure (only measure in adults) and 

information from a detailed self-administered web-based questionnaire including a semi-

quantitative food frequency questionnaire (FFQ) were recorded at month 0 and 6.  

 

The study was conducted according to the guidelines in the Declaration of Helsinki and the protocol 

was approved by the Research Ethics Committee of the Capital Region of Denmark (H-4-2010-020) 

and registered at http://clinicaltrials.gov (NCT01184716). All adult participants and guardians on 

the behalf of the children participants gave written consent to participate. 

 

4.1.1 Food fortification strategy 

 The aim of the study design was to investigate a realistic vitamin D3-fortification strategy in real-

life settings. The aim was to increase the vitamin D intake to 7.5 µg/day (the RI at that time) (72) in 

as many subjects as possible while avoiding an intake above 25 µg/day for children and 50 µg/day 

for adults (the UL at that time) (88) and still allowing a daily use of multivitamin supplements with 

10 µg vitamin D. The vitamin D3-concentrations in fortified bread were 5.2 ± 0.3 µg vitamin D3/100 

g in wheat bread, and 4.3 ± 0.3 µg vitamin D3/100 g in rye bread, 0.40 ± 0.01 µg vitamin D3/100 

mL in fortified milk, and <0.004 µg vitamin D3/100 mL in un-fortified milk. 
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4.1.2 Biochemical analyses in both VitmaD and VitDgen studies 
The primary endpoints were serum 25(OH)D concentrations, and genotyping of 25 SNPs in seven 

vitamin D modulating genes; CYP2R1, CYP24A1, CYP27B1, C10orf88, DHCR7/NADSYN1, GC 

and VDR. Blood samples were obtained without prior fasting and serum and buffy coat was stored 

in aliquots at -80°C until analysis. 

4.1.3 Serum 25(OH)D concentrations 
Measurements of serum 25(OH)D concentrations relied on the determination of both 25(OH)D2 and 

25(OH)D3 and were conducted by isotope dilution liquid chromatography tandem mass 

spectrometry (LC-MS/MS) at Clinical Biochemical Department, Holbæk Hospital, Denmark. 

Standard reference material, vitamin D in humans (SRM972), from the National Institute of 

Standards and Technology (NIST, USA) was used as primary calibrator. 

The analytic quality of 25(OH)D assay was assured by Vitamin D External Quality Assessment 

Scheme (DEQAS, http://www.deqas.org/) certification and the mean bias was -3.2% in the VitmaD 

study and 5.7% in the VitDgen study.  

4.1.4 Genotyping 
 DNA was extracted from peripheral blood leukocytes and stored in TE-buffer at -80°C until 

analysis. All SNPs were genotyped using a Sequenom® platform (San Diego, California) and the 

iPLEX Gold reaction at the Department of Biomedicine, Aarhus University.  

4.1.5. SNP selection 
In 2012 I made a mini review of the literature on the association between common SNPs and 

25(OH)D concentrations. SNPs were selected based on previously evidence of significant 

association with 25(OH)D concentrations or GWAS validated SNPs. Only SNPs that were known 

not to be in high LD with each other were selected, resulting in 25 SNPs in 7 prominent vitamin D 

modulating genes. These were assessed for associations to 25(OH)D concentrations. Table 1 

provides a description of each of the 25 SNPs.  
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Table 1. Description of SNPs examined and their previously reported association to 25(OH)D concentrations. 

 

Linkage disequilibrium (LD) between polymorphisms was evaluated using Pearsons’ r, SNAP 

version 2.2 (http://www.broadinstitute.org/mpg/snap/ldsearchpw.php) and Haploview software 

version 4.2. Deviation from Hardy–Weinberg equilibrium (HWE) was tested using Chi-square test 

with Bonferroni’s correction (P-value 0.05/25 SNPs = 0.002). No statistically significant deviation 

from HWE was observed in the adult population in the VitmaD study or in the VitDgen study.  

 

Genotyping was successful for 762 participants (99.0%) in the VitmaD study and for 102 

participants (100%) in the VitDgen study. To confirm the accuracy of genotyping 10%-duplicate 

samples were included yielded 100% reproducibility in both studies.  

 

In the VitmaD study, out of the 762 participants that were successfully genotyped, baseline 

25(OH)D concentrations were measured in 758 participants. At the end of the study a total of 756 

participants (control group n = 384 and fortification group n = 384) had complete questionnaire 

data, genotypes and 25(OH)D concentrations measured.   

Gene Reference SNP Location on gene Reported significant 
associated with 25(OH)D 
concentrations in 2012 

CYP2R1 rs7116978 Intronic (17) 
CYP2R1 rs10741657  5' near gene/promotor (17,106,108) 
CYP2R1 rs1562902 5' near gene/promotor (106) 
CYP2R1 rs10766197 5' near gene/promotor (106,154) 
CYP24A1 rs6013897 Intronic None 
CYP24A1 rs4809960 Intronic  None 
CYP24A1 rs2296241 Exon 4 (154) 
CYP24A1 rs17219315 Intronic (154) 
CYP24A1 rs2426496 5' near gene/promotor (154) 
CYP27B1  rs10877012 5' near gene/promotor (91–93) 
C10orf88  rs6599638 Intronic (16) 
DHCR7/NADSYN1  rs1790349 Intronic (16,129) 
DHCR7/NADSYN1  rs12785878 Intronic (17) 
GC  rs16846876 3' Flanking (155) 
GC rs12512631 3' UTR (146,155) 
GC rs17467825 3' Flanking  (17,155) 
GC rs22882679 Intronic (16,17,92,129,146) 
GC rs842999-triallelic Intronic (155) 
GC rs4588 Exon 11 (non-syn) (106,123–129,137,156) 
GC rs222020 Intronic (106) 
GC rs2298849 Intronic (92,106) 
VDR rs731236 (TaqI) Exon 9 None 
VDR rs757343 (TruI) Intronic None 
VDR rs10783219 Intronic (126) 
VDR rs7139166 5' near gene (94) 
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4.2 The VitDgen study 
The VitDgen study was an open and controlled clinical trial conducted at Department of 

Dermatology, Bispebjerg University Hospital, Denmark, 56°N, including apparently healthy 

ethnically Danish adults (18-60 y, men and women) who over a 10-days period received 4 times 

artificial UVB irradiation with a total dose of 6 or 7.5 SEDs during late-winter/early-spring 

(January to March 2013) to stimulate cutaneous vitamin D3-synthesis. One hundred and two 

participants were included in the study and a total of 92 participants had complete genotypes and 

measurements of baseline and end 25(OH)D concentrations.  

!
The study was conducted according to the guideline in the Declaration of Helsinki and the protocol 

was approved by the Danish ethics committee (H-4-2012-071) and registered in ClinicalTrials.gov 

(NCT01741233). All the participants gave written informed consent.  

!

4.2.1 Artificial UVB irradiation:  
Artificial UVB irradiation were use to mimic natural cutaneous vitamin D synthesis. During a 10-

day period the participants received artificial UVB irradiation 4 times with 2 or 3 days’ interval 

(Mon, Wed, Fri, Mon). The participants’ body surfaces were equally exposed in a UV-cabin 

(Waldmann UV1000L, Villingen-Schwenningen, Germany) equipped with a broadband UVB 

source consisting of 26 UV6 tubes (Waldmann GmbH, Villingen-Schwenningen, Germany) 

emitting UVB radiation mainly between 290-350 nm. During the treatment period the UV-intensity 

was weekly controlled using a Sola-Hazard spectroradiometer (Solatell, Cornwall, UK). 

!
A total of 23 participants received a total dose of 7.5 SED (1 x 3 SED upper body and 3 x 1.5 SEDs 

whole body). After the first UVB irradiation, 4 participants got erythema and withdrew from the 

study. The SED dose was lowered to 1.5 SED and given on whole body to minimize the risk of 

erythema. Seventy-nine participants received a total dose of 6 SED (4 x 1.5 SEDs on whole body). 

1.5 SED is equivalent to ~15 minutes of sun exposure in the middle of a clear summer day in 

Denmark (56°N). 

4.2.2 Skin type, pigmentation and redness 
Self-reported skin-type according to Fitzpatrick’s classification I-VI (157) was registered at 

baseline. Furthermore, to follow the skin response to UVB irradiation, a skin reflectance meter 

(UV-optimize, Scientific, Chromo-light, Espergaerde, Denmark) was used to measure the 

percentage of redness (range 0-100%) and the Pigment Protection Factor (PPF, range 1.0-24.0) on 
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the forehead, shoulder (facultative pigmentations) and buttock (constitutive skin pigmentation) at 

baseline and 2 days after last UVB irradiation. The percentage of redness reflects hemoglobin levels 

in the skin and PPF reflects melanin levels in the skin. 

4.2.3 Biochemical analyses 
Measurement of 25(OH)D concentrations and genotyping were performed as described in section 

4.1.3 and 4.1.4 under the VitmaD study. 

!
In the VitDgen study, all the included 102 participants were successfully genotyped and had 

baseline 25(OH)D concentrations measured. At the end of the study a total of 92 participants had 

complete questionnaire data, genotypes and 25(OH)D concentrations measured.   
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5. The influence of vitamin D modulating genes on vitamin D status in late 
summer -Main results and discussion of paper I 
Paper I describes the genetic baseline data of the VitmaD study. The main objective was to assess 

25(OH)D concentrations in late summer in relation to 25 common genetic variations in CYP2R1, 

CYP24A1, CYP27B1, C10orf88, DHCR7/NADSYN1, GC and VDR genes. 

!
In late summer, common variants located in the CYP2R1 and GC genes, but not variants located in 

the CYP24A1, CYP27B1, C10orf88, DHCR7/NADSYN1, GC and VDR genes, were statistically 

significantly associated with 25(OH)D concentrations in both children, adults and all combined 

(Table 2). The findings that CYP2R1 and GC genes were associated with vitamin D status is in 

agreement with the findings of two GWAS studies of Caucasian cohorts (16,17) where variants in 

CYP2R1 and GC genes were the two “top hits”.  

5.1. The importance of genetic variation in the CYP2R1 gene and its effect on vitamin 
D status 
All 4 analysed CYP2R1 variants; rs7116978, rs10741657, rs1562902 and rs10766197, were 

significantly associated with 25(OH)D concentrations. SNPs rs10741657-rs7116978, and 

rs10766197-rs1562902 were in strong LD and the association appeared to be driven by rs10741657 

and rs10766197 and formed 4 haplotype combinations. The findings, that rs10741657 and 

rs10766197 in the CYP2R1 gene are association with 25(OH)D concentrations, are consistent with 

prior evidence from candidate gene studies (17,96,106,117,154,158,159) and validated in two 

GWAS! (16,17). Ahn et al. (16) and Engelman et al. (107) found that rs2060793, which is in 

complete LD with rs10741657, also was associated with 25(OH)D concentrations.  

!
Genetic variants located in the CYP2R1 gene may effect 25(OH)D synthesis and thus the blood 

concentration, because the CYP2R1 gene encodes the key liver enzyme 25-hydroxylase that 

converts vitamin D to 25(OH)D (20). Both rs10741657 and rs10766197 are located in the promoter 

region and may therefore affect the 25-hydroxylase blood concentrations.  
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Table 2. Basic characteristics of the individual SNP and the association with serum 25(OH)D concentrations in 
children, adults and all combined. 
 

      Children (n = 344)   Adults (n = 414)   All (n = 758)  

SNP MAF HWE M/m Gt n 25(OH)D padj n 25(OH)D padj n 25(OH)D padj 
CYP2R1 
rs7116978 38.8 0.25 C/T CC 124 67.6 (65.0-70.2) <0.0001 156 67.5 (64.2-71.0) 0.0093 280 67.5 (65.3-69.8) <0.0001 
     CT 158 73.9 (71.4-76.6)   180 72.8 (69.5-76.3)   338 73.3 (71.2-75.6)   
     TT 54 79.1 (74.5-83.9)   66 77.5 (71.8-83.8)   120 78.2 (74.4-82.3)   
rs10741657 40.8 0.31 G/A GG 118 67.9 (65.2-70.7) <0.0001 150 66.6 (63.3-70.1) 0.0067 268 67.2 (65.0-69.5) <0.0001 
     GA 175 73.9 (71.5-76.4)   190 74.0 (70.7-77.4)   365 73.9 (71.8-76.1)   
     AA 51 78.8 (74.1-83.7)   74 75.2 (69.9-80.9)   125 76.6 (73.0-80.5)   
rs1562902 45.2 0.37 T/C TT 103 68.9 (65.9-71.9) 

 
0.0086 129 67.5 (63.9-71.4) 0.0353 232 68.1 (65.7-70.6) 0.0005 

        TC 172 73.7 (71.2-76.2) 
 

  196 73.3 (70.0-76.6)   368 73.5 (71.4-75.6)   
    CC 69 75.0 (71.0-79.1) 

 
79.1 

  89 73.4 (68.6-78.5)   158 74.1 (70.9-77.4)   
rs10766197 46.9 0.15 G/A GG 97 76.0 (72.7-79.5) 0.0006 124 73.0 (69.0-77.3) 0.0081 221 74.3 (71.6-77.1) <0.0001 
        AG 168 72.7 (70.2-75.2)   191 73.2 (69.9-76.6)   359 72.9 (70.8-75.1)   
        AA 79 67.9 (64.6-71.4)   98 66.2 (62.1-70.5)   177 66.9 (64.2-69.8)   

CYP24A1 
rs6013897 20.3 0.77 T/A TT 219 73.5 (71.3-75.8) 0.5044 264 71.8 (69.1-74.7) 0.7058 483 72.6 (70.8-74.4) 0.5228 
      AT 114 70.7 (67.8-73.8)   132 70.9 (67.1-74.9)   246 70.8 (68.4-73.4)   
     AA 11 69.5 (60.7-79.5)   18 70.0 (60.3-81.3)   29 69.8 (63.0-77.4)   
rs4809960 22.7 0.35 T/C TT 198 72.0 (69.7-74.3) 0.5674 244 72.2 (69.3-75.1) 0.2786 442 72.1 (70.2-74.0) 0.0663 
     TC 121 72.9 (70.0-76.0)   152 69.7 (66.2-73.3)   273 71.1 (68.7-73.5)   
     CC 25 73.8 (67.5-80.7)   18 77.2 (66.5-89.6)   43 75.2 (69.1-81.9)   
rs2296241 49.0 0.37 G/A GG 90 68.9 (65.8-72.2) 0.1111 103 70.3 (66.0-74.8) 0.6078 193 69.6 (66.9-72.5) 0.0501 
     AG 164 72.9 (70.4-75.4)   216 71.1 (68.1-74.3)   380 71.9 (69.9-74.0)   
      AA 90 75.4 (71.9-79.0)   95 73.5 (68.8-78.4)   185 74.4 (71.4-77.5)   
rs17219315 3.1 0.75 A/G AA 342 72.3 (70.6-74.1) 0.1836 401 71.4 (69.1-73.7) 0.3828 743 71.8 (70.3-73.3) 0.2381 
        AG 2 95.4 (69.5-130.9)   13 74.3 (62.3-88.6)   15 76.8 (66.5-88.7)   
rs2426496 27.7 0.51 G/T GG 176 71.3 (68.9-73.8) 0.2500 214 70.5 (67.5-73.6) 0.7896 390 70.8 (68.9-72.9) 0.2500 
     GT 135 73.2 (70.4-76.0)   171 72.3 (68.9-75.9)   306 72.7 (70.4-75.0)   
     TT 33 75.8 (70.1-81.9)   29 73.9 (65.7-83.1)   62 74.9 (69.8-80.4)   

CYP27B1 
rs10877012 33.5 0.02 G/T GG 156 72.8 (70.2-75.4) 0.5758 193 71.0 (67.9-74.4) 0.9451 349 71.8 (69.7-74.0) 0.9918 
     GT 142 73.4 (70.7-76.2)   163 72.4 (68.9-76.0)   305 72.9 (70.6-75.2)   
     TT 46 68.4 (64.1-73.1)   57 69.9 (64.3-76.0)   103 69.2 (65.5-73.2)   

C10oft88 
rs6599638 47.8 0.20 G/A GG 98 72.5 (69.3-75.8) 0.3197 106 72.0 (67.7-76.6) 0.8797 204 73.3 (69.5-75.1) 0.8821 
     GA 171 73.5 (71.0-76.0)   219 70.8 (67.8-73.9)   390 71.9 (69.9-74.0)   
      AA 75 70.2 (66.6-73.9)   88 72.2 (67.4-77.2)   163 71.2 (68.2-74.4)   

DHCR7/NADSYN1 
rs1790349 15.1 0.55 A/G AA 232 71.6 (69.6-73.7) 0.0923 300 70.9 (68.4-73.6) 0.3478 532 71.2 (69.5-73.0) 0.8787 
     GA 105 73.2 (70.1-76.4)   103 73.9 (69.5-78.7)   208 73.6 (70.8-76.5)   
     GG 7 91.5 (77.4-108.3)   11 63.2 (52.2-76.5)   18 73.0 (64.0-83.2)   
rs12785878 27.5 0.84 T/G TT 171 72.8 (70.4-75.4) 0.7649 218 73.0 (69.9-76.2) 0.2169 389 72.9 (70.9-75.0) 0.0998 
  

   GT 147 72.1 (69.5-74.9)   163 69.6 (66.2-73.1)   310 70.8 (68.6-73.1)   
  

   GG 26 71.7 (65.7-78.4)   32 69.9 (62.5-78.2)   58 70.7 (65.7-76.1)   
GC 
rs16846876 33.2 0.88 A/T AA 158 76.5 (73.9-79.2) 0.0004 184 74.1 (70.7-77.6) 0.0024 342 75.2 (73.0-77.4) <0.0001 
     AT 153 70.3 (67.8-72.8)   185 70.9 (67.7-74.3)   338 70.6 (68.5-72.8)   
     TT 33 64.5 (59.8-69.6)   45 63.6 (57.9-69.8)   78 64.0 (60.1-68.1)   
rs12512631 36.2 0.62 T/C TT 137 68.6 (66.1-71.2) 0.0012 166 66.8 (63.6-70.1) 0.0004 303 67.6 (65.5-69.8) <0.0001 
     TC 157 74.4 (71.8-77.1)   196 74.6 (71.3-78.0)   353 74.5 (72.4-76.7)   
     CC 50 77.5 (72.8-82.5)   52 75.3 (69.0-82.1)   102 76.4 (72.3-80.6)   
rs17467825 27.6 0.53 A/G AA 181 76.3 (73.9-78.8) <0.0001 219 73.8 (70.7-77.0) 0.0015 400 74.9 (72.9-77.0) <0.0001 
     GA 142 70.1 (67.6-72.7)   160 70.0 (66.6-73.6)   302 70.1 (67.9-72.3)   
     GG 21 57.7 (52.5-63.3)   34 63.6 (57.1-70.8)   55 61.2 (56.9-65.9)   
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rs2282679 27.4 0.41 A/C AA 181 76.3 (73.9-78.8) <0.0001 219 73.8 (70.7-77.0) 0.0020 400 74.9 (72.9-77.0) <0.0001 
     CA 138 70.0 (76.4-72.6)   156 70.1 (66.6-73.7)   294 70.0 (67.8-72.3)   
     CC 21 57.7 (52.5-63.3)   34 63.6 (57.1-70.8)   55 61.2 (56.9-65.9)   
rs842999 4.5 0.65 G/C/A GG 105 76.7 (73.5-80.0) <0.0001 112 74.2 (70.0-78.7) 0.0046 217 75.4 (72.7-78.3) <0.0001 
     GC 153 72.6 (70.1-75.2)   188 73.7 (70.4-77.1)   341 73.2 (71.1-75.4)   
     CC 57 63.7 (60.2-67.5)   75 66.6 (61.9-71.5)   132 65.3 (62.3-68.5)   
     GA 19 74.3 (67.3-82.1)   23 64.9 (57.0-73.9)   42 69.0 (63.4-75.1)   
     CA 7 76.3 (64.6-89.6)   12 55.8 (46.6-66.9)   19 62.6 (55.2-71.0)   
     AA 0 - 

  
  1 75.5 (40.5-140.9)   1 75.5 (43.6-

130.8) 
  

rs4588 27.7 0.57 C/A CC 181 76.3 (73.9-78.8) <0.0001 219 74.1 (71.0-77.3) 0.0008 400 75.1 (73.1-77.2) <0.0001 
     CA 142 70.1 (67.6-72.7)   161 69.7 (66.3-73.2)   303 69.9 (67.7-72.1)   
     AA 21 57.7 (52.5-63.3)   34 63.6 (57.1-70.8)   55 61.2 (56.9-65.9)   
rs222020 15.6 0.13 T/C TT 250 70.5 (68.6-72.5) 0.0021 291 70.5 (67.9-73.1) 0.5338 541 70.5 (68.8-72.2) 0.0739 
     TC 88 78.4 (74.8-82.1)   117 73.2 (69.1-77.6)   205 75.4 (72.5-78.4)   
     CC 6 69.7 (58.3-83.5)   6 86.4 (66.7-111.8)   12 77.6 (66.1-91.1)   
rs2298849 20.2 0.57 T/C TT 229 71.1 (69.1-73.2) 0.2204 262 70.3 (67.6-73.1) 0.4591 491 70.7 (69.0-72.5) 0.2605 
     CT 99 75.4 (72.1-78.8)   137 73.4 (69.5-77.5)   236 74.2 (71.6-77.0)   
     CC 15 71.1 (63.4-79.7)   15 73.3 (62.3-86.3)   30 72.2 (65.2-79.9)   

VDR 
rs731236 40.3 0.18 T/C TT 113 70.0 (67.1-73.0) 0.0753 154 68.9 (65.4-72.5) 0.1306 267 69.3 (67.0-71.7) 0.0346 
     TC 181 74.2 (71.8-76.7)   186 72.3 (69.0-75.7)   367 73.2 (71.1-75.4)   
     CC 49 72.0 (67.5-76.7)   74 74.9 (69.6-80.6)   123 73.7 (70.1-77.5)   
rs757343 11.5 0.45 G/A GG 261 73.9 (71.9-76.0) 0.0103 326 72.2 (69.7-74.7) 0.0896 587 72.9 (71.3-74.6) 0.0025 
     AG 77 68.4 (65.1-72.0)   81 69.6 (64.9-74.7)   158 69.1 (66.1-72.2)   
     AA 6 63.7 (53.1-76.3)   7 59.9 (47.1-76.0)   13 61.6 (52.8-71.9)   
rs10783219 36.4 0.10 A/T AA 147 72.5 (69.8-75.2) 0.7067 160 70.1 (66.7-73.7) 0.3913 307 71.2 (69.0-73.5) 0.2023 
     TA 152 72.6 (70.0-75.2)   207 71.8 (68.7-75.0)   359 72.1 (70.0-74.3)   
     TT 45 72.1 (67.4-77.1)   47 74.6 (68.0-81.8)   92 73.4 (69.2-77.8)   
rs7139166 43.0 0.48 C/G CC 114 72.4 (69.5-75.5) 0.4251 131 73.2 (69.2-77.3) 0.4324 245 72.8 (70.3-75.5) 0.7845 
     CG 167 71.6 (69.2-74.1)   210 71.7 (68.6-74.8)   377 71.6 (69.6-73.7)   
     GG 62 74.9 (70.8-79.3)   73 67.9 (63.0-73.1)   135 71.0 (67.7-74.5)   

Bold numbers represent significant P values (<0.005). 
SNP single nucleotide polymorphism (ordered by position), MAF minor allele frequency for the adult 
population in percent, HWE P-values for Hardy-Weinberg equilibrium in the adult population, M/m 
major and minor alleles, Gt genotype, Mean, raw serum 25(OH)D concentrations were log-transformed 
to approximate a normal distribution an given as geometric mean (nmol/L), 95% CI 95%-confident 
interval. 
Padj. Linear mixed models with family as a random factor, adjusted for age, sex, BMI, ski and sun 
holidays, use of solarium, dietary vitamin D intake, use of multivitamin and vitamin D supplementation. 
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5.2 The importance of genetic variation in the GC gene and its effect on vitamin D 
status 
In late summer SNPs rs16846876, rs12512631, rs17467825, rs2282679, rs842999 and rs4588 in the 

GC gene were statistically significantly associated with 25(OH)D concentrations (Table 2). A dose-

dependent relationship between carrier of none, one or two copies of the G-allele of the tri-allelic 

rs842999 and 25(OH)D concentrations was observed. 

!!
SNPs rs4588 was in strong LD with rs2282679, rs17467825 and rs16846876. Moreover, 

rs17467825-rs2282679, and rs2282679-rs16846876 were in strong LD with each other. The 

association appeared to be driven by rs4588 and not by rs2282679 as found in the two GWAS 

(16,17). Wang et al. (17) did not include rs4588 in the GWAS because it was not included in the 

HapMap dataset. In agreement with our findings, several studies have found that rs4588 is in strong 

LD with rs2282679, and that rs4588 was the strongest independent predictor of 25(OH)D 

concentrations compared to rs2282679 (129), (160), (96). Zhang et al. (96) argued that it is unlikely 

that rs2282679 in itself is the disease-causing variant and that the possible causal variant is the non-

synonymous rs4588.  

!
The three significant GC-variants rs4588, rs842999, and rs12512631 formed 5 haplotype 

combinations. Based on haplotype analyses rs12512631 was excluded from further analyses, since 

the variant allele of rs12512631 was associated with high 25(OH)D concentrations and the variant 

alleles of rs4588 and rs842999 were associated with low 25(OH)D concentrations. Furthermore, 

haplotype analyses also indicated that rs4588 is the biologically relevant polymorphism rather than 

rs842999. 

!
The GC gene encodes the DBP that binds and transport vitamin D and its metabolites in the blood. 

Genetic variants located in the GC gene may effect the DBP binding and bioavailability of 

25(OH)D, and thus there may be a relationship between DBP-phenotype and blood concentrations 

of 25(OH)D. The non-synonymous rs4588, located in exon 11, leads to a Thr/Lys amino acid 

substitution at codon 420 and may give rise to a conformation change in the DBP affecting the 

blood concentration and the catalytic effect. The biological effect of the intronic tri-allelic rs842999 

is unknown, but if functional it could interfere with binding of a regulatory protein thereby affecting 

transcription or degradation of the mRNA. 
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5.3 Genetic risk score analysis of CYP2R1 and GC haplotypes 
In order to elucidate the effect of GC-haplotype or CYP2R1-haplotype combinations in relation to 

low vitamin D status, a genetic risk score (GRS, range 0 to 4) was calculated as the sum of risk 

alleles of G-alleles of rs10741657 and A-alleles of rs10766197 for GC (Figure 2A) and for 

CYP2R1 as the sum of risk alleles of A-alleles of rs4588 and C/A-alleles of rs842999 (Figure 2B). 

Furthermore, in order to elucidate the combined effect of GC- and CYP2R1-haplotype combinations 

in relation to low vitamin D status, a combined GRS (range 0 to 8) was calculated as the sum of the 

number of G-alleles of rs10741657, A-alleles of rs10766197, A-alleles of rs4588 and C/A-alleles of 

rs842999 (Figure 2C). A generally negative correlation was observed between the number of risk 

alleles and 25(OH)D concentrations in all 3 GRS analysis. Non-carriers of risk alleles of CYP2R1, 

GC or in the combined analysis of CYP2R1 and GC had significantly higher 25(OH)D 

concentrations compared to carriers of all 4 or 8 (for the joint analysis) risk alleles. The largest %-

range in mean 25(OH)D concentrations between non-carriers and carriers of all risk alleles was 

found for the combined analysis (80.6, 56.1 and 67.9%) compared to the GRS of CYP2R1 (20.9, 

14.1 and 16.5 %) or GC (35.4, 20.0 and 23.4%) analysis in children, adults and all combined, 

indicating a additive effect of the combined analysis of CYP2R1 and GC on 25(OH)D 

concentrations. Important for public health, children carrying 7 or 8 risk alleles had insufficient 

vitamin D status (<50 nmol/L) in late summer.  
 

In agreement with our findings, Zang et al. (96) found that both the minor A-allele (denoted T-allele 

in the paper) of rs4588 and the G-allele of rs2282679 were associated with reduced DBP 

concentrations. Participants with 3 or 4 risk alleles of the two variants were more likely to have 

vitamin D concentrations lower than 50 nmol/L compared with non-carriers of the risk alleles and a 

0.12-fold drop in the log-25(OH)D concentrations was showed for each additional risk allele. In a 

study by Engelman et al. (107) women with no risk alleles of rs4588 and rs2060793 (in strong LD 

with rs10741657) who consumed at least 16.75 µg/d vitamin D all had 25(OH)D >50 nmol/L. For 

women carrying 1, 2 or 3-4 risk alleles and consuming at least 16.75 µg/d vitamin D, only 84, 72, 

and 62% had 25(OH)D >50 nmol/L. These results indicate that there is an additive effect of the 

polymorphisms in CYP2R1 and GC on 25(OH)D concentrations and the more risk alleles an 

individual carries in the CYP2R1 and GC genes, the more prone the individual will be for having a 

low vitamin D status.  
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Figure'2.!Genetic!risk!score!for!CYP2R1!(rs10741657!and!rs10766197)!(A),!GC!(r4588!and!rs842999)!(B)!and!
CYP2R1!(rs10741657!and!rs10766197)!and!GC!(r4588!and!rs842999)!(C)!in!children,!adults!and!all!combined.!!
XSaxis! stands! for! the! sum! of! risk! alleles.! YSaxis! stand! for! 25(OH)D! (nmol/L).! Errors! bars! stand! for! 95%S
confidence!interval!and!25(OH)D!concentrations!are!given!as!geometric!means.!Linear!mixed!models!with!family!
as!a!random!factor,!adjusted!for!age,!sex,!BMI,!ski!and!sun!holidays,!solarium!use!at! least!once!a!week,!dietary!
vitamin!D! intake,!multivitamin!and!vitamin!D!supplement!users!was!conducted!to!compare!sum!of!risk!alleles!
and!25(OH)D!concentrations.!Increasing!number!of!risk!alleles!give!rise!to!decreasing!25(OH)D!concentrations.!
! !
the other SNPs, family and confounding factors in a linear mixed
model. The strongest association was observed for rs4588
(p = 0.0099) compared to rs2282679 (p = 0.0230), rs17467825
(p = 0.0230) and rs16846876 (p = 0.5669, data not shown). Further
analyses only included rs4588. None of the other GC-variants were
in LD.

The three significant GC-variants (rs4588, rs842999, and
rs12512631) formed five haplotypes, where haplotype 1 and 2
were the most frequent (Table 4). The combinations of the five
haplotypes are shown in table 4. The five haplotypes could explain
723 of the 762 (95%) observed genotype combinations in GC (data
not shown). The association between haplotype combinations and
serum 25(OH)D concentrations was statistically significant in
children (p = 0.0344), and all combined (p = 0.0018) but not in
adults (p = 0.1541).

Carriers of haplotype combination 22 encompassing the variant
alleles of rs4588 and rs842999 had low serum 25(OH)D
concentrations. Conversely, carriers of haplotype combination
11 encompassing the variant allele of rs12512631 had high serum
25(OH)D concentration. Thus, the variant allele of rs12512631
was associated with high low serum 25(OH)D concentrations and
the variant alleles of rs4588 and rs842999 were associated with low
serum 25(OH)D concentrations. Since the lowest serum 25(OH)D
concentrations were observed for haplotype combination 22

carriers, this could indicate that rs4588 is the biologically relevant
polymorphism rather than rs842999 since haplotype combination
44 encompassing the C-allele of rs842999 is associated with higher
serum 25(OH)D concentrations.

The genetic risk score (range 0–4) was calculated as the sum of
the number of A-alleles of rs4588 and C/A-alleles of rs842999
(Figure 1, B). After adjustment for family and confounding factors,
we found that an increasing number of risk alleles was associated
with lower serum 25(OH)D concentrations. Carriers of no risk
alleles had significantly higher serum 25(OH)D concentrations
(68.1 (56.2–82.6), 81.0 (64.2–102.2) and 86.5 (70.9–105.5) nmol/
L) compared to carriers of all four risk alleles (50.3 (40.3–62.7),
67.5 (53.6–84.9) and 70.1 (57.2–84.8) nmol/L) in both children,
adults and all combined, respectively. Overall, there was a mean
difference in 25(OH)D concentrations of 35.4, 20.0 and 23.4%
between carrying no risk alleles and carrying all four risk alleles in
children, adults and all combined, respectively.

For the tri-allelic variant rs842999, there was a dose-dependent
relationship between serum 25(OH)D concentrations and carriage
of none, one or two copies of the G-allele (Figure 2). Thus, carriers
of two copies of the G-allele, had statistically significantly higher
serum 25(OH)D concentrations (69.2 (56.8–84.3), 79.0 (62.8–99.4)
and 84.8 (69.6–103.4) nmol/L) compared to carriers of only one
G–allele (65.6 (53.9–79.9), 73.7 (58.8–92.4) and 79.0 (64.9–96.1)

Figure 1. Genetic risk score for CYP2R1 (rs10741657 and rs10766197) (Figure A), GC (r4588 and rs842999) (figure B) and CYP2R1
(rs10741657 and rs10766197) and GC (r4588 and rs842999) (figure C) in children, adults and all combined. X-axis stands for the sum of
risk alleles. Y-axis stand for serum 25(OH)D (nmol/L). Errors bars stand for 95%-confidence interval and serum 25(OH)D concentrations are given as
geometric means. Linear mixed models with family as a random factor, adjusted for age, sex, BMI, ski and sun holidays, solarium use at least once a
week, dietary vitamin D intake, multivitamin and vitamin D supplement users was conducted to compare sum of risk alleles and serum 25(OH)D
concentrations. Increasing number of risk alleles give rise to decreasing 25(OH)D concentrations.
doi:10.1371/journal.pone.0089907.g001

CYP2R1 and GC Genes Predict Vitamin D Levels
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6. The influence of vitamin D modulating genes on vitamin D status after 6 
months intake of vitamin D3-fortified bread and milk –main results and 
discussion of paper II 
Paper II describes the VitmaD intervention study. The main objective was to assess the effect of 25 

common genetic variations in CYP2R1, CYP24A1, CYP27B1, C10orf88, DHCR7/NADSYN1, GC 

and VDR genes in relation to vitamin D status after real-life use of vitamin D3-fortified bread and 

milk on 25(OH)D concentrations during a 6-months winter period. 

 

At the end of the study, there was a pronounced positive effect of real-life usage of vitamin D3-

fortified bread and milk on 25(OH)D concentrations. For the fortification group, 25(OH)D 

concentrations were significantly associated with rs4588 and rs842999 in GC, and rs10741657 in 

CYP2R1, but borderline significantly associated with rs10766197 in CYP2R1, resembling the 

results found in late summer. This indicates that when vitamin D is received primarily as vitamin 

D3-fortification during winter, the association between 25(OH)D concentrations and genetic 

variation in CYP2R1 and GC found in late summer, is maintained. On the contrary, the associations 

between 25(OH)D concentrations and genetic variation in CYP2R1 and GC found in late summer 

disappeared during winter for the control group. These findings, that a genetic season effect exists, 

and that the genetic effect of GC and CYP2R1 on 25(OH)D concentrations disappears during winter 

are consistent with the findings from two previous studies (107,128). A plausible explanation may 

be that when vitamin D synthesis is present (during summer or after vitamin D-fortification) 

CYP2R1 and GC genes are determinants of the vitamin D status. This indicates that the CYP2R1 

and GC genes catalyse rate-limiting processes in vitamin D synthesis and storage. During winter 

months, when cutaneous vitamin D synthesis is negligible and summer vitamin D storage is being 

used, the CYP2R1 and GC gene products are not rate limiting since the main processes are unrelated 

to synthesis and uptake. In our study, the control group had similar mean 25(OH)D concentrations 

at the end of the winter, indicating that when solar vitamin D has not been obtained during winter 

months, a minimum vitamin D plateau is reach, to maintain the physiological role of vitamin D. 

6.2 Prevalence of 25(OH)D concentrations <30 nmol/L and <50 nmol/L 
The American cut-off value was used and 25(OH)D <50 nmol/L defines the requirement for 

optimal bone health for the majority of the population and cut-off value <30 nmol/L defines the 

25(OH)D concentrations at which adverse effects on bone health may be expected (33). In the 

present study, the lowest prevalence of vitamin D deficiency <30 and <50 nmol/L was observed in 

late summer for all the participants, with no difference in the prevalence of participants presenting 
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with 25(OH)D concentrations <30 nmol/L when stratified by rs10741657 (p = 0.2269) and 

rs10766197 (p = 0.1715) in CYP2R1, and rs4588 (p = 0.6953) and rs842999 (p = 0.5111) in GC. In 

contrast, there was statistically significant difference in the prevalence of participants presenting 

with 25(OH)D concentrations <50 nmol/L in late summer when stratified by rs10741657 (p = 

0.0004) and rs10766197 (p = 0.0743) in CYP2R1, and rs4588 (p <0.0001) and rs842999 (p = 

0.0435) in GC. The significant differences in prevalence <50 nmol/L disappeared during the winter 

for the control group, and only rs4588 (p = 0.0002) and rs842999 (p = 0.0029) in GC remained 

significant associated in the fortification group. 

!
 As anticipated, participants in the control group had a higher prevalence of vitamin D status <30 

and <50 nmol/L compared to the fortification group at the end of the winter. For the fortification 

group the highest prevalence of 25(OH)D <50 nmol/L was observed for the rs4588-AA genotype. 

In contrast, rs4588-AA carriers in the control group had the lowest prevalence of 25(OH)D <50 

nmol/L. This indicates that although carriers of the rs4588-AA genotype in the fortification group 

were more prone to be vitamin D deficient, rs4588-AA carriers in the control group were less prone 

to be vitamin D deficient. This may indicate that rs4588-AA carriers have a somewhat low but very 

stable 25(OH)D concentrations.  

6.3 PTH levels 
In late summer, there was no difference in PTH levels when stratified by rs10741657 and 

rs10766197 in CYP2R1and rs4588 and rs842999 in GC for all the participants (p = 0.2473). At the 

end of the study, as anticipated, PTH levels were significantly higher in the control group compared 

to the fortification group (p = 0.0199), because elevated levels of PTH are considered as a sensitive 

marker of vitamin D deficiency. A significant difference in PTH levels was observed for rs4588 in 

both the fortification group (p = 0.0064) and control group (p = 0.0132) and moreover a recessive 

effect for rs4588-AA carriers on PTH levels was observed in both groups. Participants carrying the 

rs4588-AA genotype have the lowest PTH levels and 25(OH)D concentrations compared to rs4588-

CC or -CA carriers, indicating no physiological symptoms of vitamin D deficiency. Similar to our 

findings, Pekkinen et al. 2014 (119) found a dose-response effect of rs4588 on PTH concentrations 

with rs4588-AA carriers having the lowest PTH and 25(OH)D concentrations. Further studies are 

needed to investigate the underlying biological mechanism of this observation.  
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6.4 Genetic risk score analysis of CYP2R1 and GC 
As in paper I, the combined contributions of rs10741657 and rs10766197 in CYP2R1 and rs4588 

and rs842999 in GC on 25(OH)D concentrations were analysed with a combined GRS (range 0-8) 

calculated as the sum of risk alleles of G-alleles of rs10741657, A-alleles of rs10766197, A-alleles 

of rs4588 and C/A-alleles of rs842999 individually for the control and fortification group, stratified 

by all, adults and children (Figure 3A, B and C). As anticipated, no difference in 25(OH)D 

concentrations and GRS was observed for the control group. For the fortification group, there was a 

negative linear correlation between 25(OH)D concentrations and of the number of risk alleles 

ranging from 0 to 7-8 risk alleles as observed in late summer. Overall, there was a mean difference 

in 25(OH)D concentrations of 28.2, 28.6 and 31.9 nmol/L between non-carriers and carriers of all 

7-8 risk alleles in all, adults, and children, respectively. Overall, the same GRS pattern was 

observed for adults and children.  

Figure 3. Estimated mean 25(OH)D concentrations at the end of the study for each genetic risk score category stratified 
by control and fortification group, separately for all (A), adults (B) and children (C). 
Genetic risk score (range 0 to 7-8) was calculated as the sum of number of G-alleles of rs10741657, A-alleles of 
rs10766197, A-alleles of rs4588 and C/A-alleles of rs842999. Column numbers indicate total numbers of participants 
carrying the risk score. Error bars indicate 95% confidence interval.  
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6.5 Genetic risk score of CYP2R1 and GC stratified by total vitamin D intakes 
The effect of total vitamin D intake was estimated for each category GRS (range 0 to 8) of 

rs10741657 and rs10766197 in CYP2R1 and rs4588 and rs842999 in GC for the control and 

fortification group (Figure 4). Total vitamin D intake was estimated as the sum of dietary vitamin 

D intake, use of multivitamin and vitamin D supplements and furthermore for the fortification 

group, self-reported intake of vitamin D3-fortified bread and milk. A total of 25.1, 22.4, 23.4, 15.6 

and 13.6% of the adult participants carried 0-2, 3, 4, 5 or 6-8 risk alleles, respectively.  

 
A statistically significant positive linear relationship between total vitamin D intake and 25(OH)D 

concentrations was observed among carriers of 0-2, 3, 4 or 5 risk alleles, (p = 0.0012, 0.0001, 

0.0118 and 0.0029, respectively), but not for individuals carrying 6-8 risk alleles (p = 0.1051). In 

general, the more risk alleles an individual carries the more vitamin D supplementation is required 

to obtain a sufficient vitamin D status (>50 nmol/L). A total vitamin D intake of <3 µg/day was not 

sufficient for 95% of the study population to achieve sufficient 25(OH)D concentrations, regardless 

of risk alleles. For participants carrying 0-2 or 3 risk alleles, 3 to 7.4 µg/day of vitamin D seemed to 

be sufficient for 95% of the study population to achieve sufficient 25(OH)D concentrations. For 

participants carrying 4 risk alleles, a total vitamin D intake of >7.5 µg/day seemed to be sufficient 

for 95% of the study population to achieve sufficient 25(OH)D concentrations. For participants 

carrying 5 risk alleles, a total daily vitamin D intake >10 µg seemed to be sufficient for 95% of the 

study population to achieve sufficient 25(OH)D concentrations. For participants carrying 6-8 risk 

alleles, a total daily vitamin D intake >15 µg was almost enough for 95% of the study population to 

achieve sufficient 25(OH)D concentrations, suggesting that it is difficult to increase 25(OH)D 

concentrations to a sufficient level in participants carrying 6-8 risk alleles with vitamin D-

fortification. For participants carrying 6-8 risk alleles, a statistically non-significant increase in 

25(OH)D concentrations was found comparing the lowest and highest quintile of vitamin D intake, 

but with a much lower rate (+Δ17.6 nmol/L) compared to participants carrying 0-2, 3, 4 or 5 risk 

alleles (+Δ28.8, 36.5, 24.2 and 33.6 nmol/L), respectively. The increase in 25(OH)D concentrations 

are similar to the findings by Engelman et al. (107) that individuals carrying 3-4 risk alleles of 

rs4588 in GC and rs2060793 (in strong LD with rs10741657) in CYP2R1 have the lowest increase 

in 25(OH)D concentrations (+Δ16.7 nmol/L) compared to individuals with fewer risk alleles 

(+Δ27.7 nmol/L). Furthermore, the percentage of women with sufficient 25(OH)D concentrations 

rose with each increasing quartile of vitamin D intake. Thus, subjects with genetic predisposition 

seem to benefit from dietary vitamin D supplementation, which is in agreement with our findings. 
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Figure 4. Mean 25(OH)D concentrations for each GRS category stratified by total vitamin D intakes . 
GRS (range 0-8) calculated as the sum of number of G-alleles of rs10741657, A-alleles of rs10766197, A-alleles of 
rs4588 and C/A-alleles of rs842999. The numbers in the columns present the total numbers of participants carrying this 
risk score. Error bars indicate 95% confidence interval. 
!
Low vitamin D status can be corrected by vitamin D supplementation, but individual responses to 

vitamin D supplementation vary, suggesting that some people might need higher doses of vitamin D 

to reach sufficient 25(OH)D concentration, or that there is variability in the physiologically normal 

concentration of 25(OH)D (109). This study provide evidence that genetic predisposition in 

CYP2R1 and GC may have a large impact on 25(OH)D concentrations and individuals with 

genetically determined low 25(OH)D concentrations may need more vitamin D in order to improve 

their vitamin D status or there may be variability in the physiologically normal range of 25(OH)D 

concentrations for individuals carrying different CYP2R1 and GC genotypes, demonstrating that a 

“one size fits all” approach may not work well for vitamin D. 

Important for public health recommendations and vitamin D-fortification programs a general trend 

was observed. Individuals carrying a low GRS had sufficient vitamin D status and achieved an even 
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higher vitamin D status with increasing amount of vitamin D supplementation. Contrary, 

individuals carrying a high GRS often presented with a low vitamin D status and did not benefit as 

much from an increasing amount of vitamin D supplementation as observed for individuals carrying 

a low GRS. This means that individuals carrying a high GRS may have a natural lower 

physiologically level of 25(OH)D or have a lower uptake of vitamin D supplementation compared 

to individuals carrying a low GRS.  

!
In order to raise vitamin D status to a sufficient level in 95% of individuals carrying a high GRS a 

vitamin D dose of >15 µg/day is needed with is above the RDA and RI. The long-term health 

consequences of high doses of vitamin D supplementation and the potential risk of developing 

vitamin D intoxication in individuals carrying a low GRS needs to be further investigated. There is 

evidence that a U- or J-shaped response curve exists between 25(OH)D concentrations and certain 

cancers and all-cause mortality (59) at 25(OH)D concentrations >125 nmol/L (33).  

6.6 Genetic risk score of CYP2R1 and GC stratified by total vitamin D intakes and >50 
nmol/L of vitamin D status 
In Europe, there is a general agreement that a 25(OH)D concentration of at least 50 nmol/L is 

sufficient (161). The percentage of participants with sufficient 25(OH)D (>50 nmol/L) 

concentrations was determined (Figure 5). Sufficient 25(OH)D concentrations were achieved for 

all participants carrying 0-2, 3 or 4 risk alleles and who consumed >15 µg/day of vitamin D. For 

participants carrying 5 or 6-8 risk alleles this fell to 86 and 90%, respectively. Furthermore, 

sufficient 25(OH)D concentrations were achieved for 87, 90, 83, 84 and 67% of the participants 

carrying 0-2, 3, 4, 5 or 6-8 risk alleles who consumed 10 to 14.9 µg/day. This fell to 80, 76, 86, 50 

and 53% and 57, 50, 61, 52 and 41% for participants carrying 0-2, 3, 4, 5 or 6-8 risk alleles and who 

consumed 7.5 to 9.9 µg/day or 3.0 to 7.4 µg/day of vitamin D, respectively. In the study population, 

67% of the participants carrying 6-8 risk alleles had sufficient 25(OH)D concentrations in contrast 

to 87, 90, 83 and 84% for participants carrying 0-2, 3, 4 or 5 risk alleles, respectively, when 

following IOMs RDA of 15 µg/day for individuals aged 1-70 y. Following the Nordic countries RI 

of 10 µg/day for individual aged 2-60 y, only 50 and 53% of the participants carrying 5 or 6-8 risk 

alleles, respectively, had sufficient 25(OH)D concentrations compared to 80, 76 and 86% of the 

participants carrying 0-2, 3 or 4 risk alleles, respectively. After stratification by total vitamin D 

intake and genetic predisposition in CYP2R1 and GC the RDA or RI was not fulfilled by the 

intervention.  
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Figure 5. The %-prevalence of 25(OH)D concentrations >50 nmol/L, for each GRS category stratified by quintiles of 
total vitamin D intake. 
GRS (range 0-8) was calculated as the sum of number of G-alleles of rs10741657, A-alleles of rs10766197, A-alleles 
of rs4588 and C/A-alleles of rs842999.  
 
In agreement with our findings, Cranney et al. (162) concluded that vitamin D3-doses of 10-20 

µg/day may be insufficient to prevent vitamin D deficiency in at-risk-individuals. Cashman et al. 

(163) concluded that for a population to achieve 25(OH)D concentrations of 50 nmol/L an average 

intake of 9 µg/day vitamin D was needed. Nevertheless, when taking inter-individual variation into 

account 23.5 µg/day of vitamin D3 was needed for 95% of the population to reach a 25(OH)D 

concentrations of 50 nmol/L. In the study of Engelman et al. (107), all the women with no risk 

alleles of rs4588 in GC and rs2060793 (in strong LD with rs10741657) in CYP2R1 who consumed 

at least 16.75 µg/d vitamin D had 25(OH)D > 50 nmol/L. For woman who had 1, 2 or 3-4 risk 

alleles, who consumed at least 16.75 µg/d vitamin D, this fell to 84, 72, and 62%. Furthermore, the 

percentage with adequate 25(OH)D concentrations rose with increasing vitamin D intake. 

Furthermore, the rs4588 genotype predicts changes in 25(OH)D concentrations after long-term 

vitamin D supplementation. Fu et al. (127) showed that after one year supplementation with 40 µg/d 

or 15 µg/d, the mean percentage increase of 25(OH)D was significantly allele-specific for rs4588: 

97% for CC, 151% for CA and 307% for AA genotypes. Thus, subjects with genetic predisposition 

seemed to benefit the least from dietary vitamin D supplementation. 
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These findings demonstrate that CYP2R1 and GC genotypes are determinants of reduced 25(OH)D 

concentrations and associated with the risk of developing low vitamin D status which may have 

clinical importance for human health. Epidemiological studies have found association between low 

25(OH)D concentrations, cancer risk and all-cause mortality, but the significance of genetically 

determined low 25(OH)D concentrations is not clear. Jorde et al. (164) showed that individuals 

carrying the DBP phenotype GC-1f/1f had 23-26% reduced risk of incident cancer compared to the 

GC-1S/1S and GC-2/2 phenotypes (p < 0.02).  
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7. The influence of vitamin D modulating genes on vitamin D status after 
artificial UVB irradiation or after intake of vitamin D3-fortified bread and milk 
–main results and discussion of paper III 
Paper III focuses primarily on the VitDgen study but also data from the VitmaD study are included. 

The main objective was to assess the effect of 25 SNPs located in CYP2R1, CYP24A1, CYP27B1, 

C10orf88, DHCR7/NADSYN1, GC and VDR genes on artificial UVB irradiation-mediated increase 

in 25(OH)D concentrations. Secondary, the study aimed to determine whether common genetic 

variations in CYP2R1 and GC have similar effects on 25(OH)D concentrations after artificial UVB 

irradiation and after intake of vitamin D3-fortified bread and milk. 

 

After 4 whole body UVB irradiations during a 10-day period and with a total dose of 6 or 7.5 SEDs, 

rs10741657 in CYP2R1 and rs4588 in GC predicted UVB-induced 25(OH)D concentration as 

previously found for the VitmaD study in late summer and after 6 months intake of vitamin D3-

fortified bread and milk. There was a gene-dose dependent relationship between GRS and the UVB-

dependent increase in 25(OH)D concentrations or after intake of vitamin D3-fortified bread and 

milk. Carriers of all 4 risk alleles of rs10741657 in CYP2R1 and rs4588 in GC had the lowest mean 

25(OH)D concentrations during winter, the smallest increase in UVB-induced 25(OH)D 

concentrations and after intake of vitamin D3-fortified bread and milk during winter the largest 

decrease in 25(OH)D concentrations compared to non-carriers. These findings indicate that 

genetically predisposed individuals carrying all 4 risk alleles of rs10741657 in CYP2R1 and rs4588 

in GC benefit the least from UVB irradiation or intake of vitamin D3 supplements during winter. 

Regardless of the method used to increase or maintain 25(OH)D concentrations during winter, the 

effects of UVB irradiation or intake of vitamin D3 on 25(OH)D concentrations seem notably similar 

in a healthy Caucasian population. Common genetic variation in the CYP2R1 and GC genes are 

determinants of 25(OH)D concentrations after UVB irradiation and after intake of vitamin D3-

fortified bread and milk in a Caucasian population.   
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7.1. The UVB-induced 25(OH)D concentrations, the VitDgen study 
In the VitDgen study, 92 participants (out of 102 recruited) completed the study. In winter, 51% of 

the participants were vitamin D sufficient (>50 nmol/L), 43% of the participants were vitamin D 

insufficient (25-50 nmol/L) and 5% of the participants were vitamin D deficient (<25 nmol/L). 

After receiving 4 whole-body UVB irradiations with a total dose of 6 or 7 SEDs, 97% of the 

participants were vitamin D sufficient, 3% of the participants were vitamin D insufficient and none 

of the participants were vitamin D deficient. Using an artificial UVB source during winter over a 

short time period the increase in 25(OH)D concentrations were well controlled and an average  

increase of 28 nmol/L (24.1-31.1 nmol/L) was observed. 

 

As anticipated and found for the control group in paper II, there was no statistically significant 

difference between 25(OH)D concentrations and the 25 analyzed SNPs, except for rs12512631 in 

GC in winter. This effect disappeared after UVB irradiation. False-positive results (type 1 errors) 

are common when studying associations between genetic markers and outcomes, and the relatively 

small sample size, resulting in statistically reduced power might explain this finding. Otherwise, our 

findings are in agreement with previous studies showing no genetic effects on 25(OH)D 

concentrations during winter months (107,128,165).  

!
After having received UVB irradiation, there was a statistically significant association between 

UVB-induced 25(OH)D concentrations and rs10741657 in CYP2R1, and rs16846876, rs17467825, 

rs2282679 and rs4588 in GC (Table 5) as found in late summer (paper I) and after vitamin D3 

fortification (paper II). As in paper I and II, rs4588 was in strong LD with rs2282679 and 

rs17467825 and moreover rs17467825-rs2282679 and rs2282679-rs16846876 were in LD. The 

strongest association with 25(OH)D concentrations was observed for rs4588. 

SNP rs10766197 in CYP2R1 and rs842999 in GC did not predict UVB-induced 25(OH)D 

concentrations as found in paper I and II, and the lack of replication may be due to the small sample 

size. None of the analyzed SNPs in CYP24A1, CYP27B1, C10orf88, DHCR7/NADSYN1 and VDR 

genes were statistically significantly associated with the UVB-induced 25(OH)D concentrations as 

found in paper I and II. 
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Table 5. Basic characteristics of the individual SNP and the association with 25(OH)D concentrations  
 
      Winter UVB-induced UVB-increased 
SNP MAF HWE M/m Genotype n 25(OH)D Padj

1 25(OH)D  25(OH)D Padj
2 

CYP2R1 
rs7116978  39.5 0.11 C/T CC 37 50.8 (43.8-58.9) 0.32 78.4 (72.3-85.0) 22.6 (18.3-27.8) 0.10 
     CT 35 50.5 (43.4-58.7)  80.5 (74.0-87.5) 27.2 (21.8-34.1)  
     TT 18 58.1 (47.0-71.7)  93.4 (83.1-104.9) 29.8 (21.7-40.9)  
rs10741657   41.4 0.07 G/A GG 36 50.2 (43.1-58.4) 0.28 77.0 (70.9-83.5) 21.7 (17.7-26.8) 0.024 
     GA 36 50.2 (43.2-58.5)  81.9 (75.5-88.9) 28.6 (23.0-35.5)  
     AA 20 57.9 (47.3-71.0)  93.7 (84.0-104.6) 30.7 (22.9-41.2)  
rs1562902  43.8 0.35 T/C TT 32 49.8 (42.4-58.4) 0.84 79.0 (72.3-86.3) 25.6 (20.4-32.1) 0.32 
        TC 40 49.8 (43.1-57.4)  81.2 (75.0-87.9) 26.8 (21.7-33.2)  
     CC 20 59.9 (48.9-73.3)  90.4 (80.1-101.1) 24.6 (18.4-33.0)  
rs10766197  48.9 0.39 G/A GG 22 56.0 (46.1-67.9) 0.40 87.3 (78.5-97.1) 25.2 (19.0-33.3) 0.13 
        AG 49 52.5 (46.1-59.7)  83.7 (77.9-89.9) 26.5 (21.9-32.1)  
    AA 21 46.4 (38.0-56.5)  74.5 (66.8-83.0) 25.3 (19.1-33.7)  
CYP24A1 
rs6013897 20.5 0.83 T/A TT 60 50.4 (44.8-56.7) 0.07 81.9 (76.7-87.5) 27.3 (23.1-32.2) 0.70 
     AT 28 53.6 (45.1-63.7)  83.0 (75.4-91.5) 25.2 (19.8-32.0)  
     AA 4 61.1 (38.7-96.5)  83.1 (83.1-107.3) 12.3 (6.0-25.2)  
rs4809960 23.7 0.11 T/C TT 58 51.8 (46.0-58.4) 0.45 82.5 (77.1-88.2) 25.8 (21.7-30.5) 0.26 
     TC 31 53.1 (45.1-62.6)  81.2 (74.1-89.0) 24.4 (19.4-30.9)  
     CC 8 39.9 (23.6-67.6)  91.0 (67.8-122.2) 49.6 (24.0-102.5)  
rs2296241 46.0 0.26 G/A GG 24 44.5 (37.1-53.5) 0.15 77.5 (70.0-80.1) 25.2 (19.5-32.7) 0.39  
     AG 52 55.7 (49.1-63.0)  82.8 (77.2-88.8) 24.5 (20.3-29.4)  
      AA 16 51.5 (41.2-64.5)  88.1 (77.6-99.9) 31.8 (23.2-43.6)  
rs17219315 2.8 0.78 A/G AA 87 51.7 (46.8-57.0) 0.53 82.0 (77.6-86.6) 25.7 (22.3-29.6) 0.29 
      AG 5 54.4 (36.1-82.0)  87.5 (69.6-110.0) 29.2 (16.5-51.7)  
rs2426496 23.3 0.29 G/T GG 54 48.9 (43.2-55.3) 0.44 78.8 (73.6-84.3) 24.3 (20.4-28.9) 0.25  
     GT 35 56.7 (48.6-66.1)  86.9 (79.9-94.6) 27.8 (22.2-34.8)  
     TT 3 51.8 (30.7-87.4)  95.9 (71.9-128.1) 37.4 (18.0-77.7)  
CYP27B1 
rs10877012  35.2 0.97 G/T GG 41 50.4 (43.7-58.1)  0.38 81.3 (75.1-88.1) 23.8 (19.4-29.2) 0.91 
     GT 40 50.7 (43.9-58.6)  82.0 (75.7-88.9) 28.3 (23.0-34.7)  
     TT 11 61.9 (47.1-81.4)  87.1 (74.7-101.6) 25.8 (17.2-38.5)  
C10orf88 
rs6599638  49.4 0.29 G/A GG 20 52.5 (42.8-64.5) 0.48 80.3 (71.7-90.0) 23.3 (17.4-31.2) 0.31 
     GA 51 52.5 (46.2-59.7)  84.2 (78.4-90.4) 28.4 (23.6-34.0)  
      AA 21 49.6 (40.6-60.5)  79.7 (71.3-89.0) 23.0 (17.3-30.5)  
DHCR7/NADSYN1 
rs1790349  15.3 0.02 A/G AA 69 50.6 (45.4-56.5) 0.35 82.2 (77.3-87.4) 26.5 (22.7-31.1) 0.70 
     GA 18 56.8 (45.8-70.5)  84.7 (75.1-95.5) 23.8 (17.3-32.8)  
     GG 5 51.0 (33.9-76.7)  76.0 (60.5-95.5) 24.2 (13.7-42.9)  
rs12785878  28.4 0.32 T/G TT 49 51.2 (44.9-58.3) 0.77 81.6 (75.9-87.8) 27.4 (22.7-33.1) 0.97 
     GT 34 52.4 (44.7-61.3)  83.3 (76.3-91.0) 24.2 (19.3-30.3)  
     GG 9 53.2 (39.2-72.2)  82.2 (69.3-97.5) 24.6 (16.1-37.7)  
GC 
rs16846876 38.6 0.16 A/T AA 32 58.8 (50.2-68.8) 0.41 92.2 (84.6-100.4) 26.6 (21.1-33.4) 0.026 
     AT 50 50.0 (44.1-56.8)  78.8 (73.6-84.3) 25.5 (21.1-30.8)  
     TT 10 41.2 (31.3-54.6)  71.2 (61.2-83.0) 25.7 (17.2-38.6)  
rs12512631 31.6 0.07 T/C TT 38 43.4 (37.7-49.9) 0.025 74.6 (69.1-80.6) 26.3 (21.2-32.5) 0.13 
     TC 49 57.3 (50.6-64.8)  86.1 (80.5-92.1) 25.2 (20.9-30.4)  
     CC 5 79.8 (50.9-110.0)  111.3 (90.1-137.5) 30.1 (17.0-53.4)  
rs17467825 28.4 0.96 A/G AA 49 53.0 (46.5-60.4) 0.50 83.9 (78.2-90.1) 24.4 (20.3-29.4) 0.020 
     GA 36 51.3 (44.1-59.8)  83.7 (77.1-90.9) 29.1 (23.5-36.2)  
     GG 7 46.2 (32.7-65.3)  65.7 (54.5-79.3) 20.9 (12.4-35.0)  
rs2282679 28.4 0.96 A/C AA 49 53.0 (46.5-60.4) 0.50 83.9 (78.2-90.1) 24.4 (20.3-29.4) 0.020 
     CA 36 51.3 (44.1-59.8)  83.7 (77.1-90.9) 29.1 (23.5-36.2)  
     CC 7 46.2 (32.7-65.3)  65.7 (54.5-79.3) 20.9 (12.4-35.0)  
rs842999 44.1 0.14 G/C/A GG 25 54.3 (45.4-65.1) 0.42 82.5 (74.4-91.4) 24.0 (18.6-30.9) 0.17 
     GX3 50 53.1 (46.7-60.3)  84.2 (78.3-90.5) 25.8 (21.4-31.1)  
     XX4 13 49.7 (38.7-63.9)  75.7 (65.7-87.3) 25.9 (17.9-37.4)  
rs4588 29.0 0.84 C/A CC 48 53.3 (46.7-60.8) 0.57 84.1 (78.3-90.4) 24.3 (20.1-29.2) 0.020 
     CA 37 51.0 (43.9-59.3)  83.5 (77.0-90.6) 29.3 (23.6-36.2)  
     AA 7 46.2 (32.7-65.3)  65.7 (54.5-79.3) 20.9 (12.5-34.9)  
rs222020 22.2 0.84 T/C TT 55 54.7 (48.5-61.6) 0.068 86.2 (80.7-92.0) 27.2 (22.8-32.5) 0.31 
     TC 33 45.1 (38.7-52.6)  74.4 (68.4-81.0) 24.2 (19.3-30.4)  
     CC 4 77.7 (50.0-120.9)  100.6 (78.9-128.2) 22.4 (11.8-42.3)  
rs2298849  25.3 0.80 T/C TT 51 53.4 (47.0-60.6) 0.31 85.5 (79.8-91.7) 29.0 (24.2-34.8) 0.33 
     CT 35 47.7 (40.9-55.5)  76.5 (70.3-83.2) 22.2 (17.8-27.6)  
     CC 6 65.4 (45.2-94.6)  91.2 (74.4-11.8) 24.3 (14.6-40.6)  
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VDR 
rs731236 42.6 0.08 T/C TT 34 52.2 (44.6-61.0) 0.35 83.4 (76.5-91.0) 24.9 (19.9-31.2) 0.66 
     TC 38 49.3 (42.5-57.1)  79.5 (73.2-86.4) 27.3 (22.0-33.9)  
     CC 20 56.4 (46.0-69.1)  86.8 (76.6-96.1) 25.0 (18.8-33.3)  
rs757343 10.8 0.98 G/A GG 74 52.8 (47.5-58.8) 0.76 83.2 (78.4-88.2) 26.8 (23.0-31.3) 0.56 
     AG 17 47.8 (38.3-59.7)  79.1 (69.9-89.6) 22.3 (16.4-30.4)  
     AA 1 47.6 (19.1-118.7)  74.9 (45.0-124.7) 27.3 (17.7-97.5)  
rs10783219 36.9 1.00 A/T AA 36 53.0 (45.5-61.8) 0.82 82.1 (75.5-89.4) 25.4 (20.4-31.6) 0.69 
     TA 43 50.5 (43.9-58.1)  81.2 (75.2-87.8) 25.6 (20.9-31.2)  
     TT 13 52.8 (41.0-68.1)  86.4 (75.0-99.5) 28.5 (19.7-41.2)  
rs7139166 40.3 0.24 C/G CC 37 53.6 (46.1-62.3) 0.53 84.4 (77.7-91.8) 26.1 (21.0-32.4) 0.81 
     CG 37 51.6 (44.4-59.9)  82.1 (75.5-89.3) 25.6 (20.6-31.7)  
     GG 18 48.7 (39.3-60.5)  78.5 (69.6-88.5) 26.2 (19.2-35.7)  
Bold numbers represent significant P values (<0.05). 
SNP, single nucleotide polymorphism (ordered by position); MAF, minor allele frequency for the unrelated population 
in percentage; HWE, P-values for Hardy-Weinberg equilibrium in the unrelated population; M/m, major and minor 
alleles; Mean, raw serum 25(OH)D concentrations were log-transformed to approximate a normal distribution an given 
as geometric mean (nmol/L); 95%, CI 95%-confident interval. 
1Padj Linear mixed models with family as a random factor, adjusted for age, sex, BMI, use of multivitamin and vitamin 
D supplementation, outdoor stay in light clothes, outdoor transport to work and sun bathing. 
2Padj Linear mixed models with family as a random factor, adjusted for age, sex, BMI and baseline serum 25(OH)D 
concentrations.  
3GX, GC/GA 
4XX, CC/CA/AA 
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7.2 Genetic risk score analysis of CYP2R1 and GC in the VitDgen study 
To determine the combined effect of rs10741657 in CYP2R1 and rs4588 in GC on 25(OH)D 

concentrations in winter and after UVB irradiation, a GRS was calculated as the sum of the number 

of G-alleles of rs10741657 and A-alleles of rs4588 (range 0 to 4).  

!
As expected and observed for the control group in paper II, there were no associations between 

GRS and 25(OH)D concentrations (p = 0.16) in the winter (Figure 6). However, after whole body 

UVB irradiation with a total of 6 or 7.5 SEDs, a gene-dose dependent relationship between the 

UVB-dependent increase in 25(OH)D concentrations and GRS was observed, in agreement with our 

findings in late summer (paper I) and after vitamin D3-fortification (paper II). Overall, after UVB 

irradiation there was a mean difference in 25(OH)D concentrations of 20.9 nmol/L between non-

carriers and carriers of all 4 risk alleles. In agreement with our findings, Engelman et al. (107) 

performed a GRS encompassing rs4588 in GC and rs2060793 (in strong LD with rs10741657) in 

CYP2R1 and found that the lowest mean 25(OH)D concentrations were found in the group with 3 

risk alleles and low external sources of vitamin D (<10 µg/day) or 4 risk alleles, regardless of the 

external sources of vitamin D.  

Figure 6. 25(OH)D concentrations in winter and after UVB irradiation for each genetic risk score category of 
rs10742657 and rs4588.  
Genetic risk score (GRS) was calculated as the sum of number of G-alleles of rs10741657 and A-alleles of rs4588. 
Column numbers, total numbers of participants carrying the GRS; error bars, 95% confidence interval.  
 

A statistically significant linear negative trend between the %-increase in 25(OH)D concentrations 

and GRS (p = 0.042) was found (Figure 7). Moreover, the smallest %-increase in UVB-induced 

25(OH)D concentrations was also observed for carriers of all 4 risk alleles (23.05%) compared to 

non-carriers (54.02%).  
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Figure 7. The %-increase in 25(OH)D concentrations after UVB irradiation for each genetic risk score category of 
rs10742657 and rs4588. 
Genetic risk score was calculated as the sum of number of G-alleles of rs10741657 and A-alleles of rs4588. 

7.3 Genetic risk score analysis of CYP2R1 and GC in the VitmaD study 
To evaluate and determine the genetic contribution of rs10741657 in CYP2R1 and rs4588 in GC on 

25(OH)D concentrations following vitamin D3-intake, data from the adult population from the 

VitmaD study were used in late summer (all adults, n = 414) and after receiving vitamin D3-

fortified bread and milk for a 6-months period during winter (adults in the fortification group n = 

208) (138,165,166). GRS was calculated as the sum of the number of G-alleles of rs10741657 and 

A-alleles of rs4588 (range 0 to 4) in late summer and after intake of vitamin D3-fortified bread and 

milk. It was not necessary to weight the risk alleles by the correlation coefficient, because the 

coefficients of rs10741657 and rs4588 were very similar in a mixed regression model including 

both SNPs (data not shown). In late summer, there was a linear negative trend between 25(OH)D 

concentrations and carriers of 0 to 4 risk alleles (p <0.0001) (Figure 8). After intake of vitamin D3-

fortified bread and milk for 6 months during winter, there was still a linear negative trend between 

25(OH)D concentrations and being carrier of 0 to 4 risk alleles (p = 0.027). Nimitphong et al. 2013 

(167) observed a significantly smaller increase in 25(OH)D3 and total 25(OH)D concentrations after 

oral intake of 400 IU/day (10 µg/day) of vitamin D3 for 3 months in individuals carrying the CA or 

AA genotypes of rs4588. 
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Figure 8. 25(OH)D concentrations at baseline (late summer) and after 6 months intake of vitamin D3-fortified bread 
and milk (end) for each genetic risk score category of rs10742657 and rs4588 
Genetic risk score (range 0 to 4) was calculated as the sum of number of G-alleles of rs10741657 and A-alleles of 
rs4588. The numbers in the columns present the total numbers of participants carrying the risk score. Error bars indicate 
95% confidence interval.  
!
Using a realistic vitamin D3-fortification model, a decrease in 25(OH)D concentrations was 

observed during winter and the largest %-decrease in 25(OH)D concentrations were observed for 

carriers of all 4 risk alleles (-19.10%) compared to non-carriers (4.44%) (Figure 9).  

Figure 9. The %-decrease in 25(OH)D concentrations after 6 months intake of vitamin D3-fortified bread and milk for 
each genetic risk score category of rs10742657 and rs4588. 
Genetic risk score (range 0 to 4) was calculated as the sum of number of G-alleles of rs10741657 and A-alleles of 
rs4588. 
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Overall, these findings indicate that genetic predisposition in CYP2R1 and GC genes may have a 

large impact on 25(OH)D concentrations. Predisposed individuals carrying all 4 risk alleles of 

rs10741657 in CYP2R1 and rs4588 in GC benefitted the least from either whole body UVB 

irradiation or intake of vitamin D3-fortified bread and milk during winter compared to individuals 

carrying fewer or no risk alleles of rs10741657 in CYP2R1 and rs4588 in GC. Regardless of the 

method used to increase or maintain 25(OH)D concentrations during winter, the effects of UVB 

irradiation or vitamin D3-fortification on 25(OH)D concentrations seemed remarkably similar.  

 

Important for public health recommendations, this study emphasizes that individuals carrying a high 

GRS, predisposed to genetically determined low 25(OH)D concentrations, may need a longer UVB-

exposure time or a higher amount of vitamin D supplement to achieve a given 25(OH)D 

concentration than individuals carrying a lower GRS. One the other hand, these results may indicate 

that there is a physiological variation in the normal range of 25(OH)D concentration, demonstrating 

that a “one size fits all” approach may not work well for vitamin D. 

7.4 The clinical importance of variation in rs10741657 in CYP2R1 and rs4588 in GC  
Vitamin D has emerged as a promising target in relation to disease susceptibility. The fact that 

SNPs in vitamin D modulating genes have shown to predict vitamin D status has given rise to an 

increasing number of epidemiological studies investigating the risk of developing a large range of 

different adverse health outcomes in relation to genetic biomarkers. It is not known whether carriers 

of all 4 risk alleles of rs10741657 in CYP2R1 and rs4588 in GC are at-risk individuals, who may 

have substantially elevated risk of developing vitamin D deficiency and subsequent adverse health 

outcomes.  

!
Genetic variation in rs10741657 has been found to be associated with colon cancer recurrence (111) 

and inversely associated with pancreas cancer risk (AA versus GG, OR = 0.70; 95% CI: 0.51-0.95) 

(112). Furthermore, rs10741657 has been associated with risk of T1DM in a German population. 

The G-allele of rs10741657 was more often transmitted to affected offspring (61% vs. 39%, p = 

0.004) and was also more frequent in cases than in controls (46.1% vs. 35.7%, p = 0.03) and 

carriers of this allele had on average lower 25(OH)D concentrations (159). Contrary, Thorsen et al. 

2013 (168) found no association between T1DM and rs10741657 in 1467 affected offspring of 

Danish origin, but in agreement with our and previous studies an association with 25(OH)D 

concentrations were found. Blanton et al. 2011 (169) did not find any association between genotype 
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frequencies of rs4588 and DBP concentrations and risk of T1DM. Nimitphong et al. (170) found 

that rs2282679 (in strong LD with rs4588) in GC modified the association between 25(OH)D 

concentrations and bone mineral density and bone markers. 

There is increasing evidence indicating that GC genotypes (rs7041 and rs4588), giving rise to 

different DBP phenotypes, are associated with adverse health outcomes including premenopausal 

bone fracture, diabetes, severity of obstructive pulmonary disease and rheumatic fever (120,121). 

Abbas et al. 2008 (124) found that carriers of the Gc2/2 genotype had significantly lowered risk of 

postmenopausal breast cancer with an odds ratio (95% confidence interval) of 0.72 (0.54-0.96), 

compared with homozygous Gc1s allele carriers. Sayegh et al. 2014 (171) found that the Gc2 

phenotype is prevalent among women with endometriosis and may be implicated in its 

pathogenesis. Li et al. 2011 (172) provide supporting evidence that the Gc2 genotype was 

significantly associated with asthma susceptibility in a Chinese Han population (OR = 1.35, 95% CI 

= 1.01-1.78 p = 0.006) compared to Gc1 carriers. In the Tromsø Study, a reduced incidence of 

cancer risk between 23-26% was found in Gc1f/1f carriers compared to Gc1s/1s and Gc-2/2 carriers 

(164). The cancer protective effect of Gc1f/1f could not be explained by differences in 25(OH)D 

concentrations. In a Danish study, Afzal et al. (173) found that for each increase in allele score of 

rs7944926 and rs11234027 in DHCR7 and rs10741657 and rs12794714 in CYP2R1 were associated 

with a 1.9 nmol/L lower 25(OH)D concentrations. Furtermore, genetically low 25(OH)D 

concentrations were associated with increased all cause mortality, cancer mortality, and other 

causes of mortality but not with cardiovascular mortality.  
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8. Conclusion and future perspectives 
Several candidate gene studies including two GWAS have demonstrated the importance of genetic 

variation in vitamin D modulation genes on 25(OH)D concentrations. In this study, common 

genetic variations in the CYP2R1 and GC genes were shown to be determinants of 25(OH)D 

concentrations in a healthy Caucasian population in late summer (paper I), after intake of vitamin 

D3-fortified bread and milk (paper II) and after UVB irradiation (paper III). No association was 

observed between vitamin D status and genetic variation in the CYP2R1 and GC genes during 

winter when no supplemental vitamin D sources (fortification or UVB irradiation) were given 

(paper II and III). In general, no differences between gender in children and adults were observed, 

and there were no differences between children and adults for all analysed parameters (paper I and 

II). 

!
Overall, a general negative gene-dose dependent relationship was observed between increasing 

numbers of risk alleles of CYP2R1 and GC and lower 25(OH)D concentrations, and moreover an 

additive effect of CYP2R1 and GC on 25(OH)D concentrations was observed (paper I, II and III). 

The present study has shown that individuals with a high GRS stratified by rs10741657 and 

rs10766197 in CYP2R1 and rs4588 and rs842999 in GC were more prone to have a low vitamin D 

status compared to carriers of a lower GRS, independently of the vitamin D source (paper I, II and 

III). Predisposed individuals, with a genetic profile in CYP2R1 and GC leading to low vitamin D 

status, were also the ones responding the least to increased exposure of the vitamin D sources, 

vitamin D3-fortification and UVB irradiation (paper II and III). Individuals with genetically 

determined low 25(OH)D concentrations may need different health recommendations in order to 

improve their vitamin D status or, alternatively, there may be variability in the physiologically 

normal range of 25(OH)D concentrations, demonstrating that a “one size fits all” approach may not 

work well for vitamin D (paper II). These findings provide fundamental data for establish what is 

sufficient vitamin D status in different genetic profiles of CYP2R1 and GC. 

!
Genetic predisposition in rs10741657 and rs10766197 in CYP2R1 and rs4588 and rs842999 in GC 

is linked to low vitamin D status and may be used as genetic biomarker to identify individuals at 

highest risk of low vitamin D status. Importantly for the use of the SNPs as a biomarkers for 

vitamin D status, rs10741657 and rs10766197 in CYP2R1 and rs4588 and rs842999 in GC were 

found to be significantly associated with 25(OH)D concentrations both before and after adjustment 

for vitamin D confounders in late summer  (paper I).  
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Identifying at-risk individuals and avoiding low vitamin D status is essential in relation to adverse 

health outcomes. It is crucial to implement easy-to-apply phenotypic strategies for screening at-risk 

individuals, which can help to improve clinical practice by better targeting individuals at need for 

vitamin D supplementation and/or blood testing. Today, official nutrition recommendations do not 

take genetic differentiation into account due to lack of scientific substantiation. The challenge of 

providing individualized targeted recommendations on vitamin D may be taken to a new level by 

including individual genetic profiling in CYP2R1 and GC, which may improve nutritional 

recommendations and public preventive strategies. In future studies, including DBP phenotypes 

(rs7041 and rs4588), measuring DBP concentrations and analysing possible effects of rs10741657 

and rs10766197 in CYP2R1 and rs4588 and rs842999 in GC on free and bioavailable 25(OH)D 

concentrations may further improve individualized targeted recommendations on vitamin D.  

However, detailed information about disease susceptibility in individuals with high GRS stratified 

by polymorphisms rs10741657 and rs10766197 in CYP2R1 and rs4588 and rs842999 in GC (and 

thus low vitamin D status and low response to increase exposure to vitamin D sources) has not been 

elucidated. It is not known whether they have an increased risk of vitamin D related diseases or 

whether they are ‘protected’ by their genetic CYP2R1 and GC profile. This needs to be addressed in 

future studies before recommending higher vitamin D doses.  

!
In conclusion, this PhD thesis gives a comprehensive overview of genetic variation in vitamin D 

modulating genes and elucidates the genetic variability, linkage disequilibrium, haplotype structure 

of CYP2R1 and GC in a healthy Caucasian population in late summer, in winter, after vitamin D3-

fortification and after UVB irradiation. These findings provide fundamental data for further analysis 

in the clarification of the relevance of genetic variation in the CYP2R1 and GC genes in relation to 

vitamin D-fortification strategies, health recommendations, disease susceptibility and use as a 

biomarker for low vitamin D status.  
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Abstract

Environmental factors such as diet, intake of vitamin D supplements and exposure to sunlight are known to influence serum
vitamin D concentrations. Genetic epidemiology of vitamin D is in its infancy and a better understanding on how genetic
variation influences vitamin D concentration is needed. We aimed to analyse previously reported vitamin D-related
polymorphisms in relation to serum 25(OH)D concentrations in 201 healthy Danish families with dependent children in late
summer in Denmark. Serum 25(OH)D concentrations and a total of 25 SNPs in GC, VDR, CYP2R1, CYP24A1, CYP27B1, C10or88
and DHCR7/NADSYN1 genes were analysed in 758 participants. Genotype distributions were in Hardy–Weinberg equilibrium
for the adult population for all the studied polymorphisms. Four SNPs in CYP2R1 (rs1562902, rs7116978, rs10741657 and
rs10766197) and six SNPs in GC (rs4588, rs842999, rs2282679, rs12512631, rs16846876 and rs17467825) were statistically
significantly associated with serum 25(OH)D concentrations in children, adults and all combined. Several of the SNPs were in
strong linkage disequilibrium, and the associations were driven by CYP2R1-rs10741657 and rs10766197, and by GC-rs4588
and rs842999. Genetic risk score analysis showed that carriers with no risk alleles of CYP2R1-rs10741657 and rs10766197,
and/or GC rs4588 and rs842999 had significantly higher serum 25(OH)D concentrations compared to carriers of all risk
alleles. To conclude, our results provide supporting evidence that common polymorphisms in GC and CYP2R1 are associated
with serum 25(OH)D concentrations in the Caucasian population and that certain haplotypes may predispose to lower
25(OH)D concentrations in late summer in Denmark.
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Introduction

Vitamin D deficiency is a widespread problem in developed
countries [1]. Severe vitamin D deficiency causes osteomalacia, or
childhood rickets, osteoporosis and fractures because of reduced
calcium absorption [2]. Low vitamin D concentrations may also be
related to various non-skeletal health outcomes, including cardio-
vascular diseases [3], obesity [4], diabetes [5], asthma [6], multiple
sclerosis [7], occurrence of a large range of cancer diseases [8] and
overall mortality [9,10].

In humans, vitamin D is produced mainly in the skin during
exposure to solar ultraviolet blue (UVB) radiation (270–300 nm)
[11]. UVB radiation converts 7-dehydrocholesterol (7-DHC) in
the skin to pre-vitamin D3, which immediately undergoes a
thermal isomerization to vitamin D3. Dietary sources provide two
forms of vitamin D: Vitamin D2 (ergocalciferol) derived from
invertebrates (plants and fungi) and vitamin D3 (cholecalciferol)
derived from animal sources. Ingested vitamins D2 and D3 are
absorbed in the small intestine and transported with chylomicrons
and lipoproteins to the liver, whereas dermally synthesized vitamin

D3 diffuses via the blood to the liver tightly bound to group-
specific complement (GC) [12].

Dietary or dermally synthesized vitamin D (hereafter ‘‘D’’ refers
to D2 and D3) undergoes a series of enzymatic conversions in the
liver and kidneys to become biologically active. The hepatic
enzyme 25-hydroxylase (CYP2R1) converts vitamin D to 25-
hydroxyvitamin D (25(OH)D). This is the major circulating form
of vitamin D in the blood. To become biologically active,
25(OH)D is converted to 1,25-dihydroxyvitamin D
(1,25(OH)2D). This occurs mainly in the kidneys, but also in
other tissues expressing the enzyme 25(OH)D-1a-hydroxylase
(CYP27B1). The biological effect of vitamin D is mediated when
1,25(OH)2D binds to the vitamin D receptor (VDR). To prevent
excessive vitamin D signalling in the target organs, 1,25(OH)2D
limits its own activity by inducing 24-hydroxylase (CYP24A1)
converting 1,25(OH)2D to the biologically inactive water-soluble
calcitroic acid which is excreted in the bile [1,12,13].

The best biomarker of vitamin D concentration is the serum
25(OH)D concentration. Approximately 25% of the inter-individ-
ual variability in plasma 25(OH)D concentrations can be
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explained by external factors such as diet, regular use of vitamin D
supplements and exposure to sunlight (dependent on season and
latitude) [14,15]. Genetic factors may contribute to vitamin D
concentrations. Results from twin and family-based studies
indicate that blood vitamin D concentrations to some extent are
under genetic control. The results have been inconsistent with a
wide variability in heritability estimates ranging from 23 to 80%
[15–21]. Furthermore, ethnic differences in vitamin D concentra-
tions have also been described [22].

Genetic epidemiology of vitamin D is in its infancy and a better
understanding of how genetic variation influences vitamin D
concentrations is needed. A growing number of studies have
uncovered polymorphisms associated with vitamin D concentra-
tions. By candidate gene analysis, five genes have been found,
including GC, CYP24A1, CYP2R1, CYP27B1 and VDR [23].
Recently, two genome-wide association studies (GWAS) of vitamin
D [24,25] confirmed the associations of common variants in GC
and CYP2R1 genes. Furthermore, nicotinamide adenine dinucle-
otide synthetase-1/7-dehydrocholesterol reductase (NADSYN1/
DHCR7), and the region harbouring the open-reading frame 88
(C10orf88) on chromosome 10q26.13 were also found to be
associated with vitamin D concentrations in blood.

In Denmark, low vitamin D status is common during the winter
due to inadequate dietary intakes and lack of solar radiation from
September to April [26]. We assessed vitamin D status in late
summer (September to October), where the Danes vitamin D
concentration peaks but are not saturated [27], in families with a
broad span in age in both children and adults. In children, the role
of genetic variation in determining serum 25(OH)D concentra-
tions is an understudied area.

In this study, we analysed previously reported vitamin D-related
polymorphisms in relation to serum 25(OH)D concentrations in
201 healthy Danish families with dependent children to confirm
previous findings and thus help identifying individuals that may
have increased risk of developing vitamin D insufficiency.

Subjects and Methods

Study population
The present cross-sectional study used baseline data from the

VitmaD intervention study described in detail elsewhere [28].
Briefly, 201 Danish families with dependent children (n = 782)
were enrolled. The participants were 4- to 60-years old. Baseline
blood samples were collected in September and October 2010 and
were obtained from 770 participants. The study was conducted
according to the guidelines in the Declaration of Helsinki and the
protocol was approved by the Research Ethics Committee of the
Capital Region of Denmark (H-4-2010-020) and registered at
http://clinicaltrials.gov (NCT01184716). All adult participants
and guardians on the behalf of the children participants gave
written consent to participate.

DNA extraction and genotyping
DNA was extracted from peripheral blood leukocytes as

described by Miller et al. [29] and stored in TE-buffer at -80uC.
The DNA was diluted to 10 ng/ml using a NanodropH ND-1000
Spectrophotometer (Thermo Fisher Scientific Inc., Wilmington).
Single nucleotide polymorphisms (SNPs) were genotyped using the
Sequenom MassARRAY iPLEX Gold platform (Sequenom, San
Diego, California) at the Department of Biomedicine, Aarhus
University, Denmark. Genotyping was successful for 762 partic-
ipants (99.0%). To confirm the accuracy of genotyping duplicate
samples (10%) yielded 100% reproducibility.

All SNPs were located in or near genes involved in vitamin D
synthesis, activation or degradation. The following SNPs were
selected on the basis of evidence of significant association in
previous studies: CYP2R1 (rs1562902; rs7116978; rs10741657;
rs10766197) CYP24A1 (rs229624; rs2426496; rs4809960;
rs6013897; rs17219315) CYP27B1 (rs10877012) C10orf88
(rs6599638) DHCR7/NADSYN1 (rs1790349; rs12785878) GC
(rs4588; rs222020; rs842999-triallelic; rs2882679; rs2298849;
rs12512631; rs16846876; rs17467825) VDR (rs731236 (TaqI),
rs757343 (TruI); rs7139166; rs10783219).

Deviation from Hardy–Weinberg equilibrium (HWE) was
tested for the adult population using Chi-square test with
Bonferroni’s correction (P-value 0.05/25 SNPs = 0.002). No
significant deviation from HWE was observed. Linkage disequi-
librium (LD) between polymorphisms was evaluated using
Pearsons’ r, SNAP version 2.2 (http://www.broadinstitute.org/
mpg/snap/ldsearchpw.php) and Haploview software version 4.2
for the adult population.

Measurement of serum 25(OH)D concentrations
Measurements of serum 25(OH)D concentrations are described

in detail elsewhere [28]. Briefly, blood samples were obtained
without prior fasting and serum was stored in aliquots at –80uC
until analysis. Measurements of serum 25(OH)D concentrations
relied on the determination of both 25(OH)D2 and 25(OH)D3 and
were conducted by isotope dilution liquid chromatography
tandem mass spectrometry (LC-MS/MS) at Clinical Biochemical
Department, Holbæk Hospital, Denmark. As primary calibrator
the standard reference material, vitamin D in humans (SRM 972)
from the National Institute of Standards and Technology was
used. The analytic quality of 25(OH)D assay was assured by
Vitamin D External Quality Assessment Scheme certification and
the mean bias was –3.2%. The Inter-assay CVs for 25(OH)D2

were 7.6% and 4.6% at 43 and 150 nmol/L, respectively, and for
25(OH)D3 2.2% and 2.8% at 30 and 180 nmol/L, respectively
[28]. Of the 762 participants that were successfully genotyped,
baseline serum 25(OH)D concentrations were measured for 758
participants.

Statistical analysis
Statistical analyses were performed using SAS Enterprise Guide

4.3 (SAS Institute, Inc., Cary. USA). Serum 25(OH)D concentra-
tions were log transformed to approximate a normal distribution
and all means are presented as geometric means. A nominal P-
value of 0.05 was considered statistically significant. Linear mixed
models with family as a random factor were applied to account for
the possible dependence between the participants. Furthermore, in
the linear mixed models the following categorical variables were
included: age (4–11, 12–17, 18–40, 41–60 years), sex (male,
female), BMI (underweight, normal weight, overweight, obese)
according to standards for children [30] and the WHO
International standards for adults [31], ski or sun holidays (yes,
no), solarium use at least once a week (yes, no), dietary vitamin D
(quartiles: ,1.7, 1.7–2.4, 2.5–3.3 and .3.3 mg/d), multivitamin
and vitamin D supplement users (yes, no). The data were obtained
from a self-administered web-based questionnaire and a semi-
quantitative food frequency questionnaire based on the last six
months. Pearson’s r were calculated on the adult population and
were used to assess the degree of linkage between linked SNPs.
Haplotypes were inferred manually among the adults, only since
the children were not population-based. The inferred haplotype
combinations described 100% and 97% of the observed genotypes
among the adults for CYP2R1 and GC genes, respectively. Among
the children the inferred haplotype combinations described 100%
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and 96% of the observed genotypes for CYP2R1 and GC genes,
respectively. Each derived haplotype was assigned a number.
Homozygote haplotype combinations were numbered with two
identical numbers e.g. 11. The combinations of heterozygote
haplotypes were given by the combination of the number of each
haplotype e.g. 1+ 2 = 12.

Genetic risk scores were calculated as the sum of risk alleles and
included as risk factors in linear mixed models adjusted for family
and confounding variables. The correlation coefficient for
rs10741657, rs10766197, rs4588 and rs842999 were very similar
and therefore it was not necessary to weight the score by effect
size. All the analyses were performed separately for children,
adults and for all combined.

Results

Genotyping and serum 25(OH)D concentrations were available
for 758 participants. Table 1 summarizes the basic characteristics
of the study population, previously described in detail elsewhere
[28]. The median age among children was 10 years (range: 4 to17)
among adults 41 years (range: 18 to 60) and for all combined 30
years.

Associations between genotypes and serum 25(OH)D concen-
trations are shown for children, adults and all combined in Table
2. After adjustment for family and confounding factors, all four
analysed SNPs in CYP2R1 were statistically significantly associated
with serum 25(OH)D concentrations in all three groups. Further-
more, for all three groups none of the analysed SNPs in CYP24A1,
CYP27B1, C10orf88 and DHCR7/NADSYN1 were statistically
significantly associated with serum 25(OH)D concentration. For
all three groups all analysed SNPs in GC, except rs2298849 (in all
three groups) and rs222020 (in adults and all), were statistically
significantly associated with serum 25(OH)D concentration. The
VDR rs731236 was only statistically significantly associated with
25(OH)D concentration in all combined and rs757343 was
statistically significant in children and all combined. Only SNPs
that were statistically significantly associated with 25(OH)D
concentrations in children, adults and all combined were included
in further analyses.

Haplotype and genetic risk score analysis of CYP2R1
In the adult population, rs10741657-rs7116978 (Pearson’s r

= 0.90), and rs1076697-rs1562902 (Pearson’s r = –0.86, data not
shown) were in strong LD. To establish which of the SNPs had the
strongest association to serum 25(OH)D concentrations, we assess

the association between one SNP and serum 25(OH)D concen-
trations while adjusting for the other SNPs, family and confound-
ing factors in a linear mixed model. After adjustment, rs10766197
(p = 0.0846) had the strongest association compared to rs1562902
(p = 0.8211), and rs10741657 (p = 0.2545) had the strongest
association compared to rs7116978 (p = 0.3087, data not shown).
In further analysis only rs1076697 and rs10741657 were included.

The two CYP2R1 variants rs10741657 and rs7116978 formed
four haplotypes, where haplotype 1 and 2 were most frequent
(Table 3). The possible combinations of the four homozygote
haplotype are shown in table 3. One genotype combination could
be assigned to both haplotype combinations 12 or 34, but based on
the observed haplotype frequencies, the most likely combination
was 12. After adjustment for family and confounding factors,
carriers of 2 copies of the AG-haplotype (haplotype combination
33) had the highest mean serum 25(OH)D concentration (73.8
(60.1–90.6), 72.9 (57.3–92.5) and 81.3 (66.4–99.6) nmol/L) in
children, adults and all combined, respectively. In a linear mixed
model, only the homozygous haplotype combinations were
included and haplotype combination 44 was excluded because
only two participants carried this haplotype combination. The
homozygous haplotype combinations were significantly associated
with serum 25(OH)D concentrations (p = 0.0059, 0.0450 and
0.0007) in children, adults and all combined, respectively.

We calculated a genetic risk score (range 0–4) as the sum of the
number of G-alleles of rs10741657 and A-alleles of rs10766197
(Figure 1, A). After adjustment for family and confounding factors,
carriers of no risk alleles had significantly higher serum 25(OH)D
concentrations (74.0 (60.3–90.0), 73.0 (57.5–92.6) and 81.3 (66.4–
99.5) nmol/L) compared to carriers of all four risk alleles (61.2
(57.5–92.6), 64.0 (50.6–80.9) and 69.8 (57.0–85.4) nmol/L) in
children, adults and all combined, respectively. Overall, there was
20.9, 14.1 and 16.5% difference in serum 25(OH)D concentra-
tions between carrying no risk alleles and carrying all four risk
alleles in children, adults or all combined, respectively.

Haplotype and genetic risk score analysis of GC
In the adult population, rs4588 was in strong LD with

rs2282679 (Pearson’s r = 0.997), rs17467825 (Pearson’s r = 0.997)
and rs16846876 (Pearson’s r = 0.805). Furthermore, rs17467825-
rs2282679 (Pearson’s r = 1.00), and rs2282679-rs16846876 (Pear-
son’s r = 0.8021, data not shown) were also in strong LD. To
establish which of the 4 SNPs had the strongest association to
serum 25(OH)D concentrations, we assess the association between
one SNP and serum 25(OH)D concentrations while adjusting for

Table 1. Basic characteristics of the study population and determinants of serum 25(OH)D concentrations

Characteristics Children Adults All

Number 348 414 762

Female/Male (n/n) 181/167 209/205 390/372

Age, median (range) 10 (4–17) 41 (18–60) 30 (4–60)

BMI (kg/m2)* 17.4462.89 25.4764.30 21.7965.45

Serum 25(OH)D (nmol/L)* 74.38617.31 74.87621.70 74.65619.82

Dietary Vitamin D (mg/d)* 2.6961.35 2.9662.04 2.8461.77

Multivitamin or vitamin D supplement users (yes/no) 141/203 113/297 254/500

Solarium use (yes/no) 2/342 10/401 12/743

Ski or sun holidays (yes/no) 195/149 220/191 415/340

*Mean 6 SD.
doi:10.1371/journal.pone.0089907.t001
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the other SNPs, family and confounding factors in a linear mixed
model. The strongest association was observed for rs4588
(p = 0.0099) compared to rs2282679 (p = 0.0230), rs17467825
(p = 0.0230) and rs16846876 (p = 0.5669, data not shown). Further
analyses only included rs4588. None of the other GC-variants were
in LD.

The three significant GC-variants (rs4588, rs842999, and
rs12512631) formed five haplotypes, where haplotype 1 and 2
were the most frequent (Table 4). The combinations of the five
haplotypes are shown in table 4. The five haplotypes could explain
723 of the 762 (95%) observed genotype combinations in GC (data
not shown). The association between haplotype combinations and
serum 25(OH)D concentrations was statistically significant in
children (p = 0.0344), and all combined (p = 0.0018) but not in
adults (p = 0.1541).

Carriers of haplotype combination 22 encompassing the variant
alleles of rs4588 and rs842999 had low serum 25(OH)D
concentrations. Conversely, carriers of haplotype combination
11 encompassing the variant allele of rs12512631 had high serum
25(OH)D concentration. Thus, the variant allele of rs12512631
was associated with high low serum 25(OH)D concentrations and
the variant alleles of rs4588 and rs842999 were associated with low
serum 25(OH)D concentrations. Since the lowest serum 25(OH)D
concentrations were observed for haplotype combination 22

carriers, this could indicate that rs4588 is the biologically relevant
polymorphism rather than rs842999 since haplotype combination
44 encompassing the C-allele of rs842999 is associated with higher
serum 25(OH)D concentrations.

The genetic risk score (range 0–4) was calculated as the sum of
the number of A-alleles of rs4588 and C/A-alleles of rs842999
(Figure 1, B). After adjustment for family and confounding factors,
we found that an increasing number of risk alleles was associated
with lower serum 25(OH)D concentrations. Carriers of no risk
alleles had significantly higher serum 25(OH)D concentrations
(68.1 (56.2–82.6), 81.0 (64.2–102.2) and 86.5 (70.9–105.5) nmol/
L) compared to carriers of all four risk alleles (50.3 (40.3–62.7),
67.5 (53.6–84.9) and 70.1 (57.2–84.8) nmol/L) in both children,
adults and all combined, respectively. Overall, there was a mean
difference in 25(OH)D concentrations of 35.4, 20.0 and 23.4%
between carrying no risk alleles and carrying all four risk alleles in
children, adults and all combined, respectively.

For the tri-allelic variant rs842999, there was a dose-dependent
relationship between serum 25(OH)D concentrations and carriage
of none, one or two copies of the G-allele (Figure 2). Thus, carriers
of two copies of the G-allele, had statistically significantly higher
serum 25(OH)D concentrations (69.2 (56.8–84.3), 79.0 (62.8–99.4)
and 84.8 (69.6–103.4) nmol/L) compared to carriers of only one
G–allele (65.6 (53.9–79.9), 73.7 (58.8–92.4) and 79.0 (64.9–96.1)

Figure 1. Genetic risk score for CYP2R1 (rs10741657 and rs10766197) (Figure A), GC (r4588 and rs842999) (figure B) and CYP2R1
(rs10741657 and rs10766197) and GC (r4588 and rs842999) (figure C) in children, adults and all combined. X-axis stands for the sum of
risk alleles. Y-axis stand for serum 25(OH)D (nmol/L). Errors bars stand for 95%-confidence interval and serum 25(OH)D concentrations are given as
geometric means. Linear mixed models with family as a random factor, adjusted for age, sex, BMI, ski and sun holidays, solarium use at least once a
week, dietary vitamin D intake, multivitamin and vitamin D supplement users was conducted to compare sum of risk alleles and serum 25(OH)D
concentrations. Increasing number of risk alleles give rise to decreasing 25(OH)D concentrations.
doi:10.1371/journal.pone.0089907.g001
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nmol/L) in children, adults and all combined, respectively. The
lowest serum 25(OH)D concentrations were observed in non-
carriers of the G-allele (59.5 (48.7–72.6), 67.4 (53.8–84.4) and 72.8
(59.7–88.8) nmol/L) in both children, adults and all combined,
respectively.

Finally, we made a joint genetic risk score analysis including
CYP2R1 (rs10741657 and rs10766197) and GC (rs4588 and
rs842999) (Figure 1, C). The genetic risk score (range 0–8) was
calculated as the sum of the number of G-alleles of rs10741657, A-
alleles of rs10766197, A-alleles of rs4588 and C/A-alleles of
rs842999 (Figure 1, C). After adjustment for family and
confounding factors, carriers of no risk alleles had statistically
significantly higher 25(OH)D concentrations (78.4 (63.6–96.7),
86.3 (66.1–112.7) and 89.0 (72.0–110.0) nmol/L) compared to
carriers of all eight risk alleles 43.4 (32.4–58.2), 55.3 (37.5–81.4)
and 53.0 (39.6–70.9) nmol/L) in children, adults and all
combined, respectively. Overall there was a mean difference in
25(OH)D concentrations of 80.6, 56.1 and 67.9% between
carriage of no risk alleles and carriage of all four risk alleles in
children, adults and all combined, respectively.

Discussion

In this present study, we studied the association of 7 prominent
vitamin D-related genes with serum 25(OH)D concentrations in
201 Danish families with dependent children in late summer in
Denmark, and found that common variants in CYP2R1 and GC
genes were statistically significantly associated with serum
25(OH)D concentrations.

The CYP2R1 gene encodes the key enzyme that converts
vitamin D to 25(OH)D in the liver [12] and thus genetic variation
in this gene might affect 25(OH)D synthesis. We found that
CYP2R1 variants rs1562902, rs7116978, rs10741657 and
rs10766197, were significantly associated with serum 25(OH)D
concentrations in both children, adults and all combined.
Furthermore, rs10741657-rs7116978, and rs10766197-rs1562902
were in strong LD. The association appeared to be driven by
rs10741657 and rs10766197, which are located in the promoter
region of the CYP2R1 gene. We found that non-carriers of

rs10741657 and rs10766197 risk alleles had the highest mean
serum 25(OH)D concentrations.

Our results are consistent with previous findings. In the study of
Wjst et al. [21], rs10766197 was significantly associated with
25(OH)D concentrations in 872 subjects from the German
Asthma Family Study. Ramos-Lopez et al. [32] found a
statistically significant association between rs10741657 and serum
25(OH)D concentrations in 203 German diabetes families. Two
genome-wide association studies (GWAS) of vitamin D concen-
trations were published in 2010 [24,25]. Ahn et al. [24] performed
a combined meta-analyses in 4,501 subjects from five adult
Caucasian cohorts and found that rs2060793, which is in LD with
rs10741657 (D = 1, r2 = 1, HapMap Data Rel 24/phase II Nov
08), was associated with serum 25(OH)D concentrations. Further-
more, these findings were successfully replicated in 2,221 subjects.
Wang et al. [25] found that rs10741657 was significantly
associated with 25(OH)D concentrations in 30,000 subjects of
European descent from 15 cohorts. In the study of Bu et al. [33],
rs10741657 and rs10766197 were found to be significantly
associated with serum 25(OH)D concentrations in 496 unrelated
healthy Caucasian subjects. Lasky-Su et al. [34] conducted a
combined analysis in 1,164 subjects from two cohorts of Caucasian
and Costa Rica asthmatic children and found that rs10741657 was
significantly associated with 25(OH)D concentrations. Zhang et al.
[35] found that rs10766197 was significantly associated with
25(OH)D concentrations in 2,897 unrelated healthy Chinese
subjects from the Shanghai Osteoporosis Study. In the study of
Engelman et al. [36], rs2060793 (in LD with rs10741657 as
mentioned previously) was significantly associated with 25(OH)D
concentrations in 1,204 women of European descent from the
Women’s Health Initiative Observational Study. All the afore-
mentioned studies demonstrate that variants in the CYP2R1 gene
predicts 25(OH)D concentrations.

The GC gene encodes the vitamin D binding protein (DBP) that
binds and transports blood 25(OH)D and other vitamin D
metabolites to their target organs. Less than 0.04% of blood
25(OH)D circulates in free form (bioavailable). Most is bound with
high affinity to DBP (83–85%) and with lower affinity to albumin

Figure 2. Dose-dependent relationship between genotype GG, GX and XX of rs842999 and serum 25(OH)D concentrations. X-axis
stands for genotype GG (GG), GX (GC or GA) and XX (CC, CA or AA) of rs842999. Y-axis stand for serum 25(OH)D (nmol/L). Errors bars stand for 95%-
confidence interval and serum 25(OH)D concentrations are given as geometric means. Linear mixed models with family as a random factor, adjusted
for age, sex, BMI, ski and sun holidays, solarium use at least once a week, dietary vitamin D intake, multivitamin and vitamin D supplement users was
conducted to compare rs842999 genotypes with serum 25(OH)D concentrations. There was a dose-dependent relationship between serum 25(OH)D
concentrations and carriers of none, one or two copies of the G-allele. Carriers of two copies of the G-allele, had higher serum 25(OH)D
concentrations compared to carriers with only one G-allele or non-carriers in children, adults and all combined, respectively.
doi:10.1371/journal.pone.0089907.g002

CYP2R1 and GC Genes Predict Vitamin D Levels

PLOS ONE | www.plosone.org 10 February 2014 | Volume 9 | Issue 2 | e89907



(12–15%) [37]. Variants in the GC gene may affect the DBP
binding and bioavailability of 25(OH)D and other vitamin D
metabolites. Thus, there may be a relationship between phenotype
and blood 25(OH)D concentrations.

There is accumulating evidence that variants in the GC gene are
associated with 25(OH)D concentrations. The most studied GC-
variants are rs4588 and rs7041, giving three common GC-
isoforms, GC1F (rs7041-T, rs4588-C), GC1S (rs7041-G, rs4588-
C), and GC2 (rs7041-T, rs4588-A), which differ by amino acid
substitutions and/or by glycosylation (Gozdzik et al. 2011). Several
studies have shown that vitamin D status differs significantly
depending on rs4588 and/or rs7041 genotype, where the A-allele
of rs4588 and the T-allele of rs7041 are consistently associated
with lower 25(OH)D concentrations [17,38–45]. In agreement, we
found that the A-allele of rs4588 is associated with lower 25(OH)D
concentrations. There is biological support that the affinity of both
25(OH)D and 1,25(OH)2D is higher for the C-allele of rs4588 than
for the A-allele [46]. Based on glycosylation patterns, it is
suggested that GC2 phenotypes that is associated with low vitamin
D concentrations should be metabolized faster. Kawakami et al.
observed that the metabolic rate was indeed higher in GC2-2
individuals than in GC1-1 individuals [47]. In addition, the GC2
genotype, which is associated with low 25(OH)D concentrations, is
also associated with low mean DBP [43]. Strangely, the GC2
genotype is more frequent in populations living in northern
climates [48].

Since the two GWAS studies [24,25] found a strong association
between rs2282679 and 25(OH)D concentrations, there has been
increased focus on this polymorphism. Several studies have been
published supporting the finding [22,34,35,49–51]. The GWAS
GC variant rs2282679 is in high LD with rs4588. Wang et al. [25]
did not include rs4588 because it is not in the HapMap dataset. In
one study sample the authors found that rs4588 was in LD with
several associated variants from the GWAS study. In the study of
Lu et al. [45], rs4588 and rs2282679 (r2 = 0.97) were significantly
associated with 25(OH)D concentrations in 3,210 Han Chinese. In
the study by Berry et al. [52], rs4588 was in strong LD with
rs228697 (r2 = 0.98), and rs4588 was significantly associated with
25(OH)D concentrations in 6,551 subjects from the British birth
cohort. Zhang et al. [35] found that 2282679 and rs4588 were in
strong LD in 2,897 unrelated healthy Chinese subjects and the
strongest association was observed for rs4588, which accounted for
0.7% of the variation in serum 25(OH)D concentrations. Our
results support that rs228697 is in strong LD with rs4588
(Pearson’s r = 0.997, SNAP proxy D’ = 1 r2 = 0.98) and that the
association with serum 25(OH)D concentrations is most likely
driven by rs4588. Zhang et al. [35] argued that it is unlikely that
rs2282679 in itself is the disease-causing variant. The possible
causal variant is the non-synonymous rs4588, where the C/A base
pair change in codon 436 (previously known as 420 [36]) causes a
Thr to Lys amino acid substitution. In agreement with Zhang et al.
[35] we found that rs4588 was the strongest independent predictor
of 25(OH)D concentrations compared to rs2282679. Furthermore,
Zang et al [35] found that both the minor T-allele of rs4588 and
G- allele of rs2282679 were associated with reduced DBP
concentrations. Participants with 3 or 4 risk alleles of the two
variants were more likely to have vitamin D concentrations lower
than 50 nmol/L (20 ng/mL) compared with non-carriers of the
risk alleles.

In our study, several of the significant GC variants were in strong
LD and the strongest associations with serum 25(OH)D concen-
trations were observed for rs4588 and rs842999. We observed a
dose-dependent relationship between carrying none, one or two
copies of the G-allele of the tri-allelic rs842999 and 25(OH)D

concentrations. Furthermore, genetic risk score analysis for rs4588
and rs842999 showed that non-carriers of the risk alleles of rs4588
and rs842999 had the highest serum 25(OH)D concentrations.

We made a joint genetic risk score analysis for all four risk
variants (CYP2R1-rs10741657 and rs10766197, and GC-rs4588
and rs842999), and found the largest%-range in mean serum
25(OH)D concentrations (80.6, 56.1 and 67.9%) compared to
genetic risk score analysis of CYP2R1 (rs10741657 and
rs10766197; 20.9, 14.1 and 16.5%) or GC (rs4588 and rs842999;
35.4, 20.0 and 23.4%) indicating an additive effect. In general,
there was a better association between genetic risk score and serum
25(OH)D concentrations in children than in adults. We speculate
that the more risk alleles in CYP2R1 and GC genes a subject
carries, the more prone the subject will be for having a low serum
25(OH)D concentration. In Denmark, sufficient serum 25(OH)D
concentrations are defined as .50 nmol/L [53]. Notably, in late
summer in Denmark, where vitamin D status peaks in Danes,
children carrying 7 or 8 risk alleles had insufficient serum
25(OH)D concentrations (49.4 and 43.4 nmol/L).

In our study population, none of the investigated SNPs in
CYP24A1, CYP27B1, C10orf88 or DHCR7/NADSYN1 were associ-
ated with serum 25(OH)D concentrations. Furthermore, VDR-
rs731236 was only statistically significant in all combined and
rs757343 was statistically significant in children and all combined.
False-positive (type 1 errors) results, which are common in studies
of the association between genetic markers and outcomes, and the
relative small sample size, resulting in statistical reduced power
might explain these findings. We consider children and adults as
two natural subpopulations due to biological differences, difference
in lifestyle, eating patterns and use of multivitamins [28]. We did
not use Bonferroni-corrected P-values because a statistically
significant association both in children and in adults by itself
may be considered a confirmation of an association. A limitation
of the study is that the participants’ general vitamin D status relies
on a single measurement of serum 25(OH)D concentration. We
were not able to calculate the genetic contribution due to the
familiar design used in the linear mixed model. A strength of this
study is that it is conducted in a healthy Caucasian population and
thus the potential impact of diseases is minimized. Furthermore,
the blood samples were collected in a relatively small geographical
area in Denmark in September to October 2010 and analysed in a
single batch with LC-MS/MS with low variation. Furthermore,
many known predictors of serum 25(OH)D concentrations were
assessed by questionnaire data.

Genetic variants may accelerate or protect against vitamin D
deficiency and the genetic effect is life-long. We speculate that
individuals with genetically determined low vitamin D concentra-
tions may need different health recommendations in order to
improve their serum 25(OH)D concentrations thereby avoiding
adverse health outcomes. A study by Engelman et al. [36] found
that in women with no risk alleles of rs4588 and rs2060793 (in
strong LD with rs10741657 as mentioned previously) who
consumed at least 670 IU/d vitamin D all (100%) had 25(OH)D
. 50 nmol/L. For women carrying 1, 2 or 3–4 risk alleles and
consuming at least 670 IU/d vitamin D, only 84, 72, and 62% had
25(OH)D . 50 nmol/L. Furthermore, the percentage of women
with adequate 25(OH)D concentrations rose with each increasing
quartile of vitamin D intake. Thus, subjects with genetic
predisposition seem to benefit from dietary vitamin D supplemen-
tation. In the study by Madsen et al. [28], vitamin D3-fortification
of bread and milk reduced the decrease in serum 25(OH)D
concentrations seen during winter and ensured 25(OH)D
.50 nmol/L in healthy Danish families. Whether such a dietary
intervention program could ensure adequate serum 25(OH)D
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concentrations in subjects with genetic predisposition for vitamin
D deficiency warrants further study.

Conclusions

In conclusion, our results support the current evidence that
common genetic variation in GC and CYP2R1 may contribute to
the variation of serum 25(OH)D concentrations in a healthy
population. Notably, genetic risk score analysis revealed that non-
carriers of risk alleles of CYP2R1 rs10741657 and rs10766197,
and/or GC rs4588 and rs842999 had statistically significantly
higher serum 25(OH)D concentrations compared to carriers of all
risk alleles.
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Abstract Common genetic variants rs10741657 and
rs10766197 in CYP2R1 and rs4588 and rs842999 in GC

and a combined genetic risk score (GRS) of these four

variants influence late summer 25-hydroxyvitamin D
(25(OH)D) concentrations. The objectives were to identify

those who are most at risk of developing low vitamin D

status during winter and to assess whether vitamin D3-
fortified bread and milk will increase 25(OH)D concen-

trations in those with genetically determined low 25(OH)D

concentrations at late summer. We used data from the
VitmaD study. Participants were allocated to either vitamin

D3-fortified bread and milk or non-fortified bread and milk
during winter. In the fortification group, CYP2R1

(rs10741657) and GC (rs4588 and rs842999) were statis-

tically significantly associated with winter 25(OH)D con-
centrations and CYP2R1 (rs10766197) was borderline

significant. There was a negative linear trend between

25(OH)D concentrations and carriage of 0–8 risk alleles
(p \ 0.0001). No association was found for the control

group (p = 0.1428). There was a significant positive linear

relationship between different quintiles of total vitamin D
intake and the increase in 25(OH)D concentrations among

carriers of 0–2 (p = 0.0012), 3 (p = 0.0001), 4

(p = 0.0118) or 5 (p = 0.0029) risk alleles, but not among
carriers of 6–8 risk alleles (p = 0.1051). Carriers of a high

GRS were more prone to be vitamin D deficient compared

to carriers of a low GRS. Furthermore, rs4588-AA carriers
have a low but very stable 25(OH)D concentration, and

interestingly, also low PTH level.

Keywords SNPs ! Vitamin D ! 25-Hydroxyvitamin D !
D3-fortification ! Genetic risk score ! Vitamin D

insufficiency
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RDA Recommended dietary allowance
RI Recommended intakes

25(OH)D 25-Hydroxyvitamin D

SNPs Single-nucleotide polymorphisms
UVB Ultraviolet B radiation

Introduction

In northern latitudes ([40!N), low vitamin D status in

humans, measured as 25-hydroxyvitamin D (25(OH)D)

concentrations, is common during winter months. This is
because vitamin D cannot be synthesized in the skin due to

the lack of solar ultraviolet B radiation (UVB) and because

the average dietary intake of vitamin D is insufficient
(Thuesen et al. 2012). Moreover, twin- and family-based

studies indicate that genetic factors may influence

25(OH)D concentrations appreciably (Engelman et al.
2008; Shea et al. 2009; Karohl et al. 2010). Two genome-

wide association studies (GWAS) and several candidate
gene studies have shown single-nucleotide polymorphisms

(SNPs) to influence 25(OH)D concentrations (Engelman

et al. 2008; Sinotte et al. 2009; Bogh et al. 2010; Ahn et al.
2010; Bu et al. 2010; Zhang et al. 2012; Monticielo et al.

2012; Engelman et al. 2013; Zhang et al. 2013; Nissen

et al. 2014). These SNPs are located in the group-specific
component also known as Gc globulin (GC) and in or near

genes involved in vitamin D synthesis, activation or deg-

radation. These findings indicate that 25(OH)D concen-
trations do not only depend on vitamin D intake and sun

exposure, but also on genetic factors. Thus, genetic factors

may help to identify individuals at risk of low vitamin D
status.

We have previously found genetic variants in CYP2R1

(rs10741657 and rs10766197) and GC (rs4588 and
rs842999) genes to predict late summer 25(OH)D con-

centrations in Danish families in a study of 25 SNPs in

vitamin D metabolism (Nissen et al. 2014). The main focus
of this study is therefore on the influence of rs10741657

and rs10766197 in CYP2R1, and rs842999 and rs4588 in

GC on 25(OH)D concentrations in participants allocated to
either vitamin D3-fortified bread and milk or non-fortified

bread and milk during winter.

CYP2R1, a member of the cytochrome P450 family of
enzymes, is the primary enzyme that hydroxylates vitamin

D to 25(OH)D in the liver. Genetic variants of the CYP2R1

gene are strongly associated with 25(OH)D concentration
(Wjst et al. 2006; Ramos-lopez and Brück 2007; Bu et al.

2010; Zhang et al. 2012, 2013; Nissen et al. 2014) and

reached a high score in two GWAS (Ahn et al. 2010; Wang
et al. 2010). Furthermore, Ahn et al. (Ahn et al. 2010)

observed heterogeneity between different cohorts in the

GWAS and the association of 25(OH)D concentration with
CYP2R1. A missense mutation in CYP2R1 in exon 2

(L99P) is known to lead to vitamin D deficiency (Cheng

et al. 2004).
Genetic variants in the GC gene reached the highest

score in two GWAS (Ahn et al. 2010; Wang et al. 2010),

and several candidate gene studies have found association
with 25(OH)D concentrations (Lauridsen et al. 2005; Ku-

rylowicz et al. 2006; Abbas et al. 2008; Engelman et al.
2008; Sinotte et al. 2009; Fu et al. 2009; Gozdzik et al.

2011; Lu et al. 2012; Nissen et al. 2014).

The GC gene encodes the vitamin D-binding protein
(DBP), which is the primary vitamin D carrier protein.

DBP binds with high affinity 85–90 % of circulating

25(OH)D, albumin binds with low affinity 10–15 % of
circulating 25(OH)D and less than 1 % of 25(OH)D is in

the free form (Bikle et al. 1986). The main function of DBP

is to stabilize and prolong the half-life of 25(OH)D and
other vitamin D metabolites (Speeckaert et al. 2006). DBP

has several other important biological functions including

fatty acid transportation, extracellular actin scavenging,
leucocyte C5a-mediated chemotaxis, macrophage activa-

tion and stimulation of osteoclasts (Pekkinen et al. 2014).

The most studied GC SNPs are rs4588 and rs7041 that
give rise to three common DBP isoforms, GC1F (rs7041-T,

rs4588-C), GC1S (rs7041-G, rs4588-C) and GC2 (rs7041-

T, rs4588-A), which differ by amino acid composition and
glycosylation (Gozdzik et al. 2011). Vitamin D status dif-

fered significantly depending on rs4588 (or rs2282679,

r2 [ 0.99) and/or rs7041 genotypes, where the A-allele of
rs4588 and/or the T-allele of rs7041 were consistently

associated with lower 25(OH)D concentrations (Lauridsen

et al. 2005; Kurylowicz et al. 2006; Abbas et al. 2008;
Engelman et al. 2008; Sinotte et al. 2009; Fu et al. 2009;

Gozdzik et al. 2011; Lu et al. 2012). In Caucasian, rs4588

and rs7041 are in almost complete linkage disequilibrium
(LD) (Haploview software version 4.2). There is biological

support that the affinity to both 25(OH)D and 1,25(OH)2D

is higher for the rs4588 C-allele isoform than for the
A-allele isoform (Arnaud and Constans 1993). Based on

glycosylation patterns, it is suggested that the GC2 phe-

notype is fast metabolizer. Kawakami et al. (1981)
observed that the metabolic rate indeed was higher in GC2-

2 individuals than in GC1-1 individuals. In addition, the

GC2 genotype, which is associated with lower 25(OH)D
concentrations, is also associated with low mean DBP

concentration (Lauridsen et al. 2005). The GC2 and GC1S

isoforms are more frequent in people with light skin
whereas the GC1F isoform is more frequent in people with

dark skin (Kamboh and Ferrell 1986).

Measurement of 25(OH)D concentration in blood is
currently the best biological marker of vitamin D status and
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reflects total vitamin D exposure—from diet, supplements

and cutaneous synthesis. Severe vitamin D deficiency
(\12 nmol/L) is a medical condition associated with

osteomalacia in adults and rickets in children. Vitamin D

deficiency can lead to osteoporosis due to increased bone
resorption caused by increased serum concentrations of

parathyroid hormone (PTH) (Holick 2007). Moreover,

vitamin D deficiency is associated with muscle weakness,
falls and osteoporotic fractures (Lips and van Schoor

2011). Maintaining a sufficient vitamin D status
([50 nmol/L) is important, not only for bone health, but

also because vitamin D deficiency may be associated with

various non-skeletal health outcomes (Borradale and
Kimlin 2009). Thus, a sufficient vitamin D status may have

a disease risk-reduction potential (Grant 2011). Moreover,

a U-shaped association exists between 25(OH)D concen-
trations and risk of cardiovascular disease, certain cancers

and overall mortality (Ross et al. 2011).

There is an on-going international discussion regarding
which cut-off values should define sufficient 25(OH)D

concentrations. There is a general agreement that a

25(OH)D concentration of at least 50 nmol/L is sufficient
(Ross et al. 2011; Nordic Council of Ministers 2014).

Concurrently, some experts argue that a 25(OH)D con-

centration [75 nmol/L is required to achieve sufficient
vitamin D status and non-skeletal benefits (Holick and

Chen 2008; Zhang and Naughton 2010).

It is not easy to determine which doses of vitamin D are
required to achieve sufficient 25(OH)D concentrations. The

Institute of Medicine (IOM) recently reported that a rec-

ommended dietary allowance (RDA) of 15 lg/day for
individuals aged 1–70 years will cover the requirement for

97.5 % of the population in the USA and Canada, corre-

sponding to 25(OH)D concentrations of at least 50 nmol/L
(Ross et al. 2011). Recently, the recommended intakes (RI)

for vitamin D in the Nordic countries were increased from

7.5 to 10 lg/day for individuals aged 2–60 years. This will
cover the requirement for 95 % of the Nordic population

(Nordic Council of Ministers 2004; Nordic Council of

Ministers 2014). Both IOM and Nordic nutrition recom-
mendations (NNRs) 2012 based their RDA and RI on the

relationship between 25(OH)D concentrations and bone

health.
It is a public health concern that vitamin D intakes in

most populations are lower than the RDA or RI (Andersen

et al. 2005; Madsen et al. 2013; Nordic Council of Min-
isters 2014). Food fortification is an effective way to

increase vitamin D intake in the general population

(O’Mahony et al. 2011), thus ensuring that the general
vitamin D intake aligns with the recommendations. During

wintertime, a dietary intake of 10 lg/day is needed to

maintain 25(OH)D concentrations around 50 nmol/L for
the majority of the population in the Nordic countries. For

people with little or no sun-exposure, an intake of 20 lg/

day of vitamin D is recommended (Nordic Council of
Ministers 2014). In Denmark, the mean dietary vitamin D

intake is between 2.0 and 2.9 lg/day and does not meet the

recommendations for the majority of the population (Te-
tens et al. 2011). Thus, during wintertime in Denmark,

50–90 % of the population will develop deficient vitamin

D status between 30 and 50 nmol/L (Andersen et al. 2005;
Thuesen et al. 2012; Madsen et al. 2013).

The main objective of this study was to assess the effect
of real-life use of vitamin D3-fortified bread and milk on

25(OH)D concentrations in relation to common genetic

variants in CYP2R1 (rs10741657 and rs10766197) and GC
(rs4588 and rs842999) in ethnic Danish families with

dependent children during a 6-month winter period and

furthermore to assess whether vitamin D supplementation
will increase 25(OH)D concentration in those with genet-

ically determined low 25(OH)D concentrations. A sec-

ondary objective was to evaluate the amount of vitamin D
needed to maintain a sufficient 25(OH)D concentrations

[50 nmol/L.

Participants and methods

Study design

The present study used data from the VitmaD intervention
conducted in Gladsaxe Municipality in Denmark (latitude

56!N). The study design and methods are described in

detail elsewhere (Madsen et al. 2013). Briefly, a double-
blinded, randomized placebo-controlled intervention trial

with apparently healthy ethnically Danish children and

adults recruited as families was randomly allocated to
either vitamin D3-fortified bread and milk or non-fortified

placebo bread and milk during a 6-month winter period

(September 2010 to April 2011) without sunlight exposure.
The aim of the study design was to investigate a realistic

D3-fortification strategy in real-life settings. Participants

were instructed to replace their usual consumption of bread
and milk with the products provided and in all other

aspects, to live a normal life without changing any habits.

The study was conducted according to the guideline in the
Declaration of Helsinki, and the protocol was approved by

the Danish ethics committee (H-4-2010-020) and registered

in ClinicalTrials.gov (NCT01184716).

Study population

A total of 201 Danish families with dependent children

(n = 782), 4–60 years of age, randomly drawn from the

Danish Civil Registration System, participated in the study.
Inclusion criteria were age between 4 and 60 years and a
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permanent address in the Gladsaxe Municipality in Den-

mark. Exclusion criteria were pregnancy, disease or med-
ication influencing vitamin D metabolism, including

dietary supplements with [10 or [5 lg vitamin D/day for

children or adults, respectively. All the adult participants
and guardians of the children gave written informed

consent.

Vitamin D intakes

The participants’ vitamin D intakes were obtained from a

self-administered web-based questionnaire based on a

semi-quantitative food frequency questionnaire (Andersen
et al. 2005) at baseline and at the end of the study. Dietary

vitamin D intake was calculated based on the self-reported

consumption frequencies and dietary contents of vitamin D
(National Food Institute, Technical University of Den-

mark). Vitamin D intake from dietary supplements was

calculated as self-reported frequency of use multiplied with
the self-reported vitamin D content of the supplements. The

contribution of vitamin D from intakes of vitamin D3-for-

tified bread and milk was calculated based on the self-
reported consumption frequencies, amount and the mea-

sured vitamin D contents in the fortified products

(5.2 ± 0.3 lg/100 g in wheat bread, 4.3 ± 0.3 lg/100 g in
rye bread and 0.38 lg/100 mL in milk) (Madsen et al.

2013). The fortification strategy was to increase vitamin D

intake to 7.5 lg/day as recommended in the Nordic nutri-
tion recommendations (NNRs) until September 2013

(Nordic Council of Ministers 2004). Total vitamin D intake

was estimated as the sum of dietary vitamin D, usage of
multivitamin and vitamin D supplementation and further-

more intake of vitamin D3-fortified bread and milk for the

fortification group.

Biochemical analyses

Non-fasting venous blood samples were drawn, and serum

and plasma were stored at -80 !C until analysis at Clinical

Biochemical Department, Holbæk Hospital, Denmark.
Measurements of serum 25(OH)D concentrations relied on

the determination of both 25(OH)D2 and 25(OH)D3 and

were conducted by isotope dilution liquid chromatography
tandem mass spectrometry (LC–MS/MS). As primary cal-

ibrator, the standard reference material, vitamin D, in

humans (SRM 972) from the National Institute of Stan-
dards and Technology was used. The analytic quality of

25(OH)D assay was assured by Vitamin D External Quality

Assessment Scheme certification, and the mean bias was
-3.2 %. The inter-assay CVs for 25(OH)D2 were 7.6 and

4.6 % at 43 and 150 nmol/L, respectively, and for

25(OH)D3 2.2 and 2.8 % at 30 and 180 nmol/L, respec-
tively, (Madsen et al. 2013). In Denmark, 25(OH)D

concentrations \25 nmol/L are defined as vitamin D defi-

cient, between 25 and 50 nmol/L as vitamin D insufficient
and[50 nmol/L as vitamin D sufficient for the majority of

the population (National Board of Health 2010). 25(OH)D

concentrations can be divided by 2.496 to convert from
nmol/L to ng/ml.

Plasma PTH levels (CV: 3.4 %) was measured by using

immunology analyser Cobas e601 (Roche Diagnostics),
and total calcium (CV 3.4 %) was measured by using a

chemistry analyser Cobas c501 (Roche Diagnostics).

SNP selection and genotyping

In a previous study (Nissen et al. 2014), we genotyped 25

SNPs in seven vitamin D-related genes (CYP2R1,

CYP24A1, CYP27B1, C10orf88, DHCR7/NADSYN1, GC
and VDR) selected based on the reports from two GWAS

and several candidate gene studies. We found a strong

association between common SNPs in CYP2R1 and GC
genes and baseline 25(OH)D concentrations in the pres-

ently studied 201 healthy Danish families with dependent

children. We found that four SNPs, rs10741657 and
rs10766197 in CYP2R1 and rs4588 and rs842999 in GC,

predicted baseline 25(OH)D concentrations. None of the

four SNPs were in LD with each other: rs10741657 and
rs10766196 (Pearson’s r = 0.60), rs10741567 and

rs842999 (Pearson’s r = 0.03), rs10741657 and rs4588

(Pearson’s r = 0.10), rs10766197 and rs842999 (Pearson’s
r = 0.09), rs10766197 and rs4588 (Pearson’s r = 0.05)

and rs842999 and rs4588 (Pearson’s r = 0.0.31) were in

LD. For the tri-allelic rs842999, there was a dose-depen-
dent relationship between 25(OH)D concentrations and

carriers of none, one or two copies of the G-allele and

genotypes are presented as GG, GX and XX, where X
represents C- or A-alleles.

DNA was purified from buffy coats as described by

Miller et al. (1988). SNPs were genotyped using a Se-
quenom" platform (San Diego, California) and the iPLEX

Gold reaction. The SNPs and the primers used are listed in

Supplementary Table 1. Each PCR reaction contained
10 ng genomic DNA, 0.5 U HotStart Taq (Qiagen),

1.25 9 Enzyme Buffer (Qiagen), 3.5 mM MgCl2, 1 mM of

each deoxynucleotide. The primers were added to a final
concentration of 500 nM each. The PCRs were performed

at the following cycling parameters: 15 min preheat to

94 !C, 45 cycles (20 s 94 !C, 30 s 56 !C, 1 min 72 !C)
followed by 3 min 72 !C and stored at -20 !C. The PCR

products were treated with shrimp alkaline phosphatase,

dephosphorylate unincorporated dNTPs and extension with
molecular weight-modified nucleotides were performed in

concordance to the manufacturer’s recommendations. The

PCRs were cleaned with resin and dispend on Spectro-
CHIP" bioarrays. The SpectroCHIP" bioarrays were
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placed in a MALDI-TOF mass spectrometer, and the

results were analysed by MassARRAY Type 4.0 (Seque-
nom) (Nissen et al. 2014).

Of the 782 recruited children and adults, DNA was

obtained from 769 participants (98.3 %). A total of 762
(99.1 %) were successfully genotyped. For quality control,

344 duplicated samples (44 %) were randomly placed

throughout each of the 384-well plates and the reproduc-
ibility was 100 %. No deviation from Hardy–Weinberg

equilibrium was observed for the adult population (v2

testing, p [ 0.05).

Statistical analysis

All statistical analyses were carried out using SAS Enter-

prise Guide 4.3 (SAS Institute, Inc., Cary. USA). Linear
mixed models with family as a random factor were applied

in all analyses to account for the non-independency of the

participants. Before analysis, 25(OH)D concentrations and
PTH levels were log-transformed to approximate a normal

distribution and all means are presented as geometric

means, unless otherwise specified. A nominal p value of

0.05 was considered statistically significant.
The following categorical variables were used: age

(4–11, 12–17, 18–40, 41–60 years), sex (male, female),

BMI (underweight, normal weight, overweight, obese)
according to standards for children (Cole et al. 2000) and

the WHO International standards for adults (World Health

Organization 2000) measured at baseline, went on ski and
sun vacation during the study period (yes, no), solarium use

at least once a week (yes, no) and total calcium at baseline
and at the end of the study. The continuous variables are

log 25(OH)D concentrations and log PTH levels at baseline

and at the end of the study, total vitamin D intake from
diet, multivitamins and vitamin D supplements (lg/day).

A genetic risk score (GRS) was calculated as the sum of

number of risk alleles. The GRS (range 0–8) was calculated
as the sum of number of G-alleles of rs10741657, A-alleles

of rs10766197, A-alleles of rs4588 and C/A-alleles of

rs842999. A linear mixed model, adjusted for family and
confounding variables, was fitted to the log 25(OH)D

concentration with GRS as an explanatory factor. The

Table 1 Basic characteristics
of the study population
(n = 762)

All means are presented as
geometric means with 95 %
confidence interval in
parentheses. Continuously
variables are tested with t test,
and categorical variable are
tested with Chi-square

Bold numbers represent
significant P values

Fortification group Control group p value

Participants (n) 377 385 –

Female/male (n) 191/186 199/186 0.7771

Age (n) 0.5430

4–10 years 94 91 0.5893

11–17 years 75 88 0.7064

18–40 years 111 87 0.4928

41–60 years 97 119 0.4802

BMI (kg/m2) 21.7 (21.17–22.3) 21.9 (21.3–22.4) 0.5515

25(OH)D (nmol/L)

Baseline 72.7 (70.8–74.7) 71.1 (68.9–73.3) 0.4688

End 67.1 (65.2–69.0) 41.5 (39.6–43.5) <0.0001

PTH (ng/L)

Baseline 35.3 (34.1–36.5) 34.5 (33.3–35.7) 0.2473

End 36.8 (35.5–38.1) 40.1 (38.7–41.6) 0.0199

Total calcium (mmol/L)

Baseline 2.44 (2.43–2.45) 2.45 (2.44–2.46) 0.0438

End 2.43 (2.42–2.44) 2.43 (2.42–2.44) 0.8165

Total vitamin D intake (lg/day)

Baseline 2.9 (2.8–3.1) 2.7 (2.5–2.9) 0.4972

End 11.7 (11.0–12.4) 4.1 (3.8–4.5) <0.0001

Supplement users (n)

Baseline 127 127 0.7163

End 230 242 0.5991

Ski and sun vacation during the study (n) 135 100 0.0006

Solarium users during the study (n) 0 8 0.0059

Sunscreen use (n)

Always/most times/sometimes/seldom 82/108/144/36 105/114/132/32 0.3361
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adjusted mean concentration of 25(OH)D was calculated

for each GRS. All the analyses were performed for control
and fortification group and separately for adults and

children.

Furthermore, each GRS category was stratified by
quintile of total vitamin D intake (Q1: 0–2.9 lg/day; Q2:

3–7.4 lg/day; Q3: 7.5–9.9 lg/day; Q4: 10.0–14.9 lg/day;

and Q5: [15.0 lg/day). Total vitamin D intake was esti-
mated as the sum of dietary vitamin D, use of multivitamin

and vitamin D supplementation and, for the fortification

group, intake of vitamin D3-fortified bread and milk. The
final concentration of 25(OH)D was estimated for each

GRS by intake groups adjusted for family and confounding

variables.
The prevalence (%) of participants with sufficient

([50 nmol/L) 25(OH)D concentrations was estimated for

each GRS by intake groups adjusted for family and con-
founding variables.

Results

Of the 782 recruited children and adults, 762 participants
had complete questionnaire data, genotypes and 25(OH)D

A

B

C

Fig. 1 Association of
rs10741657, rs10766197,
rs4588 and rs842999 with PTH
levels at baseline for all the
participants and stratified by
fortification and group control at
the end of the study. Results are
presented as unadjusted and
adjusted geometric means. At
baseline, the following variables
were adjusted for age, sex, BMI,
vacation and baseline total
calcium, and at end of the study,
the following variables were
adjusted for age, sex, BMI,
vacation, baseline 25(OH)D
concentration, baseline PTH
levels and end total calcium.
Adjusted p values are given for
each genotype. The numbers in
the columns present the total
numbers of participants carrying
this genotype. Error bars
indicate 95 % confidence
interval. A statistically
significant difference in PTH
levels was observed for rs4588
in both the fortification and
control group at the end of the
study
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concentrations measured at baseline. At the end of the

study, a total of 756 participants (control group n = 384
and fortification group n = 384) had complete question-

naire data, genotypes and 25(OH)D concentrations mea-

sured. Characteristics of the study population are listed in
Table 1, as previously described in detail elsewhere

(Madsen et al. 2013; Nissen et al. 2014). At baseline,

participants in the control group had significantly higher
total calcium levels (p = 0.0438) compared to participants

in the fortification group, as previously reported (Madsen

et al. 2013). Furthermore, there was a statistically signifi-
cant difference between the control and fortification group

for the use of solarium (p = 0.0059), and ski and sun

vacation (p = 0.0006) during the intervention period as
previously reported (Madsen et al. 2013).

In a previous study (Nissen et al. 2014), we found that at

baseline, CYP2R1 (rs10741657 and rs10766197) and GC
(rs4588 and rs842999) were strongly associated with

25(OH)D concentrations among all participants (Table 2).
At the end of the study, no associations between SNPs

rs10741657 and rs10766197 in CYP2R1 or rs4588 and

rs842999 in GC and 25(OH)D concentrations were found
for the control group. For the fortification group,

rs10741657 in CYP2R1 and rs4588 and rs842999 in GC

were statistically significantly associated with 25(OH)D
concentrations. The association with CYP2R1

(rs10766197) was borderline significant (p = 0.0599). At

the end of the study, total vitamin D intake (p \ 0.0001)
and 25(OH)D concentrations (p \ 0.0001) were, as

expected, significantly higher in the fortified group com-

pared to the control group as previously reported (Madsen
et al. 2013).

There was no difference in PTH levels when stratified

by rs10741657, rs10766197, rs4588 and rs842999 for all
the participants at baseline (Fig. 1). As anticipated, PTH

levels were significantly higher in the control group

compared to the fortification group (p = 0.0199) at the
end of the study (Table 1). Furthermore, there was a

significant difference in PTH levels for rs4588 in both the

fortification group (p = 0.0064) and control group
(p = 0.0132) at the end of the study. Carriers of the

rs4588-AA genotype had significantly lower PTH levels

compared to carriers of either the rs4588-CA or rs4588-
CC genotype.

The prevalence of participants with 25(OH)D concen-
tration \30 nmol/L and \50 nmol/L was estimated for

each genotype of rs10741657, rs10766197, rs4588 and

rs842999 for all the participants at baseline and separately
for the control and fortification group at the end of the

study (Fig. 2a, b).

At baseline, there was no difference in the prevalence of
participants having 25(OH)D concentrations \30 nmol/L

A

B

Fig. 2 The prevalence (%) of
\30 nmol/L a and \50 nmol/L
b 25(OH)D concentrations in
carriers of different genotypes
of rs10741657, rs10766197,
rs4588 and rs842999 at baseline
for all the participants and at the
end of the study stratified by
control and fortification group.
Cut-off value of 25(OH)D
\50 nmol/L defines the
requirement for optimal bone
health for the majority of the
population, and cut-off value
\30 nmol/L defines the
25(OH)D concentration at
which adverse effects on bone
health may be expected (Ross
et al. 2011)
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stratifying by genotype rs10741657, rs10766197, rs4588

and rs842999 (p = 0.2269, 0.1715, 0.6953 and 0.5111),
respectively. In contrast, there was significant difference in

the prevalence of participants having 25(OH)D concen-

trations \50 nmol/L for rs10741657, rs4588 and rs842999
(p = 0.0004, \0.0001 and 0.0435), respectively, and

rs10766197 was borderline significantly associated

(p = 0.0743).
At the end of the study, for the fortification group, a

significant difference in the prevalence of participants

having 25(OH)D concentrations was found for rs4588

(p = 0.0023 \ 30 nmol and for \50 nmol/L p = 0.0002)

and rs842999 (p = 0.0029 \ 50 nmol/L). No difference in
prevalence was observed for rs10741657 and rs10766197

(p = 0.5830 and 0.2348 for \30 nmol/L and for

\50 nmol/L p = 0.5466 and 0.6652), respectively. Fur-
thermore, no difference in prevalence was found for

rs842999 (p = 0.1194 for \30 nmol/L).

For the control group, only rs842999 \30 nmol/L was
significant (p = 0.0455). No significant difference was

observed for rs10741657, rs10766197 and rs4588

(p = 0.8694, 0.6130 and 0.2651 \ 30 nmol/L and

A 

B

C

Fig. 3 Estimated mean
25(OH)D concentrations at the
end of the study for each genetic
risk score category stratified by
control and fortification group,
separately for all (a), adults
(b) and children (c). Individuals
carrying 7 or 8 (7–8) risk alleles
were combined due to small
sample size. Genetic risk score
(range 0 to 7–8) was calculated
as the sum of number of
G-alleles of rs10741657,
A-alleles of rs10766197,
A-alleles of rs4588 and C/A-
alleles of rs842999. The
numbers in the columns present
the total numbers of participants
carrying the risk score. Error
bars indicate 95 % confidence
interval
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p = 0.5645, 0.4948 and 0.2641 for \50 nmol/L), respec-
tively. Furthermore, rs842999 \50 nmol/L was also found

to be non-significant (p = 0.3402). In general, the lowest

prevalence of vitamin D deficiency \30 and \50 nmol/L
was observed at baseline (p = 0.0001 and 0.0001),

respectively. Participants in the control group presented

more often with vitamin D deficiency\30 and\50 nmol/L
compared to the fortification group (p = 0.0001 for

\30 nmol/L and for \50 nmol/L p = 0.0001),

At the end of the study, to determine the combined
contributions of rs10741657, rs10766197, rs4588 and

rs842999, a GRS was calculated individually for the

control and fortification group and separately for all,
adults and children (Fig. 3a–c). Participants carrying

seven or eight (7–8) risk alleles were combined due to

small sample size. The coefficients for rs10741657,

rs10766197, rs4588 and rs842999 were very similar in a
mixed regression model including all SNPs, and there-

fore, it was not necessary to weight the different risk

alleles by the correlation coefficient. A linear mixed
model with family as a random factor, adjusted for age,

sex, BMI, total vitamin D intake, and ski and sun

vacation showed that for the control group, there was no
difference in 25(OH)D concentrations for carriers of 0 to

7–8 risk alleles (p = 0.1428, 0.2881 and 0.7667) for all,

adults and children, respectively. For the fortification
group, there was a negative linear trend between

25(OH)D concentrations and carriers of 0 to 7–8 risk

alleles for all, adults and children (p \ 0.0001, 0.0025
and 0.0023, respectively). Overall, there was a mean

difference in 25(OH)D concentrations of 28.2, 28.6 and

31.9 nmol/L between carriers of no risk alleles and

Fig. 4 Mean 25(OH)D concentrations at the end of the study for each
genetic risk score category stratified by total vitamin D intakes for the
study population. Total vitamin D intake was estimated as the sum of
dietary vitamin D, usage of multivitamin and vitamin D supplemen-
tation and, for the fortification group, intake of vitamin D3-fortified
bread and milk. The following quintile stratification was used:
quintile 1: 0–2.9 lg/day; quintile 2: 3–7.4 lg/day; quintile 3:
7.5–9.9 lg/day; quintile 4: 10.0–14.9 lg/day; and quintile 5:

[15.0 lg/day. Genetic risk score (range 0–8) was calculated as the
sum of number of G-alleles of rs10741657, A-alleles of rs10766197,
A-alleles of rs4588 and C/A-alleles of rs842999. Individuals carrying
0, 1 or 2 (0–2) risk alleles and individuals carrying 6, 7 or 8 (6–8) risk
alleles were combined due to small sample size after quintile
stratification by total vitamin D intake. The numbers in the columns
present the total numbers of participants carrying this risk score.
Error bars indicate 95 % confidence interval
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carriers of all 7–8 risk alleles in all, adults and children,

respectively. Overall, the same GRS pattern was

observed for adults and children.
We estimated the effect of total vitamin D intake for

each category GRS (range 0–8), for the combined contri-

butions of rs10741657, rs10766197, rs4588 and rs842999
(Fig. 4). Each participant was stratified by quintile of total

vitamin D intake. Total vitamin D intake was estimated as

the sum of dietary vitamin D, use of multivitamin and
vitamin D supplements and, for the fortification group,

self-reported intake of vitamin D3-fortified bread and milk.

Quintile stratification for total vitamin D intake was based
on different RDA or RI: \3 lg/day (no supplementation),

\7.5 lg/day (old NNRs 2004),\10 lg/day (present NNRs

2012), \15 lg/day (IOM) or [15 lg/day. The following
quintile stratification cut-off values were used: quintile 1:

0–2.9 lg/day; quintile 2: 3–7.4 lg/day; quintile 3:

7.5–9.9 lg/day; quintile 4: 10.0–14.9 lg/day and quintile
5:[15.0 lg/day. The control and fortification groups were

combined in the linear mixed model. Individuals carrying

0, 1 or 2 (0–2) risk alleles or individuals carrying 6, 7 or 8
(6–8) risk alleles were combined due to small sample sizes

after quintile stratification by total vitamin D intake. A total

of 25.1, 22.4, 23.4, 15.6 and 13.6 % of the adult partici-
pants carried 0–2, 3, 4, 5 or 6–8 risk alleles, respectively.

The majority of the participants in the control group had

low total vitamin D intake and were therefore primarily
located in the first two quintiles. In general, there was a

statistically significant, positive linear relationship between

total vitamin D intake and 25(OH)D concentrations among

carriers of 0–2, 3, 4 or 5 risk alleles, (p = 0.0012, 0.0001,
0.0118 and 0.0029, respectively). For individuals carrying

6–8 risk alleles, there was no statistically significant rela-

tionship between total vitamin D intake and 25(OH)D
concentrations (p = 0.1051).

A the end of the winter season in Denmark, a total

vitamin D intake of\3 lg/day was not sufficient for 95 %
of the study population to achieve sufficient ([50 nmol/L)

25(OH)D concentrations, regardless of the number of risk

alleles they carried (Fig. 4). For participants carrying 0–2
or 3 risk alleles, a total daily vitamin D intake between 3

and 7.4 lg seemed to be sufficient for 95 % of the study

population to achieve sufficient 25(OH)D concentrations.
For participants carrying four risk alleles, a total daily

vitamin D intake[7.5 lg seemed to be sufficient for 95 %

of the study population to achieve sufficient 25(OH)D
concentrations. For participants carrying five risk alleles, a

total daily vitamin D intake[10 lg seemed to be sufficient

for 95 % of the study population to achieve sufficient
25(OH)D concentrations. For participants carrying 6–8 risk

alleles, a total daily vitamin D intake [15 lg was almost

enough for 95 % of the study population to achieve suffi-
cient 25(OH)D concentrations.

In addition, we determined the percentage of partici-

pants with sufficient 25(OH)D concentrations (Fig. 5).
Sufficient 25(OH)D concentrations were achieved for all

Fig. 5 The prevalence (%) of sufficient 25(OH)D concentrations,
defined as[50 nmol/L, for each genetic risk score category stratified
by quintile of total vitamin D intake at the end of the study. Total
vitamin D intake was estimated as the sum of dietary vitamin D, use
of multivitamin and vitamin D supplements and, for the fortification
group, intake of vitamin D3-fortified bread and milk. The following
quintile stratification was used: quintile 1: 0–2.9 lg/day; quintile 2:

3–7.4 lg/day; quintile 3: 7.5–9.9 lg/day; quintile 4: 10.0–14.9 lg/
day; and quintile 5:[15.0 lg/day. Genetic risk score (range 0–8) was
calculated as the sum of number of G-alleles of rs10741657, A-alleles
of rs10766197, A-alleles of rs4588 and C/A-alleles of rs842999.
Individuals carrying 0, 1 or 2 (0–2) risk alleles and individuals
carrying 6, 7 or 8 (6–8) risk alleles were combined due to small
sample size after quintile stratification by total vitamin D intake
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participants carrying 0–2, 3 or 4 risk alleles and who

consumed [15 lg/day of vitamin D. For participants car-
rying 5 or 6–8 risk alleles, this fell to 86 and 90 %,

respectively. Furthermore, sufficient 25(OH)D concentra-

tions were achieved for 87, 90, 83, 84 and 67 % of the
participants carrying 0–2, 3, 4, 5 or 6–8 risk alleles and

who consumed 10–14.9 lg/day. This fell to 80, 76, 86, 50

and 53 % and 57, 50, 61, 52 and 41 % for participants
carrying 0–2, 3, 4, 5 or 6–8 risk alleles and who consumed

7.5–9.9 lg/day or 3.0–7.4 lg/day of vitamin D,
respectively.

Discussion

In the present study, we show that genetic variation influ-
ences 25(OH)D concentrations considerably. Genetically

predisposed individuals carrying 6–8 risk alleles of

rs10741657 and rs10766197 in CYP2R1 and rs4588 and
rs842999 in GC need [15 lg/day or more vitamin D to

reach 25(OH)D concentrations [50 nmol/L during winter.

Furthermore, there was a statistically significant dose-
dependent relationship between 25(OH)D concentration

and total vitamin D intake for carriers of 0–5 risk alleles of

SNPs rs10741657 and rs10766197 in CYP2R1 and rs4588
and rs842999 in GC. A dose-dependent relationship was

also observed for carriers of 6–8 risk alleles, but the

increase in 25(OH)D concentrations was not statistically
significant.

At baseline, our study showed that there was statistically

significant difference in the prevalence of participants
presenting with 25(OH)D concentration \50 nmol/L for

rs10741657, rs10766197, rs4588 and rs842999. The sig-

nificant differences in prevalence disappeared during the
winter for the control group, but were maintained for

rs4588 and rs842999 in the fortification group. For the

fortification group, the highest prevalence of 25(OH)D
\50 nmol/L was observed for the rs4588-AA genotype. In

contrast, in the control group, rs4588-AA carriers had the

lowest prevalence of 25(OH)D\50 nmol/L. This indicates
that although carriers of the rs4588-AA genotype in the

fortification group were more prone to be vitamin D defi-

cient, rs4588-AA carriers in the control group were less
prone to be vitamin D deficient. This may indicate that

rs4588-AA carriers have a somewhat low but very stable

25(OH)D concentrations. Paradoxically, a recessive effect
was observed for rs4588-AA carriers on PTH levels in both

the fortification and control group at the end of the study.

Participants with the rs4588-AA genotype have the lowest
PTH levels and 25(OH)D concentrations compared to

rs4588-CC or rs4588-CA carriers. Similar to our findings,

Pekkinen et al. (2014) found a dose–response effect of
rs4588 on PTH concentrations in 231 Finnish children and

adolescents aged 7–19 years, with rs4588-AA carriers

having the lowest PTH and 25(OH)D concentrations.
Further studies are warranted to investigate the underlying

biological mechanism of this observation.

At the end of the study, there was a pronounced positive
effect of real-life usage of vitamin D3-fortified bread and

milk on 25(OH)D concentrations. For the fortification

group, 25(OH)D concentrations were significantly associ-
ated with rs10741657 in CYP2R1, and with rs4588 and

rs842999 in GC. Furthermore, rs10766197 in CYP2R1 was
borderline significantly associated with 25(OH)D concen-

trations. These winter results resemble the results found at

baseline (late summer) and indicate that when vitamin D is
received primarily as vitamin D3-food fortification during

the winter, the association between 25(OH)D concentra-

tions and genetic variation observed at late summer for
rs10741657 and rs10766197 in CYP2R1 and rs4588 and

rs842999 in GC is maintained. In contrast, the baseline

association between 25(OH)D concentrations and
rs10741657 and rs10766197 in CYP2R1 and rs4588 and

rs842999 in GC disappeared during the winter for the

control group. Our findings are consistent with the findings
from two previous studies (Gozdzik et al. 2011; Engelman

et al. 2013). Gozdzik et al. (2011) found that rs4588 in GC

was associated with 25(OH)D concentrations in Canadians
of European descent during the fall (p = 0.009), but not

during the winter (p = 0.535). Similarly, Engelman et al.

(Engelman et al. 2013) found two SNPs in GC (rs4588 and
rs7041) and four SNPs in CYP2R1 (rs105000804,

rs11023380, 2060763, 11023374) to be strongly associated

with 25(OH)D concentrations in individuals whose blood
was drawn in summer but not in individuals whose blood

was drawn in winter month.

Engelman et al. (2013) performed a GRS for rs4588 in
GC and rs2060793 in CYP2R1. The risk scores were highly

significantly associated with 25(OH)D concentrations in

individuals with high external source of vitamin D
([10 lg/day) but not in individuals with low external

source of vitamin D (\10 lg/day). In addition, Gozdzik

et al. (2011) found that vitamin D intake was significantly
predictive of 25(OH)D concentrations in individuals car-

rying the rs4588 (T436 K) or in GC diplotypes during fall

and winter. Our results support these findings by Engelman
et al. (2013) and Gozdzik et al. (2011). We performed a

GRS including the four SNPs rs10741657 and rs10766197

in CYP2R1 and rs4588 and rs842999 in GC. For the for-
tification group, the GRS was highly significantly associ-

ated with 25(OH)D concentrations (p \ 0.0001) but not for

the control group (p = 0.1428) during winter. In general,
children had higher mean 25(OH)D concentrations com-

pared to adults. For the fortification group, an explanation

could be that the children consumed more vitamin D3-
fortified bread and milk compared to the adults.
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Approximately 90 % of the total intake of consumed bread

and milk was the products provided by the study, with no
difference in compliance between children and adults

(Madsen et al. 2013). In general, the children were more

often multivitamin users compared to the adults (Madsen
et al. 2013).

When stratifying total vitamin D intake into quintiles,

our data suggest that it is difficult to raise 25(OH)D con-
centrations to a sufficient level in participants carrying 6–8

risk alleles with vitamin D3-fortified bread and milk. A
statistically non-significant increase in 25(OH)D concen-

trations was found comparing the lowest and highest

quintile of vitamin D intake for participants carrying 6–8,
but with a much lower rate (?D17.6 nmol/L) compared to

participants carrying 0–2, 3, 4 or 5 risk alleles (?D28.8,

36.5, 24.2 and 33.6 nmol/L), respectively, (Fig. 4). Whe-
ther this also applies for vitamin D synthesized in the skin

during UVB exposure remains to be further investigated.

These increases are similar to the findings by Engelman
et al. (2013). They found that among individuals carrying

3–4 risk alleles of GC (rs4588) and CYP2R1 (rs2060793),

the lowest increase in 25(OH)D concentrations was
observed in individuals carrying 3–4 risk alleles

(?D16.7 nmol/L) compared to individuals with fewer risk

alleles (?D27.7 nmol/L).
In our study population, 67 % of the participants car-

rying 6–8 risk alleles had sufficient 25(OH)D concentra-

tions in contrast to 87, 90, 83 and 84 % for participants
carrying 0–2, 3, 4 or 5 risk alleles, respectively, when

following IOMs RDA of 15 lg/day for individuals aged

1–70 years. Following the Nordic countries RI of 10 lg/
day for individual aged 2–60 years, only 50 and 53 % of

the participants carrying 5 or 6–8 risk alleles, respectively,

had sufficient 25(OH)D concentrations compared to 80, 76
and 86 % of the participants carrying 0–2, 3 or 4 risk

alleles, respectively. This indicates that genetic predispo-

sition may have a large impact on 25(OH)D concentrations.
Participants having a high GRS may need a higher amount

of vitamin D supplementation than participants carrying a

lower GRS in order to reach sufficient 25(OH)D concen-
trations. We provide evidence that participants with dif-

ferent genetic profiles need different amounts of vitamin D

supplementation to achieve sufficient 25(OH)D concen-
trations. Epidemiological studies have found association

between blood levels of vitamin D concentrations and risk

of cancer, but the significance of genetically determined
low vitamin D concentration is not clear.

In agreement with our findings, Cranney et al. (2007)

concluded that vitamin D3-doses of 10–20 lg/day may be
insufficient to prevent vitamin D deficiency in at-risk

individuals. Cashman et al. (2011) concluded that for a

population to achieve 25(OH)D concentrations of 50 nmol/
L, an average intake of 9 lg/day vitamin D was needed.

Nevertheless, taking inter-individual variation into account

23.5 lg/day of vitamin D3 was needed for 95 % of the
population to reach a 25(OH)D concentration of 50 nmol/

L. Engelman et al. (2013) found that all of the individuals

with no risk alleles of rs4588 and rs2060793 who con-
sumed at least 17 lg/day (670 IU/day) had 25(OH)D

[50 nmol/L. This fell to 84, 72 and 62 %, respectively, for

individuals carrying 1, 2 or 3–4 risk alleles who also
consumed at least 17 lg/day.

Our study has several strengths in that we ensured a
large age span (4–60 years), had both genders represented,

and both children and adults were included due to the

family-based design (Madsen et al. 2013). 25(OH)D con-
centrations were measured by a specific analytical method

(LC–MS/MS). We took into account that non-genetic

factors such as vitamin D intake and season are known to
influence 25(OH)D concentrations. We estimated total

vitamin D intake, and blood samples were drawn during the

same seasons for all the participants. A disadvantage is that
some of the known predictors of 25(OH)D concentration

were quantified by self-reported questionnaire data.

In summary, we found that after consuming vitamin D3-
fortified bread and milk during a winter season, the effect

of genetic variation in the CYP2R1 and GC genes on

25(OH)D concentrations resembles the results found in late
summer. The association with genetic variation observed

for CYP2R1 and GC genes in late summer disappeared

during the winter season for the control group. We found
that carriers of the rs4588-AA genotype had the highest

prevalence of 25(OH)D concentration \50 nmol/L at

baseline and at the end of the study for the fortification
group. In contrast, rs4588-AA carriers in the control group

had the lowest prevalence. It seems like rs4588-AA carriers

have a low but very stable 25(OH)D concentration, and
interestingly, also low PTH level.

In this study, we demonstrated that carriers of a high GRS

of CYP2R1 (rs10741657 and rs10766197) and GC (rs4588
and rs842999) are more prone to be vitamin D deficient

compared to carriers of a low GRS. Furthermore, carriers of a

high GRS may need a higher amount of vitamin D3 supple-
mentation to achieve sufficient 25(OH)D concentrations.

Importantly, for public health recommendations, it seems that

with increasing vitamin D intake, genetically determined low
risk carriers with sufficient 25(OH)D concentrations achieve

even higher 25(OH)D concentrations with the used real-life

vitamin D3-fortification model.
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Common variants in CYP2R1 and GC genes are both determinants of
serum 25-hydroxyvitamin D concentrations after UVB irradiation and
after consumption of vitamin D3–fortified bread and milk during winter
in Denmark1–4

Janna Nissen, Ulla Vogel, Gitte Ravn-Haren, Elisabeth W Andersen, Katja H Madsen, Bjørn A Nexø, Rikke Andersen,
Heddie Mejborn, Poul J Bjerrum, Lone B Rasmussen, and Hans Christian Wulf

ABSTRACT
Background: Little is known about how the genetic variation in
vitamin D modulating genes influences ultraviolet (UV)B–induced
25-hydroxyvitamin D [25(OH)D] concentrations. In the Food with
vitamin D (VitmaD) study, we showed that common genetic vari-
ants rs10741657 and rs10766197 in 25-hydroxylase (CYP2R1) and
rs842999 and rs4588 in vitamin D binding protein (GC) predict
25(OH)D concentrations at late summer and after 6-mo consump-
tion of cholecalciferol (vitamin D3)–fortified bread and milk.
Objectives: In the current study, called the Vitamin D in genes
(VitDgen) study, we analyzed associations between the increase in
25(OH)D concentrations after a given dose of artificial UVB irra-
diation and 25 single nucleotide polymorphisms located in or near
genes involved in vitamin D synthesis, transport, activation, or deg-
radation as previously described for the VitmaD study. Second, we
aimed to determine whether the genetic variations in CYP2R1 and
GC have similar effects on 25(OH)D concentrations after artificial
UVB irradiation and supplementation by vitamin D3–fortified bread
and milk.
Design: The VitDgen study includes 92 healthy Danes who re-
ceived 4 whole-body UVB treatments with a total dose of 6 or
7.5 standard erythema doses during a 10-d period in winter. The
VitmaD study included 201 healthy Danish families who were given
vitamin D3–fortified bread and milk or placebo for 6 mo during the
winter.
Results: After UVB treatments, rs10741657 in CYP2R1 and rs4588
in GC predicted UVB-induced 25(OH)D concentrations as previ-
ously shown in the VitmaD study. Compared with noncarriers, carriers
of 4 risk alleles of rs10741657 and rs4588 had lowest concentrations
and smallest increases in 25(OH)D concentrations after 4 UVB treat-
ments and largest decreases in 25(OH)D concentrations after 6-mo
consumption of vitamin D3–fortified bread and milk.
Conclusion: Common genetic variants in the CYP2R1 and GC
genes modify 25(OH)D concentrations in the same manner after
artificial UVB-induced vitamin D and consumption of vitamin
D3–fortified bread and milk. The VitDgen study was registered at
clinicaltrials.gov as NCT01741233. The VitmaD study was regis-
tered at clinicaltrials.gov as NCT01184716. Am J Clin Nutr
2015;101:218–27.

Keywords genetic polymorphism, SNPs, UVB radiation, vitamin
D status, 25-hydroxyvitamin D, vitamin D supplements

INTRODUCTION

Vitamin D deficiency is a common health problem in many
countries (1). It is well recognized that vitamin D is important for
maintaining bone health. Traditional clinical conditions linked to
vitamin D deficiency are rickets in children and osteromalacia
and osteroporosis in adults (1). A sufficient vitamin D status,
which is measured as the 25-hydroxyvitamin D [25(OH)D]5

concentration in blood, may be associated with lower risk of
several nonskeletal adverse health outcomes including autoim-
mune diseases, some cancers, risk of hypertension, and overall
mortality (2, 3).
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In humans, vitamin D can be obtained from the following 2
natural sources: 1) the majority of vitamin D is synthesized in
the skin after solar UVB exposure; and 2) dietary intake con-
tributes with a small amount of vitamin D because few natural
foods contain significant amounts of vitamin D (1). Further-
more, vitamin D can be obtained from multivitamin tablets,
vitamin D supplements, or fortified food products. In Northern
countries, vitamin D concentrations follow the seasonal varia-
tion in UVB-fluence rates. Vitamin D cannot be synthesized
in the skin during the winter months (from October to March)
in latitudes above 408N because of negligible UVB irradiation
(4).

Several studies have indicated that the genetic variation at
specific genes involved in vitamin D synthesis, transport, acti-
vation, or degradation may influence 25(OH)D concentrations
appreciably (5). This effect may explain the observed inter-
individual variation in 25(OH)D concentrations, which seems to
be independent of latitude (6). Two genome-wide association
studies of vitamin D (7, 8) confirmed associations of common
variants at 3 loci in vitamin D binding protein (GC; vitamin D
transport), 25-hydroxylase [CYP2R1; hydroxylation of vitamin
D to 25(OH)D] and 7-dehydrocholesterol reductase (DHCR7;
involved in cholesterol synthesis from 7-dehydrocholesterol)
genes. Risk of vitamin D insufficiency more than doubles for
individuals carrying all risk alleles of all 3 loci (8), indicating
that 25(OH)D concentrations do not only depend on vitamin D
intake and UVB exposure but also on the genetic variation. A
better understanding of how genetic variation influences
25(OH)D concentration after UVB exposure or consumption of
vitamin D supplements is needed and may help to identify in-
dividuals who substantially elevated risk of developing vitamin D
deficiency.

In the Vitamin D in genes (VitDgen) study [clinicaltrials.gov;
NCT01741233], associations between 25 single nucleotide poly-
morphisms (SNPs) located in or near genes involved in vitamin D
synthesis, transport, activation, or degradation and the increase in
25(OH)D concentration after a given dose of artificial UVB ir-
radiation during a winter period of 10-d were examined in 92
healthy Danish adults. Furthermore, the effect of a genetic vari-
ation in CYP2R1 and GC on 25(OH)D concentrations was com-
pared for vitamin D acquired from artificial UVB irradiation (the
VitDgen study) or from the food with vitamin D (VitmaD) study
consumption of cholecalciferol (vitamin D3)–fortified bread and
milk (clinicaltrials.gov; NCT01184716).

SUBJECTS AND METHODS

Study population and design

The main focus of this article is on the VitDgen study, which
analyzes the association between the increase in 25(OH)D
concentration after a given dose of artificial UVB irradiation and
25 widely studied SNPs located in or near genes involved in
vitamin D synthesis, transport, activation, or degradation. Sec-
ond, the study aimed to determine whether genetic variations in
CYP2R1 and GC have similar effects on 25(OH)D concentra-
tions after artificial UVB irradiation and supplementation by
vitamin D3–fortified bread and milk. Data from the VitmaD
study were used to analyze the genetic effect on 25(OH)D after
6 mo of consumption of vitamin D3–fortified bread and milk,
which previously have been described (9–12).

VitmaD study

The VitmaD study, which was a double-blinded, randomized,
placebo-controlled intervention trial, was conducted in the
Gladsaxe Municipality in Denmark (latitude 568N) from late
summer to the end of winter (September 2010 to April 2011).
The study design and methods were described in detail else-
where (9–12), and thus, this article is not the first presentation of
the 25(OH) response to vitamin D3 fortification on the basis of
the VitmaD study (12). In brief, healthy, ethnically Danish
families were allocated either vitamin D3–fortified bread (5.2 6
0.3 mg vitamin D/100 g in wheat bread and 4.3 6 0.3 mg vi-
tamin D/100 g in rye bread) and milk (0.406 0.01 mg/100 L) or
placebo for 6 mo during the winter from September 2010 to
April 2011 (Supplemental Figure 1). The study was conducted
according to the guidelines in the Declaration of Helsinki, and
the protocol was approved by the Danish ethics committee
(H-4–2010-020). All participants gave written informed consent.

VitDgen study

The VitDgen study was an open and controlled clinical trial
conducted at Bispebjerg University Hospital, Copenhagen,
Denmark (latitude 568N) during late winter and early spring
(January to March 2013) when natural solar UVB irradiation
is negligible (Supplemental Figure 1). Furthermore, the cold
winter temperatures prevent solar exposure except on the face
and hands. All recruited participants were healthy Danes (aged
18–60 y; men and women) with residence in Denmark. Power
calculations indicated that a sample size of 78 participants
should be sufficient to detect a mean difference of 20 nmol/L
between a genetic outcome at the 5% significance level and with
80% power. There were 102 participants included, and 92 par-
ticipants completed the study (Supplemental Figure 2).

Inclusion criteria were healthy Caucasians between 18–60 y of
age. Exclusion criteria were the following: 1) having a skin
disease, 2) taking a medication that influenced vitamin D
metabolism or caused photosensitive skin, 3) pregnancy or
breastfeeding, 4) having had a sun or ski vacation 3 mo before
the study period, or 5) having taken vitamin D supplements 3 mo
before the study period. Participants were allowed to take a daily
food supplement that contained #10 mg vitamin D. Participants
were instructed not to use cosmetic makeup with UV filters or
sunscreen when receiving UVB treatment. The study was con-
ducted according to the guidelines in the Declaration of Hel-
sinki, and the protocol was approved by the Danish ethics
committee (H-4–2012-071). All participants gave written in-
formed consent.

Skin type, pigmentation, and redness

In the VitDgen study, a skin reflectance meter (UV-Optimize,
Scientific, Chromo-light) (13) was used to measure the per-
centage of redness (range: 0–100%) and the pigment protection
factor (PPF; range: 1.0–24.0) on the forehead, shoulder (facul-
tative pigmentations), and buttock (constitutive skin pigmenta-
tion) at baseline and 2 d after the last UVB treatment. This
assessment was done to follow the skin response to UVB treat-
ments. The percentage of redness reflects hemoglobin concen-
trations in the skin, and the PPF reflects melanin concentrations in
the skin (14, 15).
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Self-reported skin-type according to Fitzpatrick’s classifica-
tions I–IV (16) was registered at baseline. Classifications of
erythema and tanning reactions to first exposure in summer
where skin type I represents always burn and never tan, skin
type II represents usually burn and less tan than average (with
difficulty), skin type III represents sometimes mild burns and tan
about average, and skin type IV represents rarely burn and tan
more than the average (with ease). There were 9 participants
with skin type I, 29 participants with skin type II, 39 participants
with skin type III, and 14 participants with skin type IV.

UVB exposure

While wearing underwear (underpants and bra for female
participants), participants’ body surfaces were equally exposed
to UV radiation in a UV cabin (Waldmann UV1000L; Wald-
mann GmbH) equipped with a broadband UVB source con-
sisting of 26 UV6 tubes (Waldmann GmbH) emitting radiation
mainly between 290 and 350 nm. During the treatment period,
the UV intensity was weekly controlled by using a Sola-Hazard
spectroradiometer (Solatell).

A total of 92 participants completed the VitDgen study. During
a 10-d period, participants received artificial UVB irradiation 4
times with a 2- or 3-d interval (Monday, Wednesday, Friday, and
Monday). Standard erythema doses (SEDs) are a standardized
measure of the accumulated erythemally weighted UV energy.
One SED is equivalent to an erythemal effective radiant exposure
of 100 Jm22 at 298 nm by using the International Committee of
Illumination erythema action spectrum and corresponds to a UV
dose that causes perceptible erythema in the most–sun-sensitive
individuals (17, 18). For example, 1.5 SEDs are equivalent
tow15 min sun exposure in the middle of a clear summer day in
Denmark (568N). A total of 23 participants received a total dose
of 7.5 SEDs (1 3 3 SEDs for the upper body and 3 3 1.5 SEDs
for the whole body). After the first UVB exposure, 4 participants
experienced erythema and withdrew from the study. Therefore,
the SED dose was subsequently lowered to 1.5 SEDs and given
on the whole body to minimize risk of erythema. Whole-body
1.5 SEDs were well tolerated, and none of the participants ex-
perienced erythema after these changes. Seventy-nine partici-
pants received a total dose of 6 SEDs (4 3 1.5 SEDs for the
whole body). At the end of the study, an additional 6 participants
withdrew from the study because of personal and other reasons
(Supplemental Figure 2).

DNA extraction and genotyping

DNAwas purified from buffy coats as described byMiller et al.
(19). SNPs were genotyped by using a Sequenom platform and
iPLEX Gold reaction. SNPs and the primers used are listed in
Supplemental Table 1. Polymerase chain reaction (PCR) am-
plifications were carried out in 5-mL volumes containing the
following: 10 ng genomic DNA, 0.5 U HotStart Taq (Qiagen),
1.25 3 Enzyme Buffer (Qiagen), 3.5 mmol/L MgCL2, and
1 mmol/L of each deoxynucleotide, and a final primer concen-
tration of 500 mmol/L for each primer was added (Supplemental
Table 1). PCRs were performed at the following cycling vari-
ables: a 15-min preheat to 948C, 45 cycles (20 s at 948C, 30 s at
568C, and 1 min at 728C) followed by 3 min at 728C, and storage
at 2208C. PCR products were treated with shrimp alkaline
phosphatase, and the dephosphorylation of unincorporated de-

oxyribonucleotide triphosphates and an extension with molec-
ular weight-modified nucleotides were performed in accordance
with the manufacturer’s recommendations. PCR reactions were
cleaned with resin and dispended on SpectoCHIP bioarrays
(Sequenom). The SpectroCHIP bioarrays were placed in a
Matrix-assisted laser desorption/ionization Time of Flight
mass spectrometer, and the results were analyzed by using
MassARRAY Type 4.0 SNP genotyping (Sequenom) (9).

All SNPs analyzed were located in or near genes involved in
vitamin D synthesis, transport, activation, or degradation. The
following SNPs were selected because of evidence of a significant
association in previous studies: CYP2R1 (rs7116978, rs10741657,
rs1562902, and rs10766197), 24-hydroxylase (CYO24A1)
(rs6013897, rs4809960, rs2296241, rs17219315, and rs2426496),
1-a-hydroxylase (CYP27B1) (rs10877012), open-reading
frame 88 on chromosome 10q26.13 (C10orf88) (rs6599638), 7-
dehydrocholesterol reductase/nicotiamide adenine dinucleotide
synthetase-1 (DHCR7/NADSYN1) (rs1790349 and rs12785878),
GC (rs16846876, rs12512631, rs17467825, rs2882679, rs842999-
triallelic, rs4588, rs222020, and rs2298849), and vitamin D re-
ceptor (VDR) [rs731236 (TaqI), rs757343 (TruI), rs10783219,
and rs7139166). For the triallelic rs842999, there was a dose-
dependent relation between 25(OH)D concentrations and carriers
of no, 1, or 2 copies of the G allele, and genotypes are presented as
GG, GX, and XX, where X represents C or A alleles (9). The
linkage disequilibrium (LD) structure was evaluated by using
Pearsons’ r and the SNP Annotation and Proxy Search (SNAP)
version 2.2 (http://www.broadinstitute.org/mpg/snap/ldsearchpw.php).

Genotyping was successful in the 102 recruited participants. For
quality control, 10%-duplicated samples were randomly placed
throughout each of the 384-well plates, and the reproducibility was
100%. No deviation from the Hardy-Weinberg equilibrium was
observed (chi-square test; Bonferroni P of 0.05/25 SNPs = 0.002).

Measurement of 25(OH)D concentrations

Blood samples were obtained without previous fasting, and
sera were stored in aliquots at 2208C until analysis. Measure-
ments of 25(OH)D concentrations relied on the determination of
both 25(OH)D2 and 25(OH)D3 and were conducted by isotope-
dilution liquid-chromatography–tandem mass spectrometry at
the Clinical Biochemical Department, Holbæk Hospital,
Holbæk, Denmark. 25(OH)D concentrations were measured at
baseline and 48 h after the last UVB treatment.

Standard reference material, vitamin D in humans (SRM972),
from the National Institute of Standards and Technology (United
States) was used as the primary calibrator. The analytic quality of
the 25(OH)D assay was assured by Vitamin D External Quality
Assessment Scheme certification, and the mean bias was 5.7%.

Statistical analyses

Statistical analyses were performed with the SAS Enterprise
Guide 6.1 application (SAS Institute Inc.). 25(OH)D concen-
trations were log transformed to approximate a normal distri-
bution, and all means are presented as geometric means. A
nominal P value of 0.05 was considered statistically significant.
Data from the 2 study-populations VitDgen and VitmaD were
analyzed in the same manner to compare how vitamin D status is
affected by the genetic risk score (GRS) after UVB exposure or
vitamin D supplementation.
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In the VitDgen study, univariate models were performed to
assess the association between baseline 25(OH)D concentrations
and each of the following sun- and vitamin D–related variables:
ski or sun vacation in the preceding 6-mo period (yes or no), sun
preference (prefers sun, sometimes in the sun, or avoids the sun),
sun bathing (yes, sometimes, or no), sunscreen use (always,
most of the times, sometimes, or seldom/never), outdoor stay in
light clothes (most of the time, often, sometimes, or seldom/
never), outdoor transport to work (,15, 15–30, 30–60, or
.60 min/d), preferring outdoor life (yes, sometimes, or no),
working outdoor (always indoor, sometimes outdoor, or outdoor
some of the day), sunbed use during the preceding year (yes or
no), PPF buttock, Fitzpatrick’s skin type (I–IV), and consuming
fish (yes or no). Significant baseline (P, 0.05) sun- and vitamin
D–related variables were included in a linear mixed model, with
the following covariates: sex (male and female), age (18–58 y),
BMI (underweight, normal weight, overweight, and obese) ac-
cording to WHO international standards for adults (20), multi-
vitamin use (yes or no), and vitamin D supplement use in the
preceding 6 mo (yes or no). Several of the recruited participants
were family members (couples: n = 30; parent/children: n = 9)
and all linear mixed models were analyzed with family as
a random factor to account for the nonindependency of these
participants. Data on sun- and vitamin D–related variables and,
in addition, age, sex, BMI, and multivitamin- and vitamin D–
supplement use were obtained from a self-administered web-
based questionnaire.

No difference in the increase in 25(OH)D concentrations after
UVB treatments between the 2 different UVB treatment groups
and sex (P = 0.8871, data not shown) was shown, and linear
mixed models were combined for the 2 UVB treatment groups
and adjusted for the following covariates: age, sex, BMI, family
as a random factor, and baseline serum 25(OH)D concentration.

In both studies, a GRS was calculated as the sum of the number
of risk alleles. The GRS (range: 0–4) was calculated as the sum
of the number of G alleles of rs10741657 and A alleles of
rs4588. A linear mixed model, which was adjusted for age, sex,
BMI, baseline 25(OH)D concentration, and family as a random
factor and, in addition, vacation, vitamin D intake, and vitamin
D-supplementation use for the VitmaD study, was fitted to log
25(OH)D concentrations with the GRS as an explanatory factor.
Adjusted mean concentrations of 25(OH)D were calculated for
each GRS. For the VitmaD study, the GRS was calculated for
the adult population (18-60 y) at baseline (n = 414) and end of
the study only for the adult population who consumed vitamin
D3–fortified bread and milk (n = 208). The percentage decrease
in vitamin D status in relation to the GRS was analyzed in the
adult population who participated in the fortification group.

RESULTS

Out of a total of 102 recruited participants in the VitDgen
study, 92 participants completed the study fully (submitted blood
samples and genotypes and completed the questionnaire).
Baseline characteristics of participants are shown in Table 1. At
baseline, 51% of subjects had adequate concentrations of vita-
min D (.50 nmol/L), 43% of subjects were vitamin D in-
sufficient (25–50 nmol/L), and 5% of subjects were vitamin D
deficient (,25 nmol/L). At the end of the study, 97% of subjects
had adequate concentrations of vitamin D, 3% of subjects were

vitamin D insufficient, and none of the subjects were vitamin D
deficient. On average, 25(OH)D concentrations increased
28 nmol/L (95% CI: 24.1, 31.1 nmol/L; data not shown) in re-
sponse to the 4 UVB sessions.

In univariate models, the baseline 25(OH)D concentration was
significantly associated with BMI (P = 0.032), multivitamin use
(P = 0.011), and vitamin D–supplement use (supplementation
#10 mg/d was allowed; P = 0.0014) and borderline significantly
associated with outdoor stay in light clothes (P = 0.063), outdoor
transport to work (P = 0.051), and sun bathing (P = 0.051). No
associations were shown between baseline 25(OH)D concen-
trations and skiing or a sun vacation (compared with no vaca-
tion; P = 0.23), Fitzpatrick’s skin-type classifications I–IV (P =
0.78), PPF buttock (P = 0.60), fish intake (P = 0.34), sunbed use
(P = 0.78), sun preference (P = 0.14), sunscreen use (P = 0.96),
working indoors (P = 0.16), employment (P = 0.17), or pre-
ferring outdoor life (P = 0.27), and thus, these variables were not
included in the linear mixed models.

In a linear mixed model, there was no significant difference
between the baseline 25(OH)D concentration in analyzed ge-
notypes, except for rs12512631 in GC, after adjustment for the
following variables: age, sex, BMI, use of multivitamin and
vitamin D supplement, outdoor stay in light clothes, and sun
bathing (Table 2). No significant difference was shown for age,
sex, and outdoor transport to work for all analyzed genotypes
(data not shown).

In a linear mixed model adjusted for age, sex, BMI, and
baseline 25(OH)D, there was a significant association be-
tween end-of-study 25(OH)D concentrations and genotypes of
rs10741657 in CYP2R1 and rs16846876, rs17467825, rs2282679
and rs4588 in GC after 4 UVB treatments (Table 2). All 4 SNPs
in GC were in strong LD. SNP rs4588 was in strong LD with
rs2282679 (Pearson’s r = 0.99, SNAP R2 = 0.98, D# = 1.00) and
rs17467825 (Pearson’s r = 0.99, SNAP R2 = 1.00, D# =1.00).
Furthermore, rs17467825 and rs2282679 (Pearson’s r = 1.00,
SNAP R2 = 1.00, D# =1.00) as well as rs2282679 and
rs16846876 (Pearson’s r = 0.69, SNAP R2 = 0.44, D #= 0.68)
were in LD. We previously showed that rs4588 had the strongest
association with 25(OH)D concentrations (9). Additional anal-
yses only included rs4588 in GC and rs10741657 in CYP2R1.
None of the analyzed SNPs in CYP24A1, CYP27B1, C10orf88,
DHCR7/NADSYN1, or VDR genes were significantly associated
with the final 25(OH)D concentration.

For the rs10741657 polymorphism, highest end-of-study
25(OH)D concentrations were shown for participants carrying
the rs10741657 AA genotype (93.7 nmol/L; 95% CI: 84.0, 104.6
nmol/L), intermediate concentrations were shown in participants
carrying the rs10741657 GA genotype (81.9 nmol/L; 95% CI:
75.5, 88.9 nmol/L), and lowest concentrations were shown in
participants carrying the rs10741657 GG genotype (77.0 nmol/L;
95% CI: 70.9, 83.5 nmol/L). For the rs4588 genotype, highest
end-of-study 25(OH)D concentrations were shown in participants
carrying the rs4588CC genotype (84.1 nmol/L; 95% CI: 78.3,
90.4 nmol/L), intermediate concentrations were shown in par-
ticipants carrying the rs4588 CA genotype (83.5 nmol/L; 95%CI:
77.0, 90.6 nmol/L), and lowest concentrations were shown in
participants carrying the rs4588 AA genotype (65.7 nmol/L; 95%
CI: 54.5, 79.3 nmol/L) (Table 2).

To determinate combined effects of rs10741657 and rs4588 in
the VitDgen study, a GRS was calculated as the sum of the
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number of G alleles of rs10741657 and A alleles of rs4588
(range: 0–4) at baseline and final (Figure 1A). Coefficients of
rs10741657 and rs4588 were very similar in a mixed regression
model including both SNPs, and therefore, it was not necessary
to weight risk alleles by the correlation coefficient (data not
shown). At baseline, there were no associations between GRS and
25(OH)D concentrations (P = 0.16). At the end of the study, there
was a linear negative trend between the 25(OH)D concentration
and number of risk alleles (0-4 risk alleles; P = 0.0045). Overall,
there was a mean difference in 25(OH)D concentrations of
20.9 nmol/L between carriers of no risk alleles and carriers of all
4 risk alleles. Furthermore, there was a significant linear negative
trend between the increase in 25(OH)D concentration and the
GRS (P = 0.042) (Figure 1B). The lowest increase in 25(OH)D
concentrations was observed for carriers of all 4 risk alleles.

To evaluate the effect of rs10741657 and rs4588 on 25(OH)D
concentrations at baseline and after 6 mo consumption of vitamin
D3–fortified bread and milk, data from the adult population of
the VitmaD study (15, 20, 21) were used and analyzed in the
same manner as previously described for the VitDgen study. At
baseline (late summer; all adults: n = 414), there was a linear
negative trend between the 25(OH)D concentration and carriage
of 0–4 risk alleles (P , 0.0001) (Figure 1C). After a 6-mo
consumption of vitamin D3–fortified bread and milk (only adults
in the fortification group: n = 208), there was still a linear
negative trend between the 25(OH)D concentration and carriage
of 0–4 risk alleles (P = 0.0270). With the use of a realistic vi-
tamin D3–fortification model, a decrease in 25(OH)D concen-
trations was observed during the winter, and the largest percentage
decrease was observed for carriers of all 4 risk alleles (Figure 1D).

TABLE 1
Characteristics of the VitDgen study population1

All (n = 92) F (n = 60) M (n = 32)

n Value n Value n Value

Age, y 92 38.6 6 12.02 60 38.1 6 11.6 32 39.6 6 12.9
BMI,3 kg/m2

Underweight (,18.5) 3 18.0 6 0.4 2 18.0 6 0.6 1 18.0
Normal weight (18.5–24.9) 57 22.1 6 1.8 41 22.1 6 1.9 16 22.3 6 1.8
Overweight (25.0–29.9) 23 26.7 6 1.3 11 26.8 6 1.2 12 26.6 6 1.5
Obese (.30.0) 9 33.6 6 3.9 6 32.8 6 4.1 3 35.5 6 3.5

Baseline 25(OH)D, nmol/L
.50 47 78.1 6 21.8 32 80.6 6 22.6 15 72.8 6 19.6
25–50 40 38.2 6 7.1 25 38.2 6 7.2 15 38.2 6 7.1
,25 5 20.4 6 4.2 3 18.3 6 4.4 2 23.5 6 0.7

End 25(OH)D, nmol/L
.50 89 86.5 6 22.5 57 87.4 6 25.7 32 84.8 6 15.4
25–50 3 46.3 6 2.9 3 46.3 6 2.9 — —
,25 — — — — — —

Sun or ski vacation,4 n (%) 45 (49) 31 (52) 14 (44)
Supplement users 6 mo before the intervention, n (%)
Multivitamins 19 (21) 14 (23) 5 (16)
Vitamin D 8 (9) 5 (8) 3 (9)

Consuming fish, n (%)
Yes, total 86 (95) 58 (97) 28 (90)
1–2 times/wk 60 (66) 40 (67) 20 (65)
$3 times/wk 26 (29) 18 (30) 8 (26)
No 5 (5) 2 (3) 3 (10)

Fitzpatrick skin type, n (%)5

I 9 (10) 6 (10) 3 (9)
II 29 (32) 20 (34) 9 (28)
III 39 (43) 25 (42) 14 (44)
IV 14 (15) 8 (14) 6 (19)

PPF6

Forehead 92 5.5 6 1.5 60 5.5 6 1.6 32 5.5 6 1.3
Shoulder 92 5.1 6 1.4 60 5.4 6 1.3 32 4.6 6 1.4
Buttock 92 3.4 6 1.1 60 3.6 6 1.1 32 3.1 6 1.0

Sunbed use in 2012, n (%)
Did not use a sunbed 83 (90) 52 (87) 31 (97)
1–4 times 3 (3) 2 (3) 1 (3)
$5 times 6 (7) 6 (10) —

1PPF, pigment protection factor; VitDgen, Vitamin D in genes; 25(OH)D, 25-hydroxyvitamin D.
2Geometric mean 6 SD (all such values).
3On the basis of WHO international standards for adults (20).
4Ski or sun vacation 6 mo before the study in places where dermal vitamin D production was expected.
5Fitzpatrick skin type categorization on the basis of sun-reactive types I–IV (16).
6PPF (range: 1.0–24.0) reflects melanin concentrations in the skin at baseline.
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TABLE 2
Basic characteristics of individual SNPs and associations with 25(OH)D concentrations in the VitDgen study population (n = 92)1

Baseline (day 0) End (day 10) Increase in 25(OH)D2

SNP HWE, P MAF, % M/m Genotype n 25(OH)D P-adjusted3 25(OH)D 25(OH)D P-adjusted4

CYP2R1
rs7116978 0.11 39.5 C/T CC 37 50.8 (43.8, 58.9)5 0.32 78.4 (72.3, 85.0) 22.6 (18.3, 27.8) 0.10

CT 35 50.5 (43.4, 58.7) 80.5 (74.0, 87.5) 27.2 (21.8, 34.1)
TT 18 58.1 (47.0, 71.7) 93.4 (83.1, 104.9) 29.8 (21.7, 40.9)

rs10741657 0.07 41.4 G/A GG 36 50.2 (43.1, 58.4) 0.28 77.0 (70.9, 83.5) 21.7 (17.7, 26.8) 0.0246

GA 36 50.2 (43.2, 58.5) 81.9 (75.5, 88.9) 28.6 (23.0, 35.5)
AA 20 57.9 (47.3, 71.0) 93.7 (84.0, 104.6) 30.7 (22.9, 41.2)

rs1562902 0.35 43.8 T/C TT 32 49.8 (42.4, 58.4) 0.84 79.0 (72.3, 86.3) 25.6 (20.4, 32.1) 0.32
TC 40 49.8 (43.1, 57.4) 81.2 (75.0, 87.9) 26.8 (21.7, 33.2)
CC 20 59.9 (48.9, 73.3) 90.4 (80.1, 101.1) 24.6 (18.4, 33.0)

rs10766197 0.39 48.9 G/A GG 22 56.0 (46.1, 67.9) 0.40 87.3 (78.5, 97.1) 25.2 (19.0, 33.3) 0.13
AG 49 52.5 (46.1, 59.7) 83.7 (77.9, 89.9) 26.5 (21.9, 32.1)
AA 21 46.4 (38.0, 56.5) 74.5 (66.8, 83.0) 25.3 (19.1, 33.7)

CYP24A1
rs6013897 0.83 20.5 T/A TT 60 50.4 (44.8, 56.7) 0.07 81.9 (76.7, 87.5) 27.3 (23.1, 32.2) 0.70

AT 28 53.6 (45.1, 63.7) 83.0 (75.4, 91.5) 25.2 (19.8, 32.0)
AA 4 61.1 (38.7, 96.5) 83.1 (83.1, 107.3) 12.3 (6.0, 25.2)

rs4809960 0.11 23.7 T/C TT 58 51.8 (46.0, 58.4) 0.45 82.5 (77.1, 88.2) 25.8 (21.7, 30.5) 0.26
TC 31 53.1 (45.1, 62.6) 81.2 (74.1, 89.0) 24.4 (19.4, 30.9)
CC 8 39.9 (23.6, 67.6) 91.0 (67.8, 122.2) 49.6 (24.0, 102.5)

rs2296241 0.26 46.0 G/A GG 24 44.5 (37.1, 53.5) 0.16 77.5 (70.0, 80.1) 25.2 (19.5, 32.7) 0.39
AG 52 55.7 (49.1, 63.0) 82.8 (77.2, 88.8) 24.5 (20.3, 29.4)
AA 16 51.5 (41.2, 64.5) 88.1 (77.6, 99.9) 31.8 (23.2, 43.6)

rs17219315 0.78 2.8 A/G AA 87 51.7 (46.8, 57.0) 0.53 82.0 (77.6, 86.6) 25.7 (22.3, 29.6) 0.29
AG 5 54.4 (36.1, 82.0) 87.5 (69.6, 110.0) 29.2 (16.5, 51.7)

rs2426496 0.29 23.3 G/T GG 54 48.9 (43.2, 55.3) 0.44 78.8 (73.6, 84.3) 24.3 (20.4, 28.9) 0.25
GT 35 56.7 (48.6, 66.1) 86.9 (79.9, 94.6) 27.8 (22.2, 34.8)
TT 3 51.8 (30.7, 87.4) 95.9 (71.9, 128.1) 37.4 (18.0, 77.7)

CYP27B1
rs10877012 0.97 35.2 G/T GG 41 50.4 (43.7, 58.1) 0.38 81.3 (75.1, 88.1) 23.8 (19.4, 29.2) 0.91

GT 40 50.7 (43.9, 58.6) 82.0 (75.7, 88.9) 28.3 (23.0, 34.7)
TT 11 61.9 (47.1, 81.4) 87.1 (74.7, 101.6) 25.8 (17.2, 38.5)

C10orf88
rs6599638 0.29 49.4 G/A GG 20 52.5 (42.8, 64.5) 0.48 80.3 (71.7, 90.0) 23.3 (17.4, 31.2) 0.31

GA 51 52.5 (46.2, 59.7) 84.2 (78.4, 90.4) 28.4 (23.6, 34.0)
AA 21 49.6 (40.6, 60.5) 79.7 (71.3, 89.0) 23.0 (17.3, 30.5)

DHCR7/NADSYN1
rs1790349 0.02 15.3 A/G AA 69 50.6 (45.4, 56.5) 0.35 82.2 (77.3, 87.4) 26.5 (22.7, 31.1) 0.70

GA 18 56.8 (45.8, 70.5) 84.7 (75.1, 95.5) 23.8 (17.3, 32.8)
GG 5 51.0 (33.9, 76.7) 76.0 (60.5, 95.5) 24.2 (13.7, 42.9)

rs12785878 0.32 28.4 T/G TT 49 51.2 (44.9, 58.3) 0.77 81.6 (75.9, 87.8) 27.4 (22.7, 33.1) 0.97
GT 34 52.4 (44.7, 61.3) 83.3 (76.3, 91.0) 24.2 (19.3, 30.3)
GG 9 53.2 (39.2, 72.2) 82.2 (69.3, 97.5) 24.6 (16.1, 37.7)

GC
rs16846876 0.16 38.6 A/T AA 32 58.8 (50.2, 68.8) 0.41 92.2 (84.6, 100.4) 26.6 (21.1, 33.4) 0.0266

AT 50 50.0 (44.1, 56.8) 78.8 (73.6, 84.3) 25.5 (21.1, 30.8)
TT 10 41.2 (31.3, 54.6) 71.2 (61.2, 83.0) 25.7 (17.2, 38.6)

rs12512631 0.07 31.6 T/C TT 38 43.4 (37.7, 49.9) 0.0256 74.6 (69.1, 80.6) 26.3 (21.2, 32.5) 0.13
TC 49 57.3 (50.6, 64.8) 86.1 (80.5, 92.1) 25.2 (20.9, 30.4)
CC 5 79.8 (50.9, 110.0) 111.3 (90.1, 137.5) 30.1 (17.0, 53.4)

rs17467825 0.96 28.4 A/G AA 49 53.0 (46.5, 60.4) 0.50 83.9 (78.2, 90.1) 24.4 (20.3, 29.4) 0.0206

GA 36 51.3 (44.1, 59.8) 83.7 (77.1, 90.9) 29.1 (23.5, 36.2)
GG 7 46.2 (32.7, 65.3) 65.7 (54.5, 79.3) 20.9 (12.4, 35.0)

rs2282679 0.96 28.4 A/C AA 49 53.0 (46.5, 60.4) 0.50 83.9 (78.2, 90.1) 24.4 (20.3, 29.4) 0.0206

CA 36 51.3 (44.1, 59.8) 83.7 (77.1, 90.9) 29.1 (23.5, 36.2)
CC 7 46.2 (32.7, 65.3) 65.7 (54.5, 79.3) 20.9 (12.4, 35.0)

(Continued)
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DISCUSSION

To our knowledge, this is the first study to evaluate the increase in
25(OH)D concentrations after artificial UVB treatments in relation
to GC and CYP2R1 genotypes. There was a gene-dose–dependent
relation between the UVB-dependent increase in serum 25(OH)D
concentrations and the GRS. Genetically predisposed individuals
carrying all 4 risk alleles of rs10741657 and rs4588 had the lowest
baseline mean 25(OH)D concentration and the smallest increase in
25(OH)D concentrations after 4 UVB treatments during the winter
compared with those of carriers of a lower GRS. Furthermore,
there was a gene-dose–dependent relation between the percentage
decrease in the 25(OH)D concentration and GRS after a 6-mo
consumption of vitamin D3–fortified bread and milk. The largest
percentage decrease in 25(OH)D concentrations was also observed
in individuals carrying all 4 risk alleles of rs10741657 and rs4588
compared with carriers of a lower GRS. Nimitphong et al. (21)
also observed a significantly smaller increase in 25(OH)D3 and
total 25(OH)D concentrations after oral intake of 400 IU vitamin

D3/d (10 mg vitamin D3/d) for 3 mo in individuals carrying CA or
AA genotypes of rs4588.

This study is important for public health recommendations and
vitamin D food-fortification programs because it showed that the
genetic predisposition in the CYP2R1 and GC genes may have
a large impact on 25(OH)D concentrations. During winter, in-
dividuals carrying all 4 risk alleles of rs10741657 and rs4588
benefitted the least from either UVB treatments or the con-
sumption of vitamin D3–fortified bread and milk. In agreement
with our findings, Engelman et al. (22) performed a GRS en-
compassing rs4588 in GC and rs2060793 in CYP2R1 and
showed that the mean 25(OH)D concentration was highest in the
group with no copies of rs4588 and rs2060793 risk alleles who
also had high external sources of vitamin D (.10 mg/d). Fur-
thermore, Engelman et al. (22) showed that the lowest mean
25(OH)D concentration was shown in the group with 3 risk
alleles and low external sources of vitamin D (,10 mg/d) or 4
risk alleles regardless of the external sources of vitamin D.

TABLE 2 (Continued )

Baseline (day 0) End (day 10) Increase in 25(OH)D2

SNP HWE, P MAF, % M/m Genotype n 25(OH)D P-adjusted3 25(OH)D 25(OH)D P-adjusted4

rs842999 0.14 44.1 G/C/A GG 25 54.3 (45.4, 65.1) 0.42 82.5 (74.4, 91.4) 24.0 (18.6, 30.9) 0.17
GX7 50 53.1 (46.7, 60.3) 84.2 (78.3, 90.5) 25.8 (21.4, 31.1)
XX8 13 49.7 (38.7, 63.9) 75.7 (65.7, 87.3) 25.9 (17.9, 37.4)

rs4588 0.84 29.0 C/A CC 48 53.3 (46.7, 60.8) 0.57 84.1 (78.3, 90.4) 24.3 (20.1, 29.2) 0.0206

CA 37 51.0 (43.9, 59.3) 83.5 (77.0, 90.6) 29.3 (23.6, 36.2)
AA 7 46.2 (32.7, 65.3) 65.7 (54.5, 79.3) 20.9 (12.5, 34.9)

rs222020 0.84 22.2 T/C TT 55 54.7 (48.5, 61.6) 0.068 86.2 (80.7, 92.0) 27.2 (22.8, 32.5) 0.31
TC 33 45.1 (38.7, 52.6) 74.4 (68.4, 81.0) 24.2 (19.3, 30.4)
CC 4 77.7 (50.0, 120.9) 100.6 (78.9, 128.2) 22.4 (11.8, 42.3)

rs2298849 0.80 25.3 T/C TT 51 53.4 (47.0, 60.6) 0.31 85.5 (79.8, 91.7) 29.0 (24.2, 34.8) 0.33
CT 35 47.7 (40.9, 55.5) 76.5 (70.3, 83.2) 22.2 (17.8, 27.6)
CC 6 65.4 (45.2, 94.6) 91.2 (74.4, 11.8) 24.3 (14.6, 40.6)

VDR
rs731236 0.08 42.6 T/C TT 34 52.2 (44.6, 61.0) 0.35 83.4 (76.5, 91.0) 24.9 (19.9, 31.2) 0.66

TC 38 49.3 (42.5, 57.1) 79.5 (73.2, 86.4) 27.3 (22.0, 33.9)
CC 20 56.4 (46.0, 69.1) 86.8 (76.6, 96.1) 25.0 (18.8, 33.3)

rs757343 0.98 10.8 G/A GG 74 52.8 (47.5, 58.8) 0.76 83.2 (78.4, 88.2) 26.8 (23.0, 31.3) 0.56
AG 17 47.8 (38.3, 59.7) 79.1 (69.9, 89.6) 22.3 (16.4, 30.4)
AA 1 47.6 (19.1, 118.7) 74.9 (45.0, 124.7) 27.3 (17.7, 97.5)

rs10783219 1.00 36.9 A/T AA 36 53.0 (45.5, 61.8) 0.82 82.1 (75.5, 89.4) 25.4 (20.4, 31.6) 0.69
TA 43 50.5 (43.9, 58.1) 81.2 (75.2, 87.8) 25.6 (20.9, 31.2)
TT 13 52.8 (41.0, 68.1) 86.4 (75.0, 99.5) 28.5 (19.7, 41.2)

rs7139166 0.24 40.3 C/G CC 37 53.6 (46.1, 62.3) 0.53 84.4 (77.7, 91.8) 26.1 (21.0, 32.4) 0.81
CG 37 51.6 (44.4, 59.9) 82.1 (75.5, 89.3) 25.6 (20.6, 31.7)
GG 18 48.7 (39.3, 60.5) 78.5 (69.6, 88.5) 26.2 (19.2, 35.7)

1CYP2R1, 25-hydroxylase; CYP24A1, 24-hydroxylase; CYP27B1, 1-a-hydroxylase; C10orf88, open-reading frame 88 on chromosome 10q26.13;
DHCR7/NADSYN1, 7-dehydrocholesterol reductase/nicotiamide adenine dinucleotide synthetase-1; GC, vitamin D binding protein; HWE, Hardy-Weinberg
equilibrium in the unrelated population; MAF, minor allele frequency for the unrelated population; M/m, major/minor alleles; SNP, single nucleotide
polymorphism (ordered by position); VDR, vitamin D receptor; VitDgen, Vitamin D in genes; 25(OH)D, 25-hydroxyvitamin D.

2Increase in 25(OH)D concentration after 4 UVB treatments with a total of 6 or 7.5 standard erythema doses during a 10-d period.
3Linear mixed models with family as a random factor adjusted for age, sex, BMI, use of multivitamin and vitamin D supplementation, outdoor stay in

light clothes, outdoor transport to work, and sun bathing.
4Linear mixed models with family as a random factor adjusted for age, sex, BMI, and baseline serum 25(OH)D concentration.
5Raw serum 25(OH)D concentrations were log transformed to approximate a normal distribution and are presented as geometric means (nmol/L); 95% CIs in

parentheses (all such values).
6Significant P value (,0.05).
7GX, GC/GA.
8XX, CC/CA/AA.
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Our study indicated that individuals carrying a high GRS may
need a longer UVB-exposure time or a higher amount of vitamin D
supplementation to achieve a given 25(OH)D concentration than
do individuals carrying a lower GRS, or perhaps the results suggest
that there is variability in the physiologically normal range of
25(OH)D concentration. Regardless of themethod used to increase
or maintain a serum 25(OH)D concentration during winter, the
effects of UVB treatments or vitamin D supplementation on
25(OH)D concentrations seemed remarkably similar. This study
emphasizes the findings that individuals with genetically de-
termined low 25(OH)D concentrations may need different health
recommendations to improve their vitamin D status or that there is
physiologic variation in the normal range of 25(OH)D concen-
tration, showing that a one-size-fits-all approach may not work
well for vitamin D. If the genetically determined low 25(OH)D
concentration poses health risk, then carriers of all 4 risk alleles of
rs10741657 and rs4588 should be at increased risk of developing
vitamin D deficiency or at risk for adverse health outcomes as-
sociated with vitamin D deficiency or insufficiency. The genetic
variation in rs10741657 has been associated with risk of type 1
diabetes (23). Several studies have reported an association between
GC genotypes rs7041 and rs4588 and adverse health outcomes
including premenopausal bone fracture, postmenopausal breast
cancer, endometriosis, diabetes, severity of obstructive pulmonary
disease, asthma susceptibility, and rheumatic fever (24–28).

At baseline, there was no significant difference between 25(OH)D
concentrations for the analyzed SNPs except for rs12512631 in GC.
The association between rs12512631 and 25(OH)D concentrations
disappeared after 4 UVB treatments. For every 20 statistical tests
made for associations with 25(OH)D concentrations at baseline, it
was expected to have one false-positive result at the P , 0.05
concentration, which the rs12512631 finding may have been. Oth-
erwise, our findings are in agreement with those of previous studies
that showed no effects of genetic variation on 25(OH)D concen-
trations during winter (12, 21, 22). During winter, the vitamin D
stored during summer is used, and thus, the genetic variation in
biosynthesis genes cannot predict 25(OH)D concentrations.

At the end of the VitDgen study, rs10741657 in CYP2R1 and
rs4588 inGC predicted the UVB-induced 25(OH)D concentration.
The same polymorphisms have previously been shown to predict
25(OH)D concentrations at late summer and after a 6-mo con-
sumption of vitamin D3–fortified bread and milk in the VitmaD
study (9, 12). In contrast, 2 other polymorphisms, rs10766197 in
CYP2R1 and rs842999 in GC, did not predict the UVB-induced
25(OH)D concentration at the end of the VitDgen study, whereas
both polymorphisms were associated with 25(OH)D concentra-
tions at late summer and after a 6-mo consumption of vitamin D3–
fortified bread and milk in the VitmaD study (12). The lack of
replication of the 2 SNPs in the VitDgen study was likely due to
the small sample size.

FIGURE 1 Adjusted mean (95% CI) 25(OH)D concentrations at baseline and end of the study were calculated for each GRS category of rs10742657 and
rs4588 stratified by UVB treatment in the VitDgen study (A) or by consumption of vitamin D3–fortified bread and milk in the VitmaD study (C). The GRS
(range: 0–4) was calculated as the sum of the number of G alleles of rs10741657 and A alleles of rs4588. The percentage increase in 25(OH)D concentrations
after UVB treatment in the VitDgen study (B) or percentage decrease in 25(OH)D concentration after a 6-mo consumption of vitamin D3–fortified bread and
milk during winter in the VitmaD study (D) for each GRS category of rs10742657 and rs4588. The percentage decrease in vitamin D status in relation to the
GRS was analyzed in the adult population who participated in the fortification group (n = 208) in the VitmaD study. In both studies, linear mixed models were
adjusted for age, sex, BMI, baseline 25(OH)D concentration, and family as a random factor and, in addition, for ski and sun vacations, vitamin D intake, and
supplementation for the VitmaD study. Linear mixed models were fitted to log 25(OH)D concentrations with the GRS as an explanatory factor. For the VitmaD
study, the GRS was calculated for the adult population (18–60 y) at baseline (n = 414) and at the end of the study only for the adult population who consumed
vitamin D3–fortified bread and milk (n = 208). Numbers in the columns present total numbers of participants carrying the GRS. Error bars indicate 95% CIs.
GRS, genetic risk score; VitDgen, Vitamin D in genes; VitmaD, Food with vitamin D; 25(OH)D, 25-hydroxyvitamin D.
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A strength of the VitDgen study design was that it was con-
ducted in presumably healthy Caucasians aged 18–60 y, and thus,
the potential impact of diseases was minimized. Moreover, the
increase in 25(OH)D concentration was well controlled by using
an artificial UVB source. All blood samples were drawn within
a 10-d period during the winter, when the solar influence was
minimized. Vitamin D status relied on a single measurement
of 25(OH)D concentrations and was analyzed in a single batch-
with isotope-dilution liquid-chromatography–tandem mass
spectrometry. A disadvantage was that some of the known
predictors of 25(OH)D concentrations were quantified by
using self-reported questionnaires. It would have been in-
teresting to have measured parathyroid hormone concentra-
tions to assess if there was a recessive effect of rs4588 AA on
parathyroid hormone concentrations after UVB treatment as
observed after vitamin D supplementation in the VitmaD
study (12) and by Pekkinen et al. (29). Moreover, it would
have been interesting to analyze possible effects of rs7041
and rs4588 on free and bioavailable 25(OH)D concentrations
because genetic differences in the vitamin D binding protein
gene may affect the binding of 25(OH)D and, thereby, the
amount of free and bioavailable 25(OH)D (30, 31).

In conclusion, common genetic variants in CYP2R1 and GC
are predictive of 25(OH)D concentrations in a healthy Cauca-
sian population. Carriers of all 4 risk alleles of rs10741657 in
CYP2R1 and rs4588 in GC had the lowest baseline mean
25(OH)D concentration, smallest increase in 25(OH)D concen-
trations after 4 UVB treatments, and largest percentage decrease
in 25(OH)D concentrations after consumption of vitamin D3–
fortified bread and milk during winter compared with in carriers
of no risk alleles. This study is important for public health
recommendations and vitamin D–food fortification programs
because it shows that a genetic predisposition in CYP2R1 and
GC genes may have a large impact on 25(OH)D concentrations.
Genetic variability may be associated with different response to
UVB exposure or vitamin D supplementation perhaps suggesting
that some individuals may need different health recommendations
to improve their vitamin D status or that there is a physiologic
variability in the normal range of 25(OH)D concentrations.
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6. Kühn T, Kaaks R, Teucher B, Hirche F, Dierkes J, Weikert C, Katzke V,
Boeing H, Stangl GI, Buijsse B. Dietary, lifestyle, and genetic de-
terminants of vitamin D status: a cross-sectional analysis from the
European Prospective Investigation into Cancer and Nutrition (EPIC)-
Germany study. Eur J Nutr 2014;53:731–41.

7. Ahn J, Yu K, Stolzenberg-Solomon R, Simon KC, McCullough ML,
Gallicchio L, Jacobs EJ, Ascherio A, Helzlsouer K, Jacobs KB, et al.
Genome-wide association study of circulating vitamin D levels. Hum
Mol Genet 2010;19:2739–45.

8. Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry
D, Kiel DP, Streeten EA, Ohlsson C, Koller DL, et al. Common genetic
determinants of vitamin D insufficiency: a genome-wide association
study. Lancet 2010;376:180–8.

9. Nissen J, Rasmussen LB, Ravn-Haren G, Andersen EW, Hansen B,
Andersen R, Mejborn H, Madsen KH, Vogel U. Common variants in
CYP2R1 and GC genes predict vitamin D concentrations in healthy
Danish children and adults. PLoS One 2014;9:e89907.

10. Madsen KH, Rasmussen LB, Andersen R, Mølgaard C, Jakobsen J,
Bjerrum PJ, Andersen EW, Mejborn H, Tetens I. Randomized
controlled trial of the effects of vitamin D–fortified milk and bread
on serum 25-hydroxyvitamin D concentrations in families in Den-
mark during winter: the VitmaD study. Am J Clin Nutr 2013;98:
374–82.

11. Madsen KH, Rasmussen LB, Mejborn H, Andersen EW, Mølgaard C,
Nissen J, Tetens I, Andersen R. Vitamin D status and its determinants
in children and adults among families in late summer in Denmark. Br
J Nutr 2014;112:776–84

12. Nissen J, Vogel U, Ravn-Haren G, Andersen EW, Nexø BA, Andersen
R, Mejborn H, Madsen KH, Rasmussen LB. Real-life use of vi-
tamin D3-fortified bread and milk during a winter season: the
effects of CYP2R1 and GC genes on 25-hydroxyvitamin D con-
centrations in Danish families, the VitmaD study. Genes Nutr.
2014;9:413.

13. Wulf HC. Method and apparatus for determining an individual’s ability
to stand exposure of UV. United States patent 14:822, 598:1–32. 1986.

14. Na R, Stender IM, Henriksen M, Wulf HC. Autofluorescence of human
skin is age-related after correction for skin pigmentation and redness.
J Invest Dermatol 2001;116:536–40.

15. Kongshoj B, Thorleifsson A, Wulf HC. Pheomelanin and eumelanin in
human skin determined by high-performance liquid chromatography
and its relation to in vivo reflectance measurements. Photodermatol
Photoimmunol Photomed 2006;22:141–7.

16. Fitzpatrick TB. The validity and practicality of sun-reactive skin types I
through VI. Arch Dermatol 1988;124:869–71.

17. Lock-Andersen J, Wulf H, Mortensen N. Erythemally weighted ra-
diometric dose and standard erythema dose (SED). Proceedings 12th
International Congress on Photobiology, Vienna, Austria; 1996.
p. 315–7.

18. Diffey BL, Jansén CT, Urbach F, Wulf HC. The standard erythema
dose: a new photobiological concept. Photodermatol Photoimmunol
Photomed 1997;13:64–6.

19. Miller SA, Dykes D, Polesky H. A simple salting out procedure for
extracting DNA from human nucleated cells. Nucleic Acids Res 1988;
16:1215.

20. World Health Organization. Obesity: preventing and managing the
global epidemic. Report of a WHO consultation. WHO Heal Organ
Tech Rep Ser 2000;894:i–12, 1–253.

21. Nimitphong H, Saetung S, Chanprasertyotin S, Chailurkit L-O, Ong-
phiphadhanakul B. Changes in circulating 25-hydroxyvitamin D ac-
cording to vitamin D binding protein genotypes after vitamin D3 or
D2supplementation. Nutr J 2013;12:39.

226 NISSEN ET AL.

 at DANISH ELECTRO
NIC RESEARCH (DEFF) on January 2, 2015

ajcn.nutrition.org
Downloaded from

 



22. Engelman CD, Meyers KJ, Iyengar SK, Liu Z, Karki CK, Igo RP, Truitt
B, Robinson J, Sarto GE, Wallace R, et al. Vitamin D intake and season
modify the effects of the GC and CYP2R1 genes on 25-hydroxyvitamin D
concentrations. J Nutr 2013;143:17–26.

23. Ramos-Lopez E, Brück P, Jansen T, Herwig J, Badenhoop K. CYP2R1
(vitamin D 25-hydroxylase) gene is associated with susceptibility to
type 1 diabetes and vitamin D levels in Germans. Diabetes Metab Res
Rev 2007;23:631–6.

24. Speeckaert M, Huang G, Delanghe JR, Taes YEC. Biological and
clinical aspects of the vitamin D binding protein (Gc-globulin) and its
polymorphism. Clin Chim Acta 2006;372:33–42.

25. Malik S, Fu L, Juras DJ, Karmali M, Wong BYL, Gozdzik A, Cole
DEC. Common variants of the vitamin D binding protein gene and
adverse health outcomes. Crit Rev Clin Lab Sci 2013;50:1–22.

26. Abbas S, Linseisen J, Slanger T, Kropp S, Mutschelknauss EJ, Flesch-
Janys D, Chang-Claude J. The Gc2 allele of the vitamin D binding
protein is associated with a decreased postmenopausal breast cancer
risk, independent of the vitamin D status. Cancer Epidemiol Bio-
markers Prev 2008;17:1339–43.

27. Sayegh L, Fuleihan GE-H, Nassar AH. Vitamin D in endometri-
osis: a causative or confounding factor? Metabolism 2014;63:
32–41.

28. Li F, Jiang L, Willis-Owen SA, Zhang Y, Gao J. Vitamin D binding
protein variants associate with asthma susceptibility in the Chinese Han
population. BMC Med Genet 2011;12:103.

29. Pekkinen M, Saarnio E, Viljakainen HT, Kokkonen E, Jakobsen J,
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Supplemental Table 1: SNP primers!

Gene SNP iPlex primer 1 iPlex primer 2 Extension primer 

CYP2R1 rs7116978 ACGTTGGATGGAAGTCTTTAAGGAATACAC ACGTTGGATGCATTTAAGTGCTTAAGTCACC ACCTTTTATAGGTAAAAGATTATCTAA 

rs10741657 ACGTTGGATGGGTGGTTGGGGAGATACTTT ACGTTGGATGCAGCTCCAATGTCATCTTCC TTCCTTGACAGCCCT 

rs1562902 ACGTTGGATGACCAGCTTATATCCAGGGAC ACGTTGGATGGAGACCAGTTGATAGGGAAG TAACATCTTCCATGAACA C 

rs10766197 ACGTTGGATGAGCTTGGTCCTTTCTGTATC ACGTTGGATGGTACAATTTGGAACACTCCAG ACGCCAGTTAATTAGAGATCTTTAAACT 

CYP24A1 rs6013897 ACGTTGGATGGTTCAGAAAACTCGTAAATGC ACGTTGGATGGGGGATAATGAAAGTACCTA ATAATGAAAGTACCTACTTCAG 

rs4809960 ACGTTGGATGGCCTGTTTACAAAAGAGTTG ACGTTGGATGGTCACAGACTTGCTCACTGA GGTGGGTGATTTTGCGGATAAAAC 

rs2296241 ACGTTGGATGGCGGTTGTTTTCTTTGAAGG ACGTTGGATGTCAACGTGGCCTCTTTCATC TCATCTATTCTGCCCATAAAATC 

rs17219315 ACGTTGGATGCACCTCAAAATCCCTGAACC ACGTTGGATGAAGCACCTTTCCTCCTAGTC ACTAGTCAAAGATTGCACCA 

rs2426496 ACGTTGGATGCTTCTCTGAGTCTAGTTTCC ACGTTGGATGTCTTGACCTTCCTGAGACAC GGTACTGAGACACAGGTATAGTAA 

CYP27B1 rs10877012 ACGTTGGATGAGAGAGGGCCTGTCTCTAAA ACGTTGGATGAATGAGGGAGTAAGGAGCAG GGTAAACTGTGGGAGATT 

C10orf88 rs6599638 ACGTTGGATGAAACACTGATTCCTGGACCC ACGTTGGATGGGAAGGTCTTCAAAATGCAG TCCTGGCCCTCACTAT 

DHCR7/ 

NADSYN1 

rs1790349 ACGTTGGATGGCCTGAAAGCCAAGCTATCC ACGTTGGATGGATCCATCAGAGGGAAGTGC CCAAACAGCAAGACAAG 

rs12785878 ACGTTGGATGTTGAGTCCAGCCCAGGAGAA ACGTTGGATGTCTGGGCTGTCTGATATCAC CCCCATGTCTGATATCACAAAGCTTC 

GC rs16846876 ACGTTGGATGCAAGTTTAGGAGTTCTGTTC ACGTTGGATGTATCCCTACCTGCACATGTC CCCTTGCACATGTCTGTGAACTTT 

rs12512631 ACGTTGGATGAACTAGTAGCCTTGTGGTGG ACGTTGGATGTCTTTTCTCTCTATTAGGC CTCTCTCTATTAGGCCAAGAAA 

rs17467825 ACGTTGGATGCAATATTTCTGTCAGCGATTC ACGTTGGATGTTCCAGCACACTCTAAACAC CCCCTCTAAACACATTTCACCA 

rs2282679 ACGTTGGATGGGGACTACTACTTGCTTCCA ACGTTGGATGCCCAGCAAATCTCTGTCTCT CATCTCTGTCTCTTAATTATCTCACA 

rs842999 ACGTTGGATGTGAGAATATTAAGCACCGAG ACGTTGGATGCTAGTCTTACATATATCAG CTAGTCTTACATATATCAGAAATTG 

rs4588 ACGTTGGATGTTTTTCAGACTGGCAGAGCG ACGTTGGATGCTTGTTAACCAGCTTTGCC GAAAGCTTTGCCAGTTCC 

rs222020 ACGTTGGATGAACCAGAGGAGACAACCTTG ACGTTGGATGGATAGCAGCAGGAAAAACTC ATGGGCAAAAAATTCAATGG 

rs2298849 ACGTTGGATGCCACTGGCAAAACACATTAC ACGTTGGATGAGTGCTGTCAGTTAACAGCC GCCTCACCTAATTCGTACA 

VDR rs731236 ACGTTGGATGTTCTCTATCCCCGTGCCCA ACGTTGGATGTTGGACAGGCGGTCCTGGAT AGTAGGTCCTGGATGGCCTC 

rs757343 ACGTTGGATGTTCCTCTTCGGCCTTTTCTC ACGTTGGATGATTTTGGAGGCAATGTGCAG ATGTGCAGTGACCCTT 

rs10783219 ACGTTGGATGTTCTGTGGGATAGTGTGGTC ACGTTGGATGCCTCTTCCTCCATATCTACA CCATATCTACAGCCTCC 

rs7139166 ACGTTGGATGCCTCTTATGCTTTTCTTCCC ACGTTGGATGAAGTAATAGGAAGGATCCCC GGCTCCCCTTGCCCAAAGCAT 
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