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Summary

Humans are exposed to various chemical agents through food, cosmetics, pharma-
ceuticals and other sources. Exposure to chemicals is suspected of playing a main
role in the development of some adverse health effects in humans. Additionally,
European regulatory authorities have recognized the risk associated with combined
exposure to multiple chemicals. Testing all possible combinations of the tens of
thousands environmental chemicals is impractical. This PhD project was launched
to apply existing computational systems biology methods to toxicological research.

In this thesis, I present in three projects three different approaches to using com-
putational toxicology to aid classical toxicological investigations. In project I, we
predicted human health effects of five pesticides using publicly available data. We
obtained a grouping of the chemical according to their potential human health ef-
fects that were in concordance with their effects in experimental animals. In project
II, I profiled the effects on rat liver gene expression levels following exposure to a 14-
chemical mixture ± the presence of an endocrine disrupting chemical. This project
helped us shed light on the mechanism of action of the 14-chemical mixture and
the endocrine disrupting chemical. In project III, I modeled a predictive signature
for an in vivo endpoint that is sensitive to endocrine disruption. I used publicly
available data generated for the purpose of modeling predictive signatures for vari-
ous in vivo endpoints. From this modeling effort, I have suggested a mechanism of
action for a subset of the chemicals that has not previously been associated with
endocrine disruption.
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The use of computational methods in toxicology can aid the classical toxicological
tests by suggesting interactions between separate components of a system thereby
suggesting new ways of thinking specific toxicological endpoints. Furthermore,
computational methods can serve as valuable input for the hypothesis generating
phase of the preparations of a research project.



Resume

Mennesker bliver eksponeret for adskillige kemiske stoffer gennem fødevarer, kos-
metik, lægemidler og andre kilder. Eksponering for kemikalier er mistænkt for at
spille en vigtig rolle i udviklingen af nogle uønskede sundhedseffecter hos mennesker.
Derudover har de europæiske tilsynsmyndigheder anerkendt risikoen forbundet med
kombineret eksponering for flere kemikalier. Test af samtlige mulige kombinationer
af de titusinder tilgængelige miljø- kemikalier er upraktisk. Dette Ph.d.-projekt blev
iværksat for at anvende eksisterende systembiologiske computermetoder i toksikol-
ogisk forskning.

I denne afhandling præsenterer jeg i tre projekter tre forskellige tilgange til at bruge
computaterbaseret toksikologi til at støtte klassiske toksikologiske undersøgelser.
I projekt I, forudsagde vi sundhedsvirkningerne af fem pesticider ved brug af of-
fentligt tilgængelige data. Vi opn̊aede en gruppering af kemikalierne i henhold til
deres potentielle indvirkninger p̊a menneskers sundhed, der var i overensstemmelse
med deres effekter i forsøgsdyr. I projekt II, profilerede jeg effekterne af en kemisk
blanding med 14 kemikalier med og uden tilstedeværelse af et hormonforstyrrende
stof p̊a genekspressionsniveauerne i rottelevere. Dette projekt hjalp os med at
belyse virkningsmekanismen af den kemiske blanding og det hormonforstyrrende
stof. I projektet III, modellerede jeg en prædiktiv signatur for et in vivo effektmål,
der er følsomt over for hormonforstyrrende stoffer. Jeg brugte offentligt tilgæn-
gelige data, der er genereret med henblik p̊a modellering af prædiktive signaturer
til forskellige in vivo effektmål. Fra denne modelleringsindsats, har jeg foresl̊aet en
virkningsmekanisme for en gruppe af de undersøgte kemikalier, som ikke tidligere
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har været forbundet med hormonforstyrrende stoffer.

Brugen af computerbaserede metoder i toksikologi kan støtte de klassiske tok-
sikologiske undersøgelser ved at foresl̊a interaktioner mellem separate komponen-
ter i et system og dermed foresl̊a nye måde at opfatte særlige toksikologiske ef-
fektmål. Desuden kan computerbaserede metoder give værdifuldt input til den
hypotesegenererende fase af forberedelsen af et forskningsprojekt.



Preface

This thesis was prepared at the National Food Institute and Center for Biological
Sequence Analysis, Department of Systems Biology, the Technical University of
Denmark in partial fulfillment of the requirements for acquiring the PhD degree in
toxicology. During my work I was supervised by Anne Marie Vinggaard and Niels
Hadrup from the National Food Institute, and Karine Audouze and Aron Eklund
from the Center for Biological Sequence Analysis.

The thesis deals with different aspects of computational toxicology using various
methods and data sources. Collectively, my work has been focused on integrative
data analyses using either existing data from the literature or in vivo and in vitro
data generated for my and other studies.

The thesis consists of a summary report and a collection of four research pa-
pers/manuscripts written during the period 2011–2014, and published elsewhere
along with preliminary data for a modeling project.

Søborg, October 2014

Kristine Grønning Kongsbak
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Part I

Introduction





Chapter 1

Prelude

1.1 Motivation and context

In our industrial society, humans are exposed to chemical agents through e.g. food,
cosmetics, pharmaceuticals, and air inhalation [1]. Among these, food is consid-
ered the predominant source. Chemical exposure is suspected of playing a main
role in the development of some adverse health effects in humans, e.g. various male
and female reproductive disorders [2–5]. Recently, European regulatory authorities
have recognized the risks associated with combined exposure to multiple chemi-
cals [6]. However, using traditional methods to test for every potentially harmful
combination of chemicals is impractical; therefore we need new ways of thinking.
In 2007, the U.S. National Academy of Sciences published its report, Toxicity
Testing in the 21st Century: A Vision and a Strategy [7–9]. This report envisions
a paradigm shift in toxicity testing moving from traditional animal testing to a
paradigm that 1) covers chemicals, chemical mixtures, outcomes, and life stages,
broadly, 2) reduces the cost and time of testing, 3) uses fewer animals and reduces
the suffering in the experimental animals, and 4) develops a more robust basis
for assessing health effects of environmental chemicals. Meanwhile, the Danish
government reached Food Settlement I1 with the parliament concerning the control

1Fødevareforlig I



4 Prelude

of food. In 2010, Food Settlement II2 was reached with the aim that Denmark
has the best food safety within the European Union. Part of the effort towards
achieving this aim includes increased monetary resources for universities for research
on chemicals in food [10].
The Cocktail Project was a four-year project that ran in 2011-2014 and was funded
with resources from Food Settlement II with the aim to establish a broad basis
for risk assessment of chemical cocktails3. To achieve this aim, several research
projects aiming at generating cocktail data and developing practical tools for risk
assessment were initiated. This PhD project was initiated as part of the Cock-
tail Project and in accordance with the above-mentioned vision and strategy for
toxicity testing, it applies computational systems biology approaches to toxicolog-
ical investigations of single chemicals and chemical cocktails. More specifically, I
worked from the hypothesis that computational systems biology can aid classical
toxicological investigations elucidating mechanisms of action and potential diseases
caused by environmental substances.

1.2 Organization of this Thesis

Part I of the thesis gives an introduction to the topics of toxicology and systems bi-
ology, touching upon the technical platforms of the data used for modeling purposes
in this thesis work.
Part II describes the projects of the thesis in separate chapters. The papers from
each of the projects are included in their respective chapters.
Part III contains the summarizing perspectives and suggests a few possible future
directions for the projects in this thesis work.

2Fødevareforlig II
3”chemical cocktails” and ”chemical mixtures” are used interchangeably throughout this

thesis.



Chapter 2

Toxicology

Toxicology is the field within biology studying potential unwanted effects of chem-
ical substances on living organisms. It is a multidisciplinary field touching upon
biochemistry, chemistry, physiology, and pathology and applying many of the same
theories and methods as pharmacology [11]. Toxicology in the etymological sense
(the science of poisons) has existed since ancient times; however, toxicology as
a research field was founded by Paracelsus (1493-1541), also referred to as the
”father” of toxicology. He articulated the famous words:

”All things are poison and nothing is without poison; only the dose makes a thing
not a poison”

which are often condensed to ”The dose makes the poison”. The French toxicolo-
gist, Mathieu Orfila (1787-1853), continuing the work of Paracelsus, is accredited
for founding the modern science of toxicology through his analytical work in forensic
toxicology. Throughout the 1800s, individual chemicals such as caffeine, nitroglyc-
erin, cocaine, and saccharin were identified, and many more followed in the 1900s.
This effort also resulted in the use of chemicals in warfare. During World War I,
the Germans were the first to use chemical weapons when they released chlorine
gas over a battlefield. World War II accelerated the chemical revolution, which
resulted in e.g. the development of powerful nerve gasses. Following World War
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II, an array of pesticides was developed and the foundation for an enormous global
chemical industry was laid. However, compared to the fields of pharmacology and
biochemistry, traditionally, toxicology has a more regulatory basis and a more de-
scriptive scientific character, possibly resulting from the fact that toxicology has
been seen as a practical art [11]. Nonetheless, the interest in toxicology is increas-
ing as regulators, scientists, and the public urge more focus on human and animal
health and hence safety of chemicals in our surroundings.

2.1 Endocrine Disrupting Chemicals

A basal understanding of the endocrine system is essential to understand potential
implications of endocrine disrupting chemicals (EDCs) on human health. The
endocrine system acts via a coordinated response by signaling from the hormone-
producing tissue to a hormone-sensitive target tissue. For most systems, the primary
goal is to maintain homeostasis, balancing out changes in hormone levels and
responses, which would otherwise have serious effects on the body. One example
is the regulation of blood glucose levels by secretion of the hormone insulin from
pancreas. Insulin targets various cells with the response to increase uptake of
glucose from the blood. Too much or too little insulin causes potentially fatal
disturbances in blood glucose levels. Therefore, close regulation of insulin secretion
is crucial for homeostasis [12].
EDCs are chemicals with the ability to disrupt any endocrine system in humans
or wildlife [13]. EDCs are often thought of as chemicals that affect hormones
at the receptor level; however, chemicals interfering with any other part of the
hormone signaling pathways, including but not limited to synthesis, degradation,
and transport of the hormones, should also be considered as EDCs. Endocrine
disruption in hormone-sensitive tissues might lead to adverse effects; however, the
timing of exposure might be critical for the effects. As discussed in IPCS/WHO
[13], the following points are critical in considering the potential impact of EDCs
on bodily functions:

1. Exposure in adulthood may be compensated for by normal homeostatic mech-
anisms and may therefore not result in any significant or detectable effect.

2. Exposure during the period when programming of the endocrine system is
in progress may result in a permanent change of function or sensitivity to
stimulatory/inhibitory signals.

3. Exposure to the same level of an endocrine signal at different stages in the
life history or in different seasons may produce different effects.
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4. Because of cross talk between different endocrine systems, effects may occur
unpredictably in endocrine systems other than the system predicted to be
affected. This is true for each of the situations in (1) through (3) above.

5. In view of (4), considerable caution should be exercised in extrapolating in
vitro measures of hormonal activity to the situation in vivo.

Examples of effects caused by EDCs include learning disabilities following disruption
of thyroid hormone signaling, sex hormone-dependent cancers, and problems with
sexual development for males or females following fetal or postnatal exposure to
an array of EDCs [14].

2.1.1 Male Reproductive Disorders

Regional differences in semen quality within Europe [15] and the U. S. [16] have
been observed indicating environmental factors to play a part. Whether or not
there is a decreasing trend over time is currently controversial [17, 18]; however,
a series of coordinated studies in Germany, Denmark, Sweden, Norway, Finland,
Estonia, and Lithuania have concluded that the average sperm count in the included
healthy males (aged 18-25 years) was remarkably low [19–22] but not declining [23].
Furthermore, Jø rgensen et al. [20] reported that approximately 20% of young men
from Norway and Denmark had sperm concentrations below the World Health
Organisation (WHO) reference level for sperm count (20 × 106 spermatozoa/ml)
and as many as 40% had a sperm count of < 40 × 106 spermatozoa/ml. This
is worrisome as sperm counts below this figure along with a reduced fraction of
morphologically normal sperm are associated with decreased fecundity [24].
The incidence of other male reproductive disorders such as testicular germ cell
cancer (TGCC) has increased rapidly over the past 20 years. There is great ge-
ographical variation in the incidence with Denmark having the highest incidence
within the countries in the the European Union (EU) [25]. Because of the geo-
graphical variation the environment is thought to be involved in determining the
risk of developing this form of cancer. To support this hypothesis, studies have
shown that people from a country with a low incidence of TGCC (e.g. Finland)
who migrate to a country with a higher incidence (e.g. Denmark) retain the risk
of developing TGCC as their countrymen; however, second generation immigrants
(i.e. boys of Finnish parents who immigrated to Denmark) have a similar risk of
developing TGCC as native Danes [26].
The predominant male reproductive disorder is cryptorchidism which covers cases
where one or both testes are undescended at birth. The reported prevalence varies



8 Toxicology

Environmental factors

Genetic defects

Disturbed Sertoli &
peritubular cell function

Decreased Leydig
cell function

Impaired germ cell
di�erentiation

Reduced semen quality
CIS Testicular cancer

Hypospadias
Testicular maldescent

Androgen
insu�ciency

TDS symptomsTesticular dysgenesis

Figure 2.1: Illustration of the components of testicular dysgenesis syndrome (TDS).
Modified from [27, 28].

with source of the data (1%-9%) [14]. The presence of environmental chemicals in
maternal breast milk [29, 30] but not placenta [31] has been associated with higher
incidence of cryptorchidism. Due to differences in procedures and registration of
cryptorchidism at hospitals in different countries, registry data are often unreliable.
Therefore the basis for assessing whether the incidence rates of cryptorchidism are
changing are not very good. Studies have, however, indicated an increasing trend
[14, 25]. This male reproductive disorder has also been associated with environ-
mental factors, e.g. documented as a higher incidence of cryptorchid newborns
in spring than summer [32], or variation in incidence according to geographical
location [33].

The last male reproductive disorder to be mentioned in this work is the congenital
malformation known as hypospadias. Hypospadias covers penile malformations
where the urethral opening is abnormally placed anywhere on the ventral side of
the penis rather than at the tip of glans penis. The prevalence of hypospadias varies
with geography in a pattern similar to that of testicular cancer and cryptorchidism
[14]. Additionally, increasing trends have been observed in England and Wales,
Hungary, Sweden, Norway, and Denmark, whereas no trends have been reported in
Finland, Spain, New Zealand, Australia or the former Czechoslovakia [34].

Studies have indicated co-occurrence of the four male reproductive health prob-
lems mentioned above; testicular cancer, low sperm quality, cryptorchidism, and
hypospadias (Figure 2.1). All conditions are thought to have a common etiology
collectively termed the TDS [27, 35]. The components are inter-connected and
involve disturbed function of the Sertoli cells, which are the cells in testis that
nurse the sperm cells throughout spermatogenesis as well as disturbed function of
the Leydig cells, which are the site for steroid hormone production (also termed
steroidogenesis). As indicated in Figure 2.2, the severity of TDS is determined
by the number of conditions present at one time. Environmental factors such as
chemical exposure have been suggested as possible causes of the increasing TDS
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* Impaired spermatogenesis * Impaired spermatogenesis

* Undescended testis

* Impaired spermatogenesis

* Undescended testis

* Hypospadias

Testis cancer

Figure 2.2: Illustration of the relationship between the relative frequency of various
symptoms of the TDS. Modified from [27].

incidence, as the increase in incidence has been too rapid to be explained by genetic
factors alone [29, 36, 37].

2.2 Current Challenges in Toxicology

Regulatory toxicology is facing large challenges due to the fact that the chemical
space in our environment/surroundings is so large that classical toxicity testing in
animals of all available chemicals is practically impossible. As called for in the
before-mentioned vision and strategy [7], a paradigm shift within toxicology is nec-
essary to handle today’s challenges. Alongside, recent technological developments
have prompted an ocean of data. Handling these amounts pose another challenge
in modern toxicology, which calls for tools to handle them.
Aside from the large amount of chemicals queued for risk assessment, humans
are simultaneously exposed to multiple chemicals making up so-called chemical
cocktails. The toxicology of such cocktails is a complex topic, which is particularly
relevant in the area of food and feed safety due to the many sources and routes of
exposure to chemicals. Currently, chemical risk assessment is based on the hazard
and exposure associated with single chemicals; however, there are concerns that
this approach does not provide sufficient security as chemicals might act together to
exert effects though they are present at levels below their no observed adverse effect
levels (NOAELs). All possible combinations of the tens of thousands of chemicals
currently available in our environment makes up a number approximating infinity.
Therefore, as mentioned in Section 1.1, we are in urgent need of new ways of
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thinking when considering the risk assessment of chemicals as well as chemical
mixtures. As outlined by Kortenkamp et al. [38], experimental evidence exists that
the combined effects of chemicals in a mixture might be adequately calculated using
mathematical modeling. Furthermore, the authors point out that only chemical
mixtures that humans are actually exposed to require risk assessment. Examples of
such mixtures could be intentionally designed chemical mixtures, chemicals present
in cosmetics (e.g. chemical sun filters and parabens) or chemicals known to occur
simultaneously in the same body compartment. Furthermore, the authors call for
investigations of real-world mixtures such as those of waste water or engine exhaust.
Previous efforts in the ’mixture toxicology’ community have aimed to 1) ”evaluate
and quantify the overall toxicity of complex environmental samples (whole mixture
approach)” and 2) ”explain the joint action of selected pure compounds in terms of
their individual effects (component-based approach)” [38]. In the ’whole mixture
approach’ a complex environmental sample such as engine exhaust, waste water,
or human blood is used as the chemical mixture. This approach is feasible where
little is known about the constituents of the sample; however, inference to higher
or lower doses of the mixture constituents are very difficult. The ’component-based
approach’ uses e.g. chemical exposure data as basis for composing the mixture.
Using this approach allows for mathematical modeling of the effects of the mixture
rather than testing of all possible combinations of chemicals in the mixture [38].
In the Experimental Studies of a Chemical Mixture project the ’component-based
approach’ was taken using human exposure levels for known EDCs.



Chapter 3
Computational Systems

Biology

Traditionally, there are four accepted fields within biology: genetics and molecu-
lar biology, cell biology, biochemistry, and evolutionary biology. Systems biology,
however, represents a fifth field, based on the idea that all life forms require the
interactions of genes and macro molecules, or cells at a higher scale to exist [39].
Systems biology is often defined in antithesis to the so-called reductionist approach.
The reductionist approach includes breaking systems into bits and pieces and then
understand the components separately. From that, the idea is to reconstruct the
system physically or intellectually [40]. Though the reductionist approach has iden-
tified many individual components of biological systems, it lacks the interconnec-
tions between the components. Systems biology, on the contrary, is integrating
information about all individual components, creating a holistic view of the bio-
logical system (Figure 3.1). Therefore, systems biology methods may prove useful
for studies of how interactions between the individual components of a biological
system give rise to certain behaviors or functions. It is important to notice that the
approaches are complementary and they are both of great value to the scientific
community.
Some approaches within systems biology could be considered data-driven (Figure
3.2). Studies are data-driven in cases where unbiased experiments and data anal-
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Figure 3.1: Relationship between holis-
tic and reductionist approaches to re-
search. One cannot exist without the
other if in-depth knowledge about the
system in question is the ultimate goal.
Adapted from Kell and Oliver [40].

Whole
(organism)

Reductionism
(Molecular biology)

Holism
(Systems biology)

Parts
(molecules)

Figure 3.2: The cycle of knowledge, il-
lustrating how ideas and data are inter-
dependent. Ideas lead to data lead to
new ideas lead to new data etc. Adapted
from Kell and Oliver [40].

Ideas

Deductive
(hypothesis-driven)

Inductive
(data-driven)

Data

yses are carried out without prior knowledge of or theories about the outcome(s),
result(s) and/or endpoint(s). This stands in contrast to the hypothesis-driven or
bottom-up approach, where the research starts with hypotheses about the behavior
of a system, and the experiment aims to elucidate whether the hypotheses holds
true or not. One approach often feed into the other, as ideas lead to data, which
after interpretation leads to new or refined ideas then leading to new experiments
with new data etc. [40].

This PhD project as a whole is based on the hypothesis that computational systems
biology can aid toxicological investigations. This also holds true for the individual
sub-projects; however, the projects are of a more data-driven character.

In the following sections, I will briefly touch upon some of the data forms used in
my PhD project. I will outline the nature of the data forms, and their advantages
for use in toxicological research.
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3.1 Gene Expression Profiling

’Transcriptomics’ covers the high-throughput technologies supporting studies of
the entire transcriptome on a global scale. The transcriptome can, however, be
divided into two types of RNAs: protein coding- and non-coding RNAs. Non-
coding RNAs are not translated into specific proteins but maintain structural and
regulatory roles.1 This thesis does not cover the field of non-coding-RNAs but only
protein-coding RNA.

Application of gene expression microarrays aims to identify gene sets or pathways
that are altered or perturbed upon a change in the environmental conditions (e.g.
a disease state or exposure to an environmental chemical). DNA microarrays are
collections of thousands of spots, each spot corresponding to a specific gene. At
each spot, DNA oligomers are attached to a solid surface. microarray experiments
aim to quantify the amount of DNA hybridized to the oligomers thereby measuring
gene expression levels for multiple genes simultaneously. microarrays are very rich in
features or genes included on the array, however, the cost of microarray experiments
is relatively high, which often forces the researchers to keep the sample size relatively
small [41, Chapter 7]. When monetary resources are sparse publicly available gene
expression datasets can be accessed through databases for use in the initial steps
of a research project. The largest repositories of publicly available gene expression
data are the Gene Expression Omnibus (GEO) [42, 43] and ArrayExpress [44].

DNA microarray analysis builds on standard molecular biology in that it permits the
analysis of gene expression levels similar to real-time quantitative polymerase chain
reaction (RT-qPCR), however in a high-throughput fashion. This technology allows
the researcher to obtain quantitative gene expression information for a multitude
of genes in many samples.

High-throughput microarrays have existed in the scientific community since the
1990s, where the first microarray was developed [45]. Since then, multiple microar-
ray technologies have been developed by competing vendors. The basic concept of
the microarray experiment is the same across platforms, but they might differ on
areas such as the technique of RNA isolation and labeling, probe design and selec-
tion of probes, density of probes on the array, and the technique used to attach the
probes to the array [46]. I used Agilent Whole Rat Genome Oligo Microarrays2 in
the Integrative ’OMICs’ analysis project. Therefore, I will focus on that technology
in the following.

1examples of non-coding RNAs include transfer-RNA, micro-RNA, ribosomal-RNA to
mention but a few.

2SurePrint G3 Rat GE 8x60K Microarray Kit
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Figure 3.3: Outline of the major steps in a microarray experiment. complementary
strand DNA (cDNA) is synthesized from the messenger-RNA (mRNA) in the sample,
labeled with fluorescent dye, hybridized onto the array, where gene-specific oligonu-
cleotides are attached. After hybridization the fluorescent probes are excited with
laser light and thus emits fluorescent light. After wash-off of un-hybridized labeled
cDNA the intensity of the fluorescence is scanned, and the scanner outputs intensity
reads for each spot of gene-specific probes.

3.1.1 The Microarray Platform

The Agilent arrays used in the Integrative ’OMICs’ analysis project utilize nucleic
acid hybridization of fluorophore-labeled cDNA targets to match the sense-strand,
60-mer oligonucleotide probes on the array (Figure 3.3). The arrays are manufac-
tured using an industrial inkjet printing process enabling in situ synthesis of 60-mer
oligonucleotide probes being printed one nucleobase at a time according to digi-
tal information. To manufacture these microarrays, Agilent uses phophoramidite
chemistry in which drops of activated nucleobases are spotted on the microarrays
according to the DNA sequences3. This manufacturing process contrasts the one
used in deposition microarrays, where prefabricated oligonucleotides are deposited
onto the surface of the microarrray4. The obtainable spot density when using in
situ synthesis by spotting results in microarrays with lower spot density compared
to similar in situ synthesis techniques using e.g. light to activate the nucleobases

3http://www.genomics.agilent.com/article.jsp?pageId=2011
4http://www.chem.agilent.com/Library/technicaloverviews/Public/5988-8171en.

pdf

http://www.genomics.agilent.com/article.jsp?pageId=2011
http://www.chem.agilent.com/Library/technicaloverviews/Public/5988-8171en.pdf
http://www.chem.agilent.com/Library/technicaloverviews/Public/5988-8171en.pdf
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for incorporation as is the case with photolithography [47, Chapter 5].
After hybridization of the fluorophore-labeled targets to the probes, un-hybridized
cDNA is washed off, the fluorescent probes are exited using laser light and the
subsequently emitted fluorescent light is recorded by a scanner 3.3. The scanner
then outputs fluorescent light intensity reads for each gene-specific spot on the
array.

3.1.2 Data Analysis

Prior to statistical analyses of microarray data the arrays from the experiment must
undergo quality control (QC) and pre-processing. QC includes a visual inspection
of the raw microarray images to detect irregularities and significant flaws, detection
of control and background features, and an assessment of the distribution of the
signal intensities. This is a critical step as the lack of QC can potentially introduce
noise to the data [48, Chapter 1].
Normalizing data between arrays is a step that is undertaken to reduce potential
technical variance in the data (i.e. variance that is not caused by the biological
differences). There are multiple ways to perform this normalization. The method
applied in the Integrative ’OMICs’ analysis project is quantile normalization aiming
at making the distribution of probe intensities for each array in a set of arrays
the same. This method assumes that the majority of features on the arrays are
not differentially expressed. Hence, equalizing the distribution of probe intensities
across arrays should not suppress the biological variance to a large extent. Other
normalization methods include the other ’complete data methods’, cyclic loess and
contrast normalization, and methods making use of a baseline array, scaling and
non-linear, among others [49].

3.1.3 Statistical Testing

The statistical method used in the Integrative ’OMICs’ analysis project is the mod-
erated t statistic described by Smyth [50]. The moderated t statistic is, as inferred
by its name, a moderation over the ordinary t statistic, where the variance and
the degrees of freedom are estimated based on the entire dataset; thereby, large
statistics are less likely to arise merely from under-estimated sample variances [50].
Microarray experiments pose a major multiple testing problem, given that at least
one statistical test is performed for each of the tens of thousands of genes. Gene
expression levels are usually not normally distributed, and the expression of one gene
is likely dependent on the expression of another gene. Therefore, methods have
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been developed to deal with these kinds of challenges. When performing multiple
statistical comparisons the number of false discoveries is increased according to
theory. Several methods for controlling this increase have been developed. The
Bonferroni correction of the familywise error rate (FWER) is considered the most
conservative of the methods and can be obtained by correcting the significance
level, α, by division with the total number of statistical comparisons performed
thereby obtaining a more strict α. Another way to perform the Bonferroni correction
is by correcting all obtained p-values by multiplying them with the number of
tested hypotheses. Controlling the FWER is important when a conclusion from
one hypothesis is likely to be erroneous when at least one other hypothesis is. In
other terms, controlling the FWER seeks to reduce the probability of even one
false discovery. This method for controlling the FWER was used in the Integrative
Systems Biology project [51]. A less stringent method is the Benjamini-Hochberg
procedure for controlling the false discovery rate (FDR) [51]. As with the Bonferroni
method, either the α or the obtained p-values can be corrected to account for
the increased false discovery rate following the multiple hypotheses. In contrast
to the Bonferroni correction method the Benjamini-Hochberg procedure applies a
weight to the correction factor that is inversely correlated to the position in the
list of sorted p-values (increasing order). Rather than reducing the probability
of committing even one type I error, the Benjamini-Hochberg procedure seeks to
control the rate at which type I errors occur. Hereby, statistical power is maintained
at the cost of type I errors. The Benjamini-Hochberg procedure was applied in the
Integrative ’OMICs’ analysis project as it has previously proven a good procedure
for controlling FDR in microarray experiments [52].

3.2 ToxCast™ Data

With its ToxCast program, the U. S. Environmental Protection Agency (US EPA)
runs at the forefront in computational toxicology research. In 2007, the ToxCast
effort was launched with the aim ”to develop an ability to forecast toxicity based
on bioactivity profiling. Ultimately, ToxCast’s purpose is to develop methods of
prioritizing chemicals for further screening and testing to assist EPA programs in
the management and regulation of environmental contaminants [53].”

3.2.1 Phases

The ToxCast program has been conducted in several phases (Figure 3.4). Phase I
was the ’Proof of Concept’ phase and was completed in 2009. Around 300 data-rich
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Figure 3.4: Illustration of the number of assays and chemicals in the various datasets
included in the ToxCast program. Adapted from Richard Judson, US EPA.

pesticide active ingredients were screened in ∼600 in vitro assays totaling ∼700 as-
say endpoints. ToxCast phase II includes a more diverse set of chemicals comprising
∼800 chemicals from various sources, such as industrial and consumer products,
food additives, nanomaterials, and failed pharmaceuticals. These chemicals were
evaluated in the same assays as the Phase I chemicals with a few exceptions.
ToxCast phase IIIa was initiated recently and comprise ∼1000 additional chemicals
of environmental concern. Additional chemical sets include ∼900 chemicals being
screened for potential endocrine disruption (E1K chemicals) in the relevant subset of
endocrine-related assays, and Tox21 currently comprising ∼8,000 chemicals being
screened in subsets of the ToxCast assays every year.

3.2.2 Data formats and origin

The assays included in the ToxCast high-throughput screening effort were run by
commercial laboratories, the National Chemical Genomics Center, at the U.S. Na-
tional Institutes of Health, and at the US EPA. The assay types include biochemical
assays (e.g. nuclear receptor binding, enzyme inhibition), cell-based assays (e.g.
cytotoxicity profiles, reporter gene assays), complex culture systems (e.g. embry-
onic stem cell differentiation, inflammatory/angiogenic signals), and small animal
models (e.g. zebrafish embryo development) [54]. Most assays target human pro-
teins and are run in human primary cells or transformed cell lines. Most of the
commercial laboratories that stated their interest in contributing to the ToxCast
program were supporting the pharmaceutical/drug discovery community. There-
fore, the applied assays tended to be directed at targets and pathways relevant
for pathological processes of interest for the pharmaceutical industry [55]. Most
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Figure 3.5: The ToxCast data processing workflow. Courtesy of Dayne Filer, US
EPA.

assay platforms have an associated descriptive publication [56–70]. With few ex-
ceptions, all assays have been run in concentration-response for all chemicals. For
the exceptions, chemicals were screened at a high concentration initially to prioritize
chemicals for concentration-response testing[71].
In parallel to the in vitro ToxCast data, the US EPA have collected available in
vivo data, mainly on the phase I chemicals, in the Toxicity Reference Database
(ToxRefDB). These data comprise publicly available literature data as well as sci-
entific study reports intended for use by the US EPA chemical risk assessors. The
data are manually curated and the quality of each study has been assessed for its
compliance with current guidelines. These data are available in browsable form via
the Aggregated Computational Toxicology Resource (ACToR)5 and available for
download via the ToxCast web-page6.

3.2.3 Data processing

The US EPA have customized a pipeline for analyzing the data (Figure 3.5). This
pipeline handles data retrieved from multiple suppliers and thus in multiple formats.
To reduce the risk of bias, the chemicals are blinded for the assay providers. The
data processing pipeline begins with mapping well-level data followed by chemi-
cal identification and concentration, curve-fitting (4-parameter Hill function), and
hit-calling. Hit-calling is where a decision is made about whether there is a statisti-
cally significant concentration-response. The pipeline handles outliers and considers
general toxicity (e.g. cell viability) when determining the hit calls. Furthermore,

5http://actor.epa.gov/toxrefdb/
6http://epa.gov/ncct/toxcast/data.html

http://actor.epa.gov/toxrefdb/
http://epa.gov/ncct/toxcast/data.html
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plate replicates and chemical replicates are used as a means of quality control [54].
All data are available as concentration-response plots via the interactive Chemical
Safety for Sustainability (iCSS) Dashboard7 and the raw and preprocessed data are
available via the ToxCast web-page along with further information and documen-
tation about the data8.
A specific example of the use of the ToxCast data are provided in Section 6.1.

3.3 Outlook

In recent decades, advances in technologies have provided the life-science com-
munity with large amounts of biological data. This poses an array of challenges
regarding storage, transfer, search, sharing etc. but the main issue is the need for
improved technological solutions to deal with the data.
In Part II, my three projects including background, hypotheses, overall conclusion,
and published peer-reviewed articles or submitted manuscripts will follow. In all
three projects I apply methods for handling large amounts of biological data in a
toxicological context.

7http://actor.epa.gov/dashboard
8http://epa.gov/ncct/toxcast/data.html

http://actor.epa.gov/dashboard
http://epa.gov/ncct/toxcast/data.html
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Chapter 4

Integrative Systems Biology

Integrative systems biology often applies statistical modeling to handle and inte-
grate large datasets of different origins from e.g. ‘omics’ technologies. One example
of such data integration is disease enrichment of a set of differentially expressed
genes identified by microarray analysis. In such a case, the datasets for integra-
tion are the list of significantly differentially expressed genes, and a collection of
gene-disease relationships available in databases. A statistical analysis would reveal
diseases in which the gene list in question is over-represented compared to random
sampling. Systems biology methods may thus prove useful in studies of how in-
teractions between the individual components of a biological system give rise to
certain behaviors or functions.

In this chapter, I will summarize the hypotheses and methods used in the Integrative
Systems Biology project. Two papers have resulted from this project; a mini-review
found on page 25 and an original article found on page 31, respectively. A brief
summary of the results and concluding remarks will follow on page 46.
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4.1 Aims

In addition to providing information about interactions between individual compo-
nents, using databases and integrating information from various sources can help
overview published results. From this overview, one can hypothesize on poten-
tial harmful health effects for further investigation. When hypothesizing on health
effects of several chemicals data integration might also serve to group chemicals
according to their potential modes of action.
Here we describe an example of how and why to apply integrative systems biology
methods in the hypothesis-generating phase of toxicological research. The aim of
this project was 1) to elucidate modes or mechanisms of action of five pesticidal
chemicals (prochloraz, tebuconazole, epoxiconazole, procymidone, and mancozeb)
with the aim of grouping them according to their mechanism of action, and 2) to
generate hypotheses on the effects of the chemicals on human health.

4.2 Methods

For this project, I found inspiration in the recent study by Audouze and Grandjean
[72]. In this study, the authors 1) extracted database information about an en-
vironmental chemical and its metabolites giving a network of proteins interacting
with the chemicals in question, 2) enriched the set of retrieved proteins with known
protein-protein interactions (PPIs) resulting in a PPI network for the chemicals in
question, 3) enriched the PPI network with known diseases, thus ending up with a
list of diseases potentially linked to the chemicals in question. Each of the steps
will be touched upon in the sections below and thorough descriptions of the applied
methods are available in the papers on page 25 and 31, respectively.

4.2.1 Chemical Biology

Chemical biology is the discipline of the effects of (small) molecules on biological
systems. These small molecules may be endogenous compounds such as hormones,
neurotransmitters, and other signaling molecules, or exogenous compounds such as
drug compounds and environmental pollutants. Chemical biology as a research
discipline thus covers pharmacology, toxicology, chemistry, and physics.
Several freely available databases contain information about chemicals and their
targets. Those used in this project are the Comparative Toxicogenomics Database
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(CTD)1 [73], and the ChemProt database2 [74]. The information in CTD is manu-
ally curated from peer-reviewed scientific literature. ChemProt is a Technical Uni-
versity of Denmark (DTU)-developed resource of annotated and predicted chemical-
protein-disease interactions retrieved from a set of databases. For this project, the
predicted associations were not retrieved.
For each of the five chemicals, we retrieved lists of target genes/proteins serving
as input for subsequent analyses.

4.2.2 Protein Interactomics

Biological systems consist of sets of organic compounds ranging from small signaling
molecules over peptides and proteins to large, complex, fibrous tissues such as
connective tissue or bone. Therefore, when a chemical disrupts the normal function
of a protein or signaling molecule it may seem like a subtle effect but if the disrupted
protein is part of a large protein cluster it may have severe down-stream effects.
Center for Biological Sequence Analysis, DTU (CBS) has its own collection of PPI
networks (InWeb) [75] retrieved from multiple databases with PPI information.
InWeb allows the user to retrieve a network of interacting genes/proteins based on
an input gene list.

4.2.3 Disease Enrichment

The output gene/protein network can subsequently enter disease or pathway enrich-
ment analyses by the use of gene-disease collections such as the Online Mendelian
Inheritance in Man (OMIM) database3 [76] and GeneCards4 [77] or gene-pathway
collections such as Kyoto Encyclopedia of Genes and Genomes (KEGG)5 [78, 79]
and Reactome6 [80].
The enrichment analysis applied in our experiment is an over-representation analysis
based on a hypergeometric distribution.

1http://ctdbase.org
2http://www.cbs.dtu.dk/services/ChemProt-2.0/
3http://www.omim.org
4http://www.genecards.org
5http://www.genome.jp/kegg/
6http://www.reactome.org/PathwayBrowser/

http://ctdbase.org
http://www.cbs.dtu.dk/services/ChemProt-2.0/
http://www.omim.org
http://www.genecards.org
http://www.genome.jp/kegg/
http:// www.reactome.org/PathwayBrowser/
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Abstract: Systems biology as a research field has emerged within the last few decades. Systems biology, often defined as the
antithesis of the reductionist approach, integrates information about individual components of a biological system. In integrative
systems biology, large data sets from various sources and databases are used to model and predict effects of chemicals on, for
instance, human health. In toxicology, computational systems biology enables identification of important pathways and molecules
from large data sets; tasks that can be extremely laborious when performed by a classical literature search. However, computa-
tional systems biology offers more advantages than providing a high-throughput literature search; it may form the basis for estab-
lishment of hypotheses on potential links between environmental chemicals and human diseases, which would be very difficult
to establish experimentally. This is possible due to the existence of comprehensive databases containing information on networks
of human protein–protein interactions and protein–disease associations. Experimentally determined targets of the specific chemi-
cal of interest can be fed into these networks to obtain additional information that can be used to establish hypotheses on links
between the chemical and human diseases. Such information can also be applied for designing more intelligent animal/cell exper-
iments that can test the established hypotheses. Here, we describe how and why to apply an integrative systems biology method
in the hypothesis-generating phase of toxicological research.

What is Computational Systems Biology?

Systems biology is often defined as the antithesis of the
reductionist approach. Although the reductionist approach has
identified many important individual components of biological
systems, it often fails to integrate the interconnections between
the individual components. Systems biology, on the other
hand, deals with the integration of information from a wealth
of individual components, creating a holistic view of the bio-
logical system [1]. Each component is made up by larger or
smaller data sets. For instance, analysis of microarray experi-
ments gives quantitative estimates of changes in expression of
a whole-organism genome. High-throughput screening and
high-content screening are procedures giving biological activ-
ity data on a large number of chemicals (e.g. the U.S. Envi-
ronmental Protection Agency’s ToxCast programme [2]).
Additionally, low-/medium-throughput single-target assays
provide high-quality measures of the biological function of a
single or more targets after chemical exposure. Combining
such complementary data types may add value in creating
realistic models of potential toxic or adverse effects of chemi-
cals [3,4]. A key strategy to handle multiple data sources is
data integration, the use of which has been demonstrated in sev-
eral applications as reviewed by Mitra et al. [5], for example

for the identification of new biomarkers for Alzheimer’s
disease [6].
Computational toxicology integrates molecular biology and

chemistry of toxicological interest with mathematical model-
ling and computational science [7,8] and can therefore be con-
sidered a separate branch within computational systems
biology. The use of computational toxicology has, for exam-
ple, proven useful in the development of predictive signatures
for various in vivo end-points by integration of the ToxCast
data with in vivo data [9–13] and for the proposal of an
adverse outcome pathway for disruption of embryonic vascular
development [14].
In addition to providing information about interactions

between individual components, using databases and integrat-
ing information from various sources can help overview pub-
lished results. From such an overview, one can suggest
potential harmful health effects for further investigation. This
has, for example, proven useful in the elucidation of the role
of the pesticides rotenone and paraquat in the development of
Parkinson’s disease [15].

How to Perform a Network Analysis?

Network analyses can be carried out as previously described
[16,17]. When a set of chemicals of toxicological interest has
been selected, statistical analyses are carried out using data
from various sources. These sources can be (1) databases that
contain chemical–target information (chemical biology), (2)
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databases that contain target–target information such as
protein–protein interactions and (3) databases that contain
target–human disease information. Below are examples of
how to access these data sources.

Chemical biology.
Several freely available databases contain information about
chemicals and their targets. For example, the Comparative
Toxicogenomics Database (CTD, http://ctdbase.org) is a manu-
ally curated database with 903.357 (as of 22 January 2014)
chemical–gene/protein associations taken from peer-reviewed
scientific literature [18]; the database is updated on a monthly
basis and contains both experimentally determined and
inferred chemical-disease associations. The inferred chemical–
disease associations are based on data from various species,
which can be considered either an advantage or a disadvantage
depending on the aim of the study. In cases where the investi-
gated chemical targets a protein that is not human relevant/not
expressed in human beings inclusion of data from other spe-
cies may add noise to the outcome. On the contrary, when
data on human targets or from human tissues are missing,
inferring associations to human beings from other species
might serve as useful predictions.
An alternative database is the ChemProt database [19].

ChemProt (http://www.cbs.dtu.dk/services/ChemProt-2.0/) is a
resource of annotated and predicted chemical–protein–disease
interactions. The information is based on integration of data
from various resources of experimentally determined chemi-
cal–protein interactions and knowledge about proteins
involved in disease (retrieved in June 2012) as stated by Kim
Kjaerulff et al. [19] and reviewed by Panagiotou and Tabou-
reau [20]; from the web server, the user can select which of
the included data resources to use for the analysis. With the
latest release, ChemProt contains data for >1,100,000 unique
chemicals acting on >15,000 proteins. The predictions are
based on the structural features of chemicals. This means that
data and predictions for structurally similar compounds can be
presented along with the queried compound upon request.
Also, the other way around, the queried chemical target pre-
dictions are made based on the target(s) of structurally similar
compound(s). It has a visual web interface that supports user-
friendly navigation through biological activity data and
inferred human–disease associations. In these databases, the
user can retrieve a list of genes/proteins associated with the
query chemical and then use the list in a subsequent analysis
for determination of disease links.
HExpoChem, another freely available web resource (http://

www.cbs.dtu.dk/services/HExpoChem-1.0/) [21] aims at
exploring the exposure and effects of chemicals on human
beings by combining chemical–target information, and disease
and pathway annotations. HExpoChem takes a different
approach as the chemical–protein predictions are based on
protein complexes aiming at mimicking the true biological
organization as proteins tend to function in groups.
Furthermore, HExpoChem identifies proteins interacting with
chemicals and consequently suggests chemical–chemical asso-
ciations.

Other freely available databases worth mentioning in this
context are STITCH [22] and ChEMBL [23]. STITCH
provides chemical–protein relationships from databases and
experiments, and from text mining the co-occurrence of a
chemical term and a protein (gene) term in MEDLINE
abstracts. ChEMBL contains binding, functional and ADMET
(Absorption, Distribution, Metabolism, Elimination, Toxicity)
information for a large number of compounds of which the
majority are drugs or drug-like compounds.

Protein–protein interactions.
As proteins often act in large protein clusters or in concerted
pathways, disruption of the function of a protein or signalling
molecule by a chemical may seem like a subtle effect; how-
ever, if the disrupted protein is part of a large protein cluster,
it may have severe downstream effects.
To gather information about physically interacting human

proteins in biological systems, several data sets exist. The first
example of such a human protein–protein interaction network
is Rual’s protein–protein interaction network that is based on
a high-throughput yeast two-hybrid system applied to test
human binary protein–protein interactions [24]. Another such
approach is InWeb developed by Lage et al. [25–27] with data
compiled from various sources. InWeb allows the user to
retrieve and predict a network of interacting genes/proteins
based on an input gene list.
STRING [28] is a freely available database of experimen-

tally determined and predicted protein–protein interactions.
The interactions cover both direct, physical interactions and
indirect (functional) associations determined experimentally or
mined from literature. The database currently holds informa-
tion about ~5,200,000 proteins from 1133 organisms.

Disease and pathway enrichment.
To obtain information about diseases or pathways possibly
perturbed by the investigated chemical, a list of genes/proteins
associated with the chemical can enter disease or pathway
enrichment analyses. Freely available collections of gene–dis-
ease data such as the Online Mendelian Inheritance in Man
(OMIM) database (http://www.omim.org) [29] and GeneCards
(http://www.genecards.org) [30] or gene-pathway data such as
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
(http://www.genome.jp/kegg/) [31,32] and Reactome (http://
www.reactome.org/PathwayBrowser/) [33,34] can provide the
data for such an analysis.
Online Mendelian Inheritance in Man (OMIM) provides

information about all known Mendelian disorders and >12,000
human genes. The database is freely available via the web ser-
ver and is updated on a daily basis. GeneCards is a database
of human genes providing comprehensive information on all
known and predicted human genes. Among this information is
disease information covering heritable disorders but also dis-
eases caused by new mutations or changes to the DNA. Gene-
Cards currently holds information about 19,231 disease-related
genes and is freely available for academic non-profit institu-
tions, whereas other users can obtain a commercial licence.

© 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society)
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The original concept of KEGG was to create a reference
knowledge base of metabolism and other cellular processes,
which has now been expanded to contain organismal systems,
human diseases and data from various ‘omics’ platforms.
Reactome is a resource of human pathways for basic research,
genome analysis, pathway modelling and systems biology.

A Case Study: Computational Systems Biology Applied on
Prochloraz

Using the integrative systems biology approach described
above with the pesticide prochloraz as an example, data from
various sources were integrated to study the interconnections
between (1) prochloraz and its experimentally determined
human targets (fig. 1), (2) these human protein/genes and
other proteins/genes (fig. 1), and finally (3) these ‘secondary’
protein/genes and human diseases (fig. 1). Prochloraz is a
widely used pesticide that has been demonstrated to have
endocrine activity. In animals, it has been shown to cause
adverse reproductive outcomes in the male offspring after
exposure during foetal life [35–38]. Prochloraz is known to

demasculinize male rat foetuses and virilize female foetuses;
however, as clinical studies of environmental chemicals are
not carried out, little is known about human effects of this
compound.
We collected data from the CTD and ChemProt web serv-

ers on human tissues giving 22 associations between prochlo-
raz and human gene/protein targets (fig. 1). These targets fall
into the categories ‘steroidogenesis’ (10 targets), ‘nuclear
receptors’ (10 targets) and ‘metabolism’ (two targets). These
initial findings are in line with effects of prochloraz seen in
in vivo rat studies and in vitro studies [38–40]. To widen the
basis for hypothesis generation, we expanded the list of 22
associated gene/protein targets to include proteins known to
interact with the 22 targets. The reasoning for this operation
is that many proteins act in clusters of proteins, and while a
direct target of a chemical may not be involved in a given
disease, the proteins interacting with the target may be.
Therefore, a chemical may cause a disease/adverse outcome
through an indirect action on a protein. Using the 22 genes/
proteins associated with prochloraz and first-order protein–
protein interactions from the high-confidence InWeb data set,

A

B

Fig 1. Overview of the integrative systems biology approach employed previously [16,17]. (A) Association between the chemical (dark cyan hexa-
gon) and genes/proteins (magenta circles) was retrieved from the databases ChemProt and Comparative Toxicogenomics Database (CTD). The
retrieved list of associated genes/proteins was subsequently expanded using the resource InWeb to include proteins with known physical interac-
tions (pink circles) to the genes/proteins in question. As a final step, we performed an enrichment analysis to identify diseases (blue: reproductive
disorders, yellow: adrenal disorders and green: other disorders) in which the genes/proteins were overrepresented using the Online Mendelian Inher-
itance in Man (OMIM) and GeneCards databases, and a specific data set of genes related to reproductive disorders. (B) A subnetwork of the initial
network showing how prochloraz is potentially linked to the development of abnormal spermatogenesis in human beings through interaction with
the oestrogen receptors (ESR1 and ESR2), the androgen receptor (AR), two cytochrome P450 enzymes (CYP21A and CYP19A1) and a transcrip-
tion factor (POU1F1). The brackets indicate the databases from which the data were retrieved.
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an additional 56 interacting proteins were added to the net-
work (fig. 1).
The final step of the workflow was to perform a disease

and pathway enrichment of the obtained protein network, to
generate hypotheses on potential modes of action of the inves-
tigated chemicals. From the databases OMIM and GeneCards,
we retrieved associations between genes/proteins and diseases.
Furthermore, based on information from a review by Matzuk
and Lamb [41], information on specific links between genes/
proteins and diseases related to male reproduction was used as
a separate data set. To determine whether our total set of
genes/proteins for prochloraz was likely associated to any dis-
eases, we performed a statistical test based on a hypergeomet-
ric distribution. For prochloraz, this data integration resulted
in 55 significantly associated disease outcome (39 reproduc-
tive disorders, 11 adrenal disorders and five other diseases;
fig. 1) out of a total of several thousand diseases. These pre-
dictions for effects of prochloraz on human health are in line
with experimental data from rats indicating that the main
adverse outcomes after exposure to prochloraz are diseases
related to reproductive health [35–38]. Another pesticide,
mancozeb, underwent the same network analysis and was
found to be associated with, for example, inflammatory targets
and had no targets in common with prochloraz or other tested
pesticides [20]. This outcome is also in line with our experi-
mental data [42] and gives confidence in applying this
approach on chemicals for which no animal data exist.

Conclusion

Applying systems biology methods provides several advanta-
ges for toxicologists aiming at investigating potential human
effects of a chemical. One advantage is that the scientist will
be able to get an overview of potentially harmful effects of a
chemical and to generate hypotheses on human adverse out-
comes relatively fast compared with a manual literature search;
however, the extent of predictions is dependent on the amount
of available and published data on the chemical and knowl-
edge of at least one target molecule. Furthermore, where most
toxicological data for non-drug compounds are generated from
in vitro or in vivo animal studies and not from human studies,
this approach poses an opportunity to suggest human effects
of environmental chemicals.
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Summary
Emerging challenges of managing and interpreting large amounts of complex biological data have  
given rise to the growing field of computational biology. We investigated the applicability of an integrated 
systems toxicology approach on five selected pesticides to get an overview of their modes of action in 
humans, to group them according to their modes of action, and to hypothesize on their potential effects  
on human health.
We extracted human proteins associated with prochloraz, tebuconazole, epoxiconazole, procymidone,  
and mancozeb and enriched each protein set by using a high confidence human protein interactome. Then 
we explored modes of action of the chemicals by integrating protein-disease information into the resulting 
protein networks. The dominating resulting human adverse effects were reproductive disorders followed  
by adrenal diseases.
Our results indicated that prochloraz, tebuconazole, and procymidone exert their effects mainly via 
interference with steroidogenesis and nuclear receptors. Prochloraz was associated with a large number 
of human diseases and, together with tebuconazole, showed several significant associations with testicular 
dysgenesis syndrome. Mancozeb showed a differential mode of action involving inflammatory processes.
This method provides an efficient way of overviewing data and grouping chemicals according to their mode 
of action and potential human adverse effects. Such information is valuable when dealing with predictions 
of mixture effects of chemicals and may contribute to the development of adverse outcome pathways.

Keywords: computational tool, pesticides, grouping, systems biology, testicular dysgenesis syndrome
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Other studies have shown the simultaneous occurrence of 
various endocrine active chemicals in human body fluids, such 

as urine (Swan et al., 2005) and breast milk (Damgaard et al., 
2006; Krysiak-Baltyn et al., 2012). These findings have been 

correlated with incidences of malformed reproductive organs 
such as decreased anogenital distance and cryptorchidism in 
boys of exposed mothers, respectively. These epidemiological 
studies indicate that prenatal chemical exposure might be a risk 
factor for congenital reproductive abnormalities. Experimen-
tal studies have shown that mixtures of chemicals can result 
in substantial effects on various endpoints in spite of doses of 
the individual chemicals being too low to exert effects on their 
own. This has been demonstrated both in vitro (Rajapakse et al., 
2002; Silva et al., 2002) and in vivo (Hass et al., 2007, 2012; 
Metzdorff et al., 2007; Christiansen et al., 2008, 2009; Jacobsen 

1  Introduction1

Increasing evidence shows that adverse human health effects 
like male and female reproductive disorders are increasing. 
Around 8% of all children are currently conceived by in vitro 
fertilization and up to 9% of newborn boys are born with mal-
formed reproductive organs like cryptorchidism in Denmark 
(Wohlfahrt-Veje et al., 2009). Chemical exposure may contrib-
ute to the increasing prevalence of these health disorders (Wohl-
fahrt-Veje et al., 2009; Weidner et al., 1998; Swan et al., 2005). 
Previous epidemiological research has indicated associations 
between pesticide exposure and endocrine disruption leading 
to, e.g., poor semen quality (Swan et al., 2003) and increased 
incidence of cryptorchidism (Weidner et al., 1998; Damgaard 
et al., 2006).
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et al., 2012). It is often a challenge within epidemiological re-
search to find significant associations between human diseases 

and exposure to single chemicals. This may be partly due to the 
fact that humans are seldom exposed to one single chemical at 
a given time point, but are most likely exposed to complex mix-
tures of chemicals (Krysiak-Baltyn et al., 2010).

Today’s toxicologists are facing several challenges. One 
challenge is how to handle risk assessment of mixtures. Risk 
assessment of chemicals has traditionally focused on the ef-
fects of individual chemical exposures. Currently, risk assess-
ment of chemicals, including pesticides, is based on the no 
observed adverse effect levels (NOAELs) for effects of single 
compounds. Based on results from animal studies, exposure to 
single environmental chemicals generally does not cause major 
concern for adverse reproductive effects in humans due to low 
exposure levels. Humans are, however, exposed to a mixture 
of several chemicals and, during the past decade, scientific and 

regulatory focus has gradually begun shifting towards examin-
ing the effects of mixtures. Since 2005, the European Union 
member states have for example been obliged to evaluate and, 
if possible, refine existing methodologies in order to take com-
bined actions of pesticides into account during risk assessment 
and, especially, when establishing maximum residue levels 
for pesticides (European Commission, 2005). Due to the high 
number of possible chemical combinations, the option of bas-
ing human risk assessment of mixtures on experimental data 
of each possible chemical combination is not practically feasi-
ble. Therefore, development of new approaches is needed for 
handling the challenge of human risk assessment of mixtures. 

The European Food Safety Authority (EFSA) has just released 
the report, “International Framework Dealing with Human 
Risk Assessment of Combined Exposure to Multiple Chemi-
cals” presenting considerations on how to evaluate and handle 
mixture effects (European Food Safety Authority, 2013). The 
current thinking is that human risk for mixture exposure can be 
predicted by selecting a reasonable mathematical model (like 
the concentration-addition model (Hermens et al., 1984; Kone-
mann, 1981)), and quantitative measures of toxic effects (e.g., 
NOAEL), as well as exposure levels for the individual chemi-
cals (Kortenkamp et al., 2009; Hass et al., 2007; Hadrup et al., 
2013). Based on this line of thought, one future challenge in risk 
assessment of mixtures is potentially lack of sufficient homog-
enous toxicological information on single compounds and their 
mechanisms of action. A second challenge for the toxicologist 
is the exponentially growing information load on chemicals in 
scientific databases, which poses the challenge of how to digest 

and utilize all existing information. A third challenge is how to 
predict adverse effects in humans based on toxicological infor-
mation usually obtained from other species. 

A potential solution to some of these challenges may be the 
application of systems toxicology. Systems toxicology has pre-
viously been employed as a means to explore potential adverse 
effects of environmental chemicals (Audouze and Grandjean, 
2011). One of the strengths of the procedure is that focus can be 
directed exclusively towards human effects, avoiding the chal-
lenge of inter-species extrapolation.

In this paper, we present an evaluation of the procedure for 
grouping of chemicals according to their effects and modes of 

Fig. 1: Workflow of the proposed multi-step systems chemical biology approach 
1. Proteins (P) known to be biologically associated with the five chemicals are extracted using two different databases (ChemProt and 
CTD). For each chemical, the set of proteins has been enriched with high confidence human protein-protein interaction data (iP).  
2. Integration of disease information using three databases (GeneCards, OMIM, and a specific dataset related to male infertility) to each 
of the protein complexes. Diseases are statistically ranked to help link the chemicals to potential phenotypic outcomes. 
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interactome was used to expand the initial networks by adding 
to the network proteins known to physically interact with the 
genes/proteins from the initial network.

Disease enrichment
To identify diseases possibly related to each individual chemi-
cal, we integrated disease information from three sources in 
each of the five protein complexes. The Online Mendelian In-
heritance in Man (OMIM) database (McKusick-Nathans Insti-
tute of Genetic Medicine), the GeneCards database (Safran et 
al., 2010), and a specific dataset related to male infertility based 

on a review (Matzuk and Lamb, 2008) were used for data inte-
gration. The OMIM database is a comprehensive compendium 
of relationships between human genotypes and phenotypes. 
GeneCards is a searchable, integrated database providing infor-
mation on human genes and selected gene-related information, 
such as functional and disease information.

The protein complexes for each of the five chemicals were in-
dividually tested for significant disease associations using a test 

based on a hypergeometric distribution. A significance level of 

0.05 after Bonferroni correction for multiple testing of p-values 
was used to select the most relevant associations. The gene list 
for prochloraz is used here as an example in the test for an as-
sociation with the disease adrenal hyperplasia: 46 out of 6778 
genes in the GeneCards database were associated with the dis-
ease, and of the 27 genes associated with prochloraz, 10 were 
associated with the disease. This gave a p-value of 5.7e-16, and 
the Bonferroni corrected p-value, when accounting for 10,428 
diseases in the database, was 5.9e-12, which is below the chosen 
significance level of 0.05.

To investigate unexpected chemical-disease associations, we 
included non-significant associations for chemicals if the dis-
ease in question was significantly associated with at least one 

other chemical.

3  Results

Protein lists
Using the ChemProt 2.0 and CTD databases, we extracted 
one relevant human protein target for epoxiconazole, 22 for 
prochloraz, 5 for procymidone, 8 for tebuconazole, and 11 for 
mancozeb (Fig. 2). As 7 of the genes are shared between two or 
more of the chemicals, the complete gene list contains 38 dif-
ferent genes. Figure 3 shows a unified view of the respective as-
sociations. This figure demonstrates that there are a few shared 

gene associations for the chemicals. The androgen receptor 
(AR) is a shared target for prochloraz, procymidone, and tebu-
conazole. The cytochrome P450 (CYP) enzyme lanosterol-14-
α-demethylase (CYP51A1) is a shared target for all three azole 

fungicides in accordance with their desired mechanism of ac-
tion as fungicides. Prochloraz affects many proteins in the ster-
oidogenic pathway and only CYP19A1 is a shared target with 
tebuconazole. Also, peroxisome proliferator-activated receptor 
δ (PPARδ) is a common target for prochloraz and tebuconazole, 

and PPARδ is affected by prochloraz. In particular, mancozeb 

appears to have very distinct associations compared with the 

action that may be of benefit for a mixture risk assessment of 

chemicals for which homogenous toxicological information is 
lacking. We investigated the effects of five pesticides using a 

recently developed systems toxicology approach. This study 
served multiple purposes: 1) to apply systems toxicology to in-
vestigate modes of action of individual chemicals, 2) to explore 
the value of the approach for grouping of chemicals according 
to their mode of action, and 3) to hypothesize on new, unex-
pected effects of the chemicals in humans.

2  Methods

Procymidone, mancozeb, and the azole fungicides epoxicona-
zole, prochloraz, and tebuconazole were investigated using the 
multi-step data integration workflow (Fig. 1). In the first step, 

we used existing knowledge from disease chemical biology 
databases to extract information on specific human chemical-

protein associations. We queried for associations of the selected 
chemicals with genes and/or proteins in several sources of ex-
perimental data. Secondly, these chemical-protein associations 
were expanded to protein complexes. By using a high-confi-
dence set of experimental protein-protein interactions, we iden-
tified protein complexes associated with the chemicals (Lage et 

al., 2007). Finally, protein-disease annotations were integrated 
into these protein complexes in order to statistically rank the 
chemicals̓ relation with diseases.

Chemical-protein associations
The first step was to extract available information for the five 

chemicals of interest. Only human related data was taken in-
to consideration. Known chemical-protein associations were 
compiled from two publicly available databases, the Compara-
tive Toxicogenomics Database (CTD) (Davis et al., 2011) and 
ChemProt 2.0 (Kim Kjærulff et al., 2013), accessed on October 
8, 2012). The CTD is a database of manually curated chemi-
cal-gene associations mined from peer-reviewed scientific lit-
erature. The Batch Query search method was used with default 
settings, searching for curated chemical-gene interactions using 
each chemical as input. ChemProt 2.0 is a newly established 
disease chemical biology database containing chemical-protein 
annotation resources for more than 1,100,000 unique chemicals 
and more than 15,000 proteins. 

Protein-protein interactions
As proteins tend to function in protein complexes, we expanded 
each of the five obtained protein lists to contain known protein-

protein interactions (PPIs). We used a high confidence human 

protein interactome (Lage et al., 2007) (version 3.0), which 
is based on experimental data from humans and data inferred 
from model organisms. The version that was used (3.0) contains 
507,142 unique PPIs and 22,997 genes, as of October 2012. The 
protein-protein interaction network used for our analyses is a 
scored network relying on network topology and reliability of 
each individual interaction. For further details on the construc-
tion and application of the protein-protein interaction network, 
please see Lage et al. (2007, 2008, 2010). The human protein 
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remaining four chemicals. It targets mainly proteins involved 
in inflammatory and transcriptional processes. The thyroid re-
ceptor (THRB) is suggested as a target of both procymidone 
and prochloraz, whereas only procymidone affects the thyroid-
stimulating-hormone receptor (TSHR). 

Protein-protein interactions
For each chemical we generated individual PPI networks by 
determining PPI partners for the proteins associated with the 
chemicals. To assess overlapping proteins, we generated a 
merged network. In this network, the chemicals were connected 
to their respective associated proteins retrieved from the initial 
step. The PPI networks were then viewed simultaneously (see 
Fig. S1 in supplementary data at http://www.altex-edition.org). 
As shown in Table 1, no proteins were identified in the epoxi-
conazole network, 81 in the prochloraz network, 18 in the pro-
cymidone network, 31 in the mancozeb network, and 25 in the 
tebuconazole network. This adds up to a total of 142 different 

Fig. 2: Chemical-protein association network
Network view of the five chemicals and their associated genes denoted by HUGO gene symbol. Asterisks (*) indicate that the notation 
refers to the gene product rather than the gene itself. The colors of the genes correlate with primary function of the protein encoded by 
the genes. Red: transcription factor, orange: steroidogenesis, yellow: metabolism, green: cellular regulation and signaling, blue: thyroid 
function, and purple: inflammation. Chemicals are denoted as white hexagons. Mancozeb does not share any associations with the four 
other chemicals, and only a few genes connect the remaining chemicals. 

Tab. 1: Number of human proteins associated with the five 
chemicals within the different steps of the systems biology 
procedure
Numbers in parentheses indicate the number of connections 
between proteins in the network.

Chemical name Number of proteins

 ChemProt,  Proteins  
 CTD (connections)

Epoxiconazole 1 1 (0)

Prochloraz 22 81 (123)

Procymidone 5 18 (16)

Mancozeb 11 31 (28)

Tebuconazole 8 25 (22)

Mixture 38 142

4.4 Paper II 35



KONGSBAK ET AL.

ALTEX 31, 1/14 15

multiple testing of 0.002. Among the 81 proteins in the prochlo-
raz network, only 41 were found in the GeneCards database. 
Among these 41 proteins, 5 were known to be associated with 
the disease “micropenis” as compared to a total of 9 known 
genes involved in the disease out of 5515 genes in the database. 
Tebuconazole and procymidone also showed associations with 
the condition “micropenis”, however these associations were 
both non-significant due to the low number of associated genes. 

Despite the lack of significance, the association was extracted 

for further analyses to indicate potential associations with hypo-
thetical adverse outcome pathways.

Three clusters of diseases appeared: One containing 41 repro-
ductive diseases, a second one with seven disorders related to 
the adrenal gland, and a last one of six other diseases including 
adenoma, Antley-Bixler syndrome, Cushing syndrome, granu-
losa cell tumor, isolated deficiency of pituitary hormone, and 

xanthomatosis cerebrotendinous (see Fig. S2 in supplementary 
data at http://www.altex-edition.org). 

proteins. The sub-network associated with mancozeb is com-
pletely isolated from other protein complexes. Considering the 
above results, epoxiconazole was not included in further calcu-
lations.

Translation into disease associations
To identify diseases associated with the individual chemicals, 
each PPI network was enriched using OMIM, GeneCards, and 
the male infertility dataset. This procedure provides indications 
of which chemicals might be associated with human disease(s). 
Instead of looking exclusively at statistically significant diseas-
es, we increased the number of associations by including non-
significant associations between diseases and chemicals if the 

disease in question was retrieved on the basis of a low p-value 
for at least one other chemical out of the five. One such example 

is the association between the chemicals and the disease term 
“micropenis”. Prochloraz is the only chemical significantly 

associated with this disease term with a p-value corrected for 

Fig. 3: Network showing the reproductive diseases that are associated with the four chemicals
The chemicals are the white hexagons, whereas female reproductive diseases are pink, male reproductive diseases are blue, and 
diseases affecting both genders or unclear phenotypes are grey. Blue diamonds indicate diseases that may be involved in testicular 
dysgenesis syndrome (TDS), whereas red diamonds indicate diseases that may be involved in ovarian dysgenesis syndrome (ODS). 
Black lines indicate significant (p-value ≤0.05) associations, whereas grey lines indicate non-significant associations (p-values ≥0.05). 
PH, pseudo hermaphroditism; AR, androgen receptor
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syndrome, and abnormal testis size are associated with one or 
more of the chemicals through the chemical-gene associations 
(Fig. 3 and Tab. 2).

The female sub-cluster contains 10 diseases, of which seven 
diseases are associated with the ovarian dysgenesis syndrome 
(ODS), a recently suggested hypothesis parallel to the TDS par-
adigm, suggesting a shared etiology for endometriosis, ovarian 
cancers, and other diseases related to female fecundity (Louis 
et al., 2011). In this cluster, three subgroups of diseases exist: 
1) disease terms related to various cancers within the female 
reproductive system, 2) polycystic ovaries and endometriosis, 
and 3) diseases related to abnormal hormone levels. All of these 
diseases are significantly associated with prochloraz and none 

of the other investigated chemicals. P-values after Bonferroni 
correction for multiple testing and the genes describing the 
chemical-disease associations are summarized in Table 2.

The large cluster of reproductive disorders was divided into 
three sub-clusters: male, female, and unisex (Fig. 3). The male 
sub-group contains 20 diseases. Among them, 13 seem to be 
associated with testicular dysgenesis syndrome (TDS), which 
covers a range of male reproductive diseases or disorders like 
malformed reproductive organs, cryptorchidism, poor sperm 
quality, and testicular cancer. These disorders are believed to 
reflect various stages of TDS arising during gestation (Skakke-
baek et al., 2001). The 13 disorders covered by this analysis in-
cluded androgen insensitivity syndrome, various types of pseu-
dohermaphroditism, malformed or wrongly positioned testes, 
malformations of the penis including hypospadias, and underly-
ing mechanisms for these disorders, such as androgen resistance 
syndrome and defective biosynthesis of testicular androgen. 
Additionally, various types of hyperplasia and prostate disease, 
and the terms gynecomastia, androgenic alopecia, Klinefelters 

Tab. 2: Diseases extracted for the respective chemicals
The diseases are grouped according to gender specificity. Bonferroni corrected p-values and the genes associated with the diseases  
and involved in the respective diseases are listed by HUGO gene symbol. Statistically significant p-values are shown in bold format.  
N/A values indicate lack of associations. N/S indicates Bonferroni corrected p-values ≥1.

                 prochloraz     procymidone       tebuconazole         mancozeb

 disease Genes  bonf.  genes bonf.  genes bonf.  genes bonf.  
   p-val  p-val  p-val  p-val

Male gynecomastia CGB; CYP17A1; CYP19A1;  
  CYP21A2; ESR1; HSD3B1;  
  HSD3B2; HSD17B3; AR; 
  SRD5A2 5.E-11 AR 0.79 CYP19A1; AR 0.03 NONE N/A

 hypospadias CYP1A1; CYP17A1; CYP21A2;  
  ESR1; ESR2; HSD3B1;  
  HSD3B2; HSD17B3; AR;  
  SRD5A2 4.E-08 AR N/S AR N/S NONE N/A

 PH with CYP19A1; HSD3B2;   
 gynecomastia HSD17B3; AR; SRD5A2 5.E-08 AR N/S CYP19A1; AR 0.01 NONE N/A

 PH with CYP11B1; CYP19A1;  
 androgen HSD3B2; AR 3.E-05 AR N/S CYP19A1; AR 0.02 NONE N/A 
 resistance
 reifenstein's CYP11B1; CYP19A1;  
 syndrome HSD3B2; AR 3.E-05 AR N/S CYP19A1; AR 0.02 NONE N/A

 leydig cell CYP11A1; CYP17A1; CYP19A1;  
 tumor CYP21A2; ESR1; ESR2;  
  STAR 9.E-05 NONE N/A CYP19A1 N/S NONE N/A

 5α reductase HSD17B3; AR; SRD5A2 1.E-04 AR 0.63 AR N/S NONE N/A 
 deficiency  
 (with PH)

 PH CYP17A1; HSD3B2; HSD17B3;  
  AR; SRD5A2 3.E-04 AR N/S AR N/S NONE N/A

 prostate     CYP1A1; 
 cancer CGB; CYP1A1; CYP1A2; CYP11A1;    CYP3A4; 
  CYP17A1; CYP19A1; AHR; ESR1;    CYP19A1; 
  ESR2; SPDEF; HSD3B1;     SPDEF; AR; 
  HSD3B2; HSD17B3; AR; PPARD;    KCNH2;   
  PPARG; PMEPA1; RARA;   SPDEF;  PPARD;  ANGPT2; 
  SRD5A2; NR1I2; EBAG9 1.E-03 AR; PMEPA1 N/S PMEPA1 N/S RELA; TEK N/S
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                 prochloraz     procymidone       tebuconazole         mancozeb

 disease Genes  bonf.  genes bonf.  genes bonf.  genes bonf.  
   p-val  p-val  p-val  p-val

Male abnormal CYP19A1; ESR1; ESR2;  
 testis size AR; PPARG; STAR 2.E-03 AR 0.40 AR N/S NONE N/A

 cryptorchidism CYP17A1; CYP19A1; ESR1;  
  AR; PPARG; STAR 2.E-03 AR N/S CYP19A1; AR N/S IL1B N/S

 micropenis CYP17A1; AHR; HSD3B2;  
  AR; SRD5A2 2.E-03 AR N/S AR N/S NONE N/A

 androgen CYP19A1; ESR1; HSD3B2;  
 resistance AR; PPARG; SRD5A2 2.E-03 AR N/S CYP19A1; AR 0.03 NONE N/A 
 syndrome

 defective CYP17A1; CYP21A2;  
 androgen AR 3.E-03 AR 0.13 AR 0.40 NONE N/A 
 synthesis

 androgenetic CYP19A1; CYP21A2; AR;  
 alopecia SRD5A2 4.E-03 AR N/S CYP19A1; AR N/S NONE N/A

 prostatic CYP17A1; CYP19A1; ESR2;  
 hyperplasia AR 0.01 AR N/S CYP19A1; AR N/S NONE N/A

 abnormal CYP19A1; CYP21A2; ESR1;  
 spermatogenesis ESR2; AR; POU1F1 0.02 AR 0.53 AR N/S NONE N/A

 klinefelters CGB; CYP19A1; CYP21A2; AR 0.05 AR N/S CYP19A1; AR N/S NONE N/A 
 syndrome

 sertoli cell CYP11A1; CYP19A1; ESR1;  
 hyperplasia ESR2; AR; STAR 2.E-06 AR 0.40 CYP19A1; AR 0.05 TNF 0.56

 sertoli cell tumor CYP19A1; ESR1; ESR2; AR 0.02 AR N/S CYP19A1; AR 0.79 NONE N/A

 testicular CYP19A1; AR 0.11 AR N/S CYP19A1; AR 0.01 NONE N/A 
 feminization:  
 AR defect

 testicular     CYP19A1;     
 feminization AR N/S AR 0.13 ALDH1A1; AR 2.E-03 NONE N/A

Female polycystic ovary CYP11A1; CYP17A1; CYP19A1;  
 syndrome CYP21A2; ESR2; HSD3B2;   
  AR; POR; PPARG; STAR 3.E-07 AR N/S CYP19A1; AR N/S NONE N/A

 hyperandro- CYP11A1; CYP17A1; CYP19A1;  
 genism CYP21A2; HSD3B2; AR; PPARG 4.E-05 AR N/S CYP19A1 N/S NONE N/A

 polycystic CYP11A1; CYP17A1; CYP19A1;  
 ovaries CYP21A2; AR; STAR 4.E-04 AR N/S CYP19A1; AR N/S NONE N/A

 endometrial      CYP1A1;   
 cancer CYP1A1; CYP1A2; CYP17A1;    CYP3A4;   
  CYP19A1; AHR; ESR1; ESR2;    CYP19A1;  
  AR; NR1I2; EBAG9 7.E-04 AR; NR1I2 N/S AR; KCNH2 N/S ANGPT2 N/S

 choriocarcinoma CGB; CYP11A1; CYP19A1;  
  AHR; ESR2; FDX1; POU1F1;  
  PPARG; RARA; STAR 7.E-04 NONE N/A CYP19A1 N/S NONE N/A

 endometriosis CYP1A1; CYP11A1; CYP17A1;  
  CYP19A1; AHR; ESR1; ESR2;     CYP1A1;  ANGPT2;  
  STAR; EBAG9 1.E-03 NONE N/A CYP19A1 N/S IL1B; IL8; TEK 0.63

 endometrial CYP17A1; CYP19A1; ESR1;  
 hyperplasia ESR2; AR; RARA 1.E-03 AR N/S CYP19A1; AR N/S NONE N/A

 aromatase CYP11A1; CYP19A1;  
 deficiency CYP21A2; ESR1 3.E-03 NONE N/A CYP19A1 0.79 NONE N/A
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adverse effects can help elucidate similarities in mode of ac-
tion of the chemicals (Ankley et al., 2010). However, since the 
data from the initial data sources may have been tested under 
complex conditions, there is a risk that the obtained gene lists 
contain false positives. CTD, as an example, contains data from 
microarray experiments and several biological factors are det-
rimental for gene expression levels. Hence, misregulation of 
genes is not always a direct response to chemicals affecting 
expression levels of genes but may be due to a stress condi-
tion of the exposed organism induced by the chemical, e.g., via 
disruption of the electron transport chain in mitochondria. The 
results of our study serve as a guideline, and careful interpreta-
tion is an essential part of the workflow as false positives might 

be present.
Furthermore, one must take into account the so-called “Mat-

thew effect”, resulting in maintained research interests regard-
ing already well-investigated chemicals, effects, and/or targets, 
and thus a larger amount of available data for these chemicals 
and effects (Grandjean et al., 2011). This skews the findings to-
wards pathways and diseases already being intensely investi-
gated but also highlights the areas or chemicals needing further 
attention, like epoxiconazole in this study. The relatively high 
and low number of chemical-gene/protein associations for, e.g., 
prochloraz and epoxiconazole, respectively, may be a result of 

4  Discussion

Due to recent advances in toxicogenomics, the existence of high 
confidence PPIs, and various types of “omics” information, a 

reasonable basis for developing models to predict associations 
between chemical exposures and subsequent human health ef-
fects has arisen.

We retrieved a set of genes linked to the query chemicals 
and these chemical-gene associations, reported in experimen-
tal studies, constitute the raw data. This method constitutes an 
efficient means for retrieval of known information compared 

to manual search in the published literature for chemical-gene/
protein associations. Such a manual literature search is feasi-
ble in less investigated areas but for well-investigated disorders 
and common chemicals obtaining such a literature overview 
manually is laborious. Thus, the current approach creates a 
valuable overview of existing data on the mechanisms of ac-
tion of chemicals, allowing grouping of chemicals according to 
their mechanism of action. This will be helpful when predicting 
mixture effects. Furthermore, this approach provides a method 
that may contribute to developing candidate adverse outcome 
pathways. For chemicals that are known to cause similar ad-
verse effects, applying this approach and thus setting up hy-
potheses on potential molecular initiating events for specific 

                 prochloraz     procymidone       tebuconazole         mancozeb

 disease Genes  bonf.  genes bonf.  genes bonf.  genes bonf.  
   p-val  p-val  p-val  p-val

Female uterine CYP17A1; CYP19A1;  
 leiomyoma CYP21A2; ESR1; ESR2 0.03 NONE N/A CYP19A1 N/S NONE N/A

 uterine cancer CYP19A1; ESR1; ESR2 0.04 NONE N/A CYP19A1 N/S NONE N/A

Unisex virilization CYP11A1; CYP11B1; CYP17A1;  
  CYP19A1; CYP21A2; HSD3B2;  
  AR; POR; SRD5A2 2.E-10 AR N/S CYP19A1; AR N/S NONE N/A

 kallmann's CYP19A1; CYP21A2; ESR1;  
 syndrome AR; POU1F1; PPARG; STAR;   AR; THRB; 
  THRB 4.E-05 TSHB 0.03 CYP19A1; AR N/S NONE N/A

 PH CYP17A1; CYP19A1;  
  HSD3B2; SRD5A2 3.E-04 NONE N/A CYP19A1 N/S NONE N/A

 gonadotropin CYP19A1; ESR1; AR;  
 deficiency POU1F1; STAR 2.E-03 AR; TSHB 0.17 CYP19A1; AR 0.47 IL1B N/S

 breast CYP19A1; ESR1;  
 neoplasms ESR2 7.E-03 NONE N/A CYP19A1 N/S NONE N/A

 sexual infantilism CYP17A1; CYP19A1 0.01 NONE N/A CYP19A1 0.40 NONE N/A

 abnormal sexual CYP17A1; CYP19A1; CYP21A2;  
 maturation ESR1 0.01 NONE N/A CYP19A1 N/S NONE N/A

 endocrine  
 cancer CYP19A1; ESR1; AR 0.01 AR N/S CYP19A1; AR 0.23 NONE N/A

 gonadotropin un-   AR;  
 responsiveness AR N/S TSHR 2.E-03 AR N/S NONE N/A
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reproductive disorders has increased, and to a larger extent in 
developed and industrialized countries compared to developing 
countries (Giwercman et al., 1993; Skakkebaek et al., 2001; 
Jorgensen et al., 2006). It has been suggested that occupational 
exposure to pesticides contributes to the increased incidence 
of male reproductive disorders, including TDS (Weidner et al., 
1998). Similarly, a recent paper suggested that prenatal expo-
sure of human male fetuses to various non-persistent pesticides 
was associated with smaller genitals in boys aged 6-11 years 
compared to boys without prenatal pesticide exposure (Wohl-
fahrt-Veje et al., 2012). Furthermore, the results also point to an 
association between exposure to prochloraz and female repro-
ductive diseases, including diseases of ODS. Previous studies 
have indicated the existence of a causal relationship between 
exposure to (organochlorine) pesticides and the development 
of endometriosis (Porpora et al., 2009; Cooney et al., 2010). 
Together, these findings point towards the importance of inves-
tigating female reproductive effects as well. 

The findings of prochloraz on feminizing and masculiniz-
ing effects are paralleled by tebuconazole, although less pro-
nounced. According to the results presented in Figure 3, tebuco-
nazole has five significant disease associations in common with 

prochloraz. It is known that tebuconazole has a mode of action 
like prochloraz, as both affect sex hormone synthesis (Dreisig et 
al., 2013; Kjaerstad et al., 2010).

Procymidone has one significant disease association in com-
mon with prochloraz (Kallmann’s syndrome, p-values 2.53e-2 
and 4.21e-5, respectively). Despite the few significant associa-
tions, it is reasonable to infer a possible association with repro-
ductive dysfunction, since procymidone acts as an antagonist 
of the androgen receptor. This is known from in vitro and in 
vivo experiments (Ostby et al., 1999; Hosokawa et al., 1993; 
Nellemann et al., 2003) that reported cryptorchidism (Wolf et 
al., 1999), decreased anogenital distance, and decreased nipple 
retention in prenatally exposed rats (Hass et al., 2012; Wolf et 
al., 1999).

Our data indicate that the effects of mancozeb are not a con-
sequence of interference with human sex hormone synthesis or 
sex hormone receptor activity as opposed to the other chemicals 
investigated in this study. This is consistent with previous ex-
perimental work in rodents showing no effect of mancozeb on 
male reproductive endpoints (Axelstad et al., 2011). Mancozeb 
might, however, contribute to the manifestation of reproductive 
diseases through other mechanisms. It is established that man-
cozeb induces oxidative stress in rodent cells (Domico et al., 
2007). Persistent oxidative stress might lead to inflammation, 

and this may be the reason why mancozeb, according to our 
model, is associated with several genes involved in inflamma-
tion. It is, however, surprising not to see any genes related to 
thyroid function, as animal studies in rodents indicate a strong 
relationship between exposure to mancozeb and decreased lev-
els of the thyroid hormone T4 in dams and hence a possible role 
of mancozeb in thyroid disruption in humans (Axelstad et al., 
2011). Species differences are not expected to explain why our 
model does not predict a link between mancozeb and thyroid 
function (US EPA, 2005). Since epidemiological studies have 

this effect, as the amount of available data for the two chemicals 
differs (by a factor of 2.7 based on a PubMed search in July 
2013). Hence, the lack of associations between, e.g., epoxicona-
zole or procymidone and the diseases predicted to be associated 
with prochloraz might be the result of less available data for the 
chemicals rather than lack of effects.

For risk assessment of mixtures, it has been proposed that be-
ing able to group the chemicals according to their mechanism or 
mode of action might be a great advantage (Kortenkamp et al., 
2009). Previously, we found that mixture effects can be predict-
ed on the basis of endpoints of varying molecular complexity, 
such as anatomical, morphological, or genomic output (Metz-
dorff et al., 2007). In a comprehensive in vivo developmental 
rat study, additivity of some anti-androgenic chemicals was 
predicted irrespective of the level at which the adverse effects 
were seen; be it adverse morphological changes or changes in 
gene expression in the male reproductive organs. This finding 

supports the hypothesis that molecular data can be applied for 
predicting mixture effects (Metzdorff et al., 2007). Viewing 
the chemical-gene associations for all chemicals simultane-
ously provides an overview of chemicals that share pharma-
cological or toxicological targets. This is valuable information 
in cases where grouping of chemicals is needed. According to 
our results, mancozeb has a mode of action that is distinct from 
that of prochloraz, procymidone, and tebuconazole. The lat-
ter three, on the other hand, seem to share targets. Therefore, 
rough grouping of the five chemicals results in two groups, 

mancozeb alone, and the above-mentioned three chemicals to-
gether. Epoxiconazole, having a single gene association, is only 
vaguely grouped with prochloraz, procymidone, and tebucona-
zole via its association with CYP51. This is most likely due to 
lack of data for this chemical.

The results presented in Figure 3 (and Fig. S2) indicate in-
volvement of the chemicals in human diseases related to re-
productive disorders. Prochloraz has the highest number of 
significant disease associations compared to the other chemi-
cals. The disorders affected by this chemical have both mas-
culinizing effects in females and feminizing effects in males. 
Several findings in the literature support the feminizing effects 

in males suggested here. Prochloraz is the most widely studied 
chemical and has been demonstrated to affect fetal rat testes, 
resulting in disrupted steroidogenesis during prenatal develop-
ment (Laier et al., 2006). The mechanism underlying this dis-
ruption includes inhibition of the cytochrome P450 enzymes 
CYP17 and CYP19 (Andersen et al., 2002). Prochloraz has 
been demonstrated to be associated with decreased estradiol 
and testosterone production, increased progesterone produc-
tion, and aromatase inhibition in vitro (Dreisig et al., 2013). 
In several instances it has been demonstrated that chemicals 
having such an in vitro profile cause feminizing effects, such as 

decreased nipple retention and decreased anogenital distance in 
vivo. This has been demonstrated for prochloraz exposure dur-
ing fetal development (Vinggaard et al., 2005). The predicted 
involvement of prochloraz in TDS (cryptorchidism, hypospa-
dias, poor sperm quality, and carcinoma in situ testis) is of par-
ticular concern. In the past four decades the incidence of male 
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shown an association between human mancozeb exposure and 
diagnosed thyroid disease (Goldner et al., 2010; Steenland et 
al., 1997), the lack of associations between mancozeb and any 
thyroid-related genes in our study might be caused by a lack of 
thyroid tissue data in the queried databases. The epidemiologi-
cal studies, however, do not provide a suggestion as to which 
proteins or genes are targeted by mancozeb. One alternative 
explanation might be that the thyroid effects are secondary to 
inflammatory changes.

Using this computational approach to assess the effect of 
chemicals provides an overview of which chemicals in a 
mixture might interfere with identical proteins, and which 
chemicals might result in similar disease phenotypes despite 
dissimilar modes of action. The method might prove useful 
if hypotheses on similar and dissimilar modes of action are 
needed to determine chemicals more prone to act on the same 
target and thus needing more attention. In addition, this meth-
odology may prove valuable for generating hypotheses on the 
linkage between chemical exposure and human disease, pro-
viding knowledge on which chemicals to prioritize for further 
testing. This methodology provides a unique opportunity to 
get closer to the potential adverse effects on human health of 
chemicals.

5  Conclusion

We suggest that this computational technology is valuable for 
achieving an overview of existing targets related to a certain 
chemical. The value lies in the relevance for human health. In-
formation about human health and exposure to environmental 
chemicals is rarely available, and exists as results from epide-
miological studies, where several confounding factors might 
interfere with the measured endpoints. Therefore, this method 
opens up new possibilities for generation of hypotheses linking 
chemical exposure and human diseases.

Application of the method resulted in grouping of the three 
pesticides, prochloraz, tebuconazole, and procymidone. Male 
and female reproductive disorders like TDS and ODS and some 
adrenal diseases were primarily found to be associated with 
these pesticides. Epoxiconazole is expected to belong to this 
group, but lack of data did not allow this conclusion. Mancozeb 
had a differential mode of action involving inflammatory proc-
esses not shared by any of the other pesticides. These findings 

seem plausible based on comparisons with actual knowledge 
from cellular and rodent studies, giving confidence in the ap-
proach when less well-known chemicals are evaluated in the 
future.
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Fig. S1: Network view of the protein-protein interaction (PPI) network of the five chemicals 
Chemicals are represented by blue hexagons, genes/proteins from the raw network – based on experimental data – are the dark pink 
circles, and genes/proteins retrieved via known PPIs are the pink circles.
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Fig. S2: Network showing the dominating groups of diseases associated with the four chemicals
The groups are color coded: reproductive diseases, magenta; adrenal diseases, yellow; other diseases, green. The four chemicals are 
represented by the blue hexagons. Black lines indicate significant (p-value ≤0.05) associations after Bonferroni correction of p-values.
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4.5 Concluding remarks

As concluded in the papers (Sections 4.3 and 4.4), the approach applied in this
project provides a means to, relatively quickly, obtaining an overview of existing
data regarding a chemical of interest. The approach further enables generation of
hypotheses on the mode of action or potential harmful effects of the investigated
chemical. This is particularly relevant for environmental chemicals, where testing
in humans are otherwise unethical.
For the investigated chemicals, the analysis resulted in a grouping of the chemicals
with the azole-fungicides (tebuconazole and prochloraz) and procymidone in one
group and mancozeb alone, as it had no shared targets with the other pesticides.
Grouping of epoxiconazole was vague as very little data existed in the queried
databases for this pesticide. For the other chemicals, the diseases with the strongest
associations to the azole-pesticides were related to reproductive diseases. This
correlates well with results from animal studies with these chemicals.
Despite the above-mentioned benefits of this approach, there is one obvious short-
coming; that it is highly reliant on existing data. Therefore, this approach is not
applicable in cases where little to no information on a chemical is available. In
our project, this was evident with epoxiconazole, for which only one human gene-
target was retrieved in the initial step. Subsequent analyses were not possible for
this chemical despite the fact that data from animal studies indicate epoxiconazole
to have a similar mode of action as the other azole-fungicides (tebuconazole and
prochloraz) and procymidone. The fact that little to no information is available
for epoxiconazole might indicate either that the chemical has no effects on human
targets, or that the chemical has not been investigated exhaustively. The latter
possibility might be taken as an indication that further studies on epoxiconazole
are needed. One has to bear in mind, that positive findings spurs interest in in-
vestigating those findings further. This might skew the data availability towards
pathways and diseases already being intensely investigated (the so-called Matthew
effect). Therefore, this approach might also prove useful in the planning phase of
a study in the process of determining which chemical(s) to investigate.
An additional short-coming of the approach is that the nature and direction of the
initially retrieved chemical-gene/protein associations are not taken into account,
as agonists and antagonists are not distinguished, and neither is up- and down-
regulation. This might introduce bias to the downstream analysis.



Chapter 5
Experimental Studies of a

Chemical Mixture

This chapter provides a summary of the hypotheses and methods used in the stud-
ies with a 14-compound mixture (Mix) in combination with three doses of perflu-
orononanoic acid (PFNA). Two manuscript have resulted from this project. Both
have been submitted but not yet accepted for publication. The first manuscript
(page 52) describes the endocrine-related effects related to the interactions be-
tween the EDC, PFNA, and Mix, whereas the second manuscript is a profiling
study, where changes in the plasma metabolome and the liver transcriptome upon
Mix and PFNA exposure have been analyzed and described (page 68). A brief
summary of the results and concluding remarks will follow on page 103.

5.1 Background

As described in Section 2.2, humans are simultaneously exposed to multiple chem-
icals. Previous studies have indicated combination effects of environmental chem-
icals at estimated safe levels [81, 82], environmental background [83], or human
acceptable daily intake levels [84]. For example, Naville et al. [82] present data
indicating significantly altered hepatic metabolism following exposure to a mixture
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Table 5.1: The 14 chemicals composing the Mix, which were tested along with three
doses of PFNA in adolescent rats for 14 days.

CASRN Chemical name Source/use Ratio
(weight)

Rat dose
mg/kg BW/day

7380-40-7 bergamottin grapefruit constituent 0.08 0.2
59870-68-7 glabridin liquorice constituent 0.12 0.3
80-05-7 bisphenol A plastic additive 0.004 0.01
94-26-8 butyl paraben preservative 0.21 0.52
84-74-2 DBP plasticizer 0.02 0.06
117-81-7 DEHP plasticizer 0.03 0.09
36861-47-9 4-MBC sun filter 0.15 0.38
5466-77-3 OMC sun filter 0.27 0.68
72-55-9 p,p’-DDE pesticide 0.002 0.006
133855-98-8 epoxiconazole pesticide 0.02 0.05
330-55-2 linuron pesticide 0.002 0.004
67747-09-5 prochloraz pesticide 0.025 0.06
32809-16-8 procymidone pesticide 0.035 0.09
50471-44-8 vinclozolin pesticide 0.021 0.05
In total 14 chemicals 1.0 2.5
Abbreviations: DBP - dibutylphthalate, DEHP - bis(2-ethylhexyl)phthalate,
4-MBC - 4-methylbenzylidene camphor, OMC - 2-ethylhexyl-2-methoxycinnamate,
p,p’-DDE - dichlorodiphenyldichloroethylene.

of four persistent organic pollutants at doses grossly corresponding to the tolerated
daily intake levels promulgated by regulatory agencies.
In this project, we investigated the effects on adolescent rats of Mix composed of 12
environmental chemicals previously shown to affect fetal development in rats [85],
two food constituents known to affect cytochrome P450 (CYP) activity (Table
5.1), and three doses of the recently classified EDC, PFNA. The 12 previously
investigated chemicals indicated endocrine disruption measured as e.g. increased
nipple retention in exposed pubs, an androgen-sensitive endpoint [85]. However,
the effects were observed at a dose approximately 24 times higher than the dose
of the Mix in the current study, since their lowest dose was 150 times the human
high-end exposure levels and our dose of the Mix corresponded to the human high-
end exposure levels corrected for different body surface areas of human and rat.

Perfluorinated compounds (PFCs) are organic compounds in which all hydrogen
atoms of the carbon chain have been replaced by fluorine atoms (Figure 5.1) [86].1

1’Perfluorinated compound’ covers perfluorinated alkyl compounds of varying carbon chain
length and with varying functional groups.
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Figure 5.1: Three-dimensional structure of the eight-carbon perfluorinated
sulphonate, PFOS. The figure illustrates the conformation of the compound when
bound to serum albumin. Source: PDB ID 4E99 [103].

Due to their physical-chemical properties, PFCs are widely used as surfactants [87]
and are often formulated along with proteins in bioscience, cosmetics applications,
and medicine [86].
PFNA is a nine-carbon PFC used as a surfactant and emulsifier [88]. It is among
the four most frequently detected polyfluorinated compounds in human serum2

[89]. Furthermore, over a time-course of 11 years (1999-2010), a three-fold in-
crease in serum PFNA concentrations in the US population has been observed
[89–91]. Currently, global efforts are made to monitor human exposure to per-
and polyfluorinated compounds in various subpopulations including pregnant [92],
breastfeeding [93], and other women [94, 95], and children [96–99], elderly [100],
and various other age groups [89–91, 101, 102].
Polyfluorinated compounds are known to compete with naturally occurring fatty
acids for binding to the hepatic fatty acid-binding proteins [104–106]; however,
due to their physical-chemical properties, they do not participate as substrates in
biochemical reactions requiring fatty acids. Due to their surfactant effects, PFCs
have been shown to alter the mitochondrial and cell membrane potentials, and to
change the membrane fluidity and function [107–109]. Other studies have shown
that PFCs inhibit gap junctional intercellular communication [110–112]. Evidence
exist that longer-chained PFCs are more toxic than shorter-chained PFCs [107, 108,
110, 113].
Activation of the peroxisome proliferator-activated receptors (PPAR) is a hallmark
PFC effect. Therefore, PFCs are currently under investigation for their poten-
tial involvement in the activation/functioning of other nuclear receptors, such as
the constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) in-
volved in regulating xenobiotic metabolism, and the liver X receptor (LXR) involved
in regulating cholesterol and lipid metabolism [88].

2The other most frequently detected PFCs are perfluorooctanoic acid (PFOA), perfluo-
rooctanesulphonic acid (PFOS), and perfluorohexanoic acid (PFHxS).
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PFCs are well-known initiators of hepatocytic hypertrophy in laboratory animals
[88]. This effect is likely related to peroxisome proliferation and PPARα activation.
Prolonged exposure to PFCs leads to hepatic accumulation of lipid droplets, an
effect likely resulting from altered lipid metabolism and transport. In turn, this
might result in hepatic steatosis - a state of retention of lipids in the liver.
Recently, Rosenmai et al. [114] demonstrated the effects of PFOA (and other
polyfluorinated compounds) on the steroid synthesis in vitro. Consistently, previous
in vivo studies have indicated potentials of PFCs to decrease plasma testosterone
concentrations in male rats and affects male reproductive organs [115–117].
We conducted an animal study in which adolescent male rats were treated with
Mix ± PFNA for 14 days. In the following sections I will present the two papers
resulting from the animal study, and the papers will follow in Section 5.4 and 5.5.
Specific aims and hypotheses for the two sub-projects will follow below (Section
5.2). Concluding remarks covering both projects will follow at page 103.

5.2 Aims and Hypotheses

5.2.1 Endocrine Disrupting Effects

This EDC sub-project was designed as a hypothesis-driven study. The aim was to
test the hypothesis that a mixture of food chemicals in doses approaching high-
end human exposure levels cause adverse mixture effects. The plasma levels of
steroid hormones were used as effect measures along with pituitary hormone levels,
classical toxicological parameters and mechanistic markers in testis, liver, adipose
tissue, and kidney.
As my main role in the mixture project was to perform the microarray analyses, my
primary responsibilities in this sub-project included selection of genes for quantifica-
tion using RT-qPCR, interpretation of data, and critical editing of the manuscript
prior to submission.

5.2.2 Integrative ’OMICs’ analysis

This study builds on top of the before-mentioned EDC study. However, where
the EDC study was hypothesis driven, this study had a character as a data-driven
project. With this study, we aimed at profiling the plasma metabolome and the liver
transcriptome following the chemical exposure described in section 5.3. As is the
nature of profiling studies there is no specific hypothesis [40]; however, we worked
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Figure 5.2: Experimental design of the animal study. 6 weeks old male rats were
treated orally with three doses of PFNA (6-8 animals/group) ± a Mix via gavage for
14 days. After euthanization organs (liver, kidney, testes) were collected for weighing,
livers were prepared for histology and microarray analyses, plasma was collected for
metabolomics analyses.

from the assumption that two complementary ’omics’ approaches (metabolomics
and transcriptomics) would provide additional insight to the mode of action of the
Mix and PFNA.
As mentioned above, I was responsible for conducting the transcriptomics analysis.
In this sub-project, MSc. Kasper Skov and I contributed equally to interpreting
the results from the metabolomics and transcriptomics analyses and to writing the
manuscript.

5.3 Methods

Detailed descriptions about the applied methods are provided in the respective
manuscripts (page 52-68). In brief, six weeks old male Wistar rats arrived at our
facilities one week prior to study initiation to allow for acclimatization to the new
environment. As outlined in Figure 5.2 the experimental animals were treated with
chemical(s) (Table 5.1 ± three doses of PFNA3) for 14 days prior to euthanization.

Upon study completion, neck blood was collected and plasma was isolated for
hormone and metabolite analyses. Body weight and organ weights (liver, kidney,

30.0125 (Low PFNA), 0.25 (Mid PFNA) and 5 (High PFNA) mg/kg body weight/day
(mg/kg BW/day)
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testes) were recorded and subsequently stored in RNAlater until mRNA measure-
ments. Parts of the livers were fixed and processed for histopathological exami-
nation; whole kidneys were stored frozen until measurements of levels of organic
anion transporters.

5.3.1 Metabolomics

Plasma from all treatment groups were analyzed using a recently established plat-
form for the analysis of metabolites in plasma [118]. In brief, phospholipids,
lipophilic, and polar metabolites were separated using a phospholipid solid-phase
extraction column4. The lipid and polar fractions were extracted from the eluate
with heptane and methanol, respectively. Lastly, phospholipids were eluted from
the column using NH4OH in methanol. The fractions were subsequently analyzed
in an HPLC system combined with a maxis qTime-of-flight mass spectrometer. De-
tailed information about feature extraction and identification is given in Manuscript
IV.

5.3.2 Transcriptomics

We extracted the hepatic mRNA from the animals from 4 treatment groups; con-
trol, Low PFNA + Mix, Mid PFNA + Mix, and Mid PFNA. Labeled cDNA was
applied to Agilent Whole Rat genome Oligo Microarrays according to the manufac-
turer’s protocol. Microarrays were scanned and features extracted according to the
manufacturer’s protocol. Extracted data were loaded into R [119], and data were
analyzed using the limma software package [50, 120]. I performed pathway analy-
ses of the differentially expressed transcripts using QIAGEN’s Ingenuityr Pathway
Analysis (IPAr, QIAGEN Redwood City5) More detailed information about the
microarray analyses are provided in section 3.1.

4Phospholipids adsorb to the column leaving other metabolites in the eluate.
5www.qiagen.com/ingenuity

www.qiagen.com/ingenuity
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This combined with affected ACTH plasma concentrations 
and down-regulation of 11β HSD mRNA in livers indicates 
a disturbed pituitary-adrenal axis. In conclusion, our data 
suggest that mixtures of environmental chemicals at doses 
approaching high-end human exposure levels can cause a 
hormonal imbalance and disturb steroid hormones and their 
regulation. These effects may be non-monotonic and were 
observed at low doses. Whether this reflects a more general 
phenomenon that should be taken into consideration when 
predicting human mixture effects or represents a rarer phe-
nomenon remains to be shown.

Keywords Mixture toxicology · Steroidogenesis · 
Testosterone · Corticosterone · Pituitary hormones · 
Perfluorononanoic acid (PFNA)

Introduction

 Humans are concomitantly exposed to several chemi-
cals that can exert mixture effects. At doses close to no-
observed adverse effect levels or higher, chemicals usu-
ally act additively in experimental studies (Kortenkamp 
2014). However, we are lacking knowledge on the impor-
tance of exposure to complex real-world mixtures at more 
relevant human exposure levels. Only few in vivo studies 
performed with low-human relevant exposure levels have 
been reported. Wade et al. investigated a mixture contain-
ing 18 persistent contaminants at a dose of 1x the estimated 
safe level. This dose was based on the minimum risk lev-
els (MRLs) or the tolerable daily intakes and was dosed 
orally to male rats for 70 days. At this dose, increased 
natural killer cell lytic activity was observed (Wade et al. 
2002). Crofton et al. investigated whether deviations from 
additivity could be detected at low doses. They studied 

Abstract Humans are simultaneously exposed to sev-
eral chemicals that act jointly to induce mixture effects. At 
doses close to or higher than no-observed adverse effect 
levels, chemicals usually act additively in experimental 
studies. However, we are lacking knowledge on the impor-
tance of exposure to complex real-world mixtures at more 
relevant human exposure levels. We hypothesised that 
adverse mixture effects occur at doses approaching high-
end human exposure levels. A mixture (Mix) of 14 chemi-
cals at a combined dose of 2.5 mg/kg bw/day was tested in 
combination with perfluorononanoic acid (PFNA) at doses 
of 0.0125 (Low PFNA), 0.25 (Mid PFNA) and 5 (High 
PFNA) mg/kg bw/day by oral administration for 14 days 
in juvenile male rats. Indication of a toxicokinetic interac-
tion was found, as simultaneous exposure to PFNA and the 
Mix caused a 2.8-fold increase in plasma PFNA concentra-
tions at Low PFNA. An increase in testosterone and dihy-
drotestosterone plasma concentrations was observed for 
Low PFNA + Mix. This effect was considered non-mono-
tonic, as higher doses did not cause this effect. Reduced 
LH plasma concentrations together with increased andro-
gen concentrations indicate a disturbed pituitary-testis axis 
caused by the 15-chemical mixture. Low PFNA by itself 
increased the corticosterone plasma concentration, an effect 
which was normalised after simultaneous exposure to Mix. 
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thyroid disruptors in doses ranging from environmental 
background to 100x environmental background in rats for 
effects on serum total thyroxine. No deviation from additiv-
ity was found at the lowest doses (<0.2 mg/kg bw/day), but 
at higher doses (>0.67 mg/kg bw/day), synergy was found 
(Crofton et al. 2005). Stanko et al. found an increase in 
prostate inflammation with 0.09 mg/kg bw of an atrazine 
metabolite mixture following prenatal exposure of male 
rats (Stanko et al. 2010). Merhi et al. exposed mice to a 
mixture of six pesticides at levels derived from the human 
acceptable daily intake levels. Changes in blood cell counts 
were observed (Merhi et al. 2010). Demur et al. (2013) 
found dietary exposure to a low atrazine, endosulfan and 
chlorpyrifos mixture dose (25, 30 and 50 μg/kg food cor-
responding to approximately 4, 5, and 8 μg/bw/day) to 
decrease the red blood cell count and haemoglobin levels.

To further address exposure to human relevant mixtures 
of chemicals, we designed an experiment to test whether 
chemicals in food approaching high-end human exposure 
cause adverse mixture effects. We hypothesised that effects 
could occur via toxicokinetic metabolism effects compa-
rable to those described for food–drug interactions, e.g., 
as has been described for grapefruit juice and Ca2+ chan-
nel blockers (Bailey et al. 1989). For our investigation, we 
used steroid hormone metabolism as an effect measure. 
Steroid hormones are involved in multiple important male 
developmental processes and thus alterations in its plasma 
concentration may potentially be accompanied by adverse 
effects. We designed an experiment in which a single chemi-
cal known to affect the steroid hormone testosterone on 
its own was tested at increasing doses in the presence or 
absence of a fixed dose of a ‘background’ chemical mixture 
(Mix). On basis of its human toxicological importance and 
on basis of its ability to increase testosterone at a dose of 
1 mg/kg bw/day to rats (Feng et al. 2009), we selected the 
fluorosurfactant perfluorononanoic acid (PFNA) as the vari-
ably dosed chemical in this investigation. We exposed the 
rats to a fixed background dose of 14 chemicals—12 envi-
ronmental chemicals representing typical endocrine disrupt-
ing chemicals and two food ingredients. For the design of 
this Mix, we took advantage of the fact that testosterone is 
metabolized in the liver by cytochrome P450 3A4 (CYP3A4 
homologous to CYP3A23/3A1 in rat) and CYP2C9 (homol-
ogous to CYP2C11 in rat) (Cheng and Schenkman 1983; 
Guengerich 1999; Kenworthy et al. 1999; Martignoni et al. 
2006). CYP3A4 and CYP2C9 are inhibited by the grapefruit 
constituent bergamottin and the liquorice constituent glabri-
din (Bailey et al. 2003; Foti and Wahlstrom 2008; Kent et al. 
2002; Lim et al. 2005; Tassaneeyakul et al. 2000; Uesawa 
and Mohri 2006; Wen et al. 2002). These substances were 
included in the Mix along with twelve food contaminants 
(described in Table 2), each reported to exert endocrine dis-
rupting effects (Christiansen et al. 2012). The doses of these 

twelve contaminants were selected to reflect a high-end 
exposure level to the European human population. Thus, 
to test whether chemicals in food at human relevant doses 
caused adverse mixture effects, we administered PFNA at 
doses 0.0125 (Low PFNA), 0.25 (Mid PFNA) and 5 (High 
PFNA) mg/kg bw/day in the presence or absence of Mix at 
a total dose of 2.5 mg/kg bw/day (Table 2) to male rats for 
14 days. Steroid hormone plasma concentrations, pituitary 
hormone levels as well as classical toxicological parameters 
and mechanistic markers in testis, liver, adipose tissue and 
kidney were investigated.

Methods

Dose selection and chemicals

We aimed at selecting a PFNA dose to cover human internal 
exposure of the combined exposure to perfluorinated com-
pounds such as PFOA, PFOS and PFNA. Lau et al. (2007) 
gathered human exposure data from a large number of stud-
ies. The PFOS mean plasma concentrations in single studies 
were 10–73 ng/mL (see Table 1 for an overview of the data 
in table format), for PFOA the values were 2.1–354 ng/mL  
(second highest value was 41 ng/mL), and for PFNA  
0.8–2.2 ng/mL. This gives a possibility of a combined 
human exposure to these three perfluorinated compounds of 
13–429 ng/mL (or 13–117 ng/mL if only the second highest 
PFOA value is used) (Lau et al. 2007). For comparison, the 
high-end exposure (95th percentile) in the American popu-
lation as determined by the National Health and Nutrition 
Examination Survey (NHANES) is 67.6 ng/mL for PFNA, 
PFOA and PFOS combined (CDC 2009). The PFNA dose 
employed in the present investigation was chosen on basis 
of a study by Tatum Gibbs et al. (Tatum-Gibbs et al. 2011) 
in which an oral dose of 1 mg/kg bw to rats gave a serum 
concentration of approximately 10,000 ng/mL. From that 
we chose a dose of 0.0125 mg/kg bw/day for a 14-day inves-
tigation (Abbreviated: Low PFNA), predicted giving rise to 
a PFNA plasma concentration of 125 ng/mL. For a medium- 
and high-dose level, we included 0.25 (Mid PFNA) and 5 
(High PFNA) mg/kg bw/day.

We aimed to administer bergamottin in an amount cor-
responding to the content of one grapefruit. A grapefruit 
contains 25 μM bergamottin (Bailey et al. 2003) corre-
sponding to 1,700 μg bergamottin per grapefruit. Adjust-
ing according to body surface area as described (Reagan-
Shaw et al. 2008), a rat dose corresponding to a human 
intake of 100 mL grapefruit juice was calculated to be 0.2  
mg/kg bw/day. For glabridin, an amount corresponding to 
an intake of 100-g liquorice candy per day was determined 
in the following way. The extraction of glycyrrhizic acid 
and glabridin from Chinese (raw) liquorice gives 2.39 mg/g 
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glycyrrhizic acid and 0.92 mg/g glabridin (Tian et al. 
2008). This taken together with a reported 150 mg glycyr-
rhizic acid in 100 g of sweet liquorice (candy) (Sigurjons-
dottir et al. 2001), suggests an amount of 58 mg glabridin 
in 100 g of sweet liquorice, suggesting that a 70-kg per-
son takes in 0.8 mg/kg bw/day of glabridin when ingest-
ing 100 g of sweet liquorice. This suggests—by a body 
surface area conversion (Reagan-Shaw et al. 2008)—that 
we should give a dose of 4 mg/kg bw/day to rats. How-
ever, Furhman et al. previously reported that a glabridin 
dose to rats corresponding to the selected human intake 
was 0.3 mg/kg bw/day (Fuhrman et al. 1997) and to take 
a conservative approach we settled for this dose. Regard-
ing the remaining chemicals in the mixture, a previously 
designed mixture based on exposure levels of the European 
human population was used (Christiansen et al. 2012; Had-
rup et al. 2013). The dose reported to be a realistic ‘high-
end human exposure level’ (Christiansen et al. 2012) was  
0.32 mg/kg bw/day. By conversion to rat dose via body sur-
face area, this yields 2 mg/kg bw/day. The chemicals and 
their ratio in Mix are described in Table 2. Chemicals were 
purchased as follows: Bergamottin, glabridin, bisphenol A, 
butyl paraben and 4-methylbenzylidene camphor (4-MBC) 
were purchased from Sigma-Aldrich, Brøndby, Denmark. 
Dibutylphthalate (DBP), bis(2-ethylhexyl)phthalate (DEHP), 
4-MBC, 2-ethylhexyl-4-methoxycinnamate (OMC), dichlo-
rodiphenyldichloroethylene (DDE), epoxiconazole, linuron, 
prochloraz, procymidone and vinclozolin were purchased 
from VWR, Bie & Berntsen, Herlev, Denmark.

Animals and pathology

Male Wistar Hannover Galas rats, 6 weeks of age with 
specific pathogen-free health status, were obtained from 
Taconic M&B (Lille Skensved, Denmark) and allowed to 

acclimatise for 1 week. The animals were housed two per 
cage (Macrolon, Buguggiate, Italy) with light on from 7 
a.m. to 7 p.m. Room temperature and relative humidity were 
22 ± 1 °C and 55 ± 5 %, respectively. Rats were given ad 
libitum access to citric acid acidified tap water and standard 
diet (prod. no. 1324 Altromin, Brogården, Gentofte, Den-
mark). The animals were administered test substances once 
a day orally by gavage for 14 days with corn oil (VWR—
Bie & Berntsen, Herlev, Denmark) as vehicle. The dosing 
volume was 1 mL/100 g of body weight (bw). In total, 70 
male rats were randomly placed into eight groups, i.e., vehi-
cle control (n = 10), PFNA 0.0125 mg/kg/day (Low PFNA) 
(n = 10), PFNA 0.25 mg/kg/day (Mid PFNA) (n = 8), 
PFNA 5 mg/kg/day (High PFNA) (n = 8), Mix + PFNA 
0.0125 mg/kg/day (Low PFNA + Mix) (n = 10), 
Mix + PFNA 0.25 mg/kg/day (Mid PFNA + Mix) (n = 8), 
Mix + PFNA 5 mg/kg/day (High PFNA + Mix) (n = 8), 
Mix (n = 8). Animals were evaluated clinically and sub-
jected to necropsy in four different sets each starting 1 day 
after the prior. Each set comprised animals of each dosing 
group. For the euthanisation, the animals were anaesthe-
tised in CO2/O2 and decapitated. Neck blood was collected 
in heparinised tubes, and plasma was isolated by centrifu-
gation at 1,000×g, 4 °C for 10 min. Plasma was stored at 
−80 °C. To avoid bias, e.g., due to stress in animals, the 
sectioning of animals were randomised according to groups. 
Animals were given the last dose in the time span of 1 h and 
15 min to 1 h and 45 min before euthanisation. Body weight 
and organ weights (liver, kidney, testes) were recorded, and 
livers were fixed and processed for histopathological exami-
nation as previously described (Hadrup et al. 2012). Liver 
haematoxylin and eosin stained sections were evaluated by 
a pathologist blinded to treatment groups. Changes were 
described qualitatively, and in addition, selected parameters 
were scored in the following manner: Cell borders (score 

Table 1  Comparison of reported human perfluorinated compound levels with measured levels in rats

NHANES National Health and Nutrition Examination Survey, PFC perfluorinated compound

Reported human exposure levels to PFCs (ng/mL)

NHANES (geometric means)  
(CDC 2009)

NHANES 95th percentile  
(CDC 2009)

Mean value ranges from literature 
reviewed in Lau et al. (2007)

PFNA in serum 1.0 3.2 0.8–2.2 (n = 6)

PFOA in serum 4.0 9.8 2.1–354 (n = 9)

PFOS in serum 20.7 54.6 10–73.2 (n = 11)

Total PFC in serum 25.7 67.6 32.8–429

Measured rat exposure levels (ng/mL) Comparison human versus rat

Measured PFNA plasma conc. in rats at low dose 396 0.9- to 15-fold human exposure to total PFC
Sixfold human 95th percentile NHANES exposure

Measured PFNA plasma conc. in rats at mid dose 29,950 70- to 1,200-fold human exposure to total PFC
440-fold human 95th percentile NHANES exposure
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0 = not visible, score 1 = not clear, score 2 = clear) and 
cell size (score 1 = small/normal, score 2 = slight increase, 
score 3 = marked increase).

PFNA plasma concentration measurement

For each PFNA dose, plasma concentrations were meas-
ured. To 20 µl plasma, 60 µl ice-cold acetonitrile was added. 
The sample was incubated at −20 °C for 20 min and centri-
fuged at 10,000×g for 7 min. The supernatant was used for 
analysis. A matrix-assisted standard curve was established 
using PFNA and a standard plasma sample (Precinom U, 
Roche Diagnostics, Hvidovre, Denmark). Samples from 
the 0.0125 mg/kg bw/day administration group were not 
diluted, 0.25 mg/kg bw/day samples were diluted tenfold, 
and the 5 mg/kg bw/day samples were diluted 100-fold. 
The analysis was conducted using a high-resolution maxis 
qTOF instrument (Bruker Daltonics, Bremen, Germany) 
coupled to an Agilent 1200 (Agilent Technologies, USA) 
with a Supelco C8 (100 × 2.0 mm, 1.7 µm) run in nega-
tive mode ionisation with a mass scan from 50 to 800 m/z. 
The gradient was 0 % B, 0 min—5 % B, 2 min—100 % 
B, 10 min—100 % B, 12 min—0 % B, 12.1 min—0 % B, 
14 min. To test the repeatability of the method, the Low 
PFNA groups were analysed on two separate days. These 
measurements gave similar results. In order to investigate 
the metabolism of PFNA, a targeted approach was used 
to identify possible metabolites. The metabolites searched 
for were PFNA + glucuronic acid (+176 m/z value) and 
PFNA + glycine (+75 m/z value). The targeted approach 
was conducted using the Bruker Daltonics software: Target 
Analysis (Bruker Daltonics, Bremen, Germany).

Hormone measurements

Plasma samples were added internal standards (testosterone-
d2 and methyltestosterone-d3), deproteinised with addition 
of acetonitrile and ultracentrifugation, and steroid hormones 
were extracted using a C18 end-capped solid-phase extrac-
tion cartridge (500 mg, 3 ml) (Merck, Darmstadt, Germany). 
Impurities were removed from the cartridge with deminer-
alised water followed by elution of steroid hormones from 
the cartridge with methanol. The extract was evaporated to 
dryness with nitrogen and re-suspended in 40 % acetoni-
trile. Steroid hormones were separated, detected and quan-
tified using the LC–MS/MS method previously described 
(Mortensen and Pedersen 2007). However, to accommodate 
more hormones, minor modifications were made. An Ascen-
tis Express C8 column (2.1 × 100 mm, 2.7 µm) (Supelco) 
was added to the LC system (Agilent 1100). Steroids were 
measured with an injection volume of 10 μL in ESI+ mode 
with acetonitrile and water/0.2 % formic acid as the mobile 
phases (flow rate 0.25 mL/min, gradient method). The MS 
was a Quattro Ultima Triple Quadropole Instrument (Waters 
Corp., Milford, MA, USA). For quantification, external 
calibration standards were run before and after the samples 
at levels of 0.1, 0.5, 1.0, 2.0, 5.0 and 10 ng/mL (with 4.0  
ng/mL of internal standards). The absolute recoveries of the 
hormones in plasma samples were estimated to be 42–94 %, 
based on the absolute recoveries of the internal standards in 
>30 experiments. The limit of quantification (LOQ) of each 
of the hormones in the plasma samples was estimated as the 
concentrations corresponding to six times signal-to-noise 
and was <100 pg/mL for testosterone (α- and β-isomer), 
progesterone, corticosterone and hydroxycortisol, <200  

Table 2  Fourteen chemicals in fixed ratio mixture

CAS registry number Chemical name Source/use Ratio in mixture (weight) Rat dose (mg/kg bw/day)

7380-40-7 Bergamottin Grapefruit constituent 0.08 0.2

59870-68-7 Glabridin Liquorice constituent 0.12 0.3

80-05-7 Bisphenol A Plastic additive 0.004 0.01

94-26-8 Butyl paraben Preservative 0.21 0.52

84-74-2 Dibutylphthalate (DBP) Plasticiser 0.02 0.06

117-81-7 Bis(2-ethylhexyl)phthalate (DEHP) Plasticiser 0.03 0.09

36861-47-9 4-Methylbenzylidene camphor (4-MBC) Sun filter 0.15 0.38

5466-77-3 2-Ethylhexyl-4-methoxycinnamate (OMC) Sun filter 0.27 0.68

72-55-9 Dichlorodiphenyldichloroethylene  
(p,p′-DDE)

Pesticide 0.002 0.006

133855-98-8 Epoxiconazole Pesticide 0.02 0.05

330-55-2 Linuron Pesticide 0.002 0.004

67747-09-5 Prochloraz Pesticide 0.025 0.06

32809-16-8 Procymidone Pesticide 0.035 0.09

50471-44-8 Vinclozolin Pesticide 0.021 0.05

In total 14 Chemicals 1.0 2.5
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pg/mL for androstenedione and hydroxyprogesterone, and 
<2,000 for dihydrotestosterone and hydroxytestosterone. 
Pituitary hormone plasma concentration measurements 
were done by use of the Milliplex Map Rat Pituitary Kit 

(Prod no. RPT86K, Millipore Corporation, St. Charles, 
MO, USA). This was done according to the protocol of the 
manufacturer by use of a Luminex 100 apparatus (Bio-Rad, 
Hercules, CA, USA).

Table 3  Primer/probe sets for mRNA measurements

Gene Prod no./sequence Tissues tested

Aldo–keto reductase family 1 member C1 (AKR1C1) Prod. No. Rn01487552_m1, Life Technologies Europe BV, 
Nærum, Denmark

Liver

Benzodiazepine receptor (BZRP) Forward, 5′-TGG TTC CCT TGG GTC TCT ACA CT-3′ Testes

Reverse, 5′-CAC CCC ACT GAC AAG CAT GA-3′

Probe: 5′-FAM-AAA GCC CAG CCC ATC T-MGB-3′
Cytochrome P450 (CYP) 1A1 Prod. No. Rn00487218_m1, Life Technologies Europe BV, 

Nærum, Denmark
Liver

CYP1A2 Prod. No. Rn00561082_m1, Life Technologies Europe BV, 
Nærum, Denmark

Liver

CYP2B6 Prod. No. Rn00597739_m1, Life Technologies Europe BV, 
Nærum, Denmark

Liver

CYP2C11 Prod. No. Rn01502203_m1, Life Technologies Europe BV, 
Nærum, Denmark

Liver

CYP3A23/3A1 Prod. No. Rn03062228_m1, Life Technologies Europe BV, 
Nærum, Denmark

Testes

CYP11A Forward 5′-ACG ACC TCC ATG ACT CTG CAA T-3′ Testes/adipose tissue

Reverse: 5′-CTT CAG CCC GCA GCA TCT-3′

Probe: 5′- FAM-CCT TTA TGA AAT GGC ACA CAA CTT 
GAA GGT CA-TAMRA-3′

CYP17 Forward: 5′-GCC ACG GGC GAC AGA A-3′ Testes/adipose tissue

Reverse: 5′-CCA AGC CTT TGT TGG GAA-3′

Probe: 5′-FAM-CGT CAA CCA TGG GAA TAT GTC CAC 
CAG A-TMARA-3′

CYP19 Forward: 5′-AGAACGGTCCGCCCTTTCT-3′ Testes/adipose tissue

Reverse: 5′-TGGATTCCACACAGACTTCTACCA-3′

Probe: 5′-FAM-AGCTCTGACGGGCCCTGGTCTTATTC-
TAMRA-3′

3β-hydroxysteroid dehydrogenase (3β HSD) Prod. No. Rn01789220_m1, Life Technologies Europe BV, 
Nærum, Denmark

Liver

11β HSD Prod. No. Rn00567167_m1, Life Technologies Europe BV, 
Nærum, Denmark

Liver

17β HSD Prod. No. Rn00588942_m1, Life Technologies Europe BV, 
Nærum, Denmark

Testes/adipose tissue

5α reductase Prod. No. Rn00575595_m1, Life Technologies Europe BV, 
Nærum, Denmark

Testes/adipose tissue

18 s-ribosomal RNA Forward:, 5′-GCC GCT AGA GGT GAA ATT CTT G-3′ Liver/testes/adipose tissue

Reverse: 5′-GAA AAC ATT CTT GGC AAA TGC TT-3′

Probe: 5′-FAM-ACC GGC GCA AGA CGA ACC AGA 
G-TAMRA-3′

Steroidogenic acute regulatory protein (StAR) Forward, 5′-CCC TTG TTT GAA AAG GTC AAG TG-3′ Testes

Reverse, 5′-TGA AAC GGG AAT GCT GTA GCT-3′

5′-FAM-CTG ACT CCT CTA ACT CCT GTC TGC CTA CAT 
GGT-TAMRA-3′

UDP-glucuronosyltransferase 2B15 (UGT2B15) Prod. No. Rn00755925_m1, Life Technologies Europe BV, 
Nærum, Denmark

Liver

UGT2B17 Prod. No. Rn01790037_g1, Life Technologies Europe BV, 
Nærum, Denmark

Liver
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mRNA measurements

Organs were stored in RNAlater at −20 °C until purifi-
cation by use of the RNAeasy Mini Kit (Qiagen, Hilden, 
Germany) and cDNA synthesis by use of the Omniscript 
RT kit (Life Technologies Europe BV, Nærum, Denmark). 
mRNA levels were next measured by quantitative (q)PCR 
using specific primer pairs in combination with TaqMan 
probes (sequences and investigated organs are specified in 
Table 3). Samples, primers and probes were added TaqMan 
Fast Universal PCR Master Mix (Life Technologies Europe 
BV, Nærum, Denmark) and run on a TaqMan 7900 HT 
qPCR machine (Applied Biosystems, Nærum, Denmark). 
Quantification was done by use of the comparative thresh-
old cycle (Ct) method, where the Ct value is the cycle num-
ber at which the fluorescence signal of the amplified target 
reaches a defined threshold (Schmittgen and Livak 2008). 
Ct data on the transcripts of interest were normalised by 
subtraction of the Ct value of 18 s ribosomal RNA to obtain 
the ΔCt value. To obtain normal distributed data, 2−ΔCt 
values were used for statistical analysis.

Kidney transporter protein-level measurements

Frozen whole kidneys were thawed on ice and homog-
enised with a Yellowline DI25 Basic Homogeniser 
(Bie & Berntsen, Glostrup, Denmark) in an ice-cold 
buffer containing 300 mM sucrose, 25 mM imidazole, 
1 mM EDTA, and 1:200 Calbiochem Protease inhibitor 
cocktail set II, EDTA-Free (prod. no. 539134, Calbio-
chem, Darmstadt, Germany). Protein determination and  
Western blotting were conducted as previously described 
(Hadrup et al. 2007) except that the employed primary 
antibodies were anti-organic anion transporter 1 (OAT1) 
(prod. no. ABIN653184, Antibodies-online, Aachen,  
Germany), anti-organic anion-transporting polypeptide 
1/3 (OATP1/3) (prod. no. Sc-47265, Santa Cruz Biotech-
nologies, La Jolla, CA) and anti-organic anion-transport-
ing polypeptide 4C1 (OATP4C1) (prod. no. Sc-136775, 
Santa Cruz Biotechnologies, La Jolla, CA). All antibod-
ies were used at a dilution of 1: 2,000. Moreover, the 
employed camera was a Gel Doc 2000 (Bio-Rad, Her-
cules, CA). To accommodate up to 36 samples, a total 
of three blots were run for each investigated PFNA dose 
level (0.0125 mg/kg bw/day (PFNA Low) and 0.25 mg/kg  
bw/day (PFNA Mid) and on each blot a standard sample 
with a pooled volume of eight randomly selected samples 
was included, and all samples on each blot were normal-
ised to this sample before data analysis.

Statistics

Regarding data on mechanisms of toxicity (hormone con-
centrations, mRNA data, protein-level data), only the 
Low and Mid PFNA doses were included in the statistical 
evaluation (and on the graphs). The High PFNA groups 
were excluded due to the severe toxicity observed on body 
weight and pathology. Data were analysed for normal dis-
tribution by use of the D’Agostino & Pearson omnibus 
normality test. In case of a lack of normal distribution, 
data were transformed using the logarithm function and 
again tested for normal distribution. For normally distrib-
uted data, one-way ANOVA with Dunnett’s post-test was 
employed to assess effects of PFNA and of PFNA + Mix, 
respectively. In case of lack of normality, the nonparamet-
ric Kruskal–Wallis test with Dunn’s post-test (exposed 
groups vs. controls) was employed. To assess differences 
between individual data points, a t test was employed. In 
case of lack of normality, differences between two groups 
were assessed by use of the Mann–Whitney test. In case 
of comparison with a group in which all data were below 
the limit of detection, one sample t test was employed. A 
p value of <0.05 was considered significant. The statistical 
software package was Graph Pad Prism (Graph Pad Soft-
ware, La Jolla, USA).

Fig. 1  Plasma concentration of PFNA in the rats. Rats were admin-
istered PFNA at 0.0125, 0.25 or 5 mg/kg bw/day for 14 days in the 
presence or absence of a mixture of 14 chemicals (Mix) at a total 
dose of 2.5 mg/kg bw/day. The PFNA plasma concentration was 
measured in blood from all rats at the end of the experiment using 
qTOF. PFNA was found in all PFNA treatment groups. At 0.0125 mg/
kg bw/day (Low) PFNA, the plasma level was 396 ng/mL for Low 
PFNA and 1,111 ng/mL for Low PFNA + Mix. At 0.25 mg/kg bw/
day, the values were 29,950 and 39,880 ng/mL for Mid PFNA and 
Mid PFNA + Mix, respectively. For 5 mg/kg bw/day, the values were 
602,000 and 541,700 ng/mL for High PFNA and High PFNA + Mix, 
respectively. Data are mean plus SEM. N was 8 except for control 
and Low PFNA + Mix where n was 10. A t test was applied with 
§§§p < 0.001 for Low PFNA versus Low PFNA + Mix
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Results

PFNA plasma concentration

PFNA plasma concentrations following administration 
of 0.0125 mg/kg bw/day were 396 ng/mL for Low PFNA 
and 1,111 ng/mL for Low PFNA + Mix—a difference that 

was statistically significant (p = 0.0007). Following dos-
age with 0.25 mg/kg bw/day, the plasma concentrations 
were 29,950 ng/mL (Mid PFNA) and 39,880 ng/mL for 
Mid PFNA + Mix. Following dosage with 5 mg/kg bw/
day, the values were 602,000 ng/mL (High PFNA) and 
541,700 ng/mL for High PFNA + Mix (Fig. 1). Thus, at 
the low PFNA dose, the Mix caused a pronounced increase 

Fig. 2  At high-dose, PFNA induces toxicity as measured by body 
weight and pathology. Rats were administered PFNA at 0.0125, 
0.25 or 5 mg/kg bw/day for 14 days in the presence or absence of 
a mixture of 14 chemicals (Mix) at a total dose of 2.5 mg/kg bw/
day. A piece of liver was fixed in paraformaldehyde and processed 
into paraffin-embedded sections and stained with haematoxylin and 
eosin. Sections were then blinded to the observer and scored by use 
of microscopy. Upper image shows a section from a control rat, 
lower image shows a section from a rat administered 5 mg/kg bw/day 

PFNA. The upper graph shows that the end body weight is increased 
at High PFNA ± Mix. The lower graphs show scores of cells size 
and cell borders. Cell size is increased by High PFNA ± Mix, and 
cell borders are decreased by High PFNA ± Mix. Data are mean 
plus or minus SEM. N was 10 except for Mid PFNA, Mix and Mid 
PFNA + Mix where n was 8. Data are analysed by one-way ANOVA 
or Kruskal–Wallis test. ***p < 0.001 by Dunnett’s ANOVA post-test 
for PFNA versus control; and #p < 0.05 by Dunn’s Kruskal–Wallis 
post-test for PFNA + Mix versus control
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in PFNA plasma levels, but this did not happen at higher 
PFNA doses.

Body weight, organ weights and pathology

General toxicity was observed with High PFNA with and 
without Mix. The end body weights were decreased in 
High PFNA and High PFNA + Mix groups (Fig. 2). Mac-
roscopic pathological examination showed steatotic liv-
ers and congestive hearts (pictures not shown) that were 
observed for High PFNA and High PFNA + Mix. Micro-
scopically, increased size of liver cells (hypertrophy) was 
observed with increasing doses of PFNA, reaching statisti-
cal significance in the High PFNA + Mix group (Fig. 2). 
Cell borders were less apparent in liver sections of rats 
receiving increasing doses of PFNA being statistically sig-
nificant in the High PFNA group.

Hormone plasma concentrations

The corticosterone plasma concentration was increased at 
the Low PFNA dose level without Mix (twofold). In the 
presence of the Mix, corticosterone was not increased at 
the Low and Mid PFNA groups (Fig. 3). For androsten-
edione, testosterone and dihydrotestosterone increases 
were found in the Low PFNA + Mix group as compared 
to Low Mix (Fig. 3). For androstenedione and testoster-
one, a decrease was found both in the High PFNA and the 
High PFNA + Mix groups (data not shown). This effect 
was not detected for dihydrotestosterone for which many 
measurements were below the level of quantification (data 
not shown). Regarding pituitary hormones (Fig. 4), Mid 
PFNA + Mix decreased the plasma concentration of lutein-
ising hormone (LH). The concentration of follicle stimulat-
ing hormone (FSH) was decreased by Low PFNA + Mix 
and adrenocorticotropic hormone (ACTH) was decreased in 
the Mid PFNA + Mix as compared to Mid PFNA. For pro-
lactin and brain-derived neurotrophic factor, PFNA showed 
higher concentrations as compared to PFNA + Mix at the 
Mid dose.

mRNA levels in testis, liver and fatty tissue

In the testes, 17β HSD was down-regulated at both Low 
and Mid PFNA + Mix as compared to control. This 
effect was not observed with PFNA alone (Fig. 5). For all 
other genes measured in testes, there were no significant 
effects at the mRNA levels of genes involved in regula-
tion of steroid metabolism when considering Low PFNA 
and Mid PFNA with or without Mix (data not shown). At 
the High PFNA, where severe toxicity was found, mRNA 
levels of steroidogenic acute regulatory protein (StAR), 
benzodiazepine receptor (BZRP), CYP11A, CYP17 and 

17β-hydroxysteroid dehydrogenase (17β HSD) were all 
found to be down-regulated by PFNA (data not shown).

In the liver, 11β HSD was down-regulated with 
PFNA + Mix at both Low and Mid doses. This effect was 
not observed for PFNA alone (Fig. 5). For all other genes, 
no effects were found at the Low and Mid PFNA groups. 
At the High PFNA groups, where severe toxicity occurred, 
the aldo–keto reductase family 1 member C1 (AKR1C1), 
UDP-glucuronosyltransferase 2B15 (UGT2B15), 
CYP2C11, CYP1A2 and CYP2B6 were all found to be 
down-regulated, whereas CYP3A23/3A1 was found to be 
up-regulated (data for the high-dose groups are not shown 
on the graphs).

In adipose tissue, CYP19 mRNA was up-regulated for 
Low PFNA + Mix as compared to Low PFNA (Fig. 5). At 
the toxic High PFNA, CYP11 was up-regulated (data not 
shown). There were no effects on the other steroid metabo-
lism enzymes: CYP17, 17β HSD and 5α reductase (data 
not shown).

Kidney transporter protein levels

OAT1 was increased in whole kidney homogenates when 
Low PFNA was combined with Mix (Fig. 6). OATP4C1 
was decreased by Low PFNA alone. This effect was nor-
malised by addition of Mix (Fig. 6). At the Mid dose 
level, no significant effects were found. OATP1/3 was not 
affected at any of the investigated dose levels (data not 
shown).

Discussion

Relevance of the employed PFNA doses in relation 
to human exposure levels

The hypothesis of the current study was that adverse mix-
ture effects occur at doses approaching high-end human 
exposure levels of food chemicals. Our aim was to reach 
a plasma level of PFNA covering the combined human 

Fig. 3  PFNA at a dose of 0.0125 mg/kg bw/day plus Mix induces 
an effect on androgens. Rats were administered PFNA at 0.0125or 
0.25 mg/kg bw/day for 14 days in the presence or absence of a mix-
ture of 14 chemicals (Mix) at a total dose of 2.5 mg/kg bw/day. Ster-
oid hormones were measured in plasma by use of LC–MS/MS. Low 
PFNA + Mix increased testosterone and dihydrotestosterone. A nor-
malising effect was seen on corticosterone with Low PFNA + Mix. 
Data are mean plus or minus SEM. N was 10 except for Mid PFNA, 
Mix and Mid PFNA + Mix where n was 8. Data were analysed by 
one-way ANOVA or Kruskal–Wallis test. **p < 0.01 by Dunnett’s 
ANOVA post-test for PFNA versus control. §p < 0.05 and §§p < 0.01 
by t test for PFNA versus PFNA + Mix. For dihydrotestosterone, a 
one sample t test was applied versus the detection limit of this hor-
mone. §§p < 0.01
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plasma concentrations of perfluorinated compounds such as 
PFOA, PFOS and PFNA. According to Lau et al. (2007), 
human exposure means obtained from a substantial num-
ber of investigations gave a combined value of these three 
perfluorinated compounds of 13–429 ng/mL (or 13–117  
ng/mL if the second highest PFOA value is used). For com-
parison, the 95th percentile obtained from the NHANES 
study was 67.6 ng/mL for PFOA, PFNA and PFOS com-
bined (CDC 2009) which is in line with the Lau et al. data. 
A PFNA plasma concentration of 396 ng/mL was found 
in the Low PFNA group, indicating that PFNA in this 
study may be up to a factor of six higher than a high-end 
human exposure level (Table 1). However, this depends on 
the choice of a ‘high-end’ exposure for which a fixed, true 
value do not exist. In a study, not reported in the review by 
Lau et al., Emmett et al. found a mean of 423 ng/mL PFOA 
for persons not subjected to occupational exposure (median 
329, n = 312) and a mean of 824 ng/mL in persons with 
substantial occupational exposure (median 775, n = 18) 
(Emmett et al. 2006). Taking this into account, the present 
PFNA exposure in the rats was close to a combined human 
PFNA, PFOA and PFOS exposure. We made the assump-
tion that the applied PFNA exposure should represent 

exposure to other perfluorinated congeners, although it can 
be argued that the difference in structures of these mol-
ecules affects potency and binding specificity to different 
target molecules in the mammalian body. It is noted that a 
range of congeners different from PFNA, PFOA and PFOS 
exist, and these likely also contribute to the combined 
effects of perfluorinated compounds in humans.

Observed mixture effects and discussion on the presence 
of interactions

The aim of the present investigation was to test whether a 
relevant mixture of food chemicals at doses approaching 
high-end human exposure levels exerted adverse effects. 
The study was designed to target testosterone, and we found 
this steroid as well as its downstream metabolite, dihy-
drotestosterone and its precursor, androstenedione, to be 
affected by the mixture. There were no significant effects 
of Low PFNA or of Mix alone, whereas androgen levels 
increased considerably after exposure to Low PFNA in 
combination with Mix; thus for testosterone, dihydrotestos-
terone, and androstenedione a non-monotonic effect seemed 
to have occurred. Previously, additive mixture effects have 

Fig. 4  Effects of dose PFNA and Mix on pituitary hormone lev-
els. Rats were administered PFNA at 0.0125 or 0.25 mg/kg bw/day 
for 14 days in the presence or absence of a mixture of 14 chemi-
cals (Mix) at a total dose of 2.5 mg/kg bw/day. Hormones were 
measured by use of a Milliplex Map Rat Pituitary Luminex Kit. 
LH was decreased by Mid PFNA + Mix. FSH was decreased by 
Low PFNA + Mix. For ACTH, prolactin and brain-derived neuro-

trophic factor Mid PFNA + Mix was lower than Mid PFNA alone. 
Data are mean plus or minus SEM. N was 8 except for control 
(n = 10) and Low PFNA (n = 9). Data were analysed by one-way 
ANOVA. #p < 0.05 by Dunnett’s ANOVA post-test for PFNA + Mix 
versus control. §p < 0.05 and §§p < 0.01 by t test for PFNA versus 
PFNA + Mix
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been found for chemicals each present at doses for which 
measurement techniques are not sensitive enough to detect 
their individual effects (Hass et al. 2007; Silva et al. 2002). 
Feng et al. have previously demonstrated a non-mono-
tonic dose–response curve of PFNA on testosterone in rats 
with an increase at 1 mg/kg bw/day and a decrease at 5  
mg/kg bw/day. This supports the presence of such a non-
monotonic relationship although this was seen at higher-dose 
levels. Also Wade et al. (2002) found a non-monotonic dose–
response effect on natural killer cell lytic activity following 
exposure to a mixture containing 18 persistent contaminants at 
doses ranging from 1× to 100× the estimated safe level.

Looking at the PFNA plasma concentration, a toxicoki-
netic interaction was found in that the PFNA plasma con-
centration was increased at Low PFNA + Mix as compared 
to Low PFNA. PFNA could not be detected in animals only 
given Mix, indicating that no background PFNA levels, 
e.g., from the feed were present in the animals. Thus, the 
14-chemical mixture is able to increase the PFNA plasma 
levels at lower doses possibly by interference with ADME 
issues for PFNA. For corticosterone plasma levels, Low 
PFNA + Mix normalised an increase in corticosterone 
observed for Low PFNA. Also on the kidney OATP4C1 
transporter, the addition of Mix to Low PFNA normalised 
a Low PFNA-induced decrease in the protein level. These 
data suggest that in addition to reported food–drug inter-
actions (Bailey et al. 1989), food–environment chemical 
interactions may occur at the toxicokinetic level at doses 
approaching high-end human exposure levels. The effect of 
Mix on PFNA plasma levels is due to a toxicokinetic inter-
action between Mix and PFNA, but whether the effect on 
steroid hormone levels is due to kinetic or dynamic inter-
ferences is unknown. It is striking that we have detected 
potential non-monotonic low-dose effects. This gives food 
for thought concerning the extrapolation from high to low 
doses typically done in toxicological studies and concern-
ing future human risk assessment of chemicals.

In this study, possible effects of a chemical mixture were 
investigated in juvenile male rats 7 weeks of age at onset. 
Male Wistar rats are considered sexually mature when they 

Fig. 6  Effects of low-dose PFNA and Mix on protein levels of 
organic anion transporter 1 and organic anion-transporting poly-
peptide. Rats were administered PFNA at 0.0125 mg/kg bw/day for 
14 days in the presence or absence of a mixture of 14 chemicals 
(Mix) at a total dose of 2.5 mg/kg bw/day. Protein levels of OAT1 
(organic anion transporter 1) and OATP4C1 (organic anion-trans-
porting polypeptide-4C1) were measured by Western blotting. All 
samples were measured in a total number of three blots per protein. 
Only one blot is shown on the figure. A standard sample on each blot 
was used for normalisation to obtain a graph representing all samples 
(n = 9 for control, n = 8 for Mix, n = 10 for Low PFNA (0.0125  
mg/kg bw/day) and n = 10 for Low PFNA + Mix). OAT1 was 
increased at Low PFNA + Mix as compared to Low PFNA. OATP4C1 
was decreased at Low PFNA as compared to control, and this effect was 
normalised at Low PFNA + Mix. Data are mean plus or minus SEM. 
Data were not normal distributed and were therefore tested by use of the 
nonparametric Mann–Whitney test. ***p < 0.001 for PFNA versus con-
trol. §p < 0.05 and §§p < 0.01 for PFNA versus PFNA + Mix
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are around 50 days old; thus, we have investigated effects 
in rats just post-puberty. In our view, marked hormone 
changes may be considered as adverse. Increased testos-
terone in males has for example been linked to increased 
aggression (McGinnis 2004); and androgenic anabolic ster-
oid abuse has been linked to cardiac disease (Ahlgrim and 
Guglin 2009).

Possible mechanisms involved in the mixture effects 
on androgens

The possible mechanisms underlying the observed mix-
ture effects could provide a deeper understanding of how 
such effects develop in the mammalian body. Regarding the 
mixture effects on androgens, mechanisms involved could 
be related to (a) increased production or release of steroid 
hormones either via hormonal factors or locally induced 
(b) decreased tissue deposition of hormones (c) decreased 
metabolism of androgens and/or (d) decreased excretion 
of hormones. The pituitary hormone LH is involved in the 
regulation of testosterone production in the testes, and LH 
was decreased by Mid PFNA + Mix, and this may reflect 
a secondary negative feedback on the pituitary caused by 
disturbed steroid hormone levels.

In the testes, there were no findings to explain the effects 
seen on androgens except that a disturbed 17β HSD mRNA 
regulation may be part of the explanation. In adipose tissue, 
CYP19 was increased at Low PFNA + Mix as compared to 
Low PFNA. This suggests increased conversion of testoster-
one to estradiol when Mix is present. Among the chemicals 
in Mix, only DDE has shown a link to CYP19. Daughters of 
Michigan fish-eaters had increased gene expression of CYP19 
in blood leucocytes that was correlated to prenatal DDE levels 
(Karmaus et al. 2011). The fact that CYP19 was increased in 
the current study indicates that a compensatory mechanism to 
eliminate the excess testosterone might be in play.

In the liver, CYP expression was investigated because 
CYP3A4 and CYP2C9 (CYP3A23/A1 and 2C11in rats) 
are involved in the hydroxylation of testosterone, and these 
enzymes are known to be inhibited by bergamottin and 
glabridin constituents of the Mix (Cheng and Schenkman 
1983; Guengerich 1999; Kenworthy et al. 1999; Martignoni 
et al. 2006; Tassaneeyakul et al. 2000; Yamazaki and Shi-
mada 1997). Moreover, in the ToxCast (high throughput 
in vitro screening project) several perfluorinated carbox-
ylic acids including PFNA as well as BPA and prochloraz 
(constituents of the Mix) have been found in vitro to inhibit 
CYP2C9 (US_Environmental_Protection_Agency 2014). 
However, no effects on the mRNA levels of CYP3A23/1 or 
CYP 2C11 for Low PFNA in combination with Mix were 
found. Also, on the steroid glucuronidation pathway, there 
were no findings to explain the effects seen on androgens.

Fig. 5  mRNA levels of 17β HSD in testes, 11β HSD in liver tis-
sue and CYP19 in adipose tissue. Rats were administered PFNA at 
0.0125 or 0.25 mg/kg bw/day for 14 days in the presence or absence 
of a mixture of 14 chemicals (Mix) at a total dose of 2.5 mg/kg bw/
day. mRNA levels were measured by use of qPCR. 11β and 17β 
HSD were decreased by Low and Mid PFNA + Mix. CYP19 was 
higher for Low PFNA + Mix as compared to Low PFNA. Data are 
mean plus or minus SEM. N was 10 except for Mid PFNA, Mix and 
Mid PFNA + Mix where n was 8. Data were analysed by one-way 
ANOVA. #p < 0.05, ##p < 0.01 and ###p < 0.001 by Dunnett’s ANOVA 
post-test for PFNA + Mix versus control. §p < 0.05 and §§p < 0.01 by 
t test for PFNA versus PFNA + Mix
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To study interaction via excretion, we investigated 
organic anion transporters in the kidney because these 
transporters have been suggested to play a role in PFNA 
and testosterone excretion. OAT1 as well as OATP4C1 
transport organic anions from the blood into the kidney 
tubular cells for subsequent secretion into the pre-urine 
(Han et al. 2012). With Low PFNA + Mix, an increase in 
protein level of OAT1 was found (Fig. 6) but neither Mix 
nor PFNA individually exerted this effect. It has been 
shown that testosterone stimulates OAT1 (Cerrutti et al. 
2002; Ljubojevic et al. 2004) thus the increased testoster-
one level seen at Low PFNA + Mix correlates well with 
an increase in this transporter. This up-regulation, however, 
might also reflect that OAT1 could transport PFNA and that 
this transporter is up-regulated as a compensatory mecha-
nism in order to excrete the increased amounts of PFNA. 
For OATP4C1, the Mix normalised the Low PFNA-induced 
decrease in the protein level, suggesting that the Mix pro-
tects the body by allowing an increased transport of PFNA 
(Fig. 6). As for OAT1, OATP4C1 is increased by testos-
terone (Lu et al. 1996), again suggesting the increased 
testosterone level to be causing the normalisation of the 
OATP4C1 expression. Taken together, the data on kid-
ney transport do not readily explain the mixture effect on 
androgens at Low PFNA + Mix and may rather reflect 
downstream effects of the increased androgen levels.

Possible mechanisms underlying the increased PFNA 
concentration caused by Mix

The increase in the PFNA plasma concentration fol-
lowing Low PFNA + Mix as compared to Low PFNA 
may be explained by (1) increased PFNA absorption, (2) 
decreased metabolism, (3) decreased tissue deposition, 
or (4) decreased excretion. We looked for metabolites of 
PFNA but did not find any significant metabolism, and 
this is in accordance with the literature (Lau et al. 2007). 
Regarding proposed reabsorption of perfluorinated com-
pounds, the OATP1 is located on the luminal side of the 
tubular cells (Han et al. 2012) and has been demonstrated 
to have the ability to transport perfluorocarboxylates (Yang 
et al. 2009b). OATP1 was not found being affected by Low 
PFNA alone or in combination with Mix; thus, testoster-
one-stimulated reabsorption of PFNA via this transporter 
seems not to be underlying the increased plasma concen-
tration of PFNA. However, it should be noted that we did 
not measure two other OATs involved in perfluorocar-
boxylate transport, namely OAT2 and OAT3 (Kudo et al. 
2002). Whether the PFNA plasma-level effect is a cause or 
a consequence of (or not related to) the androgen levels is 
unknown. However, when we depict the effect on andro-
gen levels as a function of the internal PFNA plasma levels 
(graph not shown), we still observe a pronounced increase 

in androgen levels, indicating that there is more to the 
androgen effect than just affected toxicokinetics by PFNA 
alone.

Possible mechanisms underlying the normalisation 
of corticosterone

The mechanism underlying the normalisation of the corti-
costerone level by the Mix is likely explained by the dimin-
ished plasma ACTH observed when Mix was administered 
along with PFNA. Thus, a central effect on the pituitary 
may be evident. The enzymes responsible for inter-con-
version of corticosterone to the physiologically inactive 
11-dehydrocorticosterone in rats are 11β HSD (Thomson 
et al. 1998). We found PFNA + Mix to down-regulate this 
enzyme at the mRNA level. A differential regulation of this 
enzyme may be an explanation of the observed differential 
effect on corticosterone caused by PFNA with or without 
Mix.

Mixture-independent effects of PFNA suggest 
non-monotonic dose–response relationships

At Low PFNA dose, an increased corticosteroid effect as 
well as a diminished effect of the OATP4C1 protein level 
in kidney was observed (Fig. 6), suggesting that this chemi-
cal exerts low-dose effects on its own. The PFNA effect 
on corticosterone plasma levels could involve regulation 
of 11β HSD. PFNA has shown a potential to activate liver 
X receptor α (LXRα) (US_Environmental_Protection_
Agency 2014), and LXR negatively regulates expression 
of 11β HSD (Vogeli et al. 2013). At High PFNA, macro-
scopical and microscopical pathology of the liver as well 
as decreased body and organ weights showed that this dose 
is highly toxic to the animals. From that point of view, it 
is not surprising that the mRNA levels of several enzymes 
are down-regulated as seen for testes and liver, along with 
the testosterone and androstenedione plasma concentration 
being down-regulated at the high dose. Several enzymes 
like StAR, BZRP and CYP11A in the testes were down-
regulated and provide a suggestion for the decrease in 
testosterone and androstenedione at high doses. Steatosis, 
obscure hepatic cell borders and a decrease in testosterone 
have been shown for perfluorinated compounds by others 
previously (Fang et al. 2010; Feng et al. 2009; Yang et al. 
2009a). Notably, when these toxic effects occur, CYP1A2, 
CYP2B6 and CYP2C11 were down-regulated by PFNA, 
whereas CYP3A23/3A1 corresponding to the human 
CYP3A4 was up-regulated suggesting that this CYP is up-
regulated to increase elimination of multiple toxic metabo-
lites and confirming the broad substrate specificity of this 
enzyme. Our findings highlight the challenge of extrapolat-
ing from high-dose to low-dose effects, as is the ordinary 

5.4 Paper III 65



 Arch Toxicol

1 3

practice within toxicology and suggest that lower doses 
should be employed as well in toxicological studies.

Conclusion

We found that a human relevant mixture of fifteen chemi-
cals given to rats at doses approaching human realistic 
high-end exposure levels disturbed several plasma steroid 
and pituitary hormone levels. Androgen levels were non-
monotonically increased by >100 %, and corticosterone 
levels were decreased by 60 %. Moreover, a toxicokinetic 
interaction may have occurred as the Mix caused a mark-
edly increased PFNA plasma concentration. Our data sug-
gests that mixture effects of chemicals may be non-mono-
tonic and may occur even at doses approaching high-end 
human exposure levels. Further studies are warranted to 
determine whether this reflects a general phenomenon that 
should be taken into consideration when predicting human 
mixture toxicities.
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5.5.1 Abstract

Study background: Humans are simultaneously exposed to multiple compounds,
many of which can be detected in human body fluids; however, the consequences
of low dose exposure to complex mixtures are poorly understood. By use of two
’omics’ methods, metabolomics and transcriptomics, we have profiled the effects
on rats caused by exposure to a 14-compound mixture (Mix) ± perfluorononanoic
acid (PFNA).
Methods: Adult male rats were dosed orally for 14 days with PFNA at 0.0125,
0.25 and 5 mg/kg/day ± Mix at 2.5 mg/kg/day. Vehicle control and Mix alone
were used as reference groups. The plasma metabolomes were investigated us-
ing an HPLC system combined with a maxis qTime-of-flight mass spectrometer.
Liver gene expression levels were analyzed using Agilent Whole Rat Genome Oligo
Microarrays.
Results: Sixty-three and 64 metabolites were significantly changed upon exposure
to Mix and PFNA + Mix, respectively. Twelve identified metabolites were changed
in both settings. The affected metabolites were mainly lipids; however, various
lipid classes were affected differentially among the study groups. In the livers, 182
and 203 genes mainly related to energy homeostasis and lipid metabolism were
differentially expressed upon exposure to PFNA ± Mix, respectively.
Conclusion: The applied technologies, metabolomics and transcriptomics, provided
complimentary information allowing for a detailed analysis of the affected signaling
pathways. Mix alone caused effects on lipid metabolism evident in plasma. The
hepatic effects on lipid metabolism were mainly driven by PFNA. This study verifies
that a chemical mixture given at high-end human exposure levels can affect lipid
homeostasis. (submitted).
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Introduction!

Humans, especially those living in industrialized countries, are exposed to multiple compounds every day through e.g. 

foods, cosmetics, pharmaceuticals, and air inhalation (Monosson 2005). Biomonitoring and epidemiological studies 

have, additionally, shown that the exposure to multiple compounds (human relevant mixtures) results in detectable 

levels of multiple compounds in human body fluids (Calafat et al 2007; NHANES 2013). Previously, animal studies 

have shown effects of human relevant mixtures of environmental compounds given at doses close to No Observed 

Adverse Effect levels (NOAELs) for the single compounds (Christiansen et al 2008; Christiansen et al 2012; Axelstad 

et al 2014). In epidemiological studies, associations between compound mixtures and e.g. reproductive diseases have 

been proposed (Krysiak-Baltyn et al 2012; Taylor et al 2014). 

The traditional toxicology approach aims at understanding the effect(s) of a single toxic compound on biological 

systems (e.g. activity at a specific receptor, activity at cell or organ level, or activity on a whole organism/animal 

model). The compound is typically investigated at varying doses in order to obtain information on e.g. the NOAEL. A 

few studies of rats exposed to chemicals or chemical mixtures at doses representing human exposure levels have been 

reported recently (Moser et al 2006; Chen et al 2014). These studies suggest that even low doses of compounds exert 

effects on e.g. the plasma metabolite composition. However, no studies have, to our knowledge, investigated the effects 

of chemical mixtures on the metabolome or the gene expression levels. “Omics” techniques have revealed new 

approaches to evaluate the effects of toxic compounds. Fluorinated compounds have been shown to change the lipid 

metabolism and affect both rats and zebra fish (Fang et al 2012a; Zhang et al 2012) and reproductive toxicants such as 

bisphenol A have also shown a change in the metabolome even at doses far below the NOAEL (Chen et al 2014). In 

general, changes in the transcriptome, proteome and metabolome are detectable even at low doses of compounds, which 

indicates that these methods might help in understanding how the compounds affect the organism (Chen and Kim 

2013). Furthermore, it has been shown that a mixture of low dose compounds exerted a marked mixture effect even if 

individual compounds by themselves had no effect (Silva et al 2002). 

We wanted to investigate the effects of a compound mixture (Mix) alone and together with increasing doses of the 

perfluorocarboxylic acid, perfluononanoic acid (PFNA) as well as the effects of PFNA alone. Mix was composed of 12 

environmentally relevant compounds representing typical endocrine disrupting compounds at high-end human exposure 

levels (Christiansen et al 2012) and two food ingredients in doses corresponding to a high-end daily intake of grape fruit 

and licorice. We hypothesized that no adverse effects would be observed with Mix alone or combined with the low dose 

PFNA. By use of two complementary omics methods, metabolomics and transcriptomics, we have profiled the effects 

in plasma and livers of exposed rats and compared them to adverse effects observed at higher PFNA doses.  
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Materials!and!methods!

Compounds!&!doses!
Compounds were selected as previously described (In preparation), The animals were dosed with a human relevant 

mixture of 12 environmental compounds known for their endocrine disrupting activities (bisphenol A, butyl paraben, 

dibutylphthalate (DBP), bis(2-ethylhexyl)phthalate (DEHP), 4-methylbenzylidene camphor (4-MBC), octyl 

methoxycinnamate (OMC), dichlorodiphenyldichloroethylene (p,p’-DDE), epoxiconazole, linuron, prochloraz, 

procymidone, vinclozolin) and described elsewhere (Christiansen et al 2012; Hadrup et al 2013) along with the two 

food components, glabridin from licorice and bergamottin from grape fruit (In preparation). The total dose of the 14-

component mixture was 2.5 mg/kg/day and the ratio of the compounds in Mix is presented in Supplementary Table 1. 

In addition to Mix, the animals were treated with three doses of PFNA, chosen such that the lowest dose corresponds to 

a high-end human exposure level (Lau et al 2007). The chosen doses of PFNA were 0.0125 mg/kg/day, 0.25 mg/kg/day, 

and 5 mg/kg/day.  

Animal!study!
The animal study has been described previously (In preparation). In brief, we obtained male Wistar Hannover Galas rats 

at six weeks of age and allowed one week of acclimatization prior to initiation of the study. The animals were housed 

two per cage with a 12-hour light/dark cycle and ad libitum access to citric acid acidified tap water and standard diet. 

The animals received test substances (PFNA ± Mix) once daily by gavage for 14 days with corn oil as vehicle. Eighty-

two rats were randomly assigned into eight groups: vehicle control (n=10), Mix 2.5 mg/kg/day (n=8), PFNA 0.0125 

mg/kg/day + Mix (Low PFNA + Mix) (n=10), PFNA 0.0125 mg/kg/day (Low PFNA) (n=10), PFNA 0.25 mg/kg/day + 

Mix (Mid PFNA + Mix) (n=8), PFNA 0.25 mg/kg/day (Mid PFNA) (n=8) PFNA 5 mg/kg/day + Mix (High PFNA + 

Mix) (n=8), and PFNA 5 mg/kg/day (High PFNA) (n=8). The last dose was given to each animal in the range of 1 hr 15 

min to 1 hr 45 min before euthanization. The rats were anaesthetized in CO2/O2 prior to decapitation. Plasma was 

isolated from heparinized neck blood by centrifugation at 1,000 x g at 4 °C for 10 min and subsequently stored at -80 

°C. Livers were weighed and frozen in liquid nitrogen. 

Metabolomics!
The applied procedure is described in (In preparation). In brief, phospholipids were adsorbed on a phospholipid SPE 

column (Supelco, Sigma-Aldrich). The eluate was collected, dried and extracted using first 200 µl heptane to isolate the 

lipids followed by 200 µl methanol to extract the more polar compounds. The phospholipids were eluted from the SPE 

column using 300 µl 10 % NH4OH in methanol. The phospholipid, lipid and the polar fractions were analyzed by an 

HPLC system combined with a maxis qTime-of-flight mass spectrometer (Bruker Daltonics, Bremen, Germany). 
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The data were analysed in Profile Analysis 2.1 (Bruker Daltonics, Bremen, Germany). Data was extracted using the 

“find molecular features” algorithm in a mass range from 50-1100 m/z value. The noise was reduced using R (R Core 

Team 2012) by removing peaks that were present in < 50% of the samples among all treatment groups and at the same 

time had a peak intensity of ≤ 3000. The data were then uploaded to metaboanalyst.com (Wishart group, Alberta, 

Edmonton Canada) and analysed with t-test, principal component analysis, and partial least squares discriminant 

analysis. The accurate masses of significantly different metabolites were searched for in databases such as human 

metabolome database (HMDB) (Wishart et al 2009). The identities of the compounds were verified by comparison of 

MS/MS patterns with data from the databases HMDB, metlin (www.metlin.script.edu)(Smith et al 2005), lipidmaps 

(www.lipidmaps.org)(Sud et al 2007) and massbank (www.massbank.jp)(Horai et al 2010). 

Statistical!analysis!
Initial analyses of the metabolome data were performed by upload of the data to the Metaboanalyst server (Xia et al 

2012). Here, a one-way analysis of variance (ANOVA) comparing PFNA-treated animals to control animals and PFNA 

+ Mix-treated animals to control, respectively, formed the basis for initial selection of significantly altered metabolites. 

All p-values were corrected using false discovery rate (FDR) according to the protocol implemented in the 

Metaboanalyst workflow, and 0.05 was used as cut-off for statistical significance. The statistically significantly altered 

metabolites were subsequently analyzed and plotted using GraphPad Prism version 5.00 for Windows, GraphPad 

Software, La Jolla, California, USA, www.graphpad.com as follows. The D’Agostino and Pearson omnibus normally 

test was used to test for normality of the data. If data were normally distributed, an ANOVA was performed using 

Dunnett’s multiple comparisons test to correct the p-values. If data were not normally distributed, data were log 

transformed and, if normally distributed after transformation, analyzed by ANOVA. If not normally distributed, a non-

parametric Kruskal-Wallis test followed by a Dunn’s multiple comparisons test was conducted. The criteria for 

statistical significance was p<0.05, p<0.01 and p<0.001 leading to marking *, ** and ***, respectively. Statistical 

comparisons not applicable to ANOVA tests were carried out using a Student’s t-test.  

Transcriptomics!
Total RNA from six rat livers from each of the vehicle control, Low PFNA + Mix, and Mid PFNA ± Mix groups were 

separately converted into labeled cRNA and applied to the One-Color Microarray-Based Gene Expression Analysis 

(Low Input Quick Amp Labeling) version 6.5, May 2010 (Agilent Technologies, Santa Clara, Ca). Labeled cRNA from 

each rat was hybridized to Agilent Whole Rat Genome Oligo Microarrays (G4122F) for 17 h at 65°C. The hybridized 

microarrays were scanned using an Agilent DNA Microarray Scanner and evaluated using the Feature Extraction 

software version 10.7.3.1 according to protocol GE1_107_Sep09 (Agilent Technologies) to generate feature extraction 

files for further analysis. Reads were quality controlled by the software prior to release of the data. Arrays that did not 

pass quality control were removed from the data set. Based on the quality control reports, two of the six microarrays 
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from the Mid PFNA + Mix group were excluded from further analysis. The remaining arrays, six from each of control, 

Low PFNA + Mix, and Mid PFNA and the remaining four from Mid PFNA + Mix were found to be of high quality. 

Extracted data were analyzed using the limma software package (Smyth 2004; Smyth 2005) in R (R Core Team 2012). 

Data were background corrected using the “normexp” method (Ritchie et al 2007) and normalized between arrays using 

quantile normalization (Smyth and Speed 2003) prior to statistical analyses. Within-array replicate probes were 

replaced with the average expression level. To identify treatment-specific gene effects, we fitted a linear model for each 

gene and applied empirical Bayes statistics (Smyth 2004) for each relevant two-group comparison. The FDR was 

controlled using the Benjamini-Hochberg method (Benjamini and Hochberg 1995). Reported p-values for the 

transcriptomics analysis are all corrected, and corrected p-values ≤ 0.05 were considered statistically significant 

Pathway!analysis!
Transcription data were analyzed through the use of QIAGEN’s Ingenuity Pathway Analysis (IPA, QIAGEN Redwood 

City, www.qiagen.com/ingenuity). IPA was used to map significantly differentially expressed gene (DEG) probes to 

genes, and expression values were used for prediction of the involvement of the DEGs in functional networks, 

pathways, and diseases, and for graphical representations. Using the Fisher’s Exact Test, we analyzed the overlap 

between the DEGs in our dataset and genes known to be involved in disease networks, pathways, and diseases available 

in the Ingenuity Knowledgebase. 

Results!and!discussion!

Since low-dose effects of toxicologically relevant compounds is a fairly new and much discussed topic, little is known 

about the effects of those low doses on human or animal health, and even less so on the plasma metabolome or the liver 

gene expression levels. Our results indicate that even short-term exposure (14 days) to a low dose of Mix and a 

relatively low dose of PFNA ± Mix interferes with lipid homeostasis. 

Pathological!investigation!
Findings in the livers of the High PFNA ± Mix animals indicated hepatic steatosis – a state of retention of lipids in the 

liver. No pathological effects were observed in any of the other dosing groups. The specific data on the animals are 

described elsewhere (In preparation). Since we expected the toxicity in the High PFNA dose groups to disturb the 

mechanistic investigation of biomarkers, these data were not analyzed in this study. 

Effects!of!the!14Ccompound!mixture!(Mix)!alone!
The plasma samples and standards were analyzed by HPLC connected to a high-resolution qTOF mass spectrometer, 

and extracted ion chromatograms of the accurate mass of PFNA ± 2 mDA were created. After 14 days of exposure, the 

concentration of PFNA in plasma was determined to be 1.1, 30 and 40 µg/ml for Low PFNA + Mix, Mid PFNA + Mix 
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and High PFNA + Mix, respectively. The PFNA plasma concentrations without Mix were in the range of or up to six 

times the high-end human exposure levels (Emmett et al 2006; Lau et al 2007; NHANES 2013; In preparation). As 

described elsewhere (In preparation), the addition of Mix significantly increased the plasma levels of PFNA (2.8-fold) 

thereby indicating altered ADME (administration, distribution, metabolism, excretion) properties of PFNA when Mix is 

co-administered. The dose of Mix is calculated from a high-end exposure level in the European population 

(Christiansen et al 2012) and corrected for body surface area of a rat compared to a human (In preparation). None of the 

compounds in Mix or their likely metabolites were found when extracted ion chromatograms were created based on 

their accurate mass. This could be due to rapid metabolism or levels below the limit of detection in the LC-MS analysis.  

Metabolomics!

Mix$alone$

A comparison between animals exposed to Mix alone and controls was conducted. Mix significantly affected 63 

molecular features out of 882 molecular features in total. The affected phospholipids were lyso-phosphatidylcholine 

(lyso-PC)(20:4) and lyso-PC(18:2), while the neutral lipids were diacylglycerols (DG) e.g. DG(18:1/18:3) and 

DG(18:2/16:0). Representative metabolite profiles across treatment groups are shown in Figure 1; whereas plots of all 

significantly altered metabolites are shown in Supplementary Figure 1 and Supplementary Figure 2. Animal studies 

with other compounds (Chen and Kim 2013; Zhang et al 2013; Androutsopoulos et al 2013) have indicated disturbed 

energy metabolism as a consequence of insults to various environmental compounds. This includes the organochlorine 

pesticide, p-p’-DDE (Androutsopoulos et al 2013), which is a constituent of Mix. Also, complex mixtures such as those 

of wastewater treatment plant effluents, give rise to altered lipid metabolism (Zhang et al 2014). Despite the 

significance of the changes in the lipidome upon exposure to compounds, no studies have, to our knowledge, been able 

to clarify specific mechanisms of action.  

Low$PFNA$

To identify the features causing the most variance in the data from the Low PFNA dose group we performed Partial 

least square-Discriminant Analyses (PLS-DA) of the lipid fractions. As illustrated in Figure 2 for Low PFNA, the first 

two components of the analysis separated the Mix-exposed animals from the non-Mix groups and there was a difference 

between Low PFNA and control. However, it was not possible to identify the metabolites responsible for this 

difference. We obtained similar PLS-DA plots for the phospholipid and polar fractions (In preparation). There were 30 

metabolites responsible for separating Mix-treated animals from non-Mix-treated animals (Supplementary Figure 1). 

Mix alone altered 22 of these metabolites. For six out of 22 metabolites the concomitant exposure to PFNA enhanced 

the effect on the metabolites, none of which are identified. The effect of Low PFNA + Mix exposure was decreased 

concentrations of plasma lipids, primarily DGs and a single phospholipid (Figure 3a-c). The only metabolite directly 
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affected by Low PFNA but not by Mix was the steroid hormone, corticosterone (Figure 3a). None of the metabolites 

that were altered in Mix and not in Low PFNA + Mix were identified. 

Mid$PFNA$

For the Mid PFNA dose with or without Mix, we conducted the same analysis as for the Low PFNA dose. We 

identified 24 metabolites that were significantly changed (Supplementary Figure 2); among these, Mix alone altered 17. 

Figure 3d-f shows three representative significantly changed metabolites. As seen in Figure 3d there was an increase in 

the level of lyso-PC(20:4) by Mid PFNA, but not by Mix. Mid PFNA + Mix seemed to affect diacylated phospholipids 

such as PC(18:0/16:1) (Figure 3e).  

Effects$of$Mix$compared$to$PFNA$±$Mix$

To investigate the effect of Mix on the PFNA-induced effects, we compared the significant metabolites resulting from 

statistical analysis of Mix vs. control (t-test) and PFNA + Mix vs. control (ANOVA). Twenty-four metabolites were 

affected by all treatments and 12 of the 24 metabolites were identified (Supplementary Figure 3). The 12 metabolites 

consisted of neutral short-chained lipids such as monoacylglycerols (MG) and phospholipids. Mix alone affected the 

DGs, whereas the PFNA + Mix groups affected the diacylated phospholipids. 

Over the last decades, there has been a worldwide increase in disorders related to diet. One disorder in particular is the 

metabolic syndrome, which increases the risk of developing diabetes and heart failure. Studies have revealed decreased 

phospholipid levels in diabetics (Wang et al 2005; Liu et al 2013). In particular, changes in the ratio between lyso-PC 

and PC concentrations indicates a systemic change potentially related to diabetes (Altmaier et al 2008). The PCs are 

involved in the biosynthesis of multiple compounds in the endoplasmic reticulum. Specifically, decreased PC levels 

reflects an increased biosynthesis of lipids such as triacylglycerols (Lagace and Ridgway 2013). The changes in the 

metabolome obtained from exposure to Mix alone and PFNA + Mix are similar to the differences observed in patients 

with metabolic syndrome as compared to healthy subjects (Ferrannini et al 2013); however, data from Chen et al. show 

that the lyso-PCs are increased in metabolic syndrome patients compared to healthy controls (Chen et al 2011). This 

corresponds to findings observed for Mid PFNA alone but not for Mix and PFNA + Mix. 

A cholesterol derivative was found significantly decreased by Mix, Low PFNA + Mix and Mid PFNA + Mix, though 

from the accurate mass (429.380 m/z value) an unambiguous metabolite was not identified. Three possible cholesterol 

metabolites matching the accurate mass were suggested; 4α-Formyl-4β-methyl-5α-cholesta-8-en-3β-ol, 4α-

Hydroxymethyl-4β-methyl-5α-cholesta-8,24-dien-3beta-ol, and cholesteryl acetate. We analyzed a standard of 

cholesteryl acetate and based on the MS/MS pattern and retention time this metabolite was excluded from the list. The 

retention time and the accurate mass indicate that the cholesterol derivative could be either of the other two, but 

definitive identification was not possible. 
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Transcriptomics!

Low$

Statistical analysis of the transcriptome of Low PFNA + Mix vs. control resulted in no differentially expressed genes 

(DEGs) (corrected p ≤ 0.05); however, at a borderline significance level (corrected p-value ≤ 0.1), 31 unique genes 

were differentially expressed (Supplementary Table 2). The pathway analysis of these genes indicated pathways related 

to the immune system to be affected by the compound treatment, mainly due to a slight downregulation of the major 

histocompatibility complex II (RT1-Ba) (log2(fold change)=-0.244, p-value = 0.098). Other borderline DEGs are 

reported in Supplementary table 3.  

Mid$

For Mid PFNA ± Mix groups the significantly DEGs include the set of annotated genes contained in the Ingenuity 

Pathway Analysis database and exclude most expressed sequence tags and genes without adequate literature-based 

information for use in the analysis. Statistical analysis of the Mid PFNA ± Mix groups resulted in 206 and 182 DEGs, 

with or without Mix, respectively (Supplementary Table 2).  

In the PFNA ± Mix dosing groups, fatty acid metabolism was suggested as the main biochemical function affected by 

the DEGs (Table 1). This included upregulation of genes involved in peroxisomal fatty acid β-oxidation (such as Crot, 

Crat, Acox1, Ehhadh, Hadha, Hadhb, Decr2, Eci2, Ech1), and mitochondrial β-oxidation (Cpt2, Slc25a20, Acad11, 

Acadl, Acadm, Acads, Acadvl). Additionally, genes associated with lipid transport, fatty acid activation, and 

peroxisomal transport (Apoa2, Abcd3, Cd36, Slc27a2) were upregulated. Fatty acid binding protein 5 (Fabp5) was 

downregulated. Similar effects of perfluorinated compounds on lipid homeostasis have been presented previously 

(Guruge et al 2006; Rosen et al 2007; Fang et al 2012a; Fang et al 2012b; Fang et al 2012c). 

Whereas the effects on lipid metabolism are very similar for Mid PFNA and Mid PFNA + Mix, less pronounced 

profiles are seen on the aerobic respiration for Mid PFNA + Mix compared to Mid PFNA (Table 1). The citric acid 

cycle enzymes, aconitase 2 (Aco2), isocitrate dehydrogenase 3 (NAD+) beta (Idh3b), and succinate-CoA ligase (Sucla2 

and Suclg1) were significantly upregulated by Mid PFNA, whereas this was only the case for Aco2 and Suclg1 for Mid 

PFNA + Mix. Similarly, for enzymes in the electron transport chain (Ndufa10, Ndufab1, Ndufs3 (complex I), and Sdhb 

(complex II)) only Ndufa10 is significantly upregulated in both groups. The other enzymes are upregulated by Mid 

PFNA, exclusively.  This could indicate, that constituent(s) of Mix counteract the effects imposed by PFNA alone. 

Expression of the genes encoding enzymes involved in glucose metabolism disorders were mainly disrupted by Mid 

PFNA + Mix, except for a few genes such as phosphofructokinase that was only significant in Mid PFNA and carbonic 

anhydrase VII, Heat-shock protein 40, plus STEAP family member 4 that were differentially expressed by both groups. 

The profiles of Mid PFNA ± Mix are thus very similar and only subtle differences in the exact DEGs cause the 
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differences in z-scores and p-values. Additionally, a statistical comparison between Mid PFNA and Mid PFNA + Mix 

did not yield any significant DEGs. 

IPA has a function to predict the activity of potential upstream regulators based on the DEGs. With our dataset, several 

transcription factors and other central proteins were predicted activated (Table 2). Downstream of the DEGs, IPA 

predicts regulatory effects, such as diseases and functions likely to be perturbed due to the changes in gene expression. 

As illustrated in Figure 4, activation of the upstream regulators PPARα, PPARγ, PPARδ, RXRα, PPARgc1a, and 

MED1 results in gene expression changes (Table 1) that subsequently leads to increased oxidation of lipids and in 

particular fatty acids. This, in turn, protects against accumulation of lipids in the liver and therefore also against hepatic 

steatosis. The PPARs are known regulators of fatty acid β-oxidation (Kanehisa and Goto 2000). Increased β-oxidation 

results in decreased plasma lipid concentration (Lau 2012). Furthermore, perfluorinated alkyl acids are known PPAR-

activators (Vanden Heuvel et al 2006; Lau 2012; U. S. Environmental Protection Agency 2014). The Mix contains the 

two phthalates DBP and DEHP, which are both known PPAR activators (Desvergne et al 2009). Several of the other 

compounds in Mix also activate PPAR (U. S. Environmental Protection Agency 2014). 

The total lists of DEGs for the three treatment groups are reported in Supplementary Table 2, and a summary of the 

functions of the Mid PFNA ± Mix is given in Supplementary Table 4. The effects on lipid homeostasis observed for 

Mix with and without PFNA could be ascribed to the presence of glabridin. It is a naturally occurring isoflavonoid from 

licorice that has been shown to inhibit the activity of the cytochrome P450 (CYP) CYP2C9 in the liver (Kent et al 

2002). Studies have shown that CYP2C9 is involved in the regulation of lipid metabolism in the body (Kent et al 2002; 

Kirchheiner et al 2003). Furthermore, people with a polymorphism in CYP2C9 have a tendency to have lower levels of 

the lipid carriers LDL and HDL (Kirchheiner et al 2003). Thus, a decrease in LDL and HDL may result in decreased 

levels of plasma lipids, including cholesterol and cholesterol derivatives, as these are carrying lipids around the body 

(Kent et al 2002). However, our data does not suggest downregulation of the rat CYP2C9 homologue, cyp2c11. On the 

other hand, the HDL-constituent, apolipoprotein A-II (encoded by apoa2) is upregulated by PFNA but not by PFNA + 

Mix. The effects seen for Mix and PFNA + Mix might therefore be caused by a combination of decreased CYP2C9 

activity and PPAR activation. 

Conclusion!

We profiled the plasma metabolome and the liver transcriptome in rats after exposure to environmental chemicals. As 

the organism has a diverse biochemical response, it is a challenge to determine the exact mechanism of action for the 

14-chemical Mix. All Mix-containing treatments significantly affected the plasma metabolome, whereas changes in the 

liver transcriptome became evident at a higher PFNA dose with or without Mix. Therefore, the hepatic effects seemed 
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to be driven by PFNA exposure, whereas Mix drove the effects on the plasma metabolome. Within Mix, two CYP 

inhibitors were present. These might be part of the cause of the changes in lipid homeostasis observed in the plasma 

metabolome. Based on these results, we suggest that PPAR activation and/or CYP2C9 inhibition might explain the 

observed changes in the metabolome. The study verifies that even at low dose levels, a chemical mixture can affect the 

metabolome and cause disturbed lipid homeostasis. 

Acknowledgements!

A special thanks to Mike Wilson, University of Alberta, for assisting in conducting the R script for the metabolomics 

matrix reduction. Many thanks to Dr. Christoffer Clemmensen, Helmholtz Zentrum Munich, for fruitful discussions. 

Compliance!with!ethical!requirements!

Conflict of interest: Kasper Skov, Kristine Kongsbak, Niels Hadrup, Henrik Lauritz Frandsen, Jørn Smedsgaard, Karine 

Audouze, Aron Charles Eklund, and Anne Marie Vinggaard declare that they have no conflict of interest. 

All applicable institutional guidelines for the care and use of animals were followed. All procedures performed in the 

studies involving animals were in accordance with the ethical standards of the institution at which the studies were 

conducted. The animal study was approved by the Danish Animal Experiments Inspectorate. The authorization number 

given is 2012/561-188. The National Food Institute’s in-house Animal Welfare Committee for animal care and use 

supervised the experiments.  

78 Experimental Studies of a Chemical Mixture



11 

 

References!

Altmaier E, Ramsay SL, Graber A, et al (2008) Bioinformatics analysis of targeted metabolomics--uncovering old and 
new tales of diabetic mice under medication. Endocrinology 149:3478–89. doi: 10.1210/en.2007-1747 

Androutsopoulos VP, Hernandez AF, Liesivuori J, Tsatsakis AM (2013) A mechanistic overview of health associated 
effects of low levels of organochlorine and organophosphorous pesticides. Toxicology 307:89–94. doi: 
10.1016/j.tox.2012.09.011 

Axelstad M, Christiansen S, Boberg J, et al (2014) Mixtures of endocrine-disrupting contaminants induce adverse 
developmental effects in preweaning rats. Reproduction 147:489–501. doi: 10.1530/REP-13-0447 

Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple 
Testing. J R Stat Soc Ser B 57:289 – 300. doi: 10.2307/2346101 

Calafat AM, Wong L-Y, Kuklenyik Z, et al (2007) Polyfluoroalkyl chemicals in the U.S. population: data from the 
National Health and Nutrition Examination Survey (NHANES) 2003-2004 and comparisons with NHANES 
1999-2000. Environ Health Perspect 115:1596–602. doi: 10.1289/ehp.10598 

Chen C, Kim S (2013) LC-MS-based Metabolomics of Xenobiotic-induced Toxicities. Comput Struct Biotechnol J 
4:e201301008. doi: 10.5936/csbj.201301008 

Chen M, Zhou K, Chen X, et al (2014) Metabolomic analysis reveals metabolic changes caused by bisphenol A in rats. 
Toxicol Sci 138:256–67. doi: 10.1093/toxsci/kfu016 

Chen S, Chu Y, Zhao X, et al (2011) HPLC-MS-Based Metabonomics Reveals Disordered Lipid Metabolism in 
Patients with Metabolic Syndrome. J Anal Sci Technol 2:A173–A178. doi: 10.5355/JAST.2011.A173 

Christiansen S, Kortenkamp A, Axelstad M, et al (2012) Mixtures of endocrine disrupting contaminants modelled on 
human high end exposures: an exploratory study in rats. Int J Androl 35:303–316. doi: 10.1111/j.1365-
2605.2011.01242.x 

Christiansen S, Scholze M, Axelstad M, et al (2008) Combined exposure to anti-androgens causes markedly increased 
frequencies of hypospadias in the rat. Int J Androl 31:241–248. doi: 10.1111/j.1365-2605.2008.00866.x 

Desvergne B, Feige JN, Casals-Casas C (2009) PPAR-mediated activity of phthalates: A link to the obesity epidemic? 
Mol Cell Endocrinol 304:43–8. doi: 10.1016/j.mce.2009.02.017 

Emmett EA, Zhang H, Shofer FS, et al (2006) Community exposure to perfluorooctanoate: relationships between serum 
levels and certain health parameters. J Occup Environ Med 48:771–9. doi: 10.1097/01.jom.0000233380.13087.37 

Fang X, Gao G, Xue H, et al (2012a) Exposure of perfluorononanoic acid suppresses the hepatic insulin signal pathway 
and increases serum glucose in rats. Toxicology 294:109–15. doi: 10.1016/j.tox.2012.02.008 

Fang X, Gao G, Xue H, et al (2012b) In vitro and in vivo studies of the toxic effects of perfluorononanoic acid on rat 
hepatocytes and Kupffer cells. Environ Toxicol Pharmacol 34:484–94. doi: 10.1016/j.etap.2012.06.011 

Fang X, Zou S, Zhao Y, et al (2012c) Kupffer cells suppress perfluorononanoic acid-induced hepatic peroxisome 
proliferator-activated receptor α expression by releasing cytokines. Arch Toxicol 86:1515–25. doi: 
10.1007/s00204-012-0877-4 

Ferrannini E, Natali A, Camastra S, et al (2013) Early metabolic markers of the development of dysglycemia and type 2 
diabetes and their physiological significance. Diabetes 62:1730–7. doi: 10.2337/db12-0707 

Guruge KS, Yeung LWY, Yamanaka N, et al (2006) Gene expression profiles in rat liver treated with perfluorooctanoic 
acid (PFOA). Toxicol Sci 89:93–107. doi: 10.1093/toxsci/kfj011 

5.5 Manuscript IV 79



12 

 

Hadrup N, Taxvig C, Pedersen M, et al (2013) Concentration addition, independent action and generalized 
concentration addition models for mixture effect prediction of sex hormone synthesis in vitro. PLoS One 
8:e70490. doi: 10.1371/journal.pone.0070490 

Horai H, Arita M, Kanaya S, et al (2010) MassBank: a public repository for sharing mass spectral data for life sciences. 
J Mass Spectrom 45:703–14. doi: 10.1002/jms.1777 

Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. 

Kent UM, Aviram M, Rosenblat M, Hollenberg PF (2002) The licorice root derived isoflavan glabridin inhibits the 
activities of human cytochrome P450S 3A4, 2B6, and 2C9. Drug Metab Dispos 30:709–15. 

Kirchheiner J, Kudlicz D, Meisel C, et al (2003) Influence of CYP2C9 polymorphisms on the pharmacokinetics and 
cholesterol-lowering activity of (-)-3S,5R-fluvastatin and (+)-3R,5S-fluvastatin in healthy volunteers. Clin 
Pharmacol Ther 74:186–94. doi: 10.1016/S0009-9236(03)00121-8 

Krysiak-Baltyn K, Toppari J, Skakkebaek NE, et al (2012) Association between chemical pattern in breast milk and 
congenital cryptorchidism: modelling of complex human exposures. Int J Androl 35:294–302. doi: 
10.1111/j.1365-2605.2012.01268.x 

Lagace TA, Ridgway ND (2013) The role of phospholipids in the biological activity and structure of the endoplasmic 
reticulum. Biochim Biophys Acta 1833:2499–510. doi: 10.1016/j.bbamcr.2013.05.018 

Lau C (2012) Perfluorinated compounds. EXS 101:47–86. doi: 10.1007/978-3-7643-8340-4_3 

Lau C, Anitole K, Hodes C, et al (2007) Perfluoroalkyl acids: a review of monitoring and toxicological findings. 
Toxicol Sci 99:366–94. doi: 10.1093/toxsci/kfm128 

Liu L, Wang M, Yang X, et al (2013) Fasting serum lipid and dehydroepiandrosterone sulfate as important metabolites 
for detecting isolated postchallenge diabetes: serum metabolomics via ultra-high-performance LC-MS. Clin 
Chem 59:1338–48. doi: 10.1373/clinchem.2012.200527 

Monosson E (2005) Chemical mixtures: considering the evolution of toxicology and chemical assessment. Environ 
Health Perspect 113:383–390. 

Moser VC, Simmons JE, Gennings C (2006) Neurotoxicological interactions of a five-pesticide mixture in preweanling 
rats. Toxicol Sci 92:235–45. doi: 10.1093/toxsci/kfj189 

NHANES (2013) Fourth National Report on Human Exposure to Environmental Chemicals Updated Tables, March, 
2013.  

R Core Team (2012) R: A Language and Environment for Statistical Computing. R Found Stat Comput. doi: 
10.1007/978-3-540-74686-7 

Ritchie ME, Silver J, Oshlack A, et al (2007) A comparison of background correction methods for two-colour 
microarrays. Bioinformatics 23:2700–7. doi: 10.1093/bioinformatics/btm412 

Rosen MB, Thibodeaux JR, Wood CR, et al (2007) Gene expression profiling in the lung and liver of PFOA-exposed 
mouse fetuses. Toxicology 239:15–33. doi: 10.1016/j.tox.2007.06.095 

Silva E, Rajapakse N, Kortenkamp A (2002) Something from “nothing”--eight weak estrogenic chemicals combined at 
concentrations below NOECs produce significant mixture effects. Environ Sci Technol 36:1751–1756. 

Smith C a, O’Maille G, Want EJ, et al (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–
51. 

Smyth GK (2005) limma: Linear Models for Microarray Data. Bioinforma. Comput. Biol. Solut. Using R Bioconductor. 
pp 397–420 

80 Experimental Studies of a Chemical Mixture



13 

 

Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray 
experiments. Stat Appl Genet Mol Biol 3:Article3. doi: 10.2202/1544-6115.1027 

Smyth GK, Speed T (2003) Normalization of cDNA microarray data. Methods 31:265–273. doi: 10.1016/S1046-
2023(03)00155-5 

Sud M, Fahy E, Cotter D, et al (2007) LMSD: LIPID MAPS structure database. Nucleic Acids Res 35:D527–32. doi: 
10.1093/nar/gkl838 

Taylor KW, Hoffman K, Thayer K a, Daniels JL (2014) Polyfluoroalkyl Chemicals and Menopause among Women 20-
65 Years of Age (NHANES). Environ Health Perspect 122:145–50. doi: 10.1289/ehp.1306707 

U. S. Environmental Protection Agency (2014) Interactive Chemical Safety for Sustainability (iCSS) Dashboard. 
http://actor.epa.gov/dashboard/.  

Vanden Heuvel JP, Thompson JT, Frame SR, Gillies PJ (2006) Differential activation of nuclear receptors by 
perfluorinated fatty acid analogs and natural fatty acids: a comparison of human, mouse, and rat peroxisome 
proliferator-activated receptor-alpha, -beta, and -gamma, liver X receptor-beta, and retinoid X rec. Toxicol Sci 
92:476–89. doi: 10.1093/toxsci/kfl014 

Wang C, Kong H, Guan Y, et al (2005) Plasma phospholipid metabolic profiling and biomarkers of type 2 diabetes 
mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate 
statistical analysis. Anal Chem 77:4108–16. doi: 10.1021/ac0481001 

Wishart DS, Knox C, Guo AC, et al (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 
37:D603–10. doi: 10.1093/nar/gkn810 

Xia J, Mandal R, Sinelnikov I V, et al (2012) MetaboAnalyst 2.0--a comprehensive server for metabolomic data 
analysis. Nucleic Acids Res 40:W127–33. doi: 10.1093/nar/gks374 

Zhang W, Liu Y, Zhang H, Dai J (2012) Proteomic analysis of male zebrafish livers chronically exposed to 
perfluorononanoic acid. Environ Int 42:20–30. doi: 10.1016/j.envint.2011.03.002 

Zhang Y, Deng Y, Zhao Y, Ren H (2014) Using combined bio-omics methods to evaluate the complicated toxic effects 
of mixed chemical wastewater and its treated effluent. J Hazard Mater 272:52–8. doi: 
10.1016/j.jhazmat.2014.02.041 

Zhang Y, Zhang Z, Zhao Y, et al (2013) Identifying health effects of exposure to trichloroacetamide using 
transcriptomics and metabonomics in mice ( Mus musculus ). Environ Sci Technol 47:2918–24. doi: 
10.1021/es3048976 

 

 !

5.5 Manuscript IV 81



Table 1. Energy homeostasis genes significantly altered by Mid PFNA + Mix. Grey fields denote non-significant 
changes. 

Symbol Entrez ID Entrez Gene Name log2(fold change) Biological process 

   

Low 
PFNA + 
Mix 

Mid 
PFNA 

Mid 
PFNA + 
Mix  

Aco1 50655 aconitase 1, soluble 0,12 0,337 0,544 Aerobic metabolism 
Aco2 79250 aconitase 2, mitochondrial -0,065 0,428 0,448 Aerobic metabolism 
Cox11 690300 cytochrome c oxidase assembly homolog 

11 (yeast) 
0,24 0,593 0,235 Aerobic metabolism 

Idh3b 94173 isocitrate dehydrogenase 3 (NAD+) beta 0,003 0,325 0,247 Aerobic metabolism 
Ndufa10 678759| 

316632 
NADH dehydrogenase (ubiquinone) 1 
alpha subcomplex, 10, 42kDa 

0,042 0,3 0,275 Aerobic metabolism 

Ndufab1 293453 NADH dehydrogenase (ubiquinone) 1, 
alpha/beta subcomplex, 1, 8kDa 

0,051 0,269 0,116 Aerobic metabolism 

Ndufs3 295923 NADH dehydrogenase (ubiquinone) Fe-S 
protein 3, 30kDa (NADH-coenzyme Q 
reductase) 

0,085 0,336 0,28 Aerobic metabolism 

Sdhb 298596 succinate dehydrogenase complex, subunit 
B, iron sulfur (Ip) 

0,043 0,244 0,17 Aerobic metabolism 

Sucla2 361071 succinate-CoA ligase, ADP-forming, beta 
subunit 

0,145 0,43 0,357 Aerobic metabolism 

Suclg1 114597 succinate-CoA ligase, alpha subunit 0,024 0,275 0,284 Aerobic metabolism 
Acaa1 501072| 

24157 
acetyl-CoA acyltransferase 1 0,113 1,008 0,985 Lipid metabolism 

Acaa2 170465 acetyl-CoA acyltransferase 2 0,394 0,556 0,969 Lipid metabolism 
Acot1 314304 acyl-CoA thioesterase 1 0,386 0,984 1,427 Lipid metabolism 
Acot12 170570 acyl-CoA thioesterase 12 0,245 0,557 0,666 Lipid metabolism 
Acot2 192272 acyl-CoA thioesterase 2 0,241 1,312 1,497 Lipid metabolism 
Acot4 681337 acyl-CoA thioesterase 4 0,264 1,115 1,585 Lipid metabolism 
Acot7 26759 acyl-CoA thioesterase 7 0,019 0,431 0,593 Lipid metabolism 
Aldh1a1 24188 aldehyde dehydrogenase 1 family, member 

A1 
0,377 2,077 2,523 Lipid metabolism 

Cyp2b6 361523| 
24300 

cytochrome P450, family 2, subfamily B, 
polypeptide 6 

0,971* 2,12 2,561 Lipid metabolism 

Cyp2c19 293989 cytochrome P450, family 2, subfamily C, 
polypeptide 19 

0,128 0,686 0,756 Lipid metabolism 

Cyp2j2 65210 cytochrome P450, family 2, subfamily J, 
polypeptide 2 

0,237 1,018 1,187 Lipid metabolism 

Cyp4a11 50549 cytochrome P450, family 4, subfamily A, 
polypeptide 11 

0,643 2,419 2,568 Lipid metabolism 

Cyp4a14 298423| 
24306 

cytochrome P450, family 4, subfamily a, 
polypeptide 14 

0,333 1,201 1,335 Lipid metabolism 

Decr1 117543 2,4-dienoyl CoA reductase 1, mitochondrial 0,234 1,364 1,344 Lipid metabolism 
Ephx2 65030 epoxide hydrolase 2, cytoplasmic 0,243 1,201 1,267 Lipid metabolism 
Gcdh 364975 glutaryl-CoA dehydrogenase 0,175 0,576 0,638 Lipid metabolism 
Hadh 113965 hydroxyacyl-CoA dehydrogenase 0,056 0,418 0,4 Lipid metabolism 
Hadha 170670 hydroxyacyl-CoA dehydrogenase/3-

ketoacyl-CoA thiolase/enoyl-CoA 
hydratase (trifunctional protein), alpha 
subunit 

0,144 0,659 0,746 Lipid metabolism 

Hadhb 171155 hydroxyacyl-CoA dehydrogenase/3-
ketoacyl-CoA thiolase/enoyl-CoA 
hydratase (trifunctional protein), beta 
subunit 

0,194 0,8 0,817 Lipid metabolism 

Hsd11b1 25116 hydroxysteroid (11-beta) dehydrogenase 1 -0,261 -0,446 -1,082 Lipid metabolism 
Immt 312444 inner membrane protein, mitochondrial -0,011 0,345 0,376 Lipid metabolism 
Mlycd 85239 malonyl-CoA decarboxylase 0,093 0,316 0,325 Lipid metabolism 
Ncam1 24586 neural cell adhesion molecule 1 -0,163 -0,05 -0,27 Lipid metabolism 

82 Experimental Studies of a Chemical Mixture



Phgdh 58835 phosphoglycerate dehydrogenase -0,308 -1,271 -0,976 Lipid metabolism 
Plin5 501283 perilipin 5 0,198 0,595 0,61 Lipid metabolism 
Ptk2b 50646 protein tyrosine kinase 2 beta 0,175 0,607 0,47 Lipid metabolism 
Sirt4 304539 sirtuin 4 0,162 0,291 0,461 Lipid metabolism 
Acad11 315973 acyl-CoA dehydrogenase family, member 

11 
0,115 0,62 0,656 Lipid metabolism - 

mitochondrial b-
oxidation 

Acadl 25287 acyl-CoA dehydrogenase, long chain 0,05 0,442 0,419 Lipid metabolism - 
mitochondrial b-
oxidation 

Acadm 24158 acyl-CoA dehydrogenase, C-4 to C-12 
straight chain 

0,15 0,47 0,47 Lipid metabolism - 
mitochondrial b-
oxidation 

Acads 64304 acyl-CoA dehydrogenase, C-2 to C-3 short 
chain 

0,056 0,326 0,416 Lipid metabolism - 
mitochondrial b-
oxidation 

Acadvl 25363 acyl-CoA dehydrogenase, very long chain 0,047 0,413 0,482 Lipid metabolism - 
mitochondrial b-
oxidation 

Cpt2 25413 carnitine palmitoyltransferase 2 0,163 0,565 0,786 Lipid metabolism - 
mitochondrial b-
oxidation 

Slc25a20 117035 solute carrier family 25 
(carnitine/acylcarnitine translocase), 
member 20 

0,098 0,668 0,692 Lipid metabolism - 
mitochondrial b-
oxidation 

Acox1 50681 acyl-CoA oxidase 1, palmitoyl 0,074 0,601 0,745 Lipid metabolism - 
proxisomal b-oxidation 

Crat 311849 carnitine O-acetyltransferase 0,372 1,55 1,71 Lipid metabolism - 
proxisomal b-oxidation 

Crot 83842 carnitine O-octanoyltransferase 0,19 1,115 1,219 Lipid metabolism - 
proxisomal b-oxidation 

Decr2 64461 2,4-dienoyl CoA reductase 2, peroxisomal 0,275 0,831 0,944 Lipid metabolism - 
proxisomal b-oxidation 

Ech1 64526 enoyl CoA hydratase 1, peroxisomal 0,459 1,503 1,856 Lipid metabolism - 
proxisomal b-oxidation 

Eci2 291075 enoyl-CoA delta isomerase 2 0,117 0,577 0,548 Lipid metabolism - 
proxisomal b-oxidation 

Ehhadh 171142 enoyl-CoA, hydratase/3-hydroxyacyl CoA 
dehydrogenase 

0,184 1,702 1,86 Lipid metabolism - 
proxisomal b-oxidation 

Hsd17b4 79244 hydroxysteroid (17-beta) dehydrogenase 4 0,113 0,295 0,278 Lipid metabolism - 
proxisomal b-oxidation 

Apoa2 25649 apolipoprotein A-II 0,321 0,504 0,474 Lipid metabolism - 
transport 

Abcd3 25270 ATP-binding cassette, sub-family D (ALD), 
member 3 

0,093 0,729 0,685 Lipid metabolism - 
transport 

Cd36 29184 CD36 molecule (thrombospondin receptor) 0,158 1,276 1,867 Lipid metabolism - 
transport 

Fabp5 140868 Lipid binding protein 5 (psoriasis-
associated) 

-0,385 -1,392 -1,508 Lipid metabolism - 
transport 

Slc27a2 65192 solute carrier family 27 (Lipid transporter), 
member 2 

0,215 0,543 0,57 Lipid metabolism - 
transport 

Fbp2 114508 fructose-1,6-bisphosphatase 2 0,272 0,642 1,081 Glucose metabolism 
disorders 

Pfkm 65152 phosphofructokinase, muscle -0,388 -0,487 -0,35 Glucose metabolism 
disorders 

Adrb3 25645 adrenoceptor beta 3 -0,279 -0,134 -0,366 Glucose metabolism 
disorders 

Ca1 310218 carbonic anhydrase I -0,003 -0,78 -1,132 Glucose metabolism 
disorders 

Ca4 29242 carbonic anhydrase IV -0,266* -0,009 -0,236 Glucose metabolism 
disorders 

Ca7 291819 carbonic anhydrase VII -0,06 0,817 0,643 Glucose metabolism 
disorders 

Calcr 116506 calcitonin receptor 0,225 0,114 0,392 Glucose metabolism 
disorders 
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Dnajc3 63880 DnaJ (Hsp40) homolog, subfamily C, 
member 3 

-0,113 -0,279 -0,362 Glucose metabolism 
disorders 

Hdc 24443 histidine decarboxylase 0,267 1,03 1,309 Glucose metabolism 
disorders 

Hipk1 365895 homeodomain interacting protein kinase 1 0,189 0,011 0,296 Glucose metabolism 
disorders 

Rt1-Ba 309621 major histocompatibility complex, class II, 
DQ alpha 1 

-0,244* -0,139 -0,302 Glucose metabolism 
disorders 

Lef1 161452 lymphoid enhancer-binding factor 1 0,1 0,36 0,573 Glucose metabolism 
disorders 

Mgat2 94273 mannosyl (alpha-1,6-)-glycoprotein beta-
1,2-N-acetylglucosaminyltransferase 

-0,135 -0,436 -0,544 Glucose metabolism 
disorders 

Prox1 305066 prospero homeobox 1 -0,09 -0,114 -0,336 Glucose metabolism 
disorders 

Psmc3 29677 proteasome (prosome, macropain) 26S 
subunit, ATPase, 3 

0,102 0,287 0,326 Glucose metabolism 
disorders 

Psmd8 292766 proteasome (prosome, macropain) 26S 
subunit, non-ATPase, 8 

0,103 0,179 0,238 Glucose metabolism 
disorders 

Ramp1 58965 receptor (G protein-coupled) activity 
modifying protein 1 

-0,133 -0,213 -0,299 Glucose metabolism 
disorders 

Steap4 499991 STEAP family member 4 -0,15 -0,332 -0,404 Glucose metabolism 
disorders 

Hmgcs2 24450 3-hydroxy-3-methylglutaryl-CoA synthase 
2 (mitochondrial) 

0,118 0,469 0,471 Ketogenesis 

Pex11a 85249 peroxisomal biogenesis factor 11 alpha 0,209 1,368 1,387 Peroxisome biogenesis 
Pex16 311203 peroxisomal biogenesis factor 16 0,208 0,405 0,439 Peroxisome biogenesis 
Pex5 312703 peroxisomal biogenesis factor 5 0,077 0,326 0,284 Peroxisome biogenesis 
Dhrs4 266686 dehydrogenase/reductase (SDR family) 

member 4 
0,005 0,363 0,294 Retinol metabolism 

*significant at p ≤ 0.1 
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Table 2. Main upstream regulators predicted to regulate effects caused by Mid PFNA ± Mix. An arrow indicating 
up- or downregulation marks upstream regulators that are differentially expressed genes (DEG). Negative z-scores 
indicate that the upstream regulator is inactivated, whereas positive z-scores indicate activation. 

Upstream 
regulator 

Mid PFNA + Mix Mid PFNA Genes 

z-score p-value z-score p-value  

PPARα 

Peroxisome 
proliferator-
activated 
receptor α 

5.3 2e-24 5.1 5e-28 Abcd3, Acaa1, Acaa2*, Acadl, Acadm, 
Acads, Acadvl, Acat1, Acot1*, Acot2, 
Acox1, Adtrp, Cd36, Cpt2, Crot, 
Cyp2b6, Cyp4a11, Cyp4a14, Decr1, 
Decr2, Ech1, Eci2, Ehhadh, Fabp5, 
Gpd1, Hadh, Hadha, Hadhb, Rt1-Ba*, 
Hmgcs2, Mlycd, Pex11a, Plin5, 
Slc25a20, Slc27a2, Vnn1, Aadac+, 
Apoa2+, Cfh+, Ftcd+, H2afz+ 

KLF15 
Krüppel-like 
factor 5 

3.2 3e-18 3.0 5e-17 Acadl, Acadm, Acadvl, Acot1*, 
Acox1, Cd36, Cpt2, Decr1, Ehhadh, 
Fabp5, Hadha, Hadhb, Mlycd, 
Slc25a20 

ACOX1 ↑ 
Peroxisomal 
acyl-
coenzyme A 
oxidase 1 

-2.4 5e-15 -2.474 3e-13 Abcd3, Acaa1, Acadl, Acadm, Acadvl, 
Acot2, Acox1, Aig1, Cd36, Crat, 
Cyp4a11, Cyp4a14, Ehhadh, Rt1-Ba*, 
Hsd11b1*, Pex11a, Slc27a2, 
Tnfrsf10a*, Hspa5+ 

PPARγ 

Peroxisome 
proliferator-
activated 
receptor α 

3.9 8e-14 3.3 1e-13 Acaa1, Acaa2*, Acadl, Acadm, Acads, 
Acox1, Adrb3*, Cd36, Cpt2, Crat, 
Cyp4a11, Cyp4a14, Ehhadh, Fabp5, 
Fbp2*, Gpd1, Hadha, Hadhb, Hmgcs2, 
Mlycd, Pepd, Pex11a, Plin5, Slc25a20, 
Vnn1, Apoa2+, Sdc1+ 

EHHADH ↑ 

Enoyl-
Coenzyme 
A, 
Hydratase/3-
Hydroxyacyl 
Coenzyme A 
Dehydrogena
se 

-2.8 1e-12 -2.8 6e-13 Abcd3, Acaa1, Acot2, Acox1, Cd36, 
Cyp4a11, Cyp4a14, Pex11a 

HSD17B4 ↑ 
Peroxisomal 
multifunction
al enzyme 
type 2 

-3.0 1e-12 -2.8 4e-11 Abcd3, Acaa1, Acot2, Acox1, Cd36, 
Cyp4a11, Cyp4a14, Hoxd13*, Pex11a 

*DEG only present in Mid PFNA + Mix 
+DEG only present in Mid PFNA 
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Figures!

 

Fig.1 The six most significantly different metabolites in the Mix group compared to the control group. In total, 63 metabolites 
were found to be significantly different between the two groups (t-test). The plotted metabolites belong to two metabolite 
classes, diglycerides (DG) and lyso-phosphotidylcholines (lyso-PC) 

 

 

Fig. 2 PLS-DA plot of the heptane fraction correlating the four groups Control (n=10), Low PFNA (n=10), Low PFNA + Mix 
(n=10) and Mix (n=8). The plot illustrates that Mix accounts for a major part of the variance in the dataset 
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Fig. 3 Representative metabolite changes in the Low PFNA + Mix group. Metabolite levels were analyzed statistically for 
each group by comparison to control (t-test). Figure a and d illustrates the case where PFNA alone causes an increase in 
metabolite level, whereas the combination of PFNA and Mix causes a decrease in metabolite level. Only in c and f is the effect 
by PFNA+Mix stronger than Mix alone (# = p-value of 0.053). The plotted metabolites belong to two metabolite classes PC 
(phosphatidylcholine) and DG (diacylglycerol) 

 

 

Fig. 4 Illustration of potential hepatic signaling network from PPAR (and other transcriptional regulators) activation 
through gene expression to development of phenotypical outcomes. Orange indicates predicted activation and blue indicates 
predicted inhibition. Shades of red and green indicates level of increased and decreased gene expression, respectively. The 
network was generated through the use of QIAGEN’s Ingenuity Pathway Analysis (IPA, QIAGEN Redwood City, 
www.qiagen.com/ingenuity) 
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Supplementary Table 1. The composition of Mix is based on the presented ratios that were estimated from human exposure 
levels (Christiansen et al. 2012). These ratios formed the basis for calculation of the rat doses. 

CAS registry 
number 

Compound name Source/use Ratio in 
mixture 
(weight) 

Rat dose 
(mg/kg 
bw/day) 

7380-40-7 bergamottin grapefruit 
constituent 

0.08 0.2 

59870-68-7 glabridin liquorice 
constituent 

0.12 0.3 

80-05-7 bisphenol A plastic additive 0.004 0.01 
94-26-8 butyl paraben preservative 0.21 0.52 
84-74-2 dibutylphtalate (DBP) plasticizer 0.02 0.06 
117-81-7 bis(2-ethylhexyl)phthalate (DEHP) plasticizer 0.03 0.09 
36861-47-9 4-methylbenzylidene camphor (4-MBC) sun filter 0.15 0.38 
5466-77-3 2-Ethylhexyl-4-methoxycinnamate (OMC) sun filter 0.27 0.68 
72-55-9 dichlorodiphenyldichloroethylene (p,p´-

DDE) 
pesticide 0.002 0.006 

133855-98-8 epoxiconazole pesticide 0.02 0.05 
330-55-2 linuron pesticide 0.002 0.004 
67747-09-5 prochloraz pesticide 0.025 0.06 
32809-16-8 procymidone pesticide 0.035 0.09 
50471-44-8 vinclozolin pesticide 0.021 0.05 
Total dose    2.50 
!
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Supplementary Table 2. Number of differentially expressed genes up- or downregulated by Mid PFNA with 
or without Mix (p ≤ 0.05) based on a statistical comparison to the control group. These genes were included 
in the pathway analysis. 

Direction of regulation 
Treatment group 

Mid PFNA Mid PFNA + Mix 

Up 140 136 

Down 42 67 

Total 182 203 

!
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Supplementary Table 3. Significantly differentially expressed genes (p ≤ 0.05 and p ≤ 0.1) in Mid PFNA ± Mix and Low PFNA + Mix, 
respectively. 

Symbol Entrez ID Entrez Gene Name 
Log2(fold change) 

Functional network Low 
PFNA 
Mix 

Mid 
PFNA 

Mid 
PFNA 
Mix 

Upregulated 
Cyp4a11 50549 cytochrome P450, family 4, subfamily 

A, polypeptide 11 
0,643 2,419 2,568 Energy Production, Lipid Metabolism 

Cyp2b6 361523| 
24300 

cytochrome P450, family 2, subfamily 
B, polypeptide 6 

0,971 2,12 2,561 Energy Production, Lipid Metabolism 

Aldh1a1 24188 aldehyde dehydrogenase 1 family, 
member A1 

0,377 2,077 2,523 Energy Production, Lipid Metabolism 

Vnn1 29142 vanin 1 0,287 2,036 2,059 Energy Production, Lipid Metabolism 
Acot1 50559 acyl-CoA thioesterase 1 1,118 1,278 2,052 Energy Production, Lipid Metabolism 
Colq 29755 collagen-like tail subunit (single strand 

of homotrimer) of asymmetric 
acetylcholinesterase 

0,528 1,514 1,954 Cell-To-Cell Signaling and Interaction, 
Cellular Assembly and Organization, 
Cellular Development 

Aig1 292486 androgen-induced 1 0,199 1,788 1,908 Energy Production, Lipid Metabolism 
Cd36 29184 CD36 molecule (thrombospondin 

receptor) 
0,158 1,276 1,867 Energy Production, Lipid Metabolism 

Ehhadh 171142 enoyl-CoA, hydratase/3-hydroxyacyl 
CoA dehydrogenase 

0,184 1,702 1,86 Energy Production, Lipid Metabolism 

Ech1 64526 enoyl CoA hydratase 1, peroxisomal 0,459 1,503 1,856 Energy Production, Lipid Metabolism 
Crat 311849 carnitine O-acetyltransferase 0,372 1,55 1,71 Energy Production, Lipid Metabolism 
Acot4 681337 acyl-CoA thioesterase 4 0,264 1,115 1,585 Lipid Metabolism, Small Molecule 

Biochemistry, Nucleic Acid Metabolism 
Slc39a5 362812 solute carrier family 39 (zinc 

transporter), member 5 
0,362 0,911 1,562 Energy Production, Lipid Metabolism 

Acsm5 361637 acyl-CoA synthetase medium-chain 
family member 5 

0,764 1,547 1,554 Energy Production, Lipid Metabolism 

Acot2 192272 acyl-CoA thioesterase 2 0,241 1,312 1,497 Energy Production, Lipid Metabolism 
Cyp2b23 292728 cytochrome P450, family 2, subfamily 

b, polypeptide 23 
0,354 1,021 1,44 Energy Production, Lipid Metabolism 

Acot1 314304 acyl-CoA thioesterase 1 0,386 0,984 1,427 Lipid Metabolism, Small Molecule 
Biochemistry, Nucleic Acid Metabolism 

Pex11a 85249 peroxisomal biogenesis factor 11 alpha 0,209 1,368 1,387 Energy Production, Lipid Metabolism 
Decr1 117543 2,4-dienoyl CoA reductase 1, 

mitochondrial 
0,234 1,364 1,344 Energy Production, Lipid Metabolism 

Cyp4a14 298423| 
24306 

cytochrome P450, family 4, subfamily a, 
polypeptide 14 

0,333 1,201 1,335 Energy Production, Lipid Metabolism 

Ces2e 192257 carboxylesterase 2E 0,731 0,557 1,325 Energy Production, Lipid Metabolism 

Hdc 24443 histidine decarboxylase 0,267 1,03 1,309 Energy Production, Lipid Metabolism 

Ephx2 65030 epoxide hydrolase 2, cytoplasmic 0,243 1,201 1,267 Energy Production, Lipid Metabolism 

Cyp17a1 25146 cytochrome P450, family 17, subfamily 
A, polypeptide 1 

0,337 1,358 1,254 Energy Production, Lipid Metabolism 

Crot 83842 carnitine O-octanoyltransferase 0,19 1,115 1,219 Energy Production, Lipid Metabolism 

Cyp2j2 65210 cytochrome P450, family 2, subfamily J, 
polypeptide 2 

0,237 1,018 1,187 Energy Production, Lipid Metabolism 

Lppr1 298062 lipid phosphate phosphatase-related 
protein type 1 

0,29 1,236 1,091 Other 

Fbp2 114508 fructose-1,6-bisphosphatase 2 0,272 0,642 1,081 Energy Production, Lipid Metabolism 

Hsdl2 313200 hydroxysteroid dehydrogenase like 2 0,095 0,989 1,038 Energy Production, Lipid Metabolism 

Ces2c 
(includes 
others) 

100910144| 
100910040| 

171118 

carboxylesterase 2C 0,282 0,705 1,029 Energy Production, Lipid Metabolism 

Acaa1 501072| 
24157 

acetyl-CoA acyltransferase 1 0,113 1,008 0,985 Energy Production, Lipid Metabolism 

H19 309122 H19, imprinted maternally expressed 
transcript (non-protein coding) 

0,393 1,142 0,981 Energy Production, Lipid Metabolism 

Acaa2 170465 acetyl-CoA acyltransferase 2 0,394 0,556 0,969 Energy Production, Lipid Metabolism 

Decr2 64461 2,4-dienoyl CoA reductase 2, 
peroxisomal 

0,275 0,831 0,944 Energy Production, Lipid Metabolism 

Nr1i3 65035 nuclear receptor subfamily 1, group I, 
member 3 

0,226 0,787 0,935 Energy Production, Lipid Metabolism 

Lgals2 171134 lectin, galactoside-binding, soluble, 2 0,279 0,829 0,916 Energy Production, Lipid Metabolism 

Scpep1 114861 serine carboxypeptidase 1 0,346 1,013 0,912 Cell-To-Cell Signaling and Interaction, 
Cellular Assembly and Organization, 
Cellular Development 

Prrg4 499847 proline rich Gla (G-carboxyglutamic 
acid) 4 (transmembrane) 

0,224 0,893 0,877 Energy Production, Lipid Metabolism 

Hadhb 171155 hydroxyacyl-CoA dehydrogenase/3-
ketoacyl-CoA thiolase/enoyl-CoA 

0,194 0,8 0,817 Energy Production, Lipid Metabolism 
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Symbol Entrez ID Entrez Gene Name 
Log2(fold change) 

Functional network Low 
PFNA 
Mix 

Mid 
PFNA 

Mid 
PFNA 
Mix 

Upregulated 
hydratase (trifunctional protein), beta 
subunit 

Tex36 499279 testis expressed 36 0,119 1,017 0,812 Cell Cycle, Cellular Movement, Cellular 
Development 

Tmem14c 171432| 
100361993 

transmembrane protein 14C 0,281 0,828 0,808 Energy Production, Lipid Metabolism 

Gde1 60418 glycerophosphodiester 
phosphodiesterase 1 

0,268 0,859 0,792 Cellular Compromise, Cellular Function and 
Maintenance, Lipid Metabolism 

Cpt2 25413 carnitine palmitoyltransferase 2 0,163 0,565 0,786 Energy Production, Lipid Metabolism 

Reep6 362835 receptor accessory protein 6 0,192 0,658 0,784 Energy Production, Lipid Metabolism 

Cyp2e1 25086 cytochrome P450, family 2, subfamily 
E, polypeptide 1 

0,339 0,736 0,779 Other 

Sorl1 300652 sortilin-related receptor, L(DLR class) A 
repeats containing 

0,309 0,64 0,761 Energy Production, Lipid Metabolism 

Cyp2c19 293989 cytochrome P450, family 2, subfamily 
C, polypeptide 19 

0,128 0,686 0,756 Energy Production, Lipid Metabolism 

Hadha 170670 hydroxyacyl-CoA dehydrogenase/3-
ketoacyl-CoA thiolase/enoyl-CoA 
hydratase (trifunctional protein), alpha 
subunit 

0,144 0,659 0,746 Energy Production, Lipid Metabolism 

Acox1 50681 acyl-CoA oxidase 1, palmitoyl 0,074 0,601 0,745 Energy Production, Lipid Metabolism 
Lipi 288322 lipase, member I 0,056 -0,04 0,731 Energy Production, Lipid Metabolism 
Nudt7 361413 nudix (nucleoside diphosphate linked 

moiety X)-type motif 7 
0,163 0,622 0,731 Other 

Acy3 293653 aspartoacylase (aminocyclase) 3 0,393 0,821 0,721 Hepatocellular Peroxisome Proliferation, 
Cellular Assembly and Organization, 
Cellular Function and Maintenance 

Dnhd1 690115 dynein heavy chain domain 1 0,177 0,384 0,706 Cell-To-Cell Signaling and Interaction, 
Cellular Assembly and Organization, 
Cellular Development 

Fam195a 685545 family with sequence similarity 195, 
member A 

0,165 0,656 0,705 Energy Production, Lipid Metabolism 

Slc25a20 117035 solute carrier family 25 
(carnitine/acylcarnitine translocase), 
member 20 

0,098 0,668 0,692 Energy Production, Lipid Metabolism 

Pcsk4 171085 proprotein convertase subtilisin/kexin 
type 4 

0,029 0,509 0,686 Molecular Transport, Protein Trafficking, 
Cellular Assembly and Organization 

Abcd3 25270 ATP-binding cassette, sub-family D 
(ALD), member 3 

0,093 0,729 0,685 Energy Production, Lipid Metabolism 

Cpne4 367160 copine IV 0,297 0,782 0,673 Energy Production, Lipid Metabolism 
Acot12 170570 acyl-CoA thioesterase 12 0,245 0,557 0,666 Energy Production, Lipid Metabolism 
Naprt1 315085 nicotinate phosphoribosyltransferase 

domain containing 1 
0,238 0,579 0,661 Cell-To-Cell Signaling and Interaction, 

Cellular Assembly and Organization, 
Cellular Development 

Rrm1 685579 ribonucleotide reductase M1 0,154 0,006 0,66 Molecular Transport, Protein Trafficking, 
Cellular Assembly and Organization 

Wfdc3 296366 WAP four-disulfide core domain 3 0,203 0,714 0,656 Energy Production, Lipid Metabolism 
Acad11 315973 acyl-CoA dehydrogenase family, 

member 11 
0,115 0,62 0,656 Energy Production, Lipid Metabolism 

Ca7 291819 carbonic anhydrase VII -0,06 0,817 0,643 Energy Production, Lipid Metabolism 
Gpd1 60666 glycerol-3-phosphate dehydrogenase 1 

(soluble) 
0,165 0,591 0,642 Energy Production, Lipid Metabolism 

Gcdh 364975 glutaryl-CoA dehydrogenase 0,175 0,576 0,638 Energy Production, Lipid Metabolism 
Spink1/spink
3 

266602| 
24833 

serine peptidase inhibitor, Kazal type 3 0,321 1,319 0,633 Cell-To-Cell Signaling and Interaction, 
Cellular Assembly and Organization, 
Cellular Development 

Aqp11 286758 aquaporin 11 0,082 0,508 0,632 Energy Production, Lipid Metabolism 
Pdzk1 65144 PDZ domain containing 1 0,167 0,542 0,63 Lipid Metabolism, Small Molecule 

Biochemistry, Nucleic Acid Metabolism 
Plin5 501283 perilipin 5 0,198 0,595 0,61 Energy Production, Lipid Metabolism 
Acot7 26759 acyl-CoA thioesterase 7 0,019 0,431 0,593 Energy Production, Lipid Metabolism 
Adtrp 361228 androgen-dependent TFPI-regulating 

protein 
0,174 0,602 0,586 Energy Production, Lipid Metabolism 

Orc3 313138 origin recognition complex, subunit 3 0,258 0,198 0,575 Lipid Metabolism, Small Molecule 
Biochemistry, Nucleic Acid Metabolism 

Lef1 161452 lymphoid enhancer-binding factor 1 0,1 0,36 0,573 Energy Production, Lipid Metabolism 
Slc27a2 65192 solute carrier family 27 (fatty acid 

transporter), member 2 
0,215 0,543 0,57 Energy Production, Lipid Metabolism 

Galk1 287835 galactokinase 1 0,146 0,38 0,569 Energy Production, Lipid Metabolism 
Eci2 291075 enoyl-CoA delta isomerase 2 0,117 0,577 0,548 Energy Production, Lipid Metabolism 

Aco1 50655 aconitase 1, soluble 0,12 0,337 0,544 Drug Metabolism, Small Molecule 
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Symbol Entrez ID Entrez Gene Name 
Log2(fold change) 

Functional network Low 
PFNA 
Mix 

Mid 
PFNA 

Mid 
PFNA 
Mix 

Upregulated 
Biochemistry, Cell-To-Cell Signaling and 
Interaction 

Ces2a/ces2i 246252| 
292152 

carboxylesterase 2A 0,32 0,676 0,54 Other 

Gnat3 286924 guanine nucleotide binding protein, 
alpha transducing 3 

0,001 0,534 0,539 Cell-To-Cell Signaling and Interaction, 
Cellular Assembly and Organization, 
Cellular Development 

Dtwd2 361326 DTW domain containing 2 0,245 0,078 0,53 Cell-To-Cell Signaling and Interaction, 
Cellular Assembly and Organization, 
Cellular Development 

Fn3k 498034 fructosamine 3 kinase 0,155 0,711 0,528 Carbohydrate Metabolism, Nucleic Acid 
Metabolism, Small Molecule Biochemistry 

Ntrk1 59109 neurotrophic tyrosine kinase, receptor, 
type 1 

0,131 0,562 0,528 Cell Morphology, Cellular Assembly and 
Organization, Cellular Development 

Ccdc185 289334 coiled-coil domain containing 185 0,158 -0,18 0,521 Cell-To-Cell Signaling and Interaction, 
Cellular Assembly and Organization, 
Cellular Development 

Vill 301057 villin-like 0,166 0,521 0,52 Hepatocellular Peroxisome Proliferation, 
Cellular Assembly and Organization, 
Cellular Function and Maintenance 

Asb5 361187 ankyrin repeat and SOCS box 
containing 5 

0,088 0,778 0,513 Hepatocellular Peroxisome Proliferation, 
Cellular Assembly and Organization, 
Cellular Function and Maintenance 

Nagk 297393 N-acetylglucosamine kinase 0,136 0,407 0,508 Energy Production, Lipid Metabolism 

Pepd 292808 peptidase D 0,15 0,48 0,506 Energy Production, Lipid Metabolism 

Mecr 29470 mitochondrial trans-2-enoyl-CoA 
reductase 

0,229 0,634 0,504 Energy Production, Lipid Metabolism 

Tmem120a 288591 transmembrane protein 120A 0,133 0,364 0,502 Energy Production, Lipid Metabolism 

Acat1 25014 acetyl-CoA acetyltransferase 1 -0,111 0,591 0,497 Energy Production, Lipid Metabolism 

Ccbl1 311844 cysteine conjugate-beta lyase, 
cytoplasmic 

0,142 0,268 0,49 Energy Production, Lipid Metabolism 

Acadvl 25363 acyl-CoA dehydrogenase, very long 
chain 

0,047 0,413 0,482 Energy Production, Lipid Metabolism 

Elovl2 498728 ELOVL fatty acid elongase 2 0,352 0,518 0,478 Cellular Compromise, Cellular Function and 
Maintenance, Lipid Metabolism 

Map4k2 293694 mitogen-activated protein kinase kinase 
kinase kinase 2 

0,09 0,393 0,476 Cell Morphology, Cellular Assembly and 
Organization, Cellular Development 

Rnase9 364301 ribonuclease, RNase A family, 9 (non-
active) 

0,266 0,135 0,475 Energy Production, Lipid Metabolism 

Apoa2 25649 apolipoprotein A-II 0,321 0,504 0,474 Energy Production, Lipid Metabolism 

Spdef 689210 SAM pointed domain containing ETS 
transcription factor 

0,187 -0,032 0,471 Energy Production, Lipid Metabolism 

Hmgcs2 24450 3-hydroxy-3-methylglutaryl-CoA 
synthase 2 (mitochondrial) 

0,118 0,469 0,471 Energy Production, Lipid Metabolism 

Ptk2b 50646 protein tyrosine kinase 2 beta 0,175 0,607 0,47 Cell Morphology, Cellular Assembly and 
Organization, Cellular Development 

Acadm 24158 acyl-CoA dehydrogenase, C-4 to C-12 
straight chain 

0,15 0,47 0,47 Energy Production, Lipid Metabolism 

Prodh2 361538 proline dehydrogenase (oxidase) 2 0,197 0,417 0,47 Molecular Transport, Protein Trafficking, 
Cellular Assembly and Organization 

Impa2 282636 inositol(myo)-1(or 4)-monophosphatase 
2 

0,389 0,326 0,469 Energy Production, Lipid Metabolism 

Pink1 298575 PTEN induced putative kinase 1 0,19 0,375 0,467 Energy Production, Lipid Metabolism 

Iba57 363611 IBA57, iron-sulfur cluster assembly 
homolog (S. cerevisiae) 

0,044 0,43 0,463 Energy Production, Lipid Metabolism 

Sirt4 304539 sirtuin 4 0,162 0,291 0,461 Energy Production, Lipid Metabolism 

Psrc1 691380 proline/serine-rich coiled-coil 1 0,235 0,104 0,451 Drug Metabolism, Small Molecule 
Biochemistry, Cell-To-Cell Signaling and 
Interaction 

Cyp2a1 24894 cytochrome P450, family 2, subfamily a, 
polypeptide 1 

0,085 0,419 0,45 Molecular Transport, Protein Trafficking, 
Cellular Assembly and Organization 

Aco2 79250 aconitase 2, mitochondrial -0,065 0,428 0,448 Energy Production, Lipid Metabolism 

Depdc1 295538 DEP domain containing 1 0,166 -0,04 0,444 Energy Production, Lipid Metabolism 

Pex16 311203 peroxisomal biogenesis factor 16 0,208 0,405 0,439 Molecular Transport, Protein Trafficking, 
Cellular Assembly and Organization 

Plcl2 301173 phospholipase C-like 2 0,157 0,429 0,436 Energy Production, Lipid Metabolism 

Tssk1b 288358 testis-specific serine kinase 1B 0,107 -0,011 0,433 Cell Morphology, Cellular Assembly and 
Organization, Cellular Development 

Slc39a4 300051 solute carrier family 39 (zinc 
transporter), member 4 

-0,035 0,658 0,428 Energy Production, Lipid Metabolism 
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Symbol Entrez ID Entrez Gene Name 
Log2(fold change) 

Functional network Low 
PFNA 
Mix 

Mid 
PFNA 

Mid 
PFNA 
Mix 

Upregulated 
Acadl 25287 acyl-CoA dehydrogenase, long chain 0,05 0,442 0,419 Energy Production, Lipid Metabolism 

Acads 64304 acyl-CoA dehydrogenase, C-2 to C-3 
short chain 

0,056 0,326 0,416 Energy Production, Lipid Metabolism 

Hadh 113965 hydroxyacyl-CoA dehydrogenase 0,056 0,418 0,4 Energy Production, Lipid Metabolism 

Kiaa1033 314690 KIAA1033 0,246 0,078 0,393 Energy Production, Lipid Metabolism 

Nckap1 58823 NCK-associated protein 1 0,169 0,26 0,393 Lipid Metabolism, Small Molecule 
Biochemistry, Nucleic Acid Metabolism 

Calcr 116506 calcitonin receptor 0,225 0,114 0,392 Lipid Metabolism, Small Molecule 
Biochemistry, Nucleic Acid Metabolism 

Mnd1 295160 meiotic nuclear divisions 1 homolog (S. 
cerevisiae) 

0,089 0,505 0,377 Cell-To-Cell Signaling and Interaction, 
Cellular Assembly and Organization, 
Cellular Development 

Immt 312444 inner membrane protein, mitochondrial -0,011 0,345 0,376 Energy Production, Lipid Metabolism 

Iqsec2 685244 IQ motif and Sec7 domain 2 0,005 0,331 0,375 Molecular Transport, Protein Trafficking, 
Cellular Assembly and Organization 

Apmap 366227 adipocyte plasma membrane associated 
protein 

0,168 0,496 0,369 Cell-To-Cell Signaling and Interaction, 
Cellular Assembly and Organization, 
Cellular Development 

Fgf1 25317 fibroblast growth factor 1 (acidic) 0,142 0,291 0,368 Cell Death and Survival, Visual System 
Development and Function, Cell-To-Cell 
Signaling and Interaction 

Lactb 300803 lactamase, beta -0,048 0,486 0,36 Hepatocellular Peroxisome Proliferation, 
Cellular Assembly and Organization, 
Cellular Function and Maintenance 

Sucla2 361071 succinate-CoA ligase, ADP-forming, 
beta subunit 

0,145 0,43 0,357 Energy Production, Lipid Metabolism 

Blvrb 292737 biliverdin reductase B (flavin reductase 
(NADPH)) 

0,148 0,325 0,354 Energy Production, Lipid Metabolism 

Cabp1 171051 calcium binding protein 1 0,05 0,13 0,344 Cell Morphology, Cellular Assembly and 
Organization, Cellular Development 

Hoxd13 288154 homeobox D13 0,208 0,003 0,338 Energy Production, Lipid Metabolism 

Meiob 685099 meiosis specific with OB domains -0,052 0,626 0,334 Post-Translational Modification, Cancer, 
Organismal Injury and Abnormalities 

Dqx1 680434 DEAQ box RNA-dependent ATPase 1 0,033 0,188 0,334 Cell Morphology, Cellular Assembly and 
Organization, Cellular Development 

Rgs5 54294 regulator of G-protein signaling 5 0,185 0,498 0,332 Cellular Compromise, Cellular Function and 
Maintenance, Lipid Metabolism 

Chchd10 361824 coiled-coil-helix-coiled-coil-helix 
domain containing 10 

0,055 0,337 0,327 Energy Production, Lipid Metabolism 

Psmc3 29677 proteasome (prosome, macropain) 26S 
subunit, ATPase, 3 

0,102 0,287 0,326 Cell Morphology, Cellular Assembly and 
Organization, Cellular Development 

Mlycd 85239 malonyl-CoA decarboxylase 0,093 0,316 0,325 Energy Production, Lipid Metabolism 

Pet112 361974 PET112 homolog (yeast) -0,027 0,39 0,313 Hepatocellular Peroxisome Proliferation, 
Cellular Assembly and Organization, 
Cellular Function and Maintenance 

Ldha/RGD15
62690 

500965| 
24533 

lactate dehydrogenase A 0,092 0,393 0,313 Energy Production, Lipid Metabolism 

Trim10 294210 tripartite motif containing 10 0,328* 0,108 0,312 Cell Death and Survival, Visual System 
Development and Function, Cell-To-Cell 
Signaling and Interaction 

Asap1 314961 ArfGAP with SH3 domain, ankyrin 
repeat and PH domain 1 

0,099 0,122 0,31 Cell Morphology, Cellular Assembly and 
Organization, Cellular Development 

Perp 292949 PERP, TP53 apoptosis effector -0,045 0,388 0,305 Hepatocellular Peroxisome Proliferation, 
Cellular Assembly and Organization, 
Cellular Function and Maintenance 

Ppfia4 140592 protein tyrosine phosphatase, receptor 
type, f polypeptide (PTPRF), interacting 
protein (liprin), alpha 4 

0,223 0,07 0,304 Energy Production, Lipid Metabolism 

Fam83c 683506 family with sequence similarity 83, 
member C 

0,14 0,09 0,301 Cell-To-Cell Signaling and Interaction, 
Cellular Assembly and Organization, 
Cellular Development 

Hipk1 365895 homeodomain interacting protein kinase 
1 

0,189 0,011 0,296 Energy Production, Lipid Metabolism 

Dhrs4 266686 dehydrogenase/reductase (SDR family) 
member 4 

0,005 0,363 0,294 Energy Production, Lipid Metabolism 

Ftcd 89833 formimidoyltransferase cyclodeaminase 0,111 0,288 0,291 Energy Production, Lipid Metabolism 

Tcea2 29575 transcription elongation factor A (SII), 2 0,054 0,25 0,288 Energy Production, Lipid Metabolism 

Abhd12 499913 abhydrolase domain containing 12 0,051 0,356 0,286 Energy Production, Lipid Metabolism 

Txn2 79462 thioredoxin 2 0,119 0,358 0,285 Energy Production, Lipid Metabolism 

Pex5 312703 peroxisomal biogenesis factor 5 0,077 0,326 0,284 Energy Production, Lipid Metabolism 
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Symbol Entrez ID Entrez Gene Name 
Log2(fold change) 

Functional network Low 
PFNA 
Mix 

Mid 
PFNA 

Mid 
PFNA 
Mix 

Upregulated 
Etfdh 295143 electron-transferring-flavoprotein 

dehydrogenase 
0,031 0,354 0,284 Cell-To-Cell Signaling and Interaction, 

Cellular Assembly and Organization, 
Cellular Development 

Suclg1 114597 succinate-CoA ligase, alpha subunit 0,024 0,275 0,284 Energy Production, Lipid Metabolism 

Ndufs3 295923 NADH dehydrogenase (ubiquinone) Fe-
S protein 3, 30kDa (NADH-coenzyme 
Q reductase) 

0,085 0,336 0,28 Cellular Compromise, Cellular Function and 
Maintenance, Lipid Metabolism 

Hsd17b4 79244 hydroxysteroid (17-beta) dehydrogenase 
4 

0,113 0,295 0,278 Other 

Ndufa10 678759| 
316632 

NADH dehydrogenase (ubiquinone) 1 
alpha subcomplex, 10, 42kDa 

0,042 0,3 0,275 Energy Production, Lipid Metabolism 

Wdr13 317370 WD repeat domain 13 0,15 0,072 0,273 Molecular Transport, Protein Trafficking, 
Cellular Assembly and Organization 

Rsph3 361476 radial spoke 3 homolog 
(Chlamydomonas) 

0,202 0,42 0,269 Energy Production, Lipid Metabolism 

Lalba 24528 lactalbumin, alpha- 0,381 0,08 0,268 Molecular Transport, Behavior, Post-
Translational Modification 

Tert 301965 telomerase reverse transcriptase 0,098 0,122 0,263 Other 

Tnfrsf10a 364420 tumor necrosis factor receptor 
superfamily, member 10a 

0,042 0,138 0,255 Drug Metabolism, Small Molecule 
Biochemistry, Cell-To-Cell Signaling and 
Interaction 

Aadac 57300 arylacetamide deacetylase 0,088 0,389 0,254 Energy Production, Lipid Metabolism 

Lrpprc 313867 leucine-rich pentatricopeptide repeat 
containing 

0,082 0,279 0,253 Carbohydrate Metabolism, Nucleic Acid 
Metabolism, Small Molecule Biochemistry 

Etfa 300726 electron-transfer-flavoprotein, alpha 
polypeptide 

-0,012 0,372 0,252 Cell-To-Cell Signaling and Interaction, 
Cellular Assembly and Organization, 
Cellular Development 

Idh3b 94173 isocitrate dehydrogenase 3 (NAD+) beta 0,003 0,325 0,247 Carbohydrate Metabolism, Nucleic Acid 
Metabolism, Small Molecule Biochemistry 

Mfn2 100911485| 
64476 

mitofusin 2 0,023 0,264 0,24 Energy Production, Lipid Metabolism 

Psmd8 292766 proteasome (prosome, macropain) 26S 
subunit, non-ATPase, 8 

0,103 0,179 0,238 Cell Morphology, Cellular Assembly and 
Organization, Cellular Development 

Cox11 690300 cytochrome c oxidase assembly 
homolog 11 (yeast) 

0,24 0,593 0,235 Hepatocellular Peroxisome Proliferation, 
Cellular Assembly and Organization, 
Cellular Function and Maintenance 

Micu2 171433 mitochondrial calcium uptake 2 0,13 0,295 0,232 Cell-To-Cell Signaling and Interaction, 
Cellular Assembly and Organization, 
Cellular Development 

Or10a4 293375 olfactory receptor, family 10, subfamily 
A, member 4 

0,136 0,021 0,222 Nervous System Development and Function, 
Cell Morphology, Cellular Movement 

Glrx5 362776 glutaredoxin 5 0,039 0,431 0,221 Energy Production, Lipid Metabolism 
C6orf136 294231 chromosome 6 open reading frame 136 0,16 0,336 0,203 Energy Production, Lipid Metabolism 
Smim20 501923 small integral membrane protein 20 0,108 0,319 0,198 Hepatocellular Peroxisome Proliferation, 

Cellular Assembly and Organization, 
Cellular Function and Maintenance 

Vps26a 361846 vacuolar protein sorting 26 homolog A 
(S. pombe) 

0,12 0,315 0,195 Energy Production, Lipid Metabolism 

Fbxl16 494223 F-box and leucine-rich repeat protein 16 0,23* 0,03 0,182 Cell Death and Survival, Visual System 
Development and Function, Cell-To-Cell 
Signaling and Interaction 

Ndufb9 299954 NADH dehydrogenase (ubiquinone) 1 
beta subcomplex, 9, 22kDa 

0,039 0,214 0,18 Energy Production, Lipid Metabolism 

Tgm5 691932 transglutaminase 5 0,381* 0,098 0,177 Cell Death and Survival, Visual System 
Development and Function, Cell-To-Cell 
Signaling and Interaction 

Olfr1305 404796 olfactory receptor 1305 0,287 0,091 0,172 Other 
Sdhb 298596 succinate dehydrogenase complex, 

subunit B, iron sulfur (Ip) 
0,043 0,244 0,17 Energy Production, Lipid Metabolism 

Arhgap24 305156 Rho GTPase activating protein 24 0,451* -0,014 0,164 Cell Death and Survival, Visual System 
Development and Function, Cell-To-Cell 
Signaling and Interaction 

Endod1 363015 endonuclease domain containing 1 0,167 0,269 0,162 Cell-To-Cell Signaling and Interaction, 
Cellular Assembly and Organization, 
Cellular Development 

Nsmce1 361645 non-SMC element 1 homolog (S. 
cerevisiae) 

-0,009 0,218 0,161 Energy Production, Lipid Metabolism 

Prl3b1 24283 prolactin family 3, subfamily b, member 
1 

0,224 -0,042 0,156 Molecular Transport, Behavior, Post-
Translational Modification 

Mrps18a 301249 mitochondrial ribosomal protein S18A 0,03 0,259 0,123 Cell-To-Cell Signaling and Interaction, 
Cellular Assembly and Organization, 
Cellular Development 

Ndufab1 293453 NADH dehydrogenase (ubiquinone) 1, 
alpha/beta subcomplex, 1, 8kDa 

0,051 0,269 0,116 Cellular Compromise, Cellular Function and 
Maintenance, Lipid Metabolism 
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Symbol Entrez ID Entrez Gene Name 
Log2(fold change) 

Functional network Low 
PFNA 
Mix 

Mid 
PFNA 

Mid 
PFNA 
Mix 

Upregulated 
Downregulated 

Fabp5 140868 fatty acid binding protein 5 (psoriasis-
associated) 

-0,385 -1,392 -1,508 Cell Morphology, Cellular Assembly and 
Organization, Cellular Development 

Erich5 681820 glutamate-rich 5 -0,895 -0,956 -1,372 Cell-To-Cell Signaling and Interaction, 
Cellular Assembly and Organization, 
Cellular Development 

Cxcl13 498335 chemokine (C-X-C motif) ligand 13 -0,39 -0,817 -1,185 Drug Metabolism, Small Molecule 
Biochemistry, Cell-To-Cell Signaling and 
Interaction 

Ca1 310218 carbonic anhydrase I -0,003 -0,78 -1,132 Energy Production, Lipid Metabolism 
Hsd11b1 25116 hydroxysteroid (11-beta) dehydrogenase 

1 
-0,261 -0,446 -1,082 Drug Metabolism, Small Molecule 

Biochemistry, Cell-To-Cell Signaling and 
Interaction 

Phgdh 58835 phosphoglycerate dehydrogenase -0,308 -1,271 -0,976 Energy Production, Lipid Metabolism 
Mon1b 307868 MON1 secretory trafficking family 

member B 
-0,255 -0,317 -0,877 Energy Production, Lipid Metabolism 

Isyna1 290651 inositol-3-phosphate synthase 1 -0,1 -0,906 -0,825 Energy Production, Lipid Metabolism 
Ddc 24311 dopa decarboxylase (aromatic L-amino 

acid decarboxylase) 
-0,355 -0,591 -0,634 Energy Production, Lipid Metabolism 

Nfic 29228 nuclear factor I/C (CCAAT-binding 
transcription factor) 

-0,341 -0,262 -0,631 Drug Metabolism, Small Molecule 
Biochemistry, Cell-To-Cell Signaling and 
Interaction 

Ptpn13 498331 protein tyrosine phosphatase, non-
receptor type 13 (APO-1/CD95 (Fas)-
associated phosphatase) 

-0,361 -0,411 -0,574 Lipid Metabolism, Small Molecule 
Biochemistry, Nucleic Acid Metabolism 

Kcnn2 54262 potassium intermediate/small 
conductance calcium-activated channel, 
subfamily N, member 2 

-0,271 -0,197 -0,552 Lipid Metabolism, Small Molecule 
Biochemistry, Nucleic Acid Metabolism 

Xrcc2 499966 X-ray repair complementing defective 
repair in Chinese hamster cells 2 

-0,485 -0,378 -0,547 Energy Production, Lipid Metabolism 

Spcs2 293142 signal peptidase complex subunit 2 
homolog (S. cerevisiae) 

-0,311 -0,345 -0,544 Molecular Transport, Protein Trafficking, 
Cellular Assembly and Organization 

Mgat2 94273 mannosyl (alpha-1,6-)-glycoprotein 
beta-1,2-N-
acetylglucosaminyltransferase 

-0,135 -0,436 -0,544 Energy Production, Lipid Metabolism 

Mpc1 171087 mitochondrial pyruvate carrier 1 -0,185 -0,371 -0,539 Energy Production, Lipid Metabolism 
Dap 64322 death-associated protein -0,066 -0,778 -0,529 Energy Production, Lipid Metabolism 
Cacna1h 114862 calcium channel, voltage-dependent, T 

type, alpha 1H subunit 
-0,42 -0,288 -0,527 Lipid Metabolism, Small Molecule 

Biochemistry, Nucleic Acid Metabolism 
Adora1 29290 adenosine A1 receptor -0,155 -0,916 -0,519 Amino Acid Metabolism, Drug Metabolism, 

Endocrine System Development and 
Function 

March9 679272 membrane-associated ring finger 
(C3HC4) 9 

-0,115 -0,454 -0,518 Other 

S1pr1 29733 sphingosine-1-phosphate receptor 1 -0,09 -0,272 -0,493 Cell Morphology, Cellular Assembly and 
Organization, Cellular Development 

Cks1b 499655 CDC28 protein kinase regulatory 
subunit 1B 

-0,185 -0,465 -0,491 Energy Production, Lipid Metabolism 

Znf25 100158232 zinc finger protein 25 -0,302 -0,29 -0,48 Cell-To-Cell Signaling and Interaction, 
Cellular Assembly and Organization, 
Cellular Development 

Lhx6 311901 LIM homeobox 6 -0,151 -0,462 -0,478 Energy Production, Lipid Metabolism 

Sdf2l1 680945 stromal cell-derived factor 2-like 1 -0,194 -0,638 -0,477 Cellular Compromise, Cellular Function and 
Maintenance, Lipid Metabolism 

Nipal3 502990 NIPA-like domain containing 3 -0,364 -0,32 -0,474 Cell Morphology, Cellular Assembly and 
Organization, Cellular Development 

Sec11c 266758 SEC11 homolog C (S. cerevisiae) -0,274 -0,444 -0,455 Molecular Transport, Protein Trafficking, 
Cellular Assembly and Organization 

Tmem123 363013 transmembrane protein 123 -0,158 -0,257 -0,447 Molecular Transport, Protein Trafficking, 
Cellular Assembly and Organization 

Map4k4 301363 mitogen-activated protein kinase kinase 
kinase kinase 4 

-0,26 -0,338 -0,44 Other 

Synpo2 499702 synaptopodin 2 -0,317 -0,117 -0,417 Energy Production, Lipid Metabolism 

Dopey2 304077 dopey family member 2 -0,135 -0,453 -0,416 Cell-To-Cell Signaling and Interaction, 
Cellular Assembly and Organization, 
Cellular Development 

Steap4 499991 STEAP family member 4 -0,15 -0,332 -0,404 Energy Production, Lipid Metabolism 

Yipf5 361315 Yip1 domain family, member 5 -0,25 -0,458 -0,394 Cell-To-Cell Signaling and Interaction, 
Cellular Assembly and Organization, 
Cellular Development 

Manf 315989 mesencephalic astrocyte-derived 
neurotrophic factor 

-0,263 -0,425 -0,392 Energy Production, Lipid Metabolism 
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Symbol Entrez ID Entrez Gene Name 
Log2(fold change) 

Functional network Low 
PFNA 
Mix 

Mid 
PFNA 

Mid 
PFNA 
Mix 

Upregulated 
Col14a1 314981 collagen, type XIV, alpha 1 -0,275 -0,233 -0,381 Energy Production, Lipid Metabolism 

Olfr572 684365 olfactory receptor 572 -0,348 -0,102 -0,379 Other 

Ccnk 500715 cyclin K -0,292 -0,079 -0,377 Energy Production, Lipid Metabolism 

Nek7 360850 NIMA-related kinase 7 -0,111 -0,122 -0,376 Energy Production, Lipid Metabolism 

Cfh 155012 complement factor H -0,062 -0,354 -0,373 Energy Production, Lipid Metabolism 

Adrb3 25645 adrenoceptor beta 3 -0,279 -0,134 -0,366 Lipid Metabolism, Small Molecule 
Biochemistry, Nucleic Acid Metabolism 

Ccdc28b 682445 coiled-coil domain containing 28B -0,151 -0,716 -0,362 Energy Production, Lipid Metabolism 

Dnajc3 63880 DnaJ (Hsp40) homolog, subfamily C, 
member 3 

-0,113 -0,279 -0,362 Energy Production, Lipid Metabolism 

Mybph 83708 myosin binding protein H -0,281 -0,231 -0,361 Cell Morphology, Cellular Assembly and 
Organization, Cellular Development 

Chpf 316533 chondroitin polymerizing factor 0,004 -0,524 -0,36 Energy Production, Lipid Metabolism 

Isg20 293052 interferon stimulated exonuclease gene 
20kDa 

0,066 -0,533 -0,36 Energy Production, Lipid Metabolism 

Hook1 313370 hook microtubule-tethering protein 1 -0,09 -0,282 -0,356 Cell Morphology, Cellular Assembly and 
Organization, Cellular Development 

Dynlt3 363448 dynein, light chain, Tctex-type 3 -0,395* -0,297 -0,355 Cell Death and Survival, Visual System 
Development and Function, Cell-To-Cell 
Signaling and Interaction 

Kiaa1919 499462 KIAA1919 -0,237 -0,171 -0,352 Humoral Immune Response, Inflammatory 
Response, Cell Cycle 

Pfkm 65152 phosphofructokinase, muscle -0,388 -0,487 -0,35 Energy Production, Lipid Metabolism 

Kpnb1 24917 karyopherin (importin) beta 1 -0,232 -0,226 -0,35 Molecular Transport, Protein Trafficking, 
Cellular Assembly and Organization 

Nsmf 117536 NMDA receptor synaptonuclear 
signaling and neuronal migration factor 

-0,119 -0,605 -0,345 Cellular Compromise, Cellular Function and 
Maintenance, Lipid Metabolism 

Prox1 305066 prospero homeobox 1 -0,09 -0,114 -0,336 Drug Metabolism, Small Molecule 
Biochemistry, Cell-To-Cell Signaling and 
Interaction 

LOC685792 
(includes 
others) 

363306* similar to Discs large homolog 5 
(Placenta and prostate DLG) (Discs 
large protein P-dlg) 

-0,323 0,036 -0,334 Energy Production, Lipid Metabolism 

Lnx2 360761 ligand of numb-protein X 2 -0,05 -0,245 -0,332 Energy Production, Lipid Metabolism 

C5orf30 501195 chromosome 5 open reading frame 30 -0,207 -0,173 -0,328 Molecular Transport, Protein Trafficking, 
Cellular Assembly and Organization 

Olfr1321 302821 olfactory receptor 1321 -0,433 -0,243 -0,319 Other 

Arl4d 303559 ADP-ribosylation factor-like 4D -0,247 -0,323 -0,316 Cell-To-Cell Signaling and Interaction, 
Cellular Assembly and Organization, 
Cellular Development 

Pld3 361527 phospholipase D family, member 3 -0,127 -0,391 -0,312 Energy Production, Lipid Metabolism 

Myo1d 25485 myosin ID -0,157 -0,601 -0,312 Hepatocellular Peroxisome Proliferation, 
Cellular Assembly and Organization, 
Cellular Function and Maintenance 

Dner 316573 delta/notch-like EGF repeat containing -0,256 -0,086 -0,309 Lipid Metabolism, Small Molecule 
Biochemistry, Nucleic Acid Metabolism 

Mybpc1 362867 myosin binding protein C, slow type -0,149 -0,085 -0,305 Drug Metabolism, Small Molecule 
Biochemistry, Cell-To-Cell Signaling and 
Interaction 

Grifin 117130 galectin-related inter-fiber protein -0,248 -0,236 -0,304 Cell-To-Cell Signaling and Interaction, 
Cellular Assembly and Organization, 
Cellular Development 

Rt1$ba 309621 major histocompatibility complex, class 
II, DQ alpha 1 

-0,244 -0,139 -0,302 Energy Production, Lipid Metabolism 

Ramp1 58965 receptor (G protein-coupled) activity 
modifying protein 1 

-0,133 -0,213 -0,299 Lipid Metabolism, Small Molecule 
Biochemistry, Nucleic Acid Metabolism 

Gja3 79217 gap junction protein, alpha 3, 46kDa -0,192 -0,15 -0,292 Energy Production, Lipid Metabolism 
Hspa5 25617 heat shock 70kDa protein 5 (glucose-

regulated protein, 78kDa) 
-0,081 -0,32 -0,288 Cellular Compromise, Cellular Function and 

Maintenance, Lipid Metabolism 
H2afz 58940 H2A histone family, member Z -0,007 -0,456 -0,284 Energy Production, Lipid Metabolism 

Krtcap2 295243 keratinocyte associated protein 2 -0,11 -0,242 -0,28 Energy Production, Lipid Metabolism 

Slc6a18 29323 solute carrier family 6 (neutral amino 
acid transporter), member 18 

-0,379 -0,229 -0,279 Other 

Ssr3 81784 signal sequence receptor, gamma 
(translocon-associated protein gamma) 

-0,075 -0,191 -0,274 Energy Production, Lipid Metabolism 

Parp6 300759 poly (ADP-ribose) polymerase family, 
member 6 

-0,062 -0,594 -0,272 Amino Acid Metabolism, Drug Metabolism, 
Endocrine System Development and 
Function 
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Symbol Entrez ID Entrez Gene Name 
Log2(fold change) 

Functional network Low 
PFNA 
Mix 

Mid 
PFNA 

Mid 
PFNA 
Mix 

Upregulated 
Ipo7 308939 importin 7 -0,1 -0,196 -0,272 Molecular Transport, Protein Trafficking, 

Cellular Assembly and Organization 
Ncam1 24586 neural cell adhesion molecule 1 -0,163 -0,05 -0,27 Cell Morphology, Cellular Assembly and 

Organization, Cellular Development 
Eml4 313861 echinoderm microtubule associated 

protein like 4 
-0,249 -0,075 -0,265 Cell-To-Cell Signaling and Interaction, 

Cellular Assembly and Organization, 
Cellular Development 

Erp29 117030 endoplasmic reticulum protein 29 -0,165 -0,323 -0,25 Energy Production, Lipid Metabolism 

Timd2 287222 T cell immunoglobulin and mucin 
domain containing 2 

-0,074 -0,365 -0,249 Amino Acid Metabolism, Drug Metabolism, 
Endocrine System Development and 
Function 

Mta1 64520 metastasis associated 1 -0,1 -0,237 -0,242 Energy Production, Lipid Metabolism 

Polr2l 502374 polymerase (RNA) II (DNA directed) 
polypeptide L 

-0,03 -0,23 -0,237 Energy Production, Lipid Metabolism 

Ca4 29242 carbonic anhydrase IV -0,266 -0,009 -0,236 Energy Production, Lipid Metabolism 

Stmn2 84510 stathmin 2 -0,099 -0,234 -0,235 Energy Production, Lipid Metabolism 

Rrm2 362720| 
100359539 

ribonucleotide reductase M2 -0,609 -1,162 -0,226 Energy Production, Lipid Metabolism 

Dync1li1 252902 dynein, cytoplasmic 1, light 
intermediate chain 1 

-0,172 -0,068 -0,223 Cell Death and Survival, Visual System 
Development and Function, Cell-To-Cell 
Signaling and Interaction 

Ube2ql1 679949 ubiquitin-conjugating enzyme E2Q 
family-like 1 

-0,287* -0,04 -0,217 Cell Death and Survival, Visual System 
Development and Function, Cell-To-Cell 
Signaling and Interaction 

Sdc1 25216 syndecan 1 -0,062 -0,396 -0,18 Energy Production, Lipid Metabolism 
Abcb9 63886 ATP-binding cassette, sub-family B 

(MDR/TAP), member 9 
-0,326* -0,062 -0,177 Cell Death and Survival, Visual System 

Development and Function, Cell-To-Cell 
Signaling and Interaction 

Atpif1 25392 ATPase inhibitory factor 1 -0,122 -0,208 -0,173 Energy Production, Lipid Metabolism 
Ubap2 313169 ubiquitin associated protein 2 -0,089 -0,301 -0,173 Cell-To-Cell Signaling and Interaction, 

Cellular Assembly and Organization, 
Cellular Development 

Zc3h7b 315158 zinc finger CCCH-type containing 7B -0,233* -0,115 -0,17 Cell Death and Survival, Visual System 
Development and Function, Cell-To-Cell 
Signaling and Interaction 

Agrn 25592 agrin -0,017 -0,304 -0,17 Cell-To-Cell Signaling and Interaction, 
Cellular Assembly and Organization, 
Cellular Development 

Or10h1 299553| 
299576 

olfactory receptor, family 10, subfamily 
H, member 1 

-0,289 0,034 -0,144 Other 

Impg2 245919 interphotoreceptor matrix proteoglycan 
2 

-0,253* -0,075 -0,14 Cell Death and Survival, Visual System 
Development and Function, Cell-To-Cell 
Signaling and Interaction 

Ndnf 312401 neuron-derived neurotrophic factor -0,395* -0,026 -0,138 Cell Death and Survival, Visual System 
Development and Function, Cell-To-Cell 
Signaling and Interaction 

Rpl31 64298 ribosomal protein L31 -0,077 -0,201 -0,13 Energy Production, Lipid Metabolism 

 

5.5 Manuscript IV 97



Supplementary Table 4. Top molecular and cellular functions, canonical pathways, molecules, and hepatotoxic functions for 
Mid PFNA + Mix. Values for Mid PFNA are presented for comparison. 

Molecular and cellular functions 

 Mid PFNA + Mix Mid PFNA 

Name p-value # molecules p-value # molecules 

Energy production 2E-23 - 2E-2 30 2E-24 - 3E-02 33 

Lipid metabolism 2E-23 - 2E-2 58 2E-24 - 3E-02 59 

Small molecule biochemistry 2E-23 - 2E-2 66 2E-24 - 3E-02 71 

Nucleic acid metabolism 7E-11 - 2E-2 26 1E-6- 3E-02 26 

Molecular Transport 3E-6 - 2E-2 55 2E-6 - 3E-02 26 

Top canonical pathways 

 Mid PFNA + Mix Mid PFNA 

Name p-value Ratio p-value Ratio 

Fatty acid β-oxidation I 1E-11 9/29 3E-10 8/29 

Glutaryl-CoA degradation 7E-10 6/11 4E-10 6/11 

Tryptophan Degradation III 4E-8 6/19 2E-8 6/19 

LPS/IL-1 Mediated Inhibition of RXR 
Function 2E-6 12/203 1E-6 12/203 

Ketogenesis 3E-6 4/10 2E-6 4/10 

Top molecules 

 Log2 fold change up-/down-regulated 

Gene, description Mid PFNA + Mix Mid PFNA 

Cyp4a11  !2.568 !2.419 

Cyp2b6 !2.561 !2.120 

Aldh1a1 !2.532 !2.077 

Vnn1 !2.059 !2.036 

Acot1 !2.052 !1.278 

Colq !1.954 !1.514 

Aig1 !1.908 !1.788 

Cd36 !1.867 !1.276 

Ehhadh !1.860 !1.702 

Ech1 !1.856 !1.512 

Fabp5 "-1.508 "-1.392 

Erich5 "-1.372 "-0.956 

Cxcl13 "-1.173 "-0.817 

Ca1 "-1.132 "-0.782 

Hsd11b1 "-1.082 "-0.446 

Phgdh "-0.976 "-1.271 

Mon1b "-0.877 "-0.317 

Isyna1 "-0.825 "-0.906 

Nfic "-0.631 "-0.262 
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Top hepatotoxic functions 

 Mid PFNA + Mix Mid PFNA 

Name p-value # molecules p-value # molecules 

Liver steatosis 3E-8 - 2E-1 16 1E-9 - 4E-2 17 

Hepatocellular peroxisome 
proliferation 1E-4 - 7E-2 4 1E-04 - 7E-2 4 

Liver necrosis/cell death 1E-2 - 4E-1 2 5E-1 2 

Liver proliferation 2E-2 - 1E0 2 NA 0 

Liver hypertrophy 3E-2 1 3E-2 1 
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Supplementary Fig. 1 All significantly changed metabolites in the Low dose group. All metabolites are described by their 
retention time and m/z value 
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Supplementary Fig. 2 All significantly changed metabolites in the Mid dose group. All metabolites are described by the 
retention time and m/z value 
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Supplementary Fig. 3 Venn diagram showing the number of significant metabolites in the Mix group (t-test) and the PFNA + 
Mix groups (1-way ANOVA)(p ≤ 0.05). The boxes present the identified metabolites. 63 metabolites were significantly altered 
by Mix and 64 were significantly altered by PFNA + Mix. Twenty-four metabolites were altered in both groups; 12 were 
identified. The described metabolites are MG (Monoacylglycerol), PC (Phosphatidylcholine), PE (Phosphatidylethanolamine) 
and DG (diacylglycerol)  
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5.6 Concluding remarks

In summary,

• Low PFNA administered alone affected plasma corticosterone levels; however,
this effect was normalized upon co-administration of the Mix.

• Co-administration of Mix caused a 2.8-fold increase in plasma PFNA con-
centration at Low PFNA.

• Low PFNA ± Mix increased plasma levels of testosterone and dihydrotestos-
terone.

• High PFNA ± Mix caused steatosis.

• Changes on the metabolome mainly concerned lipids. Different lipids were
affected with and without the presence of the Mix.

• Transcriptional changes were related to lipid metabolism, and the effects were
driven by PFNA.

5.6.1 The Chemical Mixture

The investigations of the effects exerted by Mix outlined that statistically signifi-
cant disturbances of hormone and metabolite levels occurred as a consequence of
co-administration of Mix. This might be of concern, as the doses of the chemicals
in Mix approached human high-end exposure levels. We do not have liver tran-
scriptomics data from the animals treated with Mix alone and thus do not know
which effects the Mix alone had on the livers. However, we observed borderline
significant effects on the liver transcriptome after exposure to Mix + Low PFNA.
Therefore, we might infer that the liver transcriptome was not readily affected by
the Mix. This is consistent with the liver data presented in Paper II (Section 5.4);
however, results on the metabolomics analysis (Manuscript IV) indicated effects on
plasma phospholipids upon exposure to Mix alone.
The effects on androgen levels at Low PFNA seems critical as they may lead to
morphological and/or functional changes in the adult male rat.

5.6.2 Integrated Data Analysis

Profiling of the liver transcriptome and the plasma metabolome has provided us with
valuable insight into potential mechanisms through which PFNA and Mix act. The
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methods were complementary in that they highlight biological changes at different
levels (metabolite and transcriptional) and thereby provides insight into different
aspects of the mode of action of PFNA and Mix. Our results indicate upregulation
of hepatic genes involved in fatty acid β-oxidation and decreased plasma levels of
various lipids. The metabolomics analysis revealed changes in the metabolome even
at Low PFNA and also upon exposure to Mix, whereas the transcriptomics analysis
appeared less sensitive, as no genes were significantly differentially misregulated at
Low PFNA + Mix but only at higher PFNA doses. Therefore, metabolomics might
be a more sensitive method for detecting changes caused by chemical exposure. On
the other hand, the plasma metabolome changes rapidly in response to intake of
food, stress and various other factors, whereas changes in the transcriptome occur
more slowly. Therefore, without the results from the transcriptomics analysis, we
would be less certain that the observed effects on the plasma lipid balance was a
direct consequence of the chemical treatment or merely a result of the fed state of
the animals.
In this study, we applied two ’omics’ methods on two different body compartments
(metabolomics on plasma and transcriptomics on liver tissue). Performing various
’omics’ analyses on the same body compartment might provide even more insight
into the mechanism underlying the observed effects compared to the setup in this
project. For example, it would have been very useful to perform a metabolomics
analysis on liver samples from the same animals as we had transcriptomics data
for. This would provide a better foundation to understand mechanisms of action
for PFNA, Mix, and the combination of the two.



Chapter 6
Modeling Anogenital

Distance from ToxCast Data

As described in Section 3.2, the main aim of the ToxCast program is to aid chemical
safety evaluations by easing prioritization of chemicals for animal testing.

6.1 Background

For the phase I chemicals, several initial predictive models for reproductive [121]
and developmental [122, 123] end-points have been built. With balanced accuracy
(mean of sensitivity and specificity) (BA) in the range of 71% - 90%, the authors
conclude that the ToxCast data can be used to build predictive models for defined
toxicity endpoints for subsequent prioritization of chemicals for further testing.

As more data arrive with the completion of phase II, phase III, E1K, and phases
of Tox21, the data analysis pipeline is being modified to fit data from all assay
platforms. Therefore, as data undergoes slight modifications and more data arrive,
the models need refinement as well. Nonetheless, successful modeling attempts
have laid the ground for approaches for modeling in vivo toxicity endpoints using
in vitro high-throughput screening (HTS) ToxCast data.
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Drawing on expertise at the US EPA, this project aims at building a predictive model
for a single reproductive endpoint, the so-called anogenital distance (AGD), using
all phase I and II, E1K, and Tox21 chemicals and assays. As outlined in Section 2.1
there is increasing concern about human fertility, primarily based on the generally
low human fertility and the increased incidence of TDS. Sufficient androgen action
must occur within the time frame where male programing of the fetus occurs
(the so-called male programing window) to ensure normal development of all male
reproductive organs [124]. AGD has been recognized as a sensitive endpoint for
assessment of exposure to EDCs during fetal life [125, 126]. In rodents, disruption
of androgen-driven masculinization causing hypospadias and cryptorchidism has
been correlated inversely to AGD [126]. Androgen-mediated regulation of AGD has
also been indicated in humans [127–129]. Furthermore, AGD has been shown to
be significantly reduced in boys with hypospadias [130], and moderately reduced in
boys with cryptorchidism [4, 131], conditions that are caused by disrupted androgen
action during fetal development. Additionally, studies in adult men have found AGD
to be a predictor of testicular function, fertility, sperm quality, and prostate cancer
risk [132, 133].
In 1998, AGD was included as an endpoint in the US EPA test guideline for the
multi-generational reproductive study (MGR) [134] and was recently included in
the OECD guideline for the extended one-generation reproductive toxicity study
[135].

6.2 Aims and hypothesis

I took a data-driven approach to build a predictive model for reduced male AGD
using ToxRefDB and ToxCast data, working from the hypothesis that AGD could
be predicted from ToxCast data with sufficient accuracy, sensitivity, and specificity.
The data-driven approach opened for the possibility that other assay endpoint(s)
than those expected to predict AGD might add value to the predictive model.

6.3 Methods

This project applied a workflow similar to that described by Martin et al. [121], Sipes
et al. [122], however slightly modified. Detailed descriptions of the applied methods
(Figure 6.1), and the obtained results are given in the following.
All calculations were carried out in R [119] using the ’MASS’ package [136] (for
linear discriminant analysis (LDA)), and the ’gplots’ package [137] for generating
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heatmaps.

6.3.1 ToxRefDB

ToxRefDB was used to extract a positive and a negative set of chemicals. The
set of AGD-positive chemicals was defined as chemicals in ToxRefDB being able
to induce reduced AGD in male offspring. Chemicals that were tested in an MGR
acceptable1 guideline study conducted after 1998 but lacking effects on AGD were
classified as AGD-negative chemicals (Supplementary Table 6.6).

6.3.2 Univariate Associations for Anogenital Distance

We performed a univariate analysis for each of the available assay readouts (from
ToxCast phase I & II, E1K, and Tox21)2 as an initial step in generating a list of
assays or assay targets, that describes the in vivo classification sufficiently.
In a univariate analysis each variable (in this case each assay) is explored separately
with respect to patterns of chemical activity in that variable/assay in relation to
the in vivo activity for reduced AGD of the chemicals. We applied Fisher’s exact
test on a 2×2 contingency table to compare chemicals being positive/negative in
vivo and in vitro. Chemicals that had a half maximal active concentration (AC50)
i.e. with positive hit calls according to ToxCast definitions (Section 3.2.3) were
considered positive in vitro. Assays with a p-value ≤ 0.1 and ≥ 3 true positive
chemicals were included for further modeling.

6.3.3 Assay Set Aggregation and Reduction

As described by Martin et al. [121], aggregating multiple related assays into a
single composite assay value yields a more balanced and stable model. Therefore,
we condensed assays based on common gene target and type of effect if at least
two assays with a common target were retrieved from the univariate analysis. For
instance, if PXR trans-activation was associated with reduced AGD we aggregated
all assays for PXR activity. We calculated an aggregated assay set value (AA) for
each chemical-assay set pair:

AA = 1
n

times

n∑
i=1

− log3
AC50i

1000
1According to the staff at US EPA that curated the information in ToxRefDB (see Section

3.2.2)
2Accessed in Spring 2013.
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where n is the number of assays pr. assay set, i represents each assay in the
assay set, and AC50 is the individual AC50 value for each chemical-assay pair. A
log3 transformation was used over a log10 transformation, which has been done in
previous publications of ToxCast results [56], to enhance the scoring range between
high- and low-potency active chemicals and to decrease the distance between active
(i.e. achieving an AC50 and defined as a hit in the assay) and inactive chemicals.
Using this composite assay set, we developed a multivariate model using LDA.

6.3.4 Linear Discriminant Analysis

LDA is a statistical modeling method that gives a linear combination of fea-
tures/variables which separates two or more classes of objects. In this case the
features/variables are the composite assay sets and the classes are AGD-positive
and -negative. Thus, the method looks for linear combinations of the variables that
best explain the data.

6.3.5 External Validation Set

To test the predictability of the full model we searched the literature for chemicals
causing reduced male AGD to obtain a set of AGD-positive and -negative chemicals
not included in the training set (i.e. not available in ToxRefDB) but having been
tested in the ToxCast battery of HTS assays.

6.4 Results and Discussion

The positive and negative sets, respectively, consisted of 13 chemicals with deter-
mined lowest observed adverse effect levels (LOAELs) for reduced male AGD (3
chemicals with LOAEL above 500 mg/kg BW/day). The negative set consisted
of 71 chemicals that had been tested in an MGR acceptable guideline study post
1998 and did not cause reduced male AGD. All 84 chemicals had been tested in
the ToxCast/Tox21 battery of in vitro assays (Supplementary Table 6.6). These
data were extracted for use in the model.

6.4.1 Univariate Analysis

The univariate analysis resulted in 14 different assay readouts with p < 0.1 and geq3
true positive chemicals, where some were readouts for the same endpoint (e.g. PXR
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transactivation and activation of transcription via PXR response element) (Figure
6.2). The endpoints represented in the list of assays most significantly associated
to reduced AGD are androgen receptor (AR), estrogen receptor (ER), peripheral
benzodiazepine receptor (PBR)3, PPARγ, PXR, vitamin D receptor (VDR), and
cell viability/cytotoxicity (Table 6.5). Cell viability was left out of the model since
this is a very unspecific endpoint and including it worsened the model performance
(data not shown).
We plotted the sensitivity (true positive rate) against the specificity (true negative
rate) to visually assess the relevance of the univariate associations (Supplementary
Figure 6.4). Data points located farthest away from the diagonal are considered
more predictive for reduced AGD. Notably, all sensitivity values lie below 50% except
for three assays targeting PXR. This indicates that with the exception of the PXR
assays, no assay is better at predicting the positives than random sampling. The
assay being most strongly associated to reduced AGD (lowest association p-value)
is a PXR trans-activation assay (p = 7 × 105, sensitivity = 77%), and the least
strongly associated assays (highest association p-values, yet leq 0.1) are two ERα
dimerization assays with a sensitivity of 31% (p = 0.10).
These poor univariate associations might be a result of 1) the unbalanced dataset
(13 AGD-positive and 71 AGD-negative chemicals), 2) the small size of the dataset,
3) that the assays currently available in ToxCast do not represent pathways through
which the AGD-positive chemicals exert their action in vivo (e.g. effects on steroido-
genesis), or 4) that the chemicals require metabolic activation to exert their in vitro
effect, and most ToxCast assays are deficient of metabolic capacity. One of the
AGD positive chemicals (monobenzyl phthalate) was inactive in all of the assays
resulting from the univariate analysis. This is, however, contradictory to another
study showing activity of this phathalate on PPARα, PPARγ, and PPARδ [138].

6.4.2 Linear Discriminant Analysis

We generated the composite assay sets by aggregating similar assays (Table 6.1).
Hereby, we allow biologically meaningful assays to be included in the full model,
despite a potentially low number of chemicals being active in the individual assays.
We distinguished between agonist, antagonist, and binding assays where applicable.
Assay endpoints related to cytotoxicity (e.g. cell cycle arrest assays) were not
included in the aggregated assay sets.
The aggregated assay sets comprise VDR activation, AR and ER antagonist, ac-
tivation/agonist, and binding, PXR activation/binding, PBR binding, and PPARγ

3Formally known as translocator protein (TSPO)
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activation/binding assays (Figure 6.3). As in the assays selected from the univari-
ate analysis, monobenzyl phthalate was inactive in all assay sets. VDR activation
and AR antagonism received the highest positive correlation weight factors in the
LDA model on the full dataset, whereas ER binding and ER antagonism were the
strongest negatively associated assay sets. The model thereby suggests, that the
AGD positive chemicals exert their action via VDR activation and/or AR antago-
nism and chemicals binding to the ER and/or acting as antagonists on ER are less
likely to cause reduced AGD.
Indeed, VDR has been suggested to affect male reproduction [139]. If not via
a direct mechanism, it is biologically reasonable to suggest an indirect action of
vitamin D on testosterone production via calcium and phosphate homeostasis due
to their role as 2nd messengers.
The role of the other targets selected by univariate analysis (PXR, PBR, and
PPARγ) in male reproduction remain unresolved. However, it seems reasonable
to expect PBR to play a role in development of reduced AGD via altered transport
of cholesterol into mitochondria. Following transport of cholesterol into mitochon-
dria the initial and rate-limiting step of steroidogenesis (conversion of cholesterol
to pregnenolone) takes place. However, in mice, the absence of PBR has been
shown not to affect steroid hormone biosynthesis [140]. Testosterone is inactivated
by CYP3A4 and CYP2C9 [141] and expression of those enzymes is in part regu-
lated by PXR. Therefore, chemicals activating PXR-regulated transcription might
cause reduced testosterone levels [142]. Corton and Lapinskas [143] discuss the
involvement of PPARs on the development of the male reproductive tract. There
is little evidence to support the expression of PPARγ in testis, whereas the α and
β subtypes are expressed in neonatal or adult Sertoli and Leydig cells [143]. Based
on this observation it could be of value to include the other PPAR subtypes in
the AGD model. Despite its lack of expression in testis, evidence that PPARγ is
involved in the regulation of steroidogenesis and thus the levels of sex hormones
exists from in vitro studies of porcine ovarian follicles [144].

Table 6.1: The 10 composite assay sets composing the AGD predictive signature.
There are 6 positive and 4 negative predictors, and each assay set is composed of
minimum three assays.

Assay set Individual assay Weight
Positive predictors

VDR ATG_VDRE_CIS
ATG_VDR_TRANS

0.85
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Assay set Individual assay Weight

AR antagonist
Tox21_AR_BLA_Antagonist_ch1
Tox21_AR_BLA_Antagonist_ch2
Tox21_AR_BLA_Antagonist_ratio
Tox21_AR_LUC_MDAKB2_Antagonist

0.46

AR binding
NVS_NR_cAR
NVS_NR_hAR
NVS_NR_rAR

0.21

AR agonist

ATG_AR_TRANS
ATG_AR_TRANS_perc
OT_AR_ARE_LUC_Agonist_1440
OT_AR_ARSRC1_0480
OT_AR_ARSRC1_0960
Tox21_AR_BLA_Agonist_ch1
Tox21_AR_BLA_Agonist_ch2
Tox21_AR_BLA_Agonist_ratio
Tox21_AR_LUC_MDAKB2_Agonist

0.20

ER agonist

ATG_ERa_TRANS
ATG_ERa_TRANS_perc
ATG_ERE_CIS
ATG_ERE_CIS_perc
OT_ER_ERaERa_0480
OT_ER_ERaERa_1440
OT_ER_ERaERb_0480
OT_ER_ERaERb_1440
OT_ER_ERbERb_0480
OT_ER_ERbERb_1440
OT_ERa_ERE_LUC_Agonist_1440
OT_ERa_GFPERaERE_0120
OT_ERa_GFPERaERE_0480
Tox21_ERa_BLA_Agonist_ch1
Tox21_ERa_BLA_Agonist_ch2
Tox21_ERa_BLA_Agonist_ratio
Tox21_ERa_LUC_BG1_Agonist

0.11

PXR

ATG_PXR_TRANS
ATG_PXR_TRANS_perc
ATG_PXRE_CIS
ATG_PXRE_CIS_perc
NVS_NR_hPXR

0.046
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Assay set Individual assay Weight
Negative predictors

ER binding
NVS_NR_bER
NVS_NR_hER
NVS_NR_mERa

-0.29

ER antagonist

OT_ERa_ERE_LUC_Antagonist_1440
OT_ERb_ERE_LUC_Antagonist_1440
Tox21_ERa_BLA_Antagonist_ch1
Tox21_ERa_BLA_Antagonist_ch2
Tox21_ERa_BLA_Antagonist_ratio
Tox21_ERa_LUC_BG1_Antagonist

-0.12

PBR NVS_MP_hPBR
NVS_MP_rPBR

-0.095

PPARγ

ATG_PPARg_TRANS
ATG_PPARg_TRANS_perc
NVS_NR_hPPARg
OT_PPARg_PPARgSRC1_1440
Tox21_PPARg_BLA_Agonist_ch1
Tox21_PPARg_BLA_Agonist_ch2
Tox21_PPARg_BLA_Agonist_positive
Tox21_PPARg_BLA_Agonist_ratio

-0.012

Modeling the data using the 10 assay sets yielded a training BA of 78% with a
p-value of 1×10−6. The sensitivity and specificity were 62% and 94%, respectively.
Validating the model with an external dataset retrieved from the public literature
and not part of ToxRefDB (Table 6.3) resulted in a sensitivity and specificity of
33% and 63%, respectively (Table 6.2). The sensitivity should, preferably, be
above 60% as this measure indicates how good the model is at predicting true
positives. Thus, a sensitivity < 50% means that the model is worse than random
sampling at predicting the true positives. The drop in model performance following
validation indicates that the model has been over-fitted to the training data. This
is likely to happen when the size of the training data is small or when the data is
imbalanced, which are both the case in this model. Furthermore, chemicals with
poor correlations between the in vivo and in vitro effects introduce uncertainty to
the model. Also, as mentioned earlier, the assays currently available in the ToxCast
data might not fully represent the pathways through which some of the chemicals
cause reduced AGD. This is likely to be the case, since seven of the 13 AGD-
positive chemicals are phthalates, and phthalates are thought to cause reduced
AGD by inhibiting fetal testosterone synthesis [145]. We did, indeed, attempt
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Table 6.2: Statistics from full model and prediction of an external validation set.

Model statistics
Full model Validation

Sensitivity 62 % 33 %
Specificity 94 % 63 %
Balanced accuracy 78 % 48 %
Accuracy 89 % 50 %
Precision 67 % 40 %
p-value 1 × 10−6 NS
NS: Not significant

to add the recent addition to the ToxCast data, the HTS human adrenocortical
carcinoma cell line (H295R) assay4 to the model. Unfortunately, only half of the
chemicals in the AGD dataset had been tested; however, as more chemicals get
tested in the H295R assay modeling should be attempted again. Despite the lack
of sensitivity of the model, this model could still prove useful in giving potential
AGD negative chemicals low priority for further testing. This seems particularly
relevant when facing thousands of chemicals potentially requiring animal testing
for their potential to cause reproductive toxicity.
Additionally, Martin et al. [121] defined chemicals without a LOAEL for reproductive
toxicity or LOAEL > 500 mg/kg BW/day as negative, whereas I did not incorporate
that cut-off in this model. Furthermore, where the previous models and this model
all use univariate analysis for assay selection we use different cut-offs for which
assays to use for assay aggregation.
The method used to generate the model presented in this chapter deviates from
the models presented by Martin et al. [121], Sipes et al. [122] in various aspects,
which leaves this AGD predictive signature at a premature stage. The signature
presented by Martin et al. [121] excluded chemicals in the dataset that were broadly
inactive in the ToxCast assays. The rationale for excluding these chemicals was that
several reasons for their lack of in vitro might exist (e.g. chemical degradation,
aqueous insolubility, lack of metabolic activation, or volatility) which renders them
bad predictors of their in vivo activity. Of the chemicals in the AGD training set,
40 (approx. 48%) fell below this criteria. Excluding those 40 chemicals would leave
behind a very small dataset.

4Unpublished data
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Figure 6.1: Workflow for generation of the predictive model for reduced male AGD.
ToxCast in vitro HTS data consisted of 1863 chemicals tested in 921 assays. ToxRefDB
entries for reduced male AGD consisted of 13 positive and 71 negative chemicals.
Univariate analysis was performed to obtain an initial assay selection, which was
followed by assay aggregation by condensing assays by gene. Aggregated assay set
values were calculated for each assay set/chemical pair. These were used as input for
LDA. Modified from [121, 122]
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Figure 6.2: Heatmap showing the correlations between in vivo and in vitro effects for
AGD. Red and blue bars indicate AGD positive and negative chemicals, respectively.
The assays in the plot were significant at α < 0.1 and were associated with ≥ 3 AGD
positive chemicals.
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terms of the aggregated assay sets. Red and blue bars indicate AGD positive and
negative chemicals, respectively.
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Table 6.3: Chemicals comprising the external validation set retrieved from literature. LOAELs are provided where
applicable. The predictions are given along with the classification of the chemicals.

CASRN Chemical name LOAEL Reference
Evidence of
reproductive

toxicity

Predicted
reproductive

toxicant
106325-08-0 Epoxiconazole 15 mg/kg/day [146] Yes No
65277-42-1 Ketoconazole 50 mg/kg/day [147] Yes Yes
446-72-0 Genistein 5 ppm [148] Yes No
330-55-2 Linuron 75 mg/kg/day [149] Yes Yes
67747-09-5 Prochloraz 50 mg/kg/day [150] Yes No
103-90-2 Paracetamol 150 mg/kg/day [151] Yes No
60207-90-1 Propiconazole 2500 ppm [147, 152] No Yes
107534-96-3 Tebuconazole NA [146, 147] No Yes
117-84-0 Di-n-octyl phthalate NA [153] No No
120-47-8 Ethylparaben NA [154] No No
76-44-8 Heptachlor NA [155] No No
58-89-9 Lindane NA [156] No Yes
556-67-2 Octamethylcyclotetrasiloxane NA [157] No No
131-11-3 Dimethyl phthalate NA [158] No No
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6.5 Concluding remarks

In this project, I trained a predictive model for ’reduced male AGD’. The predictive
model correctly predicted 62% of the AGD-positive chemicals used to train the
model, however, when testing the predictability on an external validation set the
model performance was substantially reduced. As discussed above there might
be several reasons why this model performs inadequately. Including more assay
endpoints as they get added to the ToxCast assay set might improve the model.
Furthermore, adding more chemicals and/or expanding the in vivo endpoint being
predicted might also improve the model performance. In the event of planning a
study where reduced AGD is a ’desired’ effect obtained from fetal exposure to the
chemical in rats this predictive model can aid in the prioritization of a long list of
chemicals. Given the poor model performance, however, there is a 50% chance
(accuracy) of getting a wrong prediction (false negative or false positive) when
predicting the effects of chemicals not included in the training set. Theoretically,
this is no better than random sampling given a balanced dataset. However, when
prioritizing thousands of chemicals for animal testing in reproductive toxicity tests
predictions of AGD inactive chemicals can be used for assigning low priority to
those chemicals.
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6.6 Supplementary Information

Table 6.4: AGD-active and -inactive chemicals included in the predictive signature
for AGD.

CASRN Chemical name LOAEL
(mg/kg BW/day)

51-52-5 6-Propyl-2-thiouracil 0.1
13311-84-7 Flutamide 2
32809-16-8 Procymidone 13
50471-44-8 Vinclozolin 15
84-61-7 Dicyclohexyl phthalate 90
85-68-7 Butyl benzyl phthalate 100
36734-19-7 Iprodione 120
84-75-3 Dihexyl phthalate 250
2528-16-7 Monobenzyl phthalate 250
117-81-7 Di(2-ethylhexyl) phthalate 390
84-74-2 Dibutyl phthalate 530
84-69-5 Diisobutyl phthalate 600
57-85-2 Testosterone propionate 50005

208465-21-8 Mesosulfuron-methyl Inactive
80-05-7 Bisphenol A Inactive
149877-41-8 Bifenazate Inactive
173159-57-4 Foramsulfuron Inactive
144550-36-7 Iodosulfuron-methyl-sodium Inactive
361377-29-9 Fluoxastrobin Inactive
148477-71-8 Spirodiclofen Inactive
134605-64-4 Butafenacil Inactive
135410-20-7 Acetamiprid Inactive
175013-18-0 Pyraclostrobin Inactive
120116-88-3 Cyazofamid Inactive
161326-34-7 Fenamidone Inactive
210880-92-5 Clothianidin Inactive
2310-17-0 Phosalone Inactive
5598-13-0 Chlorpyrifos-methyl Inactive
60-51-5 Dimethoate Inactive
709-98-8 Propanil Inactive
51707-55-2 Thidiazuron Inactive

5parts per million
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CASRN Chemical name LOAEL
(mg/kg BW/day)

153719-23-4 Thiamethoxam Inactive
188425-85-6 Boscalid Inactive
25606-41-1 Propamocarb hydrochloride Inactive
116714-46-6 Novaluron Inactive
181274-15-7 Propoxycarbazone-sodium Inactive
199119-58-9 Trifloxysulfuron-sodium Inactive
219714-96-2 Penoxsulam Inactive
10265-92-6 Methamidophos Inactive
188489-07-8 Flufenpyr-ethyl Inactive
156052-68-5 Zoxamide Inactive
63-25-2 Carbaryl Inactive
283594-90-1 Spiromesifen Inactive
163520-33-0 Isoxadifen-ethyl Inactive
99-99-0 4-Nitrotoluene Inactive
87-86-5 Pentachlorophenol Inactive
51-28-5 2,4-Dinitrophenol Inactive
68-12-2 N,N-Dimethylformamide Inactive
120-83-2 2,4-Dichlorophenol Inactive
108-95-2 Phenol Inactive
119-61-9 Benzophenone Inactive
50-29-3 p,p’-DDT Inactive
140-66-9 4-(1,1,3,3-Tetramethylbutyl)phenol Inactive
52-51-7 Bronopol Inactive
108-46-3 Resorcinol Inactive
1806-26-4 4-Octylphenol Inactive
822-06-0 1,6-Diisocyanatohexane Inactive
3871-99-6 Potassium perfluorohexanesulfonate Inactive
84-66-2 Diethyl phthalate Inactive
26172-55-4 5-Chloro-2-methyl-3(2H)-isothiazolone Inactive
1445-75-6 Diisopropyl methylphosphonate Inactive
51229-78-8 1-(cis-3-Chloroallyl)-3,5,7-triaza-1-

azoniaadamantane chloride
Inactive

2634-33-5 1,2-Benzisothiazolin-3-one Inactive
7487-94-7 Mercuric chloride Inactive
104-51-8 Butylbenzene Inactive
50-28-2 17beta-Estradiol Inactive
1461-22-9 Tributyltin chloride Inactive
97-54-1 Isoeugenol Inactive
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CASRN Chemical name LOAEL
(mg/kg BW/day)

2795-39-3 Potassium perfluorooctanesulfonate Inactive
7747-35-5 5-Ethyl-1-aza-3,7-

dioxabicyclo[3.3.0]octane
Inactive

556-67-2 Octamethylcyclotetrasiloxane Inactive
29420-49-3 Potassium nonafluoro-1-butanesulfonate Inactive
1934-21-0 FD&C yellow 5 Inactive
111-30-8 Glutaraldehyde Inactive
26530-20-1 Octhilinone Inactive
84852-15-3 4-Nonylphenol, branched Inactive
30516-87-1 3’-Azido-3’-deoxythymidine Inactive
6422-86-2 Bis(2-ethylhexyl) terephthalate Inactive
3825-26-1 Ammonium perfluorooctanoate Inactive
64359-81-5 4,5-Dichloro-2-octyl-3(2H)-isothiazolone Inactive
319-85-7 beta-1,2,3,4,5,6-Hexachlorocyclohexane Inactive
181274-17-9 Flucarbazone-sodium Inactive
210631-68-8 Topramezone Inactive
165252-70-0 Dinotefuran Inactive
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Figure 6.4: Univariate associations between ToxRefDB AGD reductions and ToxCast
in vitro HTS assay data. Data points in the top right corner have greater diagnostic
value. The line indicates random sampling.
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Table 6.5: Univariate associations between AGD retrieved from ToxRefDB and the ToxCast HTS in vitro data. SENS =
sensitivity, SPEC = specificity, BA = balanced accuracy (the mean of the sensitivity and specificity), ACC = accuracy,
and OR = the odds ratio. p-values results from Fisher’s exact test and p-values ≤ 0.1 are presented.

%
Biological target Assay SENS SPEC BA ACC OR p-value

AR OT AR ARSRC1 0480 31 90 60 80 3.8 0.07
OT AR ARSRC1 0960 31 90 60 80 3.8 0.08

CellCycle APR CellCycleArrest 24hr dn 25 94 59 83 5 0.07

ER

OT ER ERaERb 0480 46 88 67 81 6.3 0.009
OT ER ERbERb 0480 39 85 62 78 3.6 0.06
ATG ERa TRANS 46 82 64 76 3.8 0.06
OT ER ERaERa 0480 31 88 59 79 3.3 0.1
OT ERa GFPERaERE 0120 31 88 60 79 3.3 0.1

PBR NVS MP hPBR 31 90 60 80 4 0.07

PPARγ ATG PPRE CIS 54 90 72 85 11 0.0008
ATG PPARg TRANS 46 83 65 77 4.2 0.03

PXR ATG PXR TRANS 77 82 79 81 15 7 × 10−5

ATG PXRE CIS 77 58 67 61 4.6 0.03
VDR ATG VDRE CIS 31 96 63 86 10 0.01
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Chapter 7

Concluding Remarks

7.1 Summary/Conclusion

The overall focus of this thesis was to apply existing computational systems biology
methods for evaluation and prediction of human effects of chemicals and to group
the chemicals according to their proposed mechanism of action. The aim was
to evaluate if this would complement classical toxicological (in vitro and in vivo)
investigations.
In project I (Integrative Systems Biology), we applied a computational approach
published elsewhere [72]. With that approach we predicted human health effects
of exposure to the five pesticides under investigation. These predictions further
facilitated a grouping of the chemicals that was in concordance with effects of the
chemicals on experimental animals. This approach is relatively fast to carry out
and is cheap in that it does not require any further experimental work. It provides
a means to obtain predictions of human health effects of chemicals. This con-
trasts the classical toxicological in vivo investigations, where inferences of effects
are made from animal to man. Thereby, it complements traditional toxicological
investigations and sheds light on potentially interesting endpoints to keep in mind
for further research. The approach serves as a good method for 1) obtaining an
overview of existing data on the chemical(s) of interest and 2) generating hypothe-
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ses on mechanisms and modes of action of chemicals for subsequent validation in
e.g. animal studies and 3) ideas of which chemicals to monitor in biomonitoring
studies.

In project II (Experimental Studies of a Chemical Mixture), we investigated the
effects of a chemical mixture of 14 environmental chemicals and food constituents
at high-end human exposure levels with and without the addition of PFNA in a
sub-acute animal study with rats. The project was divided into two sub-projects;
one hypothesis-driven and one data-driven each resulting in a paper. The paper on
the hypothesis-driven sub-project describes pathological findings along with gene
expression on a selected set of genes in various tissues and the levels of transcribed
protein for a small number of proteins aiming at highlighting potential mechanisms
of action of the chemical mixture as well as PFNA. The data-driven project has
character of a profiling study in which changes in the plasma metabolome and the
liver transcriptome were described in detail. From this project, we learned that the
’omics’ methods used in this study can 1) shed light on the mechanism(s) of action
for the investigated chemicals by being complementary to one another, and 2) aid
the traditional toxicological investigation, which has a more targeted character.

Project III (Modeling Anogenital Distance from ToxCast Data) describes the work
that I did in collaboration with the US EPA. In this project, I applied already de-
veloped approaches [121, 122] to build a predictive signature for reduced AGD - a
measure for endocrine disruption during fetal life. The approach is data-driven in
that all ToxCast data are used in an unbiased manner for the initial assay selec-
tion. The approach further allows for inclusion of assays hitting targets know to
be associated with the endpoint in question, thereby making the approach a com-
bination of hypothesis- and data-driven. Despite the dubious performance of the
model on the external validation set I believe that the approach is still valuable for
highlighting potential mechanisms through which the chemicals cause the endpoint
in question. This is exemplified by the phthalates. Their mechanism of action for
causing reduced AGD is not entirely clear. However, this modeling effort points to
PXR and PPARγ activation as potential mechanisms through which the phthalates
cause reduced AGD.

The methods and approaches applied to toxicology in this PhD project have proven
valuable as a means to supplement classical toxicological investigations. Different
approaches are good for different purposes but common for all the applied ap-
proaches is that they feed into the idea-generating phase of the planning process of
further studies (Figure 3.2) and complements evaluation of classical toxicological
in vivo and in vitro studies.
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7.2 Limitations of the Applied Methods

7.2.1 Lack of Data

Computational systems biology is highly reliant on existing data. As exemplified
with epoxiconazole in the Integrative Systems Biology project, predictions of po-
tential health effects of that chemical was not possible due to very limited data.
Whether the lack of data reflects that the chemical is inactive in biological systems
or that it has not been fully investigated is not clear from the analysis. Lack of
data might also be part of the explanation why the predictive signature for reduced
AGD performed sub-optimally. It is generally accepted that reduced AGD could
be mediated by disrupted androgen signaling during fetal development. One way
of disrupting androgen signaling is decreasing the androgen levels. Therefore, it is
reasonable to expect improved performance of the model by inclusion of data from
the H295R steroidogenesis assay. For this project, however, that was not possible
as the overlap between chemicals tested in the H295R assay and the chemicals
classified as positive or negative in vivo was too small to base a model upon.
Therefore, lack of data forms a limitation on the applied methods that 1) reduces
the applicability domain of the generated models, and 2) reduces the reliability in
the model performances. However, the quantity of data is not the sole limitation
of the applied methods.

7.2.2 Data Quality

In computer science, it is well known that computers will unquestioningly process
nonsensical data (garbage in) and produce nonsensical output (garbage out). This
is also phrased ”garbage in, garbage out”. When working with computational toxi-
cology/systems biology it is important to keep the quality of the input data in mind.
In the Integrative Systems Biology project we relied on the quality control proce-
dure of the databases from which we retrieved data. The data in CTD are manually
curated, which provides a means of assuring the quality of the data. The other
database used in that project, ChemProt, retrieves data from various databases and
has a built-in quality assurance protocol. In the Experimental Studies of a Chem-
ical Mixture project, I assured good quality of the microarray data by reviewing
the quality control reports that came with the microarray data. Leaving out this
step could potentially introduce bias to the statistical and pathway analyses. The
subsequent pathway analyses relied on canonical pathway and disease information.
Lastly, in the Modeling Anogenital Distance from ToxCast Data project, I relied on
the quality assurance protocol implemented in the ToxCast data analysis workflow
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and the ToxRefDB data review process. However, whether the means taken to
assure the quality of the data are sufficient remains a matter of debate.

7.3 Perspectives

As highlighted above, the methods applied in this thesis have proven valuable
supplements to classical toxicological investigations. Given the challenges that
regulatory toxicology is currently facing (Section 2.2) application of computational
systems biology methods might prove useful when deciding which chemicals to test
thoroughly in classical toxicity tests and which endpoints to investigate. Developing
tools for prioritizing chemicals for further testing is the aim of the US EPA ToxCast
program. An expansion of that program to face the challenges of chemical mixtures
would, in my perspective, ease the process of investigating the potential risk(s)
associated with exposure to relevant chemical mixtures.
Despite the usefulness and broad applicability of computational methods in toxi-
cology it is unlikely to become the sole method for assessing the risk of chemical
exposure to human health and the environment. Only in the hypothetical case
where all biological processes and their interactions are fully understood will it be
possible to predict the effects of chemicals on human health and the environment.
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