
Evaluation of methodologies for risk assessment of 
combined toxic actions of chemical substances and 
establishment of PBTK/TD models for pesticides

Trine Klein Reffstrup
PhD Thesis
2012





 

 
 
 
 
 
 

 

Evaluation of methodologies for 
risk assessment of combined toxic 

actions of chemical substances 
and establishment of PBTK/TD 

models for pesticides 
 

 
 
 
 
 
 
 
 
 

Ph.D. Thesis 
Trine Klein Reffstrup 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Division of Toxicology and Risk Assessment 
National Food Institute 
Technical University of Denmark 

 



 

 
 
 
Evaluation of methodologies for risk assessment of combined toxic 
actions of chemical substances and establishment of PBTK/TD models for 
pesticides 
 
 
 
Søborg, 2012 
Copyright: National Food Institute, Technical University of Denmark 
Photo on front-page: Painting by Lena Klein Reffstrup 
ISBN: 978-87-92736-17-4 
 
 
Supervisors: John Christian Larsen and Otto Meyer, Division of Toxicology and Risk 
Assessment, National Food Institute, Technical University of Denmark 
 
Division of Toxicology and Risk Assessment 
National Food Institute 
Technical University of Denmark 
Mørkhøj Bygade 19 
DK-2860 Søborg 
 
Tel:  +45 35 88 70 00 
Fax: +45 35 88 70 01 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2 

 

PREFACE AND ACKNOWLEDGEMENT 

This thesis is carried out at Division of Toxicology and Risk Assessment, National Food 
Institute, Technical University of Denmark. The two supervisors were John Christian Larsen 
and Otto Meyer, Division of Toxicology and Risk Assessment, National Food Institute, 
Technical University of Denmark. 

The thesis provides an overview of the present methods for risk assessment of mixtures of 
chemicals in food focusing on residues of pesticides. Further, it examines the applicability of 
physiologically based toxicokinetic/toxicodynamic (PBTK/TD) models in risk assessment. 
The thesis represents the initial work on implementing PBTK/TD modeling in the risk 
assessment of combined actions of chemicals at the institute.  

I would like to thank my two supervisors John Christian Larsen and Otto Meyer for fruitful 
discussions, constructive criticism as well as their encouragement during the process. 

My two proofreaders Kirsten Pilegaard and Svava Osk Jonsdottir are thanked for their quick 
response, beneficial comments on the manuscript and their linguistic enthusiasm. 

Thanks to all my colleagues in the division for a positive and inspiring working environment.  

Thanks to my family and friends for their patience and support. 

 

 

 

 

 

 

 

 

 

“Every aspect of the development of a new model should be subject to skeptical criticism and 
careful evaluation by experimental measurement and simulation, rather than by reference to 
a previous model” (Clewell and Clewell, III, 2008). 

  



3 

 

CONTENT 

Preface and acknowledgement   ............................................................................................................................. 2
1 Abbreviations   ...................................................................................................................................................... 6
2 Summary   ............................................................................................................................................................... 8
3 Dansk resumé   ................................................................................................................................................... 11
4 Introduction  ....................................................................................................................................................... 15

4.1 Objective  ..................................................................................................................................................... 15
4.2 Background   ............................................................................................................................................... 16
4.3 Structure of the thesis   ........................................................................................................................... 17

5 Types of combined actions   .......................................................................................................................... 17
5.1 No interactions   ........................................................................................................................................ 18
5.2 Interactions   ............................................................................................................................................... 18
5.3 Early experimental work on mixture toxicology   ........................................................................ 19

6 General process of risk assessment for mixtures   ............................................................................... 19
7 Methods for risk assessment of mixtures of pesticides in foods   .................................................. 21

7.1 Mixture approaches   ............................................................................................................................... 22
7.2 Single compound approaches   ............................................................................................................ 23

7.2.1 Hazard index   .................................................................................................................................... 24
7.2.2 Relative potency factor and toxicity equivalency factor approach   ............................ 25
7.2.3 Point of departure, margin of exposure, cumulative risk index   .................................. 27
7.2.4 Simple dissimilar action, response addition   ....................................................................... 29
7.2.5 Interactions   ...................................................................................................................................... 31

7.3 Advantages and disadvantages of the methods   .......................................................................... 33
8 Proposed flow charts for risk assessment of mixtures of chemicals   .......................................... 35
9 Defined cumulative assessment groups / common mechanism groups for pesticides   ....... 44
10 Use of PBTK/TD modelling in newer approaches in the risk assessment of mixtures   ... 45
11 What is a PBTK/TD model?   ..................................................................................................................... 46
12 Development of a PBTK model   .............................................................................................................. 48
13 Mathematical descriptions in PBTK models   ..................................................................................... 50

13.1 Mixtures with no interaction   ......................................................................................................... 51
13.2 Types of toxicokinetic interactions and mathematical descriptions of these   ............ 53

14 Parameter values for PBTK models   ..................................................................................................... 55
15 Software   .......................................................................................................................................................... 56



4 

 

16 Evaluation of predictive capacity   ......................................................................................................... 57
17 Application of PBTK models in risk assessment   ............................................................................. 57

17.1 Extrapolations   ..................................................................................................................................... 58
17.2 Methods for development of mixture PBTK models   ............................................................ 59
17.3 Interaction based hazard index using PBTK models   ............................................................ 63
17.4 Interaction thresholds   ...................................................................................................................... 63

18 PBTK/TD models on pesticides   ............................................................................................................. 64
19 Organophosphates: mechanism of action and biotransformation   .......................................... 67

19.1 Function and inhibition of cholinesterase   ................................................................................ 68
19.1.1 Acetylcholine and acetylcholinesterase   ................................................................................ 69
19.1.2 Inhibition of acethylcholinestrase   ........................................................................................... 70
19.1.3 Synthesis of new acetylcholinesterase   .................................................................................. 73
19.1.4 Inhibition of acetylcholinesterase by carbamates   ............................................................ 73
19.1.5 Effects of acetylcholinesterase inhibition  ............................................................................. 73
19.1.6 Butyrylcholinestrase and carboxylesterase   ........................................................................ 74

19.2 Biotransformation of organophosphorus pesticides   ........................................................... 74
20 Chlorpyrifos – biotransformation and inhibition of cholinesterase   ....................................... 75
21 Description of the PBTK/TD model for chlorpyrifos in rats   ...................................................... 78

21.1 Model code   ............................................................................................................................................ 80
21.1.1 Input to the model   ......................................................................................................................... 81
21.1.2 Distribution   ...................................................................................................................................... 83
21.1.3 Metabolism by CYP450 and A-esterase   ................................................................................. 85
21.1.4 Metabolism by B-esterases   ........................................................................................................ 87
21.1.5 Elimination as TCP   ........................................................................................................................ 89
21.1.6 Mass balance check   ....................................................................................................................... 90

21.2 Parameters   ............................................................................................................................................ 91
21.2.1 Problems with the metabolic parameters on chlorpyrifos-oxon   ............................. 102

22 Description of the PBTK/TD model for chlorpyrifos in humans   ........................................... 107
23 Results from PBTK/TD modelling   ..................................................................................................... 111

23.1 Comparison of the rat model with results from Timchalk et al.   ................................... 111
23.2 Comparison of the human model with results from Timchalk et al.   ........................... 115
23.3 Use of the PBTK/TD models  ........................................................................................................ 119

23.3.1 Estimation of NOAEL’s for chlorpyrifos by the PBTK/TD model   ............................. 119
23.3.1.1 Interpretation of cholinesterase inhibition   ............................................................. 119



5 

 

23.3.1.2 No-effect level in rats – rat study 1   ............................................................................. 120

23.3.1.3 Extrapolation from rats to humans   ............................................................................. 124

23.3.1.4 No-effect level in rats – rat study 2   ............................................................................. 125

23.3.1.5 No-effect level in humans  ................................................................................................ 127

24 Discussion on PBTK/TD models   ........................................................................................................ 130
24.1 Discussion of the models for chlorpyrifos in rats and humans in this thesis   .......... 130

24.1.1 Problems with parameters   ...................................................................................................... 131
24.1.2 Justification for changes in rate constants describing esterase?   .............................. 135
24.1.3 Special conditions concerning the human model   ........................................................... 136
24.1.4 Usefulness of the developed models in this thesis for estimating NOAEL   ........... 136
24.1.5 Possible explanations for deviations from the experimental data   .......................... 138
24.1.6 Conclusion on the outcome of the modelling   ................................................................... 138

24.2 Advantages/disadvantages of PBTK models and their use in risk assessment   ...... 139
24.3 Requirements of documentation of a PBTK model   ............................................................ 144

25 Future perspectives   ................................................................................................................................ 145
25.1 Use of Bayesian analysis using Markov Chain Monte Carlo calculations   .................. 146
25.2 Biochemical reaction network   ................................................................................................... 146

26 Conclusion  ................................................................................................................................................... 147
27 References   .................................................................................................................................................. 150
Appendix I   ................................................................................................................................................................ 167

Overview of PBTK/TD models on a single pesticide   .......................................................................... 167
Overview of PBTK/TD models on a mixture of pesticides   ............................................................... 171

Appendix II   .............................................................................................................................................................. 172
Model code for the PBTK/TD model for chlorpyrifos in rats   .......................................................... 172
Abbreviations in the model code  ................................................................................................................ 183

Appendix III. Review paper   ............................................................................................................................... 192
 

  



6 

 

1 ABBREVIATIONS 

A list of abbreviations used in the model can be found at the end of Annex II. 

AChE: acetylcholinesterase 
ADI: acceptable daily intake 
ADME: absorption, distribution, metabolism and excretion 
ATSDR: Agency for Toxic Substances and Disease Registry in USA 
BBDR: biologically based dose response modelling 
BINWOE: binary weight of evidence 
BMD: benchmark dose  
BuChE: butyrylcholinesterase 
bw: body weight 
CaE: carboxylesterase 
CAG: cumulative assessment groups 
ChE: cholinesterase 
CMG: common mechanism group 
CNS: central nervous system  
CPF: chlorpyrifos 
CRI: cumulative risk index 
DCE: 1,1-dichloroethylene 
DFP: diisopropylfluorophosphate 
EFSA: European Food Safety Authority 
HI: hazard index 
HII: interaction hazard index 
HQ: hazard quotient 
ILSI: International Life Sciences Institute 
IPCS: International Programme on Chemical Safety 
JMPR: FAO/WHO Joint Meeting on Pesticide Residues 
LOAEL: lowest observed adverse effect level 
MOE: margin of exposure 
MOET: combined margin of exposure 
NOAEL: No observed adverse effect level 
OP: organophosphorus pesticide or organophosphate 
PBPD: physiologically based pharmacodynamic 
PBPK: physiologically based pharmacokinetic 
PBTD: physiologically based toxicodynamic 
PBTK: physiologically based toxicokinetic 
PCB: polychlorinated biphenyls 
pmix: probability for an adverse effect from a mixture (Bliss independence) 
POD: point of departure 
PODI: point of departure index 
PON-1: paraoxonase 1 
PPR Panel: Scientific Panel on Plant Protection Products and their Residues 
QSAR: quantitative structural activity relationship 
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RBC: red blood cells, erythrocytes 
RfD: reference dose 
RIVM: Rijksinstituut voor Volksgezondheid en Milieu (in English: National Institute for Public 

Health and the Environment)  
RPF: relative potency factor 
TCE: trichloroethylene  
TCP: 3,5,6-trichloro-2-pyridinol 
TEF: toxicity equivalency factor 
TEQ: Toxicity equivalent 
U.S. EPA: USA Environmental Protection Agency 
UF: uncertainty factor 
WOE: weight of evidence 
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2 SUMMARY 

Humans are simultaneously exposed to a number of chemicals via food and environment. 
These chemicals may have a combined action that causes a lower or higher toxic effect than 
would be expected from knowledge about the single compounds. Therefore, combined actions 
need to be addressed in the risk assessment process.  

This Ph.D.-thesis provides an overview of the current knowledge on methods for risk 
assessment of combined actions of chemicals focussing on pesticides. Some of the methods 
are based on knowledge on the whole mixture and others are based on data on the single 
compounds in the mixture. The whole mixture approaches would be the ideal choice for 
assessment of e.g. pesticide residues in food. However, they are normally not applicable since 
they require a large number of experimental data that are rarely available. This leaves the 
single compound approaches as the more realistic ones. 

The first step in the risk assessment of a mixture is to evaluate whether a group of compounds 
can be identified that induce a common toxic effect by a common mechanism of toxicity and 
therefore is suited for a cumulative risk assessment based on additivity. Ideally the 
identification of a group of pesticides for cumulative risk assessment should be based on 
criteria providing the best and most robust grouping such as chemical structure, mechanism 
of action, common toxic mode of action or common toxic effect. Unfortunately, such data are 
seldom available for all of the compounds of concern. Instead for pragmatic reasons, it is often 
more appropriate to consider the individual compounds as possible candidates for one (or 
more) cumulative assessment group(s). 

The cumulative risk assessment of this group will then be performed assuming simple similar 
action using one of the single compound approaches. The hazard index based on a health 
based guidance value e.g. the acceptable daily intake (ADI) would normally be sufficient. 
However, the point of departure index is the most preferably method because it does not 
make use of a policy driven uncertainty factor and instead it is based on the most relevant 
toxicity data.  

In case that more than one common mechanism group based on different simple similar 
actions are identified, they should be assessed separately. In addition, the potential for 
interactions between the groups (or single compounds) has to be considered. If no 
interactions are identified, simple dissimilar action can be anticipated and the response 
addition method should be used to assess the effect of the mixture. 

In many cases the evaluators will probably tend to use very pragmatic approaches if lack of 
interaction between the compounds at the actual dose level can be assumed. This includes 
assuming all compounds in the mixture show dose additivity (simple similar actions). The 
hazard index or point of departure index would then be the preferred methods. 

A crucial point in the assessment is whether there is interaction or no interaction between the 
compounds in the mixture. Although interactions among chemicals at high doses are well-
known, no single simple approach is currently available to judge upon potential interactions 
at the low dose levels of pesticide residues that humans are exposed to in food. For this 
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purpose, physiologically based toxicokinetic/toxicodynamic (PBTK/TD) modelling has been 
recommended as a tool to assess combined tissue doses and to help predict potential 
interactions including thresholds for such effects. Therefore, this thesis also focuses on such 
models and their applicability for use in risk assessment. This type of model has been used for 
several years in the area of pharmacology but the use in the area of toxicology is relatively 
new. 

In a PBTK model the animal or man is described as a set of tissue compartments which is 
combined by mathematical descriptions of biological tissues and physiological processes in 
the body. Thereby it is possible to quantitatively simulate the absorption, distribution, 
metabolism and excretion of chemicals and to predict the internal dose after exposure to the 
chemical (or metabolite) of concern.  

The PBTK models make it possible to extrapolate between species, from high-dose to low-
dose, from route-to-route and between exposure scenarios. In this way the risk assessor can 
simulate various scenarios including scenarios which cannot be studied experimentally. 
Models can be developed for subpopulations such as children and this may help the risk 
assessor determine whether special care should be taken for such groups. 

It is also possible to incorporate mechanistic information on interactions in the model and as 
mentioned above interaction threshold can be determined. This would provide a helpful tool 
in the risk assessment of combined actions of chemicals. 

The PBTK model can be coupled with a toxicodynamic part in which the model attempts to 
estimate the effect resulting from the internal dose. The output of a PBTK model is linked to a 
toxicodynamic model by mathematical descriptions of the hypothesis of how compounds 
contribute to the initiation of cellular changes leading to the toxic responses. 

In the present Ph.D. project a PBTK/TD model was established based on a previous published 
model. The model describes the organophosphorus pesticide chlorpyrifos and its metabolism 
to chlorpyrifos-oxon and 3,5,6-trichloro-2-pyridinol as well as the toxicodynamic of the 
chlorpyrifos-oxon i.e. inhibition of acetylcholinesterase activity in various tissues. This paper 
was chosen because the model is on a relevant compound (a pesticide that is widely used) and 
one had the impression that the model work was described in details.  

The work in establishing this model clearly pointed out the importance that authors of such 
publications report their results with a high degree of transparency in order to enable 
colleagues to reproduce their work and e.g. evaluate it for further developing the model. The 
model description should include model structure and equations as well as documentation of 
the choice of parameters and their origin. At present there is a lack of adequate data for use in 
the PBTK models and further studies in order to determine parameters for use in PBTK 
models are needed. The model developer is also forced to make assumptions and 
extrapolations. It is of great importance that these are biologically based and explained.  

The PBTK/TD model on chlorpyrifos in the present project was used to illustrate how a no 
observed adverse effect level (NOAEL) can be established by the model and how to make 
extrapolations between species (rats and humans). The model underestimated the inhibition 
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of acetylcholinesterase compared to experimental data. Therefore, the model needs 
improvement before it can be used in risk assessment. 

The PBTD modelling is still in its infancy and it will probably be better to put more effort into 
improving the toxicokinetic part especially including establishment of internationally 
acceptable reference values for various parameters before extending the model with a 
toxicodynamic part.  

PBTK models can be used to evaluate combined actions of a mixture of compounds. In case of 
a mixture of compounds that do not interact (e.g. simple similar action) the PBTK modelling 
tool is useful to predict the combined doses in the target organ taking metabolism of the 
compounds into account. Such compounds should be dealt with in the PBTK models in the 
same way as single compounds. 

In case of a mixture of interacting compounds mechanistic information on interactions can be 
incorporated in the PBTK/TD model and thereby it can be used e.g. to determine the 
interaction threshold. Such a model will consists of sets of identical equations, one set for each 
chemical as well as equations that specifically accounts for the interactions (e.g. competitive 
inhibition of metabolism in liver or induction of hepatic metabolism).  

The development of PBTK models is complex and should only be used when it is considered 
essential. If adequate models are developed, they can provide better knowledge and 
understanding of the effects of mixtures in the organism and provide improved information 
on tissue dose levels and variations between species and within a population. Moreover, 
scientifically supportable results about possible combined actions in humans after exposure 
to mixtures of pesticide residues in food would help making more reliable risk assessment.  

The PBTK models thus have a potential as an important tool in the risk assessment. Adequate 
documentation of the model is fundamental in order to increase the credibility of PBTK 
modelling. Such credibility is crucial for a spreading of its use in risk assessment.  

This Ph.D.-project constitutes the initial work on implementing PBTK/TD models in the risk 
assessment of combined toxic action of chemical substances in food at the DTU National Food 
Institute. The work has revealed some major problems and pitfalls in the developing process. 
However if reliable, these models will provide knowledge of the relationship between internal 
doses of the chemicals and the observed toxic effects and this knowledge will reduce the 
uncertainty in the risk assessment. Therefore, the work will continue implementing these 
models as a helpful tool in future risk assessment. 

  



11 

 

3 DANSK RESUMÉ 

Mennesker er udsat for en række kemiske stoffer samtidigt fra fødevarer og miljø. Disse 
kemikalier kan have en kombinationseffekt, der fører til en lavere eller højere toksisk effekt, 
end man ville forvente ud fra viden om de enkelte stoffer. Derfor er det nødvendigt at se på 
kombinationseffekter i risikovurderingsprocessen. 

Denne ph.d.-afhandling giver et overblik over den nuværende viden om metoder til 
risikovurdering af kombinationseffekter af kemiske stoffer med fokus på pesticider. Nogle af 
disse metoder er baseret på data for hele blandingen, mens andre er baseret på data for de 
enkelte stoffer i en blanding.  

Metoderne baseret på data for hele blandinger ville være det ideelle valg til risikovurdering af 
pesticider i fødevarer, men de kræver en stor mængde eksperimentelle data, som sjældent er 
til rådighed, og derfor er deres anvendelighed begrænset. Metoderne baseret på data for 
enkelt stoffer er mere brugbare. 

Det første trin i risikovurderingen af en blanding er at se på, om der kan identificeres en 
gruppe af stoffer, der inducerer samme toksiske effekt ved samme virkningsmekanisme, og 
som derfor er egnet til at blive vurderet sammen baseret på ”dosis addition”. Ideelt set skal 
identifikationen af grupper af pesticider til en sådan kumulativ risikovurdering baseres på 
kriterier, der giver den bedste og mest robuste gruppering. Det kan være samme kemiske 
struktur, virkningsmekanisme, virkemåde eller toksiske effekt.  Sådanne data er dog sjældent 
tilgængelige for alle stoffer i en blanding, og af praktiske grunde er det derfor ofte mere 
relevant at undersøge, om de enkelte stoffer kan grupperes i en (eller flere) såkaldt 
”cumulative assessment group”.  

Det næste trin i den kumulative risikovurdering vil blive baseret på en antagelse om, at 
stofferne agerer med samme virkningsmåde (såkaldt ”simple similar action”), og en af 
metoderne baseret på data for enkelt stoffer vil blive benyttet i vurderingen. I mange tilfælde 
vil brug af ”hazard index” baseret på en sundhedsbaseret ”guidance value”, f.eks. acceptabelt 
dagligt indtag (ADI), være tilstrækkeligt. Den foretrukne metode vil dog være ”point of 
departure index”, da denne ikke involverer en politisk styret usikkerhedsfaktor men i stedet 
er baseret på de mest relevante toksikologiske data. 

Hvis der identificeres mere end én fælles mekanisme gruppe baseret på ”simple similar 
action”, bør de vurderes hver for sig. Muligheden for kombinationseffekter mellem grupper 
(og enkeltstoffer) skal også vurderes. Hvis der ikke kan forventes interaktioner mellem 
stofferne i blandingen, kan man antage, at der er tale om såkaldt ”simple dissimilar action” og 
metoden ”response addition” kan bruges til at vurdere effekten af blandingen. 

Hvis der ikke er fundet tegn på interaktion mellem stoffer ved de aktuelle dosisniveauer i en 
blanding vil det antages, at alle stofferne i blandingen viser ”simple similar action”. I mange 
tilfælde vil der blive valgt en pragmatisk løsning, og de foretrukne metoder ofte være “hazard 
index” eller “point of departure index”. 
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I en risikovurdering er det vigtigt at fastslå, om stofferne i blandingen interagerer eller ej. 
Interaktioner er velkendte mellem stoffer ved høje doser, men der er ikke nogen simpel 
metode til at vurdere muligheden for potentielle interaktioner mellem stofferne ved de lave 
dosisniveauer, som mennesker bliver udsat for af pesticider via fødevarer. Det er blevet 
foreslået at de såkaldte fysiologisk baserede toksikokinetiske/toksikodynamiske 
(”physiologically based toxicokinetic/toxicodynamic”, PBTK/TD) modeller kunne være et 
nyttigt redskab til vurdering af en samlet dosis fra en kemisk blanding til et væv eller organ. 
Dermed vil disse modeller kunne hjælpe med at forudsige potentielle interaktioner herunder 
bestemme tærskler, hvorunder der ikke vil ses kombinationseffekter.  Denne afhandling 
fokuserer derfor også på sådanne modeller og deres anvendelighed i 
risikovurderingssammenhæng. Denne type modeller har i mange år været brugt indenfor 
farmakologien, men det er relativt nyt at anvende dem indenfor toksikologien. 

I en PBTK model er et dyr eller menneske beskrevet som et sæt af kasser (compartments), der 
beskriver de fysiologiske processer i væv eller organer vha. matematiske ligninger. Et kemisk 
stofs absorption, fordeling, metabolisme og udskillelse beskrives kvantitativt, og modellen 
kan forudsige den interne dosis efter eksponering for det pågældende stof. 

PBTK modeller gør det muligt at ekstrapolere mellem arter, fra høje doser til lave doser, fra 
eksponeringsrute til eksponeringsrute og mellem forskellige eksponerings scenarier. På 
denne måde kan forskellige scenarier simuleres – også scenarier, som det ikke er muligt at 
studere eksperimentelt. Modeller kan også udvikles for del-populationer af befolkningen f.eks. 
for børn, og kan på den måde hjælpe til at bestemme, om det er nødvendigt at tage hensyn til 
en særlig følsom gruppe i risikovurderingen. 

Det er muligt at inkorporere mekanistisk information om interaktioner i modellen, og som 
nævnt ovenfor, kan tærskelværdier for interaktioner dermed fastlægges. Dette vil være et 
nyttigt værktøj i risikovurderingen af kombinationseffekter af kemiske stoffer. 

En PBTK model kan kobles til en toksikodynamisk del, hvori modellen forsøger at estimere 
den effekt, som den interne dosis forårsager. Outputtet fra PBTK modellen kobles sammen 
med den toksikodynamiske model vha. matematiske beskrivelser af hypotesen om, hvordan 
stofferne bidrager til initiering af de cellulære ændringer, der fører til det toksiske respons. 

I dette ph.d.-projekt blev en PBTK/TD model etableret på baggrund af en tidligere publiceret 
model. Modellen beskriver pesticidet chlorpyrifos (en organofosfat) og dets metabolisme til 
chlorpyrifos-oxon og 3,5,6-trichloro-2-pyridinol. Den beskriver også toksikodynamikken for 
chlorpyrifos-oxon som hæmmer aktiviteten af acetylcholinesterase i forskellige væv. Artiklen, 
der beskriver denne model, blev valgt, fordi modellen beskriver et relevant stof (nemlig et 
meget udbredt pesticid), og fordi det så ud til, at modellen var beskrevet i detaljer i artiklen. 

Arbejdet med at etablere denne model har tydeligt vist vigtigheden af, at forfattere til sådanne 
publikationer er omhyggelige med at beskrive, hvad de har gjort, således at kolleger kan 
reproducere deres resultater og f.eks. videreudvikle modellen. Modelbeskrivelsen skal 
indeholde modelstruktur og ligninger men også dokumentation for valget af parametre og en 
beskrivelse af, hvor disse kommer fra. Der er på nuværende tidspunkt en mangel på 
anvendelige data til brug i modellerne, og det er derfor nødvendigt med flere studier til at 
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bestemme parametre, der kan benyttes i PBTK modeller. Det vil dog fortsat være nødvendigt 
at lave antagelser og ekstrapoleringer i forbindelse med model udviklingen. I denne 
sammenhæng er det meget vigtigt, at disse er biologisk baserede og at det er forklaret, hvad 
der ligger bag. 

Den opstillede PBTK/TD model for chlorpyrifos er i denne afhandling brugt til at vise, 
hvordan et nul-effekt-niveau (NOAEL) kan bestemmes ved hjælp en model, og hvordan man 
kan ekstrapolere mellem arter (her rotter og mennesker). Modellen underestimerede 
hæmningen af acetylcholinesterase sammenlignet med eksperimentelle data. Derfor skal 
denne model forbedres, før den kan anvendes indenfor risikovurdering. 

PBTD modellering er stadig meget nyt, og det vil formentligt være bedre at bruge kræfter på 
at forbedre den toksikokinetiske del af modelleringen, herunder at etablere et sæt af 
internationalt accepterede referenceværdier for forskellige parametre til brug i 
modelleringen, frem for at udvide modellerne med en toksikodynamisk del. 

PBTK modeller kan bruges til at evaluere kombinationseffekter af en blanding af stoffer. I 
tilfælde af at stofferne i blandingen ikke interagerer (f.eks. ”simple similar action”), vil PBTK 
modellering være et godt værktøj til at forudsige den samlede dosis, der når frem til 
målorganet herunder at tage højde for metaboliseringen af stofferne. PBTK modeller for disse 
stoffer vil skulle opstilles på samme måde som for enkeltstoffer. 

Hvis stofferne i blandingen interagerer, kan mekanistisk information om interaktionerne 
inkorporeres i modellen, og dermed kan denne bruges til at bestemme f.eks. en tærskelværdi 
for interaktioner. En sådan model vil bestå af et sæt af identiske ligninger for hvert stof samt 
en række ligninger, der beskriver interaktioner (f.eks. kompetitiv hæmning af metabolismen i 
leveren eller induktion af levermetabolismen). 

Udviklingen af PBTK modeller er indviklet, og de bør derfor kun bruges, når det anses for 
nødvendigt. Hvis de udviklede modeller er troværdige, vil de kunne bidrage med bedre viden 
og forståelse af effekter af blandinger i organismen, give bedre informationen of 
dosisniveauer i væv samt variationen mellem arter og indenfor en population. Videnskabeligt 
dokumenterede resultater om eventuelle kombinationseffekter i mennesker efter indtagelse 
af relevante blandinger af pesticidrester i fødevarer vil kunne bidrage til, at der kan foretages 
en pålidelig risikovurdering.  

PBTK modeller har et potentiale som et vigtigt redskab i risikovurderingen. Tilstrækkelig 
dokumentation for modellen er grundlæggende for at øge troværdigheden af PBTK 
modelleringen, og en sådan troværdighed er afgørende for en spredning af anvendelsen af 
modellering i risikovurderingen. 

Dette ph.d.-projekt udgør det indledende arbejde i implementeringen af PBTK/TD modeller i 
risikovurderingen af kombinationseffekter af kemiske stoffer i fødevarer ved DTU 
Fødevareinstituttet. Arbejdet har afsløret mange problemer og faldgruber i 
udviklingsprocessen. Hvis modellerne er troværdige, vil de kunne give en viden om 
sammenhængen mellem interne doser af et kemisk stof og observerede toksiske effekter, og 
denne viden vil kunne reducere usikkerheden i risikovurderingen. Derfor vil arbejdet 
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fortsætte med at implementere disse modeller som et nyttigt værktøj i den fremtidige 
risikovurdering. 
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4 INTRODUCTION 

4.1 OBJECTIVE 

The objectives of this thesis were to: 

1) provide an overview of the existing knowledge on methods for risk assessment of 
combined actions of chemicals focussing on pesticides found as residues in food 

2) establish physiologically based toxicokinetic / toxicodynamic (PBTK/TD) models in 
order to improve methods for risk assessment of mixtures of chemicals.  

3) examine the applicability of PBTK/TD models in risk assessment of mixtures. 

The overview of the current methods for risk assessment of mixtures was published in a 
review article (see Appendix III):  

Trine Klein Reffstrup, John Christian Larsen, Otto Meyer, 2010. Risk assessment of mixtures of 
pesticides. Current approaches and future strategies. Regul. Toxicol. Pharmacol., 56, 174-192. 

Physiologically based toxicokinetic /toxicodynamic modelling is a new tool at DTU National 
Food Institute. As a starting point it was planned to build a model based on an already 
published model in order to be familiar with the tool and software. The model that was 
chosen for this purpose was published by Timchalk and co-workers (Timchalk et al., 2002b). 
It describes the organophosphorus pesticide chlorpyrifos and its metabolism to chlorpyrifos-
oxon and 3,5,6-trichloro-2-pyridinol as well as the toxicodynamic of the oxon i.e. inhibition of 
acetylcholinesterase activity in various tissues. This paper was chosen because the model is 
on a relevant compound and one had the impression that the model work was described in 
details.  

However, the work on this model made it clear that the re-building as an initial step in the 
development of an appropriate model was not as straight forward as expected. In fact many 
problems occurred especially in the toxicodynamic part of the model. This was primarily due 
to insufficient description of which parameter values (i.e. constants) to be used (and the 
background for these) and some lack in the description of the equations used. These problems 
had the consequence that the above mentioned objective of this Ph.D.-project point 2) could 
not be fulfilled within the time limit of the project. Therefore, the Ph.D.-project has focused on 
a critical evaluation of the already published model and has examined the applicability of this 
model as a basis for a development of feasible model for the risk assessment for combined 
actions of substances in food e.g. pesticide residues. 

Since 2005 the European Union member states have been obliged to evaluate and if possible 
refine existing methodologies in order to take combined actions of pesticides into account 
during risk assessment and especially when establishing maximum residue levels (MRLs) 
(European Parliament and Council, 2005). The European Food Safety Authority (EFSA) has 
suggested to use PBTK models as a higher tier in risk assessment of mixtures of pesticides 
found as residues in food (EFSA, 2008). Therefore, point 3) in the present Ph.D. –project was 
to examine the applicability of PBTK models in risk assessment of mixtures. 
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4.2 BACKGROUND 

During the last decades there has been increasing focus on the fact that humans are 
concurrently exposed to a number of chemicals via food and environment. These chemicals 
may have a combined action that causes a lower or higher toxic effect than would be expected 
from knowledge about the single compounds (Larsen et al., 2003). Consequently, combined 
actions need to be addressed in the risk assessment process. This thesis will focus on risk 
assessment of combined actions of pesticide residues in food. 

Ideally, the evaluation of the toxicological properties of a pesticide mixture requires detailed 
information on the composition of the mixture and the mechanism of action of each of the 
individual compounds. In order to perform a risk assessment, proper exposure data are also 
needed. However, sufficient detailed information is often not available. The mixture of 
pesticide residues that a person would be exposed to via the food chain may change over time 
in composition and quantity. Adequate experimental testing of mixtures is often not possible 
because the number of theoretical possible combinations is enormous and furthermore the 
use of a sufficient number of dose levels is not feasible. A full study design would require 2n-1 
test groups to identify interactions between all compounds of interest (n is the number of 
chemicals in the mixture). In addition, high dose levels of a pesticide mixture as used in 
toxicological studies may have different types of effects than low dose levels (Groten et al., 
1997). 

During the last two decades several suggestions have been published on how to perform risk 
assessment on mixtures of pesticides. In 1986 the Environmental Protection Agency in USA 
(U.S. EPA) published a guideline for health risk assessment of chemical mixtures (U.S.EPA, 
1986). However, what really put focus on this topic was the Food Quality Protection Act of 
1996 which in relation to pesticide residues requires U.S. EPA to consider ”available 
information concerning the cumulative effects of such residues and other substances that 
have a common mechanism of toxicity” (United States of America in Congress, 1996). Since 
then U.S. EPA has published several reports and guidelines on health risk assessment of 
chemical mixtures (U.S.EPA, 1999a; U.S.EPA, 2000; U.S.EPA, 2002; U.S.EPA, 2003). 

The Agency for Toxic Substances and Disease Registry in USA (ATSDR) has published two 
guidelines with instructions to users on how to apply current methodologies for risk 
assessment of combined actions of chemicals (ATSDR, 2001; ATSDR, 2004). In 2002 the 
Health Council of The Netherlands as well as the Committee on Toxicity of Chemicals in Food, 
Consumer Products and the Environment in the United Kingdom published advisory reports 
dealing with risk assessment of mixtures (Committee on Toxicity, 2002; Feron et al., 2004; 
Health Council of the Netherlands, 2002).  

The Danish Veterinary and Food Administration has published the reports “Combined Actions 
of Pesticides in Food” (Reffstrup, 2002) and “Combined Actions and Interactions of Chemicals 
in Mixtures” (Larsen et al., 2003) which summarised and evaluated the present knowledge 
about combined toxic effects of mixtures of chemicals. One of the main conclusions was that 
the existing methods were uncertain and crude.  
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Since then, several international initiatives have been taken in order to more closely explore 
what approaches can be used to evaluate chemical mixtures. Most notably, the EFSA 
organised a workshop on cumulative risk assessment in 2006 (EFSA, 2007). More recently the 
Norwegian Scientific Committee for Food Safety and EFSA have published opinions on risk 
assessment of combined actions on chemicals (EFSA, 2008; Norwegian Scientific Committee 
for Food Safety, 2008). 

These organizations and workshops recommended introducing PBTK/TD modelling as a tool 
in the risk assessment of chemical mixtures. These models can be used as a tool to predict 
internal dose levels at different exposure levels and thereby be useful in predicting 
concentration levels at the target site. In addition, kinetic overload leading to changes in 
metabolic patterns at high doses can also be modelled. The models require a large amount of 
data for construction and therefore they should only be used for higher tier assessment. 
However, when the models are constructed and evaluated they can reduce the need for data 
on specific scenarios (they can e.g. be used for exposure scenario extrapolation, interspecies 
extrapolation or high-dose to low-dose extrapolation).  

4.3 STRUCTURE OF THE THESIS 

The first part of this thesis provides an overview of the existing methods for risk assessment 
of mixtures of chemicals focussing on pesticides. This includes flow charts proposed by 
various authors and institutions. This part of the thesis is based on the review paper compiled 
in this project (see Appendix III):  

Trine Klein Reffstrup, John Christian Larsen, Otto Meyer, 2010. Risk assessment of mixtures of 
pesticides. Current approaches and future strategies. Regul. Toxicol. Pharmacol., 56, 174-192. 

Several scientists and organizations have recommended using PBTK/TD modelling as a tool in 
the risk assessment of mixtures. Development and use of such models in the risk assessment 
are the topics in the second part of the thesis, from chapter 10 and onwards. Firstly, the 
development and possibilities of using PBTK/TD models in general will be described. In this 
thesis the re-building of a PBTK/TD model on chlorpyrifos and its metabolite chlorpyrifos-
oxon will be described in details. The problems that arised during this process will be 
explained and discussed. Finally, the use of PBTK/TD models in the risk assessment of 
mixtures will be discussed.  

5 TYPES OF COMBINED ACTIONS 

When evaluating a mixture of compounds one of the main points to consider is whether there 
will be either no interaction or interaction in the form of either synergism or antagonism. 
These basic principles of combined actions of chemical mixtures are purely theoretical and 
one often has to deal with more than one of the concepts at the same time when mixtures 
consist of more than two compounds and when the toxicity targets are more complex. 

In case of no interaction the combined effect can either be in the form of simple similar action 
(dose addition) or simple dissimilar action (response addition). Many other terms have been 
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used for additivity, but it seems as the terminology that has become fairly common includes 
the terms simple similar action and simple dissimilar action to describe additivity (Teuschler, 
2007).  

5.1 NO INTERACTIONS 

The model for simple similar action (synonyms: dose additivity, Loewe additivity) assumes 
that the compounds in the mixture behave as if they are dilutions of each other (Krishnan et 
al., 1997); (Svendsgaard and Hertzberg, 1994). This means that the compounds act on the 
same biological site by the same mechanism/mode of action and differ only in their potencies. 
The dose-response curves for the single compounds in a mixture are allowed to be 
nonparallel (on a linear-log graph) (Svendsgaard and Greco, 1995). 

The theoretical basis for the simple dissimilar action (synonyms: response additivity, Bliss 
independence) is probabilistic independence. This means that the compounds in the mixture 
do not interfere with each other but they all contribute to a common result. The model 
assumes that the compounds in the mixture do not act by the same mechanism/mode of 
action and the nature and site of action may also differ among the compounds. 

5.2 INTERACTIONS 

Interactions are defined as combined actions resulting in a stronger (synergism) or weaker 
(antagonism) effect than would be expected based on the assumption of additivity. 
Interactions can be divided into direct chemical-chemical, toxicokinetic, or toxicodynamic 
interactions (ATSDR, 2001; Norwegian Scientific Committee for Food Safety, 2008). 

In direct chemical-chemical interactions, one chemical interacts directly with another 
chemical causing a chemical change (i.e. a chemical reaction) which will lead to a change in 
the toxicity causing a stronger or weaker effect than expected from exposure to either of the 
chemicals alone. Toxicokinetic-based interactions may result in effects on absorption, 
distribution, metabolism or elimination of the compounds. Toxicokinetic-based interaction is 
of particular concern when it results in an increase in the internal dose of the active form of 
another compound. Toxicodynamic interactions occurs when the presence of two (or more) 
compounds change the response without affecting the tissue dose of each of the compounds. 
Toxicodynamic interaction can occur at the cellular receptor site or target molecule, at 
different sites on the same molecule or among different receptor sites or targets. When 
interaction takes place at the same receptor site this usually results in antagonism (ATSDR, 
2001; ATSDR, 2004; Norwegian Scientific Committee for Food Safety, 2008).  

It is difficult to predict interactions leading to toxicity at very low exposure levels. Knowledge 
about combined actions has normally been obtained for considerably higher concentrations 
than for the levels of chemical residues actually found in food and it is often unclear whether 
knowledge about the combined action at higher concentrations are relevant for the low 
exposure level. For example, a combined toxic action observed at high dose levels may be 
based on mechanisms that are not relevant at low dose levels and high to low dose 
extrapolation may be meaningless (Borgert et al., 2004). Overall, interactions appear less 



19 

 

often at relatively low exposure levels compared to high exposure levels since they are 
primarily caused by various thresholds and saturation phenomenon (saturation of activating, 
detoxification or reparative processes). The main mode of toxicologic interaction is the 
alteration of the toxicokinetic process, which strongly depends on the exposure levels of the 
compounds in the mixture (U.S.EPA, 2000). Slikker et al. (2004) have given examples in which 
dose-dependent transition in the underlying kinetic and/or dynamic factors behind the 
toxicity occurs. It is often difficult to interpret the relevance of effects at high dose levels in 
animal studies and the results may not reflect the actual toxicity at relevant human exposure 
levels. This is particularly the case if dose-dependent transitions in the principal mechanism 
of toxicity occur (Slikker, Jr. et al., 2004).  

5.3 EARLY EXPERIMENTAL WORK ON MIXTURE TOXICOLOGY 

From the results of experimental short-term toxicity studies Feron and co-workers concluded 
that combined exposure to arbitrarily chosen chemicals demonstrated less than an additive 
effect when all chemicals in the mixture were administrated at their own individual no 
observed adverse effect levels (NOAELs) whereas no clear evidence of toxicity was found at 
slightly lower dose levels. The examined compounds had either different target organs and/or 
differed in their mode of action. Exposure levels at or below the individual NOAELs of the 
compounds having different target organs and/or differed in the mode of action in a mixture 
are therefore not expected to be associated with a greater hazard than exposure to the 
individual chemicals. However, both synergistic and antagonistic effects may be seen at 
exposure levels higher than the NOAELs, i.e. at their respective LOAELs (Feron et al., 1995b; 
Groten et al., 1997; Jonker et al., 1996; Jonker et al., 1990; Jonker et al., 1993). 

Feron and co-workers were of the opinion that the use of the “dose addition” approach to the 
risk assessment of chemical mixtures is only scientifically justifiable when the chemicals in 
the mixture act in the same way, by the same mechanism and thus differ only in their 
potencies. Application of the “dose addition” model to mixtures of chemicals that act by 
mechanisms for which the additivity assumptions are invalid could greatly overestimate the 
risk (Cassee et al., 1998; Feron et al., 1995a). This group found it reasonable to use the 
approaches based on toxicological similarity and toxicological independency for risk 
assessment of pesticide residues in food since these compounds are found at levels well below 
the NOAELs for the compounds. 

However, the group did not define the criteria used to judge whether two compounds in a 
mixture share a common mode of action. This means that when looking on the same data 
other scientists may come to other conclusions as to whether the compounds are similar with 
respect to mode of action. Therefore, the conclusions from these studies are not totally 
unambiguous.  

6 GENERAL PROCESS OF RISK ASSESSMENT FOR MIXTURES 

There are four steps in the general process of risk assessment for mixtures: 1) the hazard 
identification, 2) hazard characterisation or dose-response assessment, 3) exposure 
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assessment and 4) risk characterisation (IPCS, 2009b). The use of these steps for mixtures will 
be described in the following. 

• The hazard identification step identifies the mixtures and the potential human health 
effects that the chemicals can cause. Firstly, chemicals acting by a common mechanism 
of toxicity should be identified. U.S. EPA described a procedure for that in “Guidance 
for identifying pesticide chemicals and other substances that have a common 
mechanism of toxicity” (U.S.EPA, 1999a). Secondly, the conditions for expression of the 
risk via route, use pattern and duration of exposure should be described. A specific 
toxicity endpoint for a certain exposure duration shared by each chemical in the 
mixture should be specified. U.S. EPA uses the weight of evidence approach to evaluate 
and characterise the toxicity endpoints of concern and for evaluation of risk to the 
human population. If one has observed clear species (strain or sex) differences, data 
from the most sensitive test animal should be used (U.S.EPA, 2000). 

• The dose-response assessment step determines the health effects that occur at 
different levels of exposure. A uniform point of departure must be selected, 
normalised, and adjusted. Then a method for combining common toxicity must be 
selected. U.S. EPA considers dose addition (simple similar action) to be an appropriate 
approach of risk assessment of mixtures because it assumes that the chemicals act on 
similar biological systems and produce a common response. Both the margin of 
exposure (MOE) method and the relative potency factor (RPF) method can be used to 
evaluate the toxicity of a mixture assuming that the compounds act additively. The 
margin of exposure is calculated by dividing the point of departure (POD) by the 
measured or estimated exposure from a given route. The point of departure on each 
compound’s dose-response curve can be determined as the toxic potency of the 
compound relative to the other compounds. In the relative potency factor method the 
potency of each compound is expressed in relation to the potency of an index chemical. 
These methods will be described in more detail below (U.S.EPA, 2000). 

• The exposure assessment step expresses how much of the chemicals humans are 
exposed to via different exposure routes (oral, gavage, inhalation, dermal). First the 
sources of exposure (food, drinking water, and various non-agricultural uses) are 
identified and then the frequencies, durations, and magnitude of exposures are 
determined. Based on these data realistic exposure scenarios must be developed 
(U.S.EPA, 2000). 

• In the risk characterisation step the risk of health effects that could result from 
exposure to the chemicals are identified. The exposure should be matched with the 
relevant toxicological values in terms of route and duration. Then the cumulative risk 
of each individual compound on a daily basis should be calculated by maintaining 
appropriate spatial, temporal and demographic characteristics of data. U.S. EPA uses 
Monte Carlo analysis to make an iterative process of multiplication of residue 
concentrations in foods by one-day consumption of these foods. The results are 
characterised and interpreted. The major chemical contributors to risk, the exposure 
scenarios of concern and the sensitive subpopulations are identified and it is discussed 
how well the data support the conclusions. Finally the uncertainties and the uses of 
assumptions are identified (U.S.EPA, 2000). 
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7 METHODS FOR RISK ASSESSMENT OF MIXTURES OF PESTICIDES 
IN FOODS 

Various approaches have been suggested in the scientific literature for use in the evaluation of 
the health risks from exposure to mixtures of chemicals but there is no internationally 
accepted procedure. The most important approaches are summarised in this section.  

The first step in the cumulative risk assessment of mixtures is to identify a group of 
compounds that induce a common toxic effect by a common mechanism of toxicity. U.S. EPA 
has described a procedure for that in “Guidance for identifying pesticide chemicals and other 
substances that have a common mechanism of toxicity” (U.S.EPA, 1999a). In this guidance U.S. 
EPA defined a common mechanism to be caused “by the same, or essentially the same, 
sequence of major biochemical events.” This definition is equivalent to the definition of the 
term mode of action (U.S.EPA, 2002). In other reports U.S. EPA distinguished between 
mechanism of action and mode of action: The term mode of action describes the key events 
and processes starting with interaction of a compound with a cell via operational and 
anatomical changes, resulting in the toxic effect. Mechanism of action implies a more detailed 
understanding and description of steps at the molecular level (U.S.EPA, 2000; U.S.EPA, 2005). 

The International Life Sciences Institute (ILSI) convened a group of experts to consider the 
definition of the term common mechanism. They concluded that chemicals act via a common 
mechanism of toxicity if they cause the same critical effect, act on the same molecular target 
tissue, act by the same biochemical mechanism of action, or share a common toxic 
intermediate (Botham et al., 1999; Mileson et al., 1998).  

ATSDR does not define the terms mode of action and mechanism of action. However, they 
point out that for mixtures of compounds that have an effect on the same endpoint by the 
same mode of action dose addition is the most appropriate method (ATSDR, 2001; ATSDR, 
2004). 

The requirement of knowledge on the mode of action is an assumption made for the purpose 
of being able to perform the risk assessment process for mixtures. However, the theoretical 
and empirical basis for the term mode of action has yet to be established. Thus, Borgert et al. 
(2004) have questioned the use of the mode of action to predict combined actions of mixtures. 
They stated that in order to use mechanistic information for predicting combined action on a 
scientific basis more research is needed to better understand how mode of action for 
individual compounds is related to the toxicity of the whole mixture. They concluded that 
until then the use of mode of action to predict mixture toxicity will remain tenuous (Borgert et 
al., 2004). Berenbaum (1989) states that interactions cannot usefully be defined as departures 
from what is expected from mechanism of action. New knowledge on the mechanism of action 
of the same compounds may lead to derivation of a different eqation which again may lead to 
another conclusion concerning interactions. That is in this case, Berenbaum discharge the use 
of mechanism of action and recommends using observed effects as basis for evaluating 
interactions because this will not change. Such an approach is applicable also for compounds 
with unknown modes of action. Interactions is then defined as being present when the effect 
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of a mixture differs from that expected from their individual dose-response curves 
(Berenbaum, 1989).  

Ideally the identification of a group of pesticides for cumulative risk assessment should be 
based on criteria providing the best and most robust grouping such as chemical structure, 
mechanism of action, common toxic mode of action or common toxic effect. Unfortunately, 
such data are seldom available for all of the compounds of concern. Therefore, EFSA has 
suggested to group compounds for cumulative assessment even in the absence of such 
detailed data and make cumulative assessment groups (CAG) based on a less refined 
evaluation of the mode of action e.g. only on target organ toxicity (EFSA, 2008).  

The next step is to select an appropriate method and dataset for combining the risks of the 
compounds in the group. In 1986, the U.S. EPA recommended three approaches for health risk 
assessment of chemical mixtures (Mumtaz, 1995; U.S.EPA, 1986): 1) the mixture of concern 
approach, 2) the similar mixture approach and 3) the single compounds approach.  

The choice of method depends on the toxic effect, the available data on toxicity of the mixture 
or the compounds in the mixture, the predicted interactions among the compounds in the 
mixture and on the quality of the exposure data. However, the U.S. EPA points out that it is 
ideal to conduct all three assessments when possible in order to make the best risk 
assessment and to use all the available data – in particular the incorporation of interaction 
data when available. The uncertainties for the risk assessment should be clearly discussed 
and the overall quality of the risk assessment should be characterised (U.S.EPA, 1986). 

7.1 MIXTURE APPROACHES 

The U.S. EPA guidance was supplemented in 2000 (U.S.EPA, 2000) and the flow chart for the 
different types of mixture assessments shown in Figure 1 was suggested. In this guidance 
three methods for whole mixture assessment and four compound-based methods were 
presented. The first step in the flow chart is to assess the quality of the available data of the 
compounds of interest. When the data are adequate for an assessment, it should be decided 
whether there are data available for an assessment on the whole mixture or only on the single 
compounds.  

The assessment based on data on whole mixtures can be done on the mixture of concern, on a 
sufficiently similar mixture (almost the same compounds and in almost the same proportions 
as in the mixture of concern) or on a group of similar mixtures (same compounds but slightly 
different ratios, or lacking one or more compounds or having one or more additional 
compounds compared with the mixture one wants to evaluate). These assessments would be 
the most appropriate for risk assessment of pesticide residues in food; however, they are very 
data intensive and data for these methods are rarely available. 
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Figure 1. Flow chart of the risk assessment approach used by U.S. EPA. Modified from 
(U.S.EPA, 2000).  

7.2 SINGLE COMPOUND APPROACHES 

U.S. EPA has proposed guidance on how to perform a risk assessment on a mixture of 
pesticides that act by a common mechanism (U.S.EPA, 2002). For mixtures of compounds that 
are toxicologically similar, U.S. EPA suggested three methods based on simple similar action: 
the hazard index method (HI), the relative potency factor method (RPF) and the special type 
of the relative potency factor method named the toxicity equivalency factor method (TEF) 
(U.S.EPA, 2000).  

The point of departure index (PODI) has also been suggested for estimating the risk of a group 
of compounds which are toxicologically similar. Also the margin of exposure (MOE) as wells 
as the cumulative risk index (CRI) have been suggested. These two methods are reciprocals of 
the point of departure and the hazard index, respectively (U.S.EPA, 2003). 

These six methods based on simple similar action use the same underlying data but they 
express the information differently. The exposure levels are added after having been 
multiplied by a scaling factor that accounts for differences in the toxicological potency (for 
instance acceptable daily intake (ADI) or reference dose (RfD)) or point of departure doses 
(e.g. benchmark dose at 10 % effect level, BMD10). For compounds acting independently by 
simple dissimilar action the response addition (Bliss independence) approach may be used, 
and for compounds that interact, use of the interaction hazard index is applicable (U.S.EPA, 
2000). 

When making a risk assessment of exposure to a mixture the need to perform a 
comprehensive risk assessment should be determined early in the process and the most 
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appropriate method should be used (U.S.EPA, 2002). The single compound approaches are 
described in more details in the following. 

7.2.1 HAZARD INDEX  

In the hazard index approach the doses are standardised by using health based guidance 
values such as the ADI. The hazard index is calculated by the following equation: 
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where E1, E2, En and Ei are the levels of exposure to each individual compound (i) in a mixture 
of n compounds. AL1, AL2, ALn and ALi are the maximum acceptable level for each compound. 
The “acceptable level” is often a regulatory health based guidance value for exposure to the ith 
compound e.g. ADI or RfD (as used by U.S. EPA) (U.S.EPA, 1986; U.S.EPA, 2000). If the hazard 
index exceeds 1, the exposure to the mixture has exceeded the maximum acceptable level (e.g. 
ADI or RfD) and there may thus be a risk. The fractions (E1/AL1 etc.) are sometimes called the 
hazard quotients, HQ. In cases where the compounds in the mixture act by different 
mechanisms or affect different target organs, the interaction based hazard index should be 
calculated for each end point (Haddad et al., 2001). Since this method is based on an 
assumption of additivity it can lead to errors if a synergistic or antagonistic action occurs.  

As an example of how to use the HI method, a mixture of three pesticides will be examined, 
see Table 1. Chlorpyrifos, methidathion and malathion are chosen for the example as they are 
the three most frequently found pesticides in the Danish monitoring programme (Jensen et al., 
2003). All three compounds can be found in oranges and the residues used in the calculations 
are the highest amount found in oranges in the Danish survey from 2005 (Christensen et al., 
2006). The same uncertainty factor (UF=100) was used to derive the ADI for the three 
compounds. The hazard index is then calculated from the values of exposure levels and ADIs 
given: 
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The calculated HI is well below one and the mixture is therefore not expected to constitute a 
risk. 
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Table 1: Data on three pesticides found as residues in oranges imported to Denmark. The 
residues are among the highest amount found in oranges in the Danish survey from 2005.  
TEF values from Jensen et al. (2003).  

Compound Residue a) 
(mg/kg)  

Exposure b) 
(mg/kg 
bw/day) 

NOAEL based in 
inhibition of AChE in 
brain or red blood cells 

(mg/kg bw/day) c) 

ADI (mg/kg 
bw) 

Acute RfD 
(mg/kg bw) 

TEF is based on NOAEL 
for inhibition of AChE in 
brain or red blood cells 
(Jensen et al., 2003) 

Chlorpyrifos 0.19 2.6*10-5 1 0.01 d) 0.1 d) 1 
Methidathion 0.049 6.8*10-6 0.5 0.001 e) 0.01 e) 0.2 
Malathion 0.12 1.7*10-5 0.15 0.3 f) 2 f) 2 

a) Residues in oranges imported to Denmark found in the Danish survey from 2005. (Christensen et al., 2006) 
b) Exposure = (residue x intake) / (weight of person), where “weight of person” = 72 kg and “intake” (of orange) = 0.01 kg/day 

(Jensen et al., 2003) 
c) NOAEL for chlorpyrifos and methidathion is based on inhibition on AChE in rat brain and NOAEL for malathion is based on 

inhibition of AChE in red blood cells in dogs (Luijk et al., 2000)  
d) Chlorpyrifos: ADI based on a NOAEL of 1 mg/kg bw/day. Acute RfD from (JMPR, 2000).  
e) Methidathion: ADI based on a NOAEL of 0.1 mg/kg bw/day (JMPR, 1993). Acute RfD from (JMPR, 1998) 
f) Malathion: ADI based on a NOAEL of 29 mg/kg bw/day (JMPR, 1998). Acute RfD from (JMPR, 2004). It should be noted that an ADI 

for malathion of 0.03 mg/kg bw and an acute Rfd = 0.3 mg/kg bw in EU have been set more recently based on the same study but 
with an uncertainty factor of 1000 and 100, respectively (EFSA, 2006) 

7.2.2 RELATIVE POTENCY FACTOR AND TOXICITY EQUIVALENCY FACTOR APPROACH 

The relative potency factor method has been applied to mixtures of a single class of chemicals 
for which extensive information are available for one of the chemicals in the group but less for 
the other members. The method assumes simple similar action and that the potency ratios 
between each chemical in the group remain constant at all dose levels. It requires 
toxicological similarity for specific conditions i.e. endpoint, route of exposure and duration. In 
cases where data indicate that different modes of action may apply to different target organs 
or under different exposure conditions or in cases where data are insufficient, endpoint 
specific RPFs may be derived for each effect or exposure condition (Advisory Committee on 
Hazardous Substances, 2007; U.S.EPA, 2000). 

The potency of each compound is expressed in relation to the potency of an index chemical 
which is typically the most extensively studied chemical in the mixture. To evaluate a set of 
data of combined effects it is necessary to know the dose-response curve for the index 
compound and to know the effect of the other compounds in the mixture (Seed et al., 1995; 
U.S.EPA, 2000). 

Recently the RPF method has been used in cumulative risk assessment of effects of pesticides 
by combining it with an Integrated Probabilistic Risk Assessment (IPRA) model. The RPF 
values were estimated with the use of one or two index compounds and the RPF for each 
compound were used to calculate the cumulative residue level of each sample expressed as 
equivalents of the index compound. Then the probabilistic approach was used to calculate the 
distribution of the cumulative dietary exposure from consumption data and residue data of a 
group of pesticides in a population. The use of this approach has been demonstrated for a 
group of 40 acetylcholinesterase inhibiting pesticides (Boon and van Klaveren, 2003), for a 
group of 31 organophosphorus pesticides (Bosgra et al., 2009) as well as in a study of three 
anti-androgenic pesticides (Müller et al., 2009). This method makes it possible to better 
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describe the uncertainties that are present in the data (Advisory Committee on Hazardous 
Substances, 2007). 

The toxicity equivalency factor method is a special case of RPF in which a single TEF is 
derived for each chemical in the mixture across all endpoints and all exposure conditions. 
Therefore, it requires a strong degree of toxicologically similarity as well as toxicological 
equivalence across all endpoints, i.e. it is assumed that all the toxic effects of concern share a 
common mode of action (U.S.EPA, 2000). Other assumptions are that the effects of each 
compound in the mixture are essentially additive at sub-maximal levels of exposure and that 
the dose-response curves are parallel (Advisory Committee on Hazardous Substances, 2007; 
Safe, 1998; U.S.EPA, 2000). The assumptions for the TEF model imply that a large amount of 
data is collected for the group of compounds under evaluation. So far the TEF approach has 
only been implied for a few mixtures of pesticides e.g. for assessment of combined risk from 
exposure to mixtures of organophosphorus compounds and carbamates (Boon and van 
Klaveren, 2003; Jensen et al., 2003; Mileson et al., 1999; National Research Council, 1993). 

The TEF method was originally developed during the 1980ies to express the toxicological 
potency of mixtures of polychlorinated dibenzo-p-dioxins and dibenzofurans by several 
authorities (U.S.EPA, 1989a). According to Safe (1990), TEF values should be derived from 
data available for more than one response. These criteria were used by Safe for deriving TEF 
values for (dioxin-like) polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and 
dibenzofurans (“dioxins”) as well as related compounds (Safe, 1990). Based on the experience 
from the development of TEFs for dioxins in the beginning of the 1990ies seven guiding 
criteria were developed for the TEF approach for application to dioxins and dioxin-like 
compounds (U.S.EPA, 2000). In this report EPA also described a procedure for developing a 
RPF approach for more general use. Similar criteria were used at an expert meeting organised 
by WHO in 1997 with the purpose to derive consensus TEF values for polychlorinated 
dibenzo-p-dioxins, dibenzofurans and dioxinlike polychlorinated biphenyls. They followed a 
ranking order for weighting different types of studies: in vivo studies were higher ranked than 
in vitro studies and/or quantitative structural activity relationship (QSAR) data. In accordance 
with the approach used by Safe, the studies were then further ranked due to the type of study 
(chronic > subchronic > subacute > acute) (Van den Berg et al., 1998). The TEF values for 
“dioxins” were re-evaluated at another WHO meeting in 2005 (Van den Berg et al., 2006). 

The toxicity equivalent (TEQ) concentration is calculated by multiplying the concentration of 
each compound (Ci) in a mixture with the TEF value of the individual compounds in the 
mixture (TEFi): 

∑ ×= iTEFiCTEQ  (2) 

The resulting TEQ is assumed to be an equivalent concentration of the index compound and it 
can therefore be compared to the RfD of the index compound (Botham et al., 1999). If the TEQ 
is greater than the RfD, the mixture may constitute a risk. 
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In order to improve the application of relative potency factors to pesticide mixtures U.S. EPA 
has published a report with information concerning biological concepts and statistical 
procedures (U.S.EPA, 2003). 

In the following the mixture of the three pesticides in Table 1 is used to illustrate the use of 
the TEF method. The TEQ dose is calculated by the above equation in which the exposure data 
(from Table 1) are inserted instead of the concentration of each compound:  
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The ADI for the index compound chlorpyrifos is 0.01 mg/kg bw/day (see Table 1) and the 
TEQ is then a factor of 165 below ADI. Therefore, the mixture is not expected to constitute a 
risk.  

7.2.3 POINT OF DEPARTURE, MARGIN OF EXPOSURE, CUMULATIVE RISK INDEX 

In the point of departure index (PODI) method the exposures of each compound in the 
mixture are summed and expressed as a fraction of their respective PODs.  
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The point of departure can be a data point (typically the NOAEL) or an estimated point 
derived from observed dose response data (e.g. benchmark dose at 10 % effect level, BMD10). 
Thus in contrast to the HI method the PODI method does not employ an uncertainty factor. 
The point of departure on each compound’s dose-response curve can be determined as the 
toxic potency of the compound relative to the other compounds (Larsen et al., 2003; U.S.EPA, 
2002). 

An EFSA colloquium (EFSA, 2007) recommended the use of the PODI instead of the less 
transparent HI method because it does not involve a policy driven uncertainty factor. 
However, they state that HI is a practical tool for screening purposes.  

EFSA uses the term reference point (RP or RfP) to replace the term point of departure (EFSA, 
2008). Barlow et al. distinguish between the term reference point and point of departure in 
the way that the reference point is used in description of the margin of exposure approach 
and the point of departure is used in descriptions of extrapolation approaches (Barlow et al., 
2006). 

Data from Table 1 is used to calculate PODI with the NOAEL as the POD: 
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No international consensus exists on how to evaluate the PODI. However, the PODI can be 
converted into a “risk cup” unit by multiplying with a group UF. A suggestion could be to use a 
group UF of 100 and an acceptable risk cup unit should be below 1 (Wilkinson et al., 2000). In 
the above example a risk cup unit of 0.015 is obtained which is well below 1 and therefore is 
considered acceptable. 

In the margin of exposure (MOE) method the point of departure (POD) is divided by the 
measured or estimated exposure (E) from a given route: 

i

i
i E

PODMOE =  (4) 

The margin of exposure approach has been used by EPA to determine the acceptability of 
acute risks for single chemicals. MOEs of >10 or >100 are usually considered acceptable when 
derived from toxicological data from human and animal studies, respectively. These levels are 
chosen since they are numerically the same as the typical uncertainty factors that are used in 
calculating e.g. a RfD from NOAEL (Wilkinson et al., 2000).  

The combined margin of exposure (MOET) is the reciprocal of the sum of the reciprocal of 
MOEs of each compound in the mixture. Using equation (4) and (3) illustrate that MOET is the 
reciprocal of PODI as shown in the second line:  
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A MOET higher than 100 is usually considered acceptable when derived from toxicological 
data from animal studies (Wilkinson et al., 2000). 

For the example in Table 1 the MOET can be calculated by inserting MOE from each of the 
three compounds in the above equation: 
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As MOET is higher than 100, it is considered acceptable. 

U.S. EPA has suggested to derive a cumulative risk index from the MOE for compounds with 
different uncertainty factors. The risk index (RI) can be calculated as follows: 
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The cumulative risk index is the reciprocal of the sum of the reciprocal of the RIs and thereby 
of HI: 

HI
1
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The risk increases as the CRI falls below 1, equal to situations where the exposure is higher 
than the RfD (Larsen et al., 2003; U.S.EPA, 1999b; Wilkinson et al., 2000). 

The data from Table 1 will be used in this example showing how to calculate the cumulative 
risk index for the three compounds: 
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This is well above one and therefore the mixture is not expected to constitute a risk. 

7.2.4 SIMPLE DISSIMILAR ACTION, RESPONSE ADDITION 

The model for simple dissimilar action assumes that the compounds in the mixture do not act 
by the same mode of action and the model does not assume that the dose-response curves 
have a similar shape. The nature and site of action may also differ among the compounds and 
every compound in the mixture is thought to provoke effects (response) independent of the 
other compounds present i.e. the effect of one compound is the same whether or not another 
compound is present. An example of simple dissimilar action is the combined risk of any kind 
of reproductive toxicity for a set of chemicals with different modes of action (U.S.EPA, 2000). 

If compound 1 in a mixture of two compounds has a probability for adverse effect, p1, then 
compound 2 can act only on the remaining fraction 1- p1 assuming that the maximum fraction 
of total possible effect is 1 (Svendsgaard and Hertzberg, 1994). Then the probability for 
adverse effect of compound 2 will be p2 × (1- p1) and the expected probability for an adverse 
effect from the mixture according to the model of Bliss independence, pmix, at the doses d1 and 
d2, respectively, will be: 
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Bliss independence occurs if the measured effect of the mixture (stated as a probability for an 
adverse effect) equals pmix(d1,d2) (Bliss, 1939; Könemann and Pieters, 1996; National 
Research Council, 1989; U.S.EPA, 2000). 

In a more general form, the probability for an adverse effect to arise from a mixture with more 
than two compounds is 1 minus the probability of not responding to any of the single 
compounds: 

∏
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(Advisory Committee on Hazardous Substances, 2007; U.S.EPA, 2000). 

The response to a mixture depends on the dose and on the correlation of tolerances. This 
correlation can vary between -1 and 1. The equation above corresponds to no correlation of 
tolerances and it is the standard formula for statistical independence (Könemann and Pieters, 
1996). If the organisms most sensitive to chemical 1 are also most sensitive to compound 2 
then the compounds are completely positively correlated. In case of complete positive 
correlation (r = 1) the effect of the mixture will depend on the most toxic compound in the 
mixture, that is: 
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In case of complete negative correlation (r = -1), the probability of an adverse effect from a 
mixture of compound 1 and 2 equals to the sum of the individual responses: 

1p if )(dp )(dpp mix221 1mix ≤+=  (11) 

In this case the organisms most sensitive to compound 1 is least sensitive to compound 2 and 
vice versa (ATSDR, 2004; Könemann and Pieters, 1996; U.S.EPA, 2000). 

The last equation is the most conservative approach to describe simple dissimilar action and 
U.S. EPA has recommended it to be used in risk assessment of mixtures of carcinogens. They 
use the following equation to estimate the risk (unit-less probability that an individual will 
develop cancer) for the mixture: 

∑∑
==

==
n

1i
ii

n

1i
i BdRiskRisk

  (12) 

where Riski is the risk estimate for the ith compound, di is the dose and Bi is the potency 
parameter for the ith carcinogen (U.S.EPA, 1986). According to U.S. EPA the equation is 
appropriate to use when the risks of the individual compounds are less than 0.01 and the sum 
of the individual risks is less than 0.1 (ATSDR, 2004; U.S.EPA, 1989b; U.S.EPA, 2000).  
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In a hypothetical mixture of four compounds, I, II, III and IV the compounds are present at 
concentrations providing the following doses: 1.5, 2.0, 2.5 and 3.0 mg/kg/day. The 
corresponding responses are derived from the hypothetical dose-response curves in Figure 2: 
0.3, 0.16, 0.11 and 0. 

The probability for an adverse effect to arise from the mixture is calculated from equation (9): 

pmix=1-(1-0.3)x(1-0.16)x(1-0.11)x(1-0)=0.48 

This is called the “true response” by U.S. EPA (U.S.EPA, 2000). 

Using the more conservative method (equation (11)) will give an unadjusted mixture risk 
(corresponding to complete negative correlation) of: 

pmix=0.3+0.16+0.11+0=0.57 

This gives a “relative error” of:  

(0.57-0.48) / (0.48) = 0.20 

The results from using the two different approaches give a “relative error” of 20 %. In both 
cases the risk of an adverse effect arising from the mixture is around 50 %.  

  

Figure 2. Hypothetical dose-response curve for four compounds I, II, III and IV. 

The response addition is based on the principle that each organism will have a certain level of 
susceptibility to each compound and the threshold of susceptibility has to be exceeded in 
order to perform a response. This means that the response addition method cannot estimate a 
toxic effect from a mixture when the individual compounds in the mixture do not lead to an 
effect. Based on this assumption EFSA concluded, that response addition will rarely if ever be 
relevant for pesticide residues in food since they generally are found at levels well below their 
respective toxic levels (EFSA, 2008). 

7.2.5 INTERACTIONS 

U.S. EPA has suggested the interaction hazard index approach for mixtures consisting of 
interacting compounds in order to take antagonistic and synergistic interactions into account 
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in the derivation of a hazard index. The interaction-based hazard index uses the weight of 
evidence (WOE) approach as a quantitative modifier to the hazard index in risk assessments 
involving interactions of multiple compounds (Mumtaz et al., 1998; Mumtaz and Durkin, 
1992; U.S.EPA, 2000). It assumes that binary interactions are the most important and 
information on binary interactions is used to modify the hazard index using binary weight of 
evidence (BINWOE). It is also assumed that compounds in a mixture act by similar 
mechanisms (U.S.EPA, 2000). 

There are four important features in the interaction hazard index approach (Seed et al., 1995). 
Firstly, the interaction mechanism should be well understood. Secondly, the data from other 
related compounds should be consistent with the proposed mechanism. Thirdly, the 
toxicological significance of this interaction should be demonstrated and fourthly, the in vivo 
data of the interaction should be available from long-term studies using a route of exposure 
relevant for humans.  

In the first steps of the interaction-based hazard index approach, the mechanistic 
understanding and the toxicological significance is connected. This forms the basis of the risk 
assessment. Thereafter, the binary mixtures are grouped in three modifying categories used 
to alter the rating of the risk assessment. The three modifying categories are 
duration/sequence of exposure, in vivo/in vitro and route of exposure. 

This classification is used to set up a quantitative interaction matrix by the aid of a set of 
default weighting factors and many calculations. The calculations include the hazard index 
and interaction factors for each binary mixture. The normalised site-specific weight of 
evidence is calculated and used to adjust the hazard index for the uncertainty of interactions. 
And finally the adjusted hazard index can be evaluated. 

The dose-additive hazard index can be modified by using a scaled BINWOE (WOEN) giving the 
interaction hazard index, HII: 

NWOE
IADDI )UF(HIHI =  (13) 

where HIADD is the non-interactive HI based on dose addition and UFI is the uncertainty factor 
for the interactions (Mumtaz and Durkin, 1992; U.S.EPA, 2000). 

U.S. EPA has pointed out some very important weaknesses of the interaction hazard index 
approach (U.S.EPA, 2000): There is no guidance for selection of the uncertainty factors for 
interactions used in the method, and the steps in determining the BINWOE are complex. The 
weighting factors used in the method lack support from empirical assessments of key 
experimental variables. Further the interaction hazard index approach is supposed to account 
for (pair wise) interactions, but the method may be too simple in that the interaction 
information is only represented by the uncertainty factor, which is multiplied with the entire 
additive hazard index. The magnitude of the interaction is not included in the method. The 
fact that a qualitative/subjective evaluation of data is used as the basis for quantitative 
modelling makes this model less applicable.  
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Neither the approaches for toxicologically similar compounds nor the approach for 
toxicologically independent compounds presented earlier in the text will accurately predict 
risks for compounds that exhibit toxicological interactions. The interaction-based hazard 
index approach introduced by Mumtaz and co-workers (Mumtaz and Durkin, 1992) seems to 
be the only method at present that take toxicological interactions into account. However, this 
method is complicated to use and it requires a great deal of data, calculations and 
assumptions concerning the interactions of the compounds. Conolly has stated that one of the 
greatest dangers in trying to describe mechanisms quantitatively is the use of speculative 
assumptions about the mechanisms rather than the lack of knowledge as such (Conolly, 
2001).  

The method described by Mumtaz and Durkin (1992) requires an evaluation of data quality 
for mechanistic information. However, it does not provide guidance on evaluating interactions 
data themselves. Borgert et al. (2001) has presented five criteria to evaluate the quality of 
data and interpretations in studies of chemical mixtures: 

“Criterion 1. Dose response curves (DRCs) for the mixture components should be adequately 
characterized. 

Criterion 2. An appropriate “no-interaction” hypothesis should be explicitly stated and used as 
the basis for assessing synergy and antagonism. 

Criterion 3. Combinations of mixture components should be assessed across a sufficient range 
to support the goals of the study. 

Criterion 4. Formal statistical tests should be used to distinguish whether the response 
produced by a dose combination is different (larger or smaller) from that predicted by the 
“no-interaction” hypothesis. 

Criterion 5. Interactions should be assessed at relevant levels of biological organization.“ 

The criteria are intended to assist the risk assessor in the evaluation of interactions studies 
for use in risk assessment of chemical mixtures (Borgert et al., 2001). EPA has also pointed 
out statistical deficiencies in handling and interpretation of data from interaction studies 
(U.S.EPA, 1988b). 

The quality of studies and the uncertainty in the interpretation of studies on combined actions 
of compounds in mixtures is a very important point since it makes the basis for deciding 
whether there will be no interaction or interaction between the compounds in the mixture. 
Information on interaction or not is used for deciding which method to use in the evaluation 
process. 

7.3 ADVANTAGES AND DISADVANTAGES OF THE METHODS 

Eight methods for risk assessment of mixtures based on data on single compounds are shown 
in Table 2. The required data, applicability, assumptions, advantages and disadvantages of 
each method are summarised. 
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Table 2: Overview of eight methods for risk assessment of mixtures based on data on single 
compounds. Advantages and disadvantages of the methods. 

Procedure Required data Applicability Assumptions Advantages Disadvantages 
Hazard Index 
(HI) 

Maximum 
acceptable level 
for each 
compound (e.g. 
RfD or ADI). 
Exposure data. 

Compounds having 
adequate dose-
response data, as 
well as exposure 
data at low levels. HI 
is also used for 
compounds with 
similar target organ 

Simple similar action 
– toxicological 
similarity 

Transparent, 
understandable, 
relates directly to 
long-used and well-
understood measure 
of acceptable risk e.g. 
RfD or ADI 

RfD (or ADI) is not 
an appropriate point 
of departure – it 
involves an UF 
(subjective). If the 
UFs are not the same 
for all compounds in 
the mixture, this will 
affect the result 

Relative Potency 
Factor (RPF) 

Toxicity data for 
each compound, 
dose-response 
data for the index 
compound. 
Exposure data. 

Some data available 
– restricted by 
similarity and to 
specific conditions 

Simple similar action 
– toxicological 
similarity, but for 
specific conditions 
(end point, route, 
duration). It is 
supposed to account 
for mixtures with 
different mode of 
action 

Transparent, 
understandable, 
relates directly to real 
exposure and toxicity 
data 

Complicated to use. 
Relies on the 
availability of dose-
response data for the 
index compound.  

Toxicity 
Equivalency 
Factor (TEF) 

Toxicity data for 
each compound, 
dose-response 
data for the index 
compound. 
Exposure data. 

Seldom applicable as 
data seldom 
available. A TEF 
value is applied to all 
end points; 
therefore, method 
restricted to 
mixtures of 
compounds with 
strong similarity – 
few chemical classes 
will qualify 

Simple similar action 
– toxicological 
similarity across 
endpoints 

Transparent, 
understandable, 
relates directly to real 
exposure and toxicity 
data 

Data seldom 
available. In some 
cases complicated to 
use. Relies on the 
availability of dose-
response data for the 
index compound 

Margin of 
Exposure for 
mixtures (MOET) 

Point of departure 
(e.g. NOAEL or 
BMD10). Exposure 
data. 

Compounds having 
adequate dose-
response data, as 
well as exposure 
data 

Simple similar action 
– toxicological 
similarity 

Relates directly to real 
exposure and toxicity 
data - not based on a 
policy driven 
parameter like ADI.  

No criteria for 
defining the 
magnitude for an 
acceptable MOET 

Point of 
Departure Index 
(PODI) 

Point of departure 
(e.g. NOAEL or 
BMD10). Exposure 
data. 

Compounds having 
adequate dose-
response data, as 
well as exposure 
data 

Simple similar action 
– toxicological 
similarity 

Relates directly to real 
exposure and toxicity 
data - not based on a 
policy driven 
parameters like ADI.  

No criteria for 
defining the 
magnitude for an 
acceptable PODI 

Cumulative Risk 
Index (CRI) 

Point of departure 
(e.g. NOAEL or 
BMD10) or 
maximum 
acceptable level 
for each 
compound (e.g. 
RfD or ADI). 
Exposure data. 

Compounds having 
adequate dose-
response data, as 
well as exposure 
data 

Simple similar action 
– toxicological 
similarity 

Combines MOEs for 
chemicals with 
different UFs 

RfD (or ADI) is not 
an appropriate POD 
– it involves an UF 
(subjective). Not as 
transparent and 
understandable as 
the HI. Complex 
calculations 

Response 
Addition 

Toxicity data 
measured as a 
fraction of 
responding. Good 
dose-response 
data. Exposure 
data 

Seldom applicable as 
data seldom 
available 

Simple dissimilar 
action – Bliss 
independence 

Mathematically easy Data seldom 
available 

Interaction 
Hazard Index 
(HII) 

Maximum 
acceptable level 
for each 
compound, a 

Seldom applicable as 
data seldom 
available: limited 
data on interactions 

Binary interactions 
are most important. 
Magnitude of 
interaction depends 

Supposed to account 
for interactions 
(binary) 

Data seldom 
available. Complex to 
determine the 
BINWOE. Weighting 
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Procedure Required data Applicability Assumptions Advantages Disadvantages 
number of 
weighting factors. 
Exposure data. 

on proportions of 
the compounds – not 
dose-dependent  

factors are not 
supported by 
experimental data. 
No guidance for 
selecting UFs for 
interactions and 
interactions are only 
represented by these 

8 PROPOSED FLOW CHARTS FOR RISK ASSESSMENT OF MIXTURES 
OF CHEMICALS 

In 2001 ATSDR published the report “Guidance for the Preparation of an Interaction Profile” 
including flow charts for a step-by-step procedure for assessing effects (including 
carcinogenicity) (ATSDR, 2001). These flow charts were revised in the report “Guidance 
Manual for the Assessment of Joint Toxic Action of Chemical Mixtures” in 2004 (ATSDR, 
2004). The flow charts are shown in Figure 3 and 4. The two methods are especially 
concerned with how public health is affected by exposure to chemical mixtures at hazardous 
waste sites. 

The two flow charts for non-carcinogenic and carcinogenic effects, respectively, are similar. In 
the first steps it is considered which information is available on the mixture: - An interaction 
profile? - A toxicological profile? - A minimal risk level? - Other health guideline values? If no 
such information is available the single compounds approach should be used. ATSDR 
recommends using PBPK/PD models, if available, to predict the potential for interactions or 
effects from the mixture. The hazard index method is recommended to be used for screening 
for non-cancer hazards from potential additivity of the compounds in the mixture (Figure 3). 

In case of carcinogenic effects the compounds in the mixture are summed to screen for 
hazards from potential additivity (Figure 4). The potential impact of interactions on non-
cancer and cancer health effects is evaluated by a weight-of-evidence method. 
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Figure 3. Flow chart proposed by ATSDR for a step-by-step procedure for assessment of 
combined action of mixtures of non-carcinogenic chemicals. Modified from (ATSDR, 2004). 
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Figure 4. Flow chart proposed by ATSDR for a step-by-step procedure for assessment of 
combined action of mixtures of carcinogenic chemicals. Modified from (ATSDR, 2004). 

In 2002 a committee of the Health Council of The Netherlands published an advisory report 
which included a flow chart for safety evaluation of combined exposures using the so-called 
“top n” and “pseudo top n” approaches in which the most toxic compounds in the mixture are 
selected and assessed for toxicity, see Figure 5 (Feron et al., 2004; Health Council of the 
Netherlands, 2002). This approach is especially suitable for the toxicological evaluation of 
workplace and hazardous waste site atmospheres. The report recommends use of Mumtaz-
Durkin weight of evidence method for prioritisation of the combined exposures according to 
their potential risk (Feron et al., 2004). The intention is that the flow chart should be walked 
through in its entirety in order to select the best method. In the upper part of Figure 5 it is 
decided whether the data on toxicity is available on a mixture or on single compounds, that is 
to say corresponding with the upper part of the flow chart suggested by U.S. EPA shown in 
Figure 1. The lower part of Figure 5 is intended for specified mixtures of compounds 
concentrating on pairs of compounds in the mixture. The first step is to consider whether the 
compounds in the mixture act by similar action or dissimilar action and thereafter consider 
whether interactions occur or not. If the compounds act by similar action without interaction 
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the scheme recommends dose addition and toxicity equivalency factor for assessing the joint 
toxicity. If the compounds act by dissimilar action without interaction, response addition 
should be used. 

 

Figure 5. Flow chart suggested by Health Council of the Netherlands for assessing combined 
actions of two compounds. Modified from (Feron et al., 2004; Health Council of the 
Netherlands, 2002). 

Use of a hazard index is also recommended for mixtures of compounds without interactions: 
in the case of similar action the hazard quotients are added and in the case of dissimilar action 
the highest hazard quotient is chosen even though the latter is not following the theory 
stringent (Health Council of the Netherlands, 2002). In cases with similar action with 
interactions or dissimilar action with interactions, it is necessary to examine whether the data 
available can be used for a quantitative conclusion; the Committee concluded that it is not 
able to give universal criteria for this. 

The flow chart in Figure 6 is an expansion of the method proposed by U.S. EPA in Figure 1: one 
method has been added to the methods based on data on single compound. In the case of a 
mixture of compounds having different modes of action but causing the same toxic effect it is 
suggested to combine the response and dose addition methods in what they call the 
cumulative relative potency factors (CRPF). The compounds in the mixture which have the 
same mode of action are put together in subclasses. Then the RPF can be used to estimate the 
risk of each subclass. These subclasses are expected to act independently of each other (that is 
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simple dissimilar action) and therefore the calculated RPFs can be added to give the total 
mixture risk (Teuschler, 2007).  

 

Figure 6. Flow chart for assessment of combined actions of chemical mixtures. Adapted from 
(Teuschler, 2007).  

The Norwegian Scientific Committee for Food Safety has suggested a step-wise case-by-case 
evaluation of the toxicological data on the compounds and the exposure data, see Figure 7 
(Norwegian Scientific Committee for Food Safety, 2008). They assume that if exposure to 
compounds is below the individual NOAELs and they act by similar mode of action then no 
more than an additive effect is expected. If exposure to compounds is above the NOAELs, 
interaction may occur. Interactions are taken into account in the two boxes with dotted lines 
in the figure. 

On the left hand side in Figure 7, it should be considered whether the compounds act on the 
same target organ, whether the compounds in the mixture act by the same mode of action and 
finally in the refinement it should be considered whether the compounds act by the same 
mechanism of action. If data are available and indicate that the compounds act by the same 
mechanism of action, the toxicity equivalency factor method should be used, otherwise (i.e. 
the compounds act by the same mode of action) the hazard index, the margin of safety or the 
point of departure index method should be used. On the right hand side it should be 
considered whether the compounds in the mixture act by simple dissimilar action. 
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Figure 7. Flow chart proposed by Norwegian Scientific Committee for Food Safety. Adapted 
from (Norwegian Scientific Committee for Food Safety, 2008). 

In 2002, the Danish Veterinary and Food Administration suggested to use the flow chart 
shown in Figure 8 for risk assessment of pesticide mixtures found as residues in food 
(Reffstrup, 2002). The risk assessment must be done on a case-by-case evaluation in which 
the available chemical and toxicological data on the pesticides are evaluated in a weight of 
evidence process. Then the hazard index with the ADI as the acceptable level in the 
denominator should be used. However, in cases where the weight of evidence points out that 
the compounds in the mixture share a common mechanism the toxicity equivalency factor 
should be used instead of the hazard index. This concerns for instance the organophosphorus 
pesticides, the chloroacetanilides, the dithiocarbamates and the thiocarbamates. This is a 
rough and pragmatic method. In Denmark, this method has been used for evaluating mixtures 
of pesticides in foods since 2002. In most cases, the hazard index has been used with ADI as 
the acceptable level. In only a few cases the ADI were exceeded and this was often due to only 
one compound in the mixture. 
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Figure 8. Flow chart of the risk assessment approach for pesticide mixtures found in food 
(Reffstrup, 2002). 

The Scientific Panel on Plant Protection Products and their Residues (PPR Panel) has 
recommended the flow chart shown in Figure 9 mentioning what they consider the most 
useful methods (EFSA, 2008). Going from the top and down through the flow chart there are 
an increasing level of complexity and refinement: the hazard index, the reference point index 
(i.e. PODI), the relative potency factor method and physiologically based toxicokinetic 
modelling. 

 

Figure 9. Tiered hazard assessment proposed by EFSA. Modified from (EFSA, 2008). BBDR = 
biologically based dose response modelling. 

An overview of the required data and assumptions for these eight flow charts are shown in 
Table 3 as well as the advantages and disadvantages of the different strategies. 
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Table 3: Overview of the required data, assumptions, advantages and disadvantages for the 
eight flow charts / assessment strategies shown in this thesis.  

Flow chart Required data Methods suggested Assumptions Advantages Disadvantages 
Figure 1. Flow chart 
of the risk 
assessment 
approach used by 
U.S. EPA (U.S.EPA, 
2000). Developed 
for environmental 
contaminant 
mixtures 

Either data on 
mixture or on 
single 
compounds 

Mixture: RfD/C, 
cancer slope factor, 
comparative 
potency, 
environmental 
transformation. 
Single compounds: 
HI, RPF/TEF, 
response addition, 
interaction based HI 

For single compound 
approaches (except 
interaction based HI): 
no or insignificant 
interaction effects at 
low dose levels. In some 
cases the requirement 
of similar mode of 
action is relaxed to 
require only same target 
organ 

Flow chart is straight 
forward. Very broad 
flow chart that covers 
many 
approaches/situations 
and can therefore be 
used in many cases. 
Allows risk 
assessment based on 
whole mixtures as 
well as single 
compounds with a 
wide range of methods 
suggested 

Comprehensiveness 
makes the flow chart 
complicated.  
Some of the methods 
are complicated and 
requires many data. 
In case of interaction 
no universal criteria 
for deciding whether 
the data permits a 
quantitative 
conclusion to be 
drawn 

Figure 3. Flow chart 
proposed by ATSDR 
for assessment of 
non-carcinogenic 
chemicals from 
hazardous waste 
sites (ATSDR, 
2004) 

Either data on 
mixture or on 
single 
compounds 

Mixture: use of 
interaction profile (if 
available) incl. 
minimal risk level. 
Single compounds: 
HI, PBTK/PD, 
BINWOE, target-
organ toxicity dose 
(TTD) modification 
of HI (for 
compounds not 
having same critical 
effect but having 
overlapping target 
organ) 

The mechanism of 
toxicity is well enough 
known to assume which 
compounds will be 
additive and which will 
not (McCarty and 
Borgert, 2006). If two or 
more compounds have 
HQ≥0.1 the mixture 
requires more 
evaluation of additivity 
and interactions 

Flow chart is 
comprehensive and 
allows use of different 
approaches including 
newer modelling 
techniques. Depending 
on the available data 
and exposure level the 
risk assessment can 
stop after only a few 
steps 

Criteria for judging 
whether the 
compounds act 
additively or not are 
not defined or 
validated (McCarty 
and Borgert, 2006). 
Comprehensiveness 
makes the flow chart 
complicated. 
Some of the methods 
are complicated and 
requires many data 

Figure 4. Flow chart 
proposed by ATSDR 
for assessment of 
carcinogenic 
chemicals from 
hazardous waste 
sites (ATSDR, 
2004) 

Either data on 
mixture or on 
single 
compounds 

Mixture: use of 
interaction profile (if 
available). 
Single compounds: 
cancer risk estimates 
(cancer slope factors 
times exposure of 
the population of 
concern) 

Cancer is regarded as 
same critical effect not 
considering the tumour 
type or location. The 
mechanism of toxicity is 
well enough known to 
assume which 
compounds will be 
additive and which will 
not (McCarty and 
Borgert, 2006). If two or 
more compounds have 
estimated risk ≥ 10-6 
the mixture requires 
more evaluation of 
additivity and 
interactions  

Flow chart easily 
understandable 
although it requires 
many data. Depending 
on the available data 
and exposure level the 
risk assessment can 
stop after only a few 
steps 

Criteria for judging 
whether the 
compounds act 
additively or not are 
not defined or 
validated (McCarty 
and Borgert, 2006). 
Some of the methods 
are complicated and 
requires many data 

Figure 5. Flow chart 
suggested by 
Health Council of 
the Netherlands for 
assessing risk from 
contaminated soil. 
The Committee 
recommends use in 
e.g. consumption of 
contaminated food 
or inhalation of 
polluted air (Feron 
et al., 2004; Health 
Council of the 
Netherlands, 2002) 

Either data on 
mixture or on 
single 
compounds  

Mixture: 
recommended 
exposure limits for 
mixture. 
Single compounds: 
TEQ, exposure limits 
for individual 
compounds.  
HI (not shown in 
flow chart) is also 
recommended in the 
report for similar 
and dissimilar acting 
compounds even 
though the latter is 

Assesses the combined 
effect per pair in the 
mixture. 
Concerning exposure 
limits: harmfulness only 
manifests itself above a 
certain concentration 

Flow chart straight 
forward. Broad flow 
chart that covers many 
approaches/situations 
and can therefore be 
used in many cases. 
Allows risk 
assessment based on 
whole mixtures as 
well as single 
compounds 

Even though flow 
chart is broad it does 
not directly 
concretize many 
methods (e.g. 
method(s) for 
dissimilar acting 
compounds). 
The Committee 
concludes that in 
case of interaction 
there are no 
universal criteria for 
deciding whether 
the data permits a 
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Flow chart Required data Methods suggested Assumptions Advantages Disadvantages 
not following the 
theory stringent 

quantitative 
conclusion to be 
drawn.  

Figure 6. Flow chart 
for assessment of 
combined actions 
from 
environmental 
contaminant 
mixtures 
(Teuschler, 2007) 

Either data on 
mixture or on 
single 
compounds  

Mixture: RfD/C, 
cancer slope factor, 
fractionation of 
whole mixture, 
pattern recognition 
techniques and 
multivariate 
regression 
Single compounds: 
HI, TEF, RPF, 
response addition, 
interaction based HI, 
BINWOE, cumulative 
relative potency 
factors 

Departure from 
additivity is more likely 
at “high” concentrations 
than at “low” 

Flow chart is straight 
forward – even though 
this is not always the 
case for the answers 
(Teuschler, 2007). 
Very broad flow chart 
that covers many 
approaches/situations 
and can therefore be 
used in many cases. 
Allows risk 
assessment based on 
whole mixtures as 
well as single 
compounds with a 
wide range of methods 
suggested 
 

Comprehensiveness 
makes the flow chart 
complicated. 
Some of the methods 
are complicated and 
requires many data. 
Missing criteria to 
assess whether 
mixtures are 
sufficiently similar 
(Teuschler, 2007). 
In case of interaction 
data for a group of 
compounds with 
different modes of 
action there is no 
quantitative method. 

Figure 7. Flow chart 
proposed by 
Norwegian 
Scientific 
Committee for Food 
Safety for risk 
assessment of 
chemical mixtures 
in food, feed and 
cosmetics 
(Norwegian 
Scientific 
Committee for Food 
Safety, 2008) 

Data on single 
compounds  

MOE, HI, MOS, PODI, 
TEF, response 
addition 

Uses the term “same 
mode of action” which 
does not require 
knowledge about 
precise molecular 
mechanism but dose 
addition may be used 
anyway. No more than 
additive effect is 
expected for compounds 
at concentrations below 
individual NOAELs; 
above NOAEL 
interactions may occur 

Flow chart straight 
forward. Can be used 
for many types of 
compounds / 
situations. The first 
step sorts out 
genotoxic and 
carcinogenic 
chemicals 

Does not suggest 
methods in case of 
data on mixtures, if 
compounds act 
independently and 
in case of 
interactions (but 
report suggests: 
case-by-case basis – 
ideally based on test 
on the mixture).  
Flow chart 
encourage to 
consider whether 
the compounds 
affect the same 
physiological 
function but do not 
explain what is 
meant by that and 
how to deal with it 

Figure 8. Flow chart 
for risk assessment 
of pesticide 
mixtures found as 
residues in food 
(Reffstrup, 2002)  

Data on single 
compounds 

HI, TEF No more than additive 
effect is expected since 
pesticides are present in 
food at concentrations 
below individual 
NOAELs, and available 
evidence supports the 
view that significant 
toxic interactions are 
less likely to occur at 
these levels than at 
higher. 

Very simple to use – 
few and simple steps 
in the flow chart. 
Simplified to cover 
pesticide residues in 
food. Valuable as a 
first step in the risk 
assessment 

Pragmatic. Deals 
only with 
compounds present 
at low 
concentrations. Not 
scientific 
comprehensive, e.g. 
do not take 
interactions and 
dissimilar actions 
into account. Do not 
deal with data on 
whole mixtures 
(however seldom 
available for 
mixtures of 
pesticides) 

Figure 9. Flow chart 
proposed by EFSA 
for risk assessment 
of pesticide 
mixtures found as 
residues in food 
(EFSA, 2008) 

Data on single 
compounds 

HI, reference point 
index (PODI), RPF, 
PBTK-BBDR 

No more than additive 
effect (similar action) is 
expected since 
pesticides are present in 
food at concentrations 
below individual 
NOAELs, and available 

Flow chart straight 
forward. Simplified to 
cover pesticide 
residues in food 

Deals only with 
compounds present 
at low 
concentrations. Do 
not take interactions 
and dissimilar 
actions into account. 
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Flow chart Required data Methods suggested Assumptions Advantages Disadvantages 
evidence supports the 
view that significant 
toxic interactions are 
less likely to occur at 
these levels than at 
higher.  

Do not deal with 
data on whole 
mixtures (however 
seldom available for 
mixtures of 
pesticides). 
Some of the methods 
are complicated and 
requires many data 

9 DEFINED CUMULATIVE ASSESSMENT GROUPS / COMMON 
MECHANISM GROUPS FOR PESTICIDES 

As mentioned earlier the Food Quality Protection Act of 1996 requires U.S. EPA to take 
cumulative effects into account in the risk assessment of mixtures of pesticide residues in 
food. On that background U.S. EPA has up till now evaluated data on four common mechanism 
groups (CMGs): organophosphates (U.S.EPA, 2006c), N-methyl carbamates (U.S.EPA, 2007), 
triazines (U.S.EPA, 2006d) and chloroacetanilides (U.S.EPA, 2006b):  

• Evaluation of the group of organophosphorus pesticides was prioritized as they are 
expected to be one of the classes of pesticides that poses the greatest risk. In the group 
of organophosphorus compounds methamidophos was selected as the index chemical 
to standardize the toxic potencies of the compounds. U.S. EPA used the relative potency 
factor method to determine the cumulative risk. Benchmark dose estimates at a level of 
10 % brain acetylcholinesterase inhibition in studies on female rats were used to 
determine relative potencies for the organophosphorus compounds (U.S.EPA, 2006c). 

• The N-methyl carbamate pesticides were found to share a common mechanism of 
action. The ten carbamates all inhibit acetylcholinesterase. In this group, oxamyl was 
selected as the index chemical. Benchmark dose estimates at a level of 10 % brain 
acetylcholinesterase inhibition was used to estimate the relative potencies for the 
compounds (U.S.EPA, 2007). 

• Six triazines (atrazine, propazine, simazine and three of their metabolites) have been 
defined as a group based on a common mechanism causing neuro-endocrine and 
endocrine-related developmental, reproductive and carcinogenic effects. The 
compounds were included in the cumulative assessment group based on use patterns 
and the likelihood of exposure. The primary exposure route for these triazines is 
drinking water. Propazine, simazine and the three metabolites in the group are 
considered to be equivalent in toxicity to atrazine, per se, based on the evaluation of 
endocrine-related data on the triazines demonstrating either equal potency or potency 
less than atrazine (U.S.EPA, 2006d). 

• U.S. EPA has defined a group of chloroacetanilides consisting of acetochlor, alachlor 
and butachlor based on the common mode of action that cause nasal olfactory 
epithelium tumours in rats. Due to knowledge on the capacity to induce adverse effects 
by a common mechanism of toxicity, this group of pesticides was prioritized. Alachlor 
was selected as the index chemical. Butachlor was excluded from the risk assessment 
since there was no registered use of the compound in the US. The point of departure 
was chosen at the NOAEL for tumour formation for each compound and the margin of 
exposure for the cumulative exposure was calculated (U.S.EPA, 2006b).  
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The Pesticides Safety Directorate in the United Kingdom went through the data concerning 
carbamates and organophosphorus pesticides in order to consider whether there are 
scientifically valid justification for grouping N-methyl carbamates and organophosphates 
separately. They concluded that carbamates and organophosphorus pesticides share the 
ability to inhibit acetylcholinesterase at the same binding site. However, the enzyme recovers 
its activity much faster in case of inhibition by a carbamate compared to an 
organophosphorus pesticide. This difference in rate of recovery was the reason for the U.S. 
EPA to establish two separate groups. However, the Pesticides Safety Directorate in the 
United Kingdom concluded that as humans are often co-exposed to carbamates and 
organophosphates there is no scientific justification to establish separate groups for these 
compounds. This represents a more precautionary approach (Food Standards Agency, 2005).   

The United Kingdom performed cumulative risk assessment of carbamates and 
organophosphorus pesticides. They assessed various options for assessing relative potency.  
The RPFs using chlorpyrifos as the reference compound were derived from NOAELs for 
inhibition of RBC or brain cholinesterase in studies of various durations or from estimated 
benchmark doses (BMD10). The hazard index using ADI or acute RfD was also calculated 
(EFSA, 2008; IPCS, 2009a).  

EFSA has evaluated data on 25 compounds with a triazole-ring as a cumulative assessment 
group. From the literature they found that concerning acute toxicity seven of the compounds 
were producing crania facial malformation via a common mechanism of toxicity. Further, for 
chronic assessment 11 compounds were found to cause hepatotoxicity as a common effect 
(EFSA, 2009).  

10 USE OF PBTK/TD MODELLING IN NEWER APPROACHES IN THE 
RISK ASSESSMENT OF MIXTURES 

As mentioned in the previous sections several scientists, organizations and workshops have 
recommended the use of PBTK/TD modelling as a tool in the risk assessment of chemical 
mixtures. Thus the EFSA workshop on cumulative risk assessment of pesticides strongly 
encouraged the introduction of PBTK/TD models in the cumulative risk assessment (EFSA, 
2007) and in the EFSA opinion concerning risk assessment of pesticide mixtures PBTK/TD 
modelling is mentioned as the most refined model (EFSA, 2008).  

Simmons (1996) mentioned that there is a clear need for the development of PBTK models for 
mixtures. This development should be performed for the same mixtures by several 
laboratories in order to determine inter-laboratory consistency and variability. Scientists 
should also focus on extrapolation across species and development of human PBTK models 
for mixtures (Simmons, 1996). 

The US National Research Council has provided “guidance on new directions in toxicity 
testing, incorporating new technologies such as genomics and computational systems biology 
into a new vision for toxicity testing” (Andersen and Krewski, 2009). They recommend 
further development and use of in vitro methods instead of in vivo studies as well as 
improvement and use of computational methods to extrapolate from in vitro to in vivo 
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systems to predict tissue and blood concentrations in humans after exposure to chemicals in 
specific circumstances. They suggested PBTK models as a good answer to this. 

Teuschler pointed out the necessity to develop PBTK models for common mixtures of concern 
in order to use such models routinely in future risk assessments (Teuschler, 2007). As a 
helping tool for risk assessors and PBTK modellers, U.S. EPA has published a report describing 
different aspects of use and evaluation of PBTK models in risk assessment (U.S.EPA, 2006a). 
Further, some basic considerations for evaluation of PBTK models intended for risk 
assessment are nicely described by Chiu and co-workers (Chiu et al., 2007). 

11 WHAT IS A PBTK/TD MODEL? 

Physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modelling is used in 
pharmacology as a technique for prediction of the internal dose after exposure to a certain 
compound (PBPK) and for prediction of the tissue response due to this tissue dose (PBPD). 
Broadly speaking pharmacokinetic describes what the body does to the compound whereas 
pharmacodynamic describes what the compound does to the body. The development of PBPK 
models arose from the need to predict the correlation between doses of a chemical 
(pharmaceutical) given to an animal or human and the actual internal concentration at the 
target site. 

In the area of pharmacology, Torben Teorell used physiological considerations as the basis for 
a pharmacokinetic description. However, his work was done in the 1930s and the 
computational resources necessary for solving the differential equations were not available at 
that time (Rowland et al., 2004). Further, description of interactions of compounds with 
molecular targets at the necessary level of detail was not attainable in the 1930s. Therefore, 
the equations were replaced by simpler ones and for many years these more simple 
pharmacokinetic approaches continued to be in use even after the computational resources 
became available. Kenneth Bischoff and Robert Dedrick are generally credited for being the 
pioneers in the development of PBPK models by incorporating physiology, physical-chemistry 
and biochemistry into a computer modelling platform in the early 1970ies (Andersen and 
Krishnan, 2010).  

During the latest decades more research has been done on PBPK/PD models in which the data 
on both physiology and biochemistry of the chemical(s) of interest are incorporated into the 
conceptual model for computer simulation. 

In the area of toxicology several scientists have used the term physiologically based 
toxicokinetic/toxicodynamic (and PBTK/TD) models; however the principles of the models 
are the same as for PBPK/PD models. The term physiologically based toxicokinetic/ 
toxicodynamic and the abbreviation PBTK/TD will be used in this thesis. 

In a PBTK model the animal or man is described as a set of tissue compartments combined by 
mathematical descriptions (differential equations) of biological tissues and physiological 
processes in the body. Thereby it is possible to quantitatively simulate the absorption, 
distribution, metabolism and excretion (ADME) of chemicals and to predict the internal 
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concentration of the chemical (or metabolite) of concern. A conceptual representation of a 
PBTK model is shown in Figure 10 

 

Figure 10: Conceptual representation of a PBTK model. 

The PBTK model is sometimes coupled with a toxicodynamic part in which the model 
attempts to estimate the effect resulting from the internal dose. The output of a PBTK model is 
linked to a toxicodynamic model by mathematical description of the hypothesis of how 
compounds contribute to the initiation of cellular changes leading to the toxic responses. Such a 
model is sometimes called a biologically based dose-response model (BBDR) (EFSA, 2008; 
National Research Council, 2007; U.S.EPA, 2006a). The relationship between external dose, 
internal dose and observed toxic effect is shown in Figure 11. 

 

 Figure 11. Relationship between exposure, internal dose and observable effect. Modified from 
(IPCS, 2010).  

Figure 12 shows an overview of different steps in modelling representing increasing levels of 
information on the link between external dose, internal dose of the compound and its 
metabolites and their toxic response: 

• Basic data set: only knowledge on external dose and toxic response from experiments 
• Kinetic parameters: in this case simple calculations are made of the internal dose 

(possibly concentration of the compound in blood) i.e. the link between the external 
dose and toxic response  

• Physiologically based toxicokinetic (PBTK) model: in addition to the internal dose 
(which is possibly the concentration in blood) the target organ dose is calculated 
taking metabolism in the liver into account  
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• PBTK model with target organ metabolism: in this model both concentration in the 
target organ as well as metabolism of the compound in the target organ is modelled 

• Biologically based dose-response model: is the most refined model which combine 
PBTK and PBTD models to predict biological processes at the cellular and molecular 
levels by linking the concentration in the target organ to the adverse effect (Andersen 
and Krishnan, 2010; U.S.EPA, 2006a). 

 

Figure 12. Relationship between exposure, internal concentration and effect in dose-response 
analysis with increasing level of data-information. Figure modified from (IPCS, 2010). 

There are two main modes of implementing a PBTK model: descriptive and predictive. In a 
descriptive model the point of departure is a set of observed data i.e. knowledge about input 
and output, however, knowledge about the biology of the system is not required. A model is 
chosen and the job is then to fit the model to the data, i.e. making an interpolation. Such a 
model is also called empirical or data based. Unlike this, a predictive model is developed from 
knowledge on biology and the prediction from the model is afterwards validated against 
observed data. It is also called a mechanistic model. This kind of model is useful for 
extrapolations. A descriptive model has the fewest assumptions but it cannot be used for 
extrapolations to other species, types of exposure etc. Often both the descriptive and the 
predictive methods are used in the development of PBTK models in practice (Andersen and 
Krishnan, 2010; Nestorov, 2003).  

12 DEVELOPMENT OF A PBTK MODEL 

In order to develop a PBTK model for a certain chemical it is necessary to understand the 
anatomical and physiological characteristics of the species and the pathways of absorption, 
distribution, metabolism and elimination of the chemical in the body.  
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In the development of a PBTK model the Law of Parsimony should always be applied i.e. keep 
the model as simple as possible but still biological plausible. It is important to consider which 
compartments can be lumped together due to e.g. similar concentration-time courses. A large 
number of compartments are not necessarily equal to accuracy and usefulness of the model 
since the complexity requires a multitude of parameters to be estimated and thereby create 
greater uncertainty in the model description (Krishnan and Andersen, 2001; Yang and Lu, 
2007). 

The necessity for including a particular tissue as a separate compartment depends on the 
toxicokinetic properties, mode of action and toxicity of the compound being modelled. 
Common criteria for selecting a tissue is whether it has significant metabolizing enzyme 
activities or the solubility of the chemical plays an important role within the tissue (as for 
lipophilic compounds). Target organs and eliminating organs have to be described as separate 
compartments. For instance the liver is a major site of biotransformation and should 
therefore always be described separately (Krishnan et al., 2010; Krishnan and Andersen, 
2001).  

Tissues such as kidney, brain, heart, lung, thyroid, testis, and the hepatoportal system are 
often lumped into one compartment called rapidly (or richly) perfused tissue. In the same 
way slowly (or poorly) perfused tissues such as muscle and skin are often lumped into one 
compartment. Fat tissues in the whole body are also often lumped into one compartment. 
During the model development the complexity of the model can be increased (splitting or 
adding of compartments) if necessary in order to adequately describe data (Krishnan et al., 
2010; Krishnan and Andersen, 2001; Yang and Lu, 2007). 

The blood is not always described in the PBTK model as a separate compartment even though 
the blood concentrations are calculated. Instead the total blood volume is divided among the 
tissues (Krishnan and Andersen, 2001).  

The steps in developing a PBTK model for estimating tissue dose metrics for use in chemical 
risk assessment is as follows (see also Figure 13) (Andersen, 2003; Clewell and Clewell, III, 
2008; U.S.EPA, 2006a):  

1. identify toxic effects in animals (and humans) and determine the critical effect(s) 
2. search the literature and organise available data in order to determine the mode of 

action, metabolism, as well as physiological constants for the relevant animal species 
3. suggest relationships between response and tissue dose  
4. model formulation: develop a PBTK model to estimate the tissue dose metric at various 

doses 
5. run the model (that is, solve the equations) 
6. compare output from the model-simulation with available experimental data. If the 

result from the simulation deviates from the experimental data go to point 7) 
otherwise go to point 9) 

7. refine the model 
8. repeat point 5) and 6) 
9. application in risk assessment 
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Figure 13: Flow chart for development of a PBTK model. Adapted from (U.S.EPA, 2006a). 

13 MATHEMATICAL DESCRIPTIONS IN PBTK MODELS 

Examples of descriptions of absorption, distribution, metabolism and elimination used in 
PBTK models are shown in Table 4. Other equations are also used. In the section concerning 
the model-work performed in this thesis the equations used here are further outlined (see 
section 21.1). 

The equations most often used for description of metabolism in PBTK modelling will be 
described in the following sections.  
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Table 4. Examples of mathematical representation of absorption, distribution and excretion. 
Only oral absorption and urinary excretion are shown. Modified from (Krishnan et al., 2010).  

Toxicokinetic process Mathematical description 
Absorption Oral tKeoDoK

dt
odA

o∗−∗∗=

 Ao: amount of compound absorbed orally(mg), Ko: oral absorption rate constant (1/hr), Do: 
Oral dose (mg), t: time (hr) 

Distribution Protein binding 

fCdK1
fCdKβn

bC
∗+
∗∗∗

=

 Cb: concentration of bound compound (mg/l), n*α: binding maximum, Kd: dissociation 
constant (mg/l), Cf: concentration of free compound (mg/l) 

Diffusion limited tissue 
distribution 








−∗=

tP
tC

vtCtPA
dt

tdA

 At: amount of compound in tissue t (mg), PAt: permeation area cross product for tissue t 
(l/hr), Cvt: concentration in venous blood leaving tissue t (mg/l), Ct: concentration in tissue t 
(mg/l) Pt: tissue:blood partition coefficient 

Perfusion limited tissue 
distribution ( )vtCaCtQ

dt
tdA

−∗=

 At: amount of compound in tissue t (mg), Qt: blood flow to tissue (l/hr), Ca: concentration in 
arterial blood (mg/l), Cvt: concentration in venous blood leaving tissue t (mg/l) 

Metabolism First order 
vtCintCLtVvtCfK

dt
metdA

∗=∗∗=

 Amet: amount of compound metabolised (mg), Kf: first-order metabolism rate constant (1/hr), 
Cvt: concentration in venous blood leaving tissue t (mg/l), Vt: tissue volume (l), CLint: intrinsic 
clearance (l/hr)  

Second order 
cfCtVvtCsK

dt
metdA

∗∗∗=

 Amet: amount of compound metabolised (mg), Ks: second-order metabolism rate constant 
(l/mg/hr), Cvt: concentration in venous blood leaving tissue t (mg/l), Vt: tissue volume (l), Ccf: 
concentration cofactor in tissue t

 Saturable process 

vtCmK
vtCmaxV

dt
metdA

+
∗

=

 Amet: amount of compound metabolised (mg), Vmax: maximum velocity of enzymatic reaction 
(mg/hr), Cvt: concentration in venous blood leaving tissue t (mg/l), Km: Michaelis-Menten 
constant (mg/l) 

Excretion Urinary 
pC

pCtK
mTGFR

dt
rcdA

∗
+

∗=

 
Arc: amount of compound in renal compartment (mg), GFR: glomerular filtration rate (l/hr), 
Tm: apparent maximum transport of the carrier system (mg/hr), Kt: apparent Michaelis-
Menten constant with respect to secretary carrier (mg/l), Cp: plasma concentration (mg/l)  

 

13.1 MIXTURES WITH NO INTERACTION 

In case of a mixture of compounds that do not interact (e.g. simple similar action) the PBTK 
modelling tool is useful to predict the dose in the target organ taking metabolism of the 
compounds into account. Compounds in a mixture where no interaction appears should be 
dealt with in PBTK models in the same way as single compounds (Haddad et al., 2010). 

PBTK models are increasingly being used in supporting the derivation of health based 
guidance values such as ADI or RfDs for use in risk assessment. In the absence of adequate 
human data to assess the risk for humans directly, the reference value is typically derived 
from animal data. Uncertainty factors are then used to fill in the data gaps between the species 
as well as the intra-species variability. When a PBTK model is developed and tested 
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adequately, it will provide a more scientifically supportable result for these data gaps than use 
of uncertainty factors will give (DeWoskin and Thompson, 2008). 

Metabolism of a compound is usually described by the Michaelis-Menten equation in PBTK 
models. This model is known from basic biochemistry describing the enzyme kinetic of 
substrate S binding to enzyme, E, forming a complex, ES, which is an intermediate in the 
formation of product, P:  

PEESSE
21

1

kk

k
+→↔+

−

  

k1, k-1 and k2 are the rate constants for the three possible steps in the reaction. 

The initial rate of the reaction increases hyperbolically as a function of substrate 
concentration until it reaches a maximum, Vmax. Initially the rate of reaction follows a linear 
course with the pseudo-first order rate constant V/K. The Michaelis-Menten constant, Km, can 
be read as the intersection of the curves V/K and Vmax, see Figure 14.  

 

Figure 14. Michaelis-Menten saturation curve: the initial rate (v) plotted as a function of 
substrate concentration [S]. Vmax represents the maximum of the curve and V/K is the 
pseudo-first order rate constant (the slope of the linear curve at low [S]). Adapted from 
(Kedderis, 1997) 

Mathematically the Michaelis-Menten equation can be written as: 

[ ]
[ ]SK

S*V
RAM

m

max
+

=  (14)  

RAM is the rate of metabolism, Vmax represents the maximal rate for the system at the 
maximum substrate concentration, [S], and the Michaelis-Menten constant Km is: 

1

21
m k

kkK +
= −  (15) 

(Kedderis, 1997) 
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The Michaelis-Menten equation makes the steady-state assumption that the amount of 
complex between enzyme and substrate is constant (i.e. the complex is formed at the same 
rate as it is decomposed). This assumption is only valid when the concentration of substrate is 
much greater than the total enzyme concentration (Kedderis, 1997). 

13.2 TYPES OF TOXICOKINETIC INTERACTIONS AND MATHEMATICAL 
DESCRIPTIONS OF THESE 

The PBTK model can be used to investigate hypotheses regarding mechanisms of interaction 
between chemicals i.e. toxicokinetic interactions can be described in the model.  

A PBTK model describing interactions consists of sets of identical equations, one set for each 
chemical as well as equations that specifically accounts for the interactions (e.g., competitive 
inhibition of metabolism in liver or induction of hepatic metabolism) (ATSDR, 2001). These 
equations are based on knowledge or hypothesised mathematical descriptions of their 
interaction mechanisms (Haddad et al., 2010). 

Exposure to multiple chemicals may cause alterations in the toxicokinetics of the individual 
chemicals resulting in a change in the predicted toxicity based on effects of the single 
compounds. Toxicokinetic interactions occur as a result of one compound altering the 
absorption, distribution, metabolism or elimination of other compounds. They may affect the 
relationship between administered dose and the dose delivered to the target site (Krishnan et 
al., 1994; Krishnan et al., 2002). Toxicokinetic interactions can be caused by changes in either 
the physiological, physicochemical or biochemical parameters (Haddad et al., 2010).  

Physiological changes (e.g. changing in cardiac output and tissue blood flow) altering the 
toxicokinetics of one compound by another have been seen for many binary chemical 
mixtures. Physicochemical interactions such as solubility in lipid or water (e.g. by altering the 
pH) or permeability across biological membranes (by formation of more lipophilic complexes 
than either chemical itself) can result in changes in distribution or rates of absorption. 
However, models incorporating changes in physiological or physicochemical parameters 
caused by co-exposures have not yet been published (Haddad et al., 2010). 

The most frequently reported toxicokinetic interactions are at the metabolic and transporter 
levels (interaction at the biochemical level). These kinds of interactions occur when one 
chemical alters the binding, the biotransformation or the active transport of another chemical 
and they are either a result of changes in the affinity or maximal velocity. Interactions at the 
biochemical level are divided into: reversible metabolic inhibition, irreversible metabolic 
inhibition, reversible protein binding interaction and enzyme induction.  

The most often seen type of interaction in PBTK models is reversible metabolic inhibition 
and this can be divided into three cases: competitive, non-competitive and uncompetitive 
reversible enzyme inhibition (Haddad et al., 2010). Competitive inhibition takes place when 
chemicals compete for the same active site of the enzyme resulting in decreased apparent 
affinity (and increased Km) which again leads to a decrease in the rate of metabolism at lower 
substrate concentrations. Non-competitive inhibition results when a chemical binds to the 
enzyme at a site away from the catalytic active site. This leads to decreased catalytic activity 
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(and decreased Vmax). Uncompetitive inhibition occurs when a chemical binds to the 
enzyme-substrate complex and thereby affects the catalytic function without interfering with 
the substrate binding. The inhibiting chemical causes a structural distortion of the active site 
which becomes inactivated. The available enzyme is reduced (and Vmax is decreased) and the 
reaction E+S->ES is driven to the right (and Km lowered) (Haddad et al., 2010). The 
mathematically description of competitive, non-competitive and uncompetitive reversible 
enzyme inhibition is shown in Table 5. The derivation of these equations are nicely described 
in (Campbell et al., 2010).  

Table 5. Metabolic inhibition hypotheses, equilibrium equations and mathematical equations 
for the rate of metabolism (velocity) for compound 1 (Comp1) as well as the effect on Km and 
Vmax. Comp1 is the substrate with concentration C1, Comp2 is the inhibitor with concentration 
C2. Vmax1 and Km1 are the maximum velocity and Michaelis-Menten constant respectively for 
compound 1. Ki21 is the inhibition constant which is determined as the concentration of 
compound 2 at which 50 % inhibition occur. α is the factor by which Km and Vmax are changed, 
α=1+C2/K21. Table based on (Haddad et al., 2010) and (Campbell et al., 2010). A similar set of 
equations can be set up for compound 2.  

Hypothesis Equilibrium equation Equation for the rate of 
metabolism of compound 1 
(RAM1) 

Apparent 
Km 

Apparent 
Vmax 

No metabolic 
interaction 

 
1C1mK
1C*1maxV

1RAM
+

=    

Competitive 
interaction 

 

)21/Ki2C(1*m1K1C
1C*Vmax1

1RAM
++

=

 

α*Km Vmax 

Non-competitive 
interaction 

 
 

)21/Ki2C(1*)m1K1(C
1C*Vmax1

1RAM
++

=

 

Km Vmax/α 

Uncompetitive 
interaction 

 

)21/Ki2C(1*1Cm1K
1C*Vmax1

1RAM
++

=

 

Km/α Vmax/α 

 

Irreversible metabolic inhibition occurs when the inhibitor binds irreversibly to the enzyme 
at the active site. This binding decreases the concentration of functional enzyme (and thus 
decreases Vmax). The level of enzyme is decreased by a rate of enzyme interaction: 
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ph*ubappi,

ph*ub*a*inact
/KIfK

/KIfEk
dt

dInact
+

=
 (16)

 

where kinact is the maximum inactivation rate constant, Ea is the amount of active enzyme, Kp is 
the liver:blood partition coefficient, fub is the unbound fraction in blood, Ki,app is the apparent 
inactivation constant and Ih is the concentration of the inactivator in the liver (Haddad et al., 
2010).  

Reversible protein binding interaction can occur either by competition for the binding site 
or induction of binding protein levels. The concentration of bound compound, Cb, can be 
calculated by the following equation: 

f*d

f*d*β*
b CK1

CKn
C

+
=

 (17)
 

where Cf is the concentration of free compound, Kd is the dissociation constant and n*β is the 
binding capacity. If a competitive inhibitor is present, then Kd in the above equation will be 
increased by a factor α: 

 [ ]
iK

I1α +=
  (18)

 

where [I] is the concentration of the inhibitor and Ki is the inhibition constant (Haddad et al., 
2010). 

Enzyme induction leads to increased enzyme synthesis and/or decreased enzyme 
degradation (and thus increased Vmax). Enzyme induction has been described by: 

 ( ) [ ]
[ ] nn

n
*basalmaxbasal

KdRL
RLKsynKsynKsyn

dt
dSyn

+
+=

 (19)
 

where Ksynbasal is the basal rate of enzyme synthesis, Ksynmax is the maximal rate of enzyme 
synthesis, [RL] is the concentration of the receptor-ligand complex and n is the Hill coefficient 
(Haddad et al., 2010). 

14 PARAMETER VALUES FOR PBTK MODELS 

For the development of PBTK models a set of physiological, physicochemical as well as 
biochemical parameters are needed. The physiological parameters are parameters like tissue 
weight, tissue blood flow rates, ventilation rates (for modelling inhaled/exhaled compounds) 
and cardiac output and these are independent of the chemical of concern (but they can be 
affected due to interactions). The physicochemical and biochemical parameters are chemical 
specific. Physicochemical parameters required are e.g. tissue partition coefficients of the 
chemical between various media (typically tissue:blood partition coefficients). Biochemical 
parameters are e.g. used to describe metabolism (e.g. Km and Vmax) and protein binding 
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(Brown et al., 1997; Yang and Lu, 2007). These parameters can be measured in vivo and/or in 
vitro. OECD has published a test guideline on toxicokinetic studies, TG 417 (OECD, 2010). 

No international accepted set of reference values of physiological parameters have been 
compiled. Several groups of scientists have created compendia of reference values of 
physiological parameters for adult as well as for young animals and humans for use in PBTK 
modelling e.g. (Brown et al., 1997; Davies and Morris, 1993; Thompson et al., 2009; U.S.EPA, 
1988a). Most recently U.S. EPA has published a database of physiological parameters for adult 
humans and rodents (U.S.EPA, 2009) and Thompson and co-workers have published 
description of a database of physiological parameters for elderly humans (Thompson et al., 
2009).  

Among others Johns et al. (2010) point out the lack of biological and experimental variability 
associated with the reference values in many of the published compendia (Johns et al., 2010). 
On the other hand other scientists have mentioned that the reference works presenting 
several values for each parameter cause a tendency for modellers to use their “favourite” 
values (Davies and Morris, 1993). Due to this discussion on balancing simplicity in the set of 
reference values and the wish to know the variability associated with the parameters it will 
probably take some time before different modellers will agree on using the same reference 
values of physiological parameters in PBTK models. 

Some parameters have greater impact on the predictive ability of the model than others. 
Accuracy of these parameter values are of course of the greatest concern. This topic will be 
addressed and discussed in more detail in the chapters concerning the model-work in this 
thesis (see chapter 21-24). 

A very important, general statement to keep in mind working with models is: ”The model is 
only as good as the input parameters.” (Krishnan and Andersen, 2010) 

15 SOFTWARE 

When all the equations for the model have been set up and the parameters defined, the 
equations should be put into a differential equation solver. There are many such programs on 
the market which have been used for PBTK modelling. Krishnan and Andersen have set up the 
following criteria for selection of simulation language: 

"(a) provides a convenient means for initializing the status of the model (e.g., generating 
random numbers in case of stochastic models), 

(b) permits the introduction of changes in both the status and temporal structure of the model 
as simulation time evolves (i.e., scheduling the occurrence of events), 

(c) provides simple methods by which model results and statistical summaries can be 
obtained, 

(d) allows considerable flexibility in conducting sensitivity and other types of model analyses, 
and 
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(e) contains error detection facilities.” (Krishnan and Andersen, 2001) 

The software Berkeley-Madonna has been used in the present thesis. It is a fast differential 
equation solver developed by Robert Marcey and George Oster at the University of California 
at Berkeley. It is a user-friendly program for modelling and analysis of dynamic systems and 
some universities offers good courses in the use of it.  

16 EVALUATION OF PREDICTIVE CAPACITY 

Before using a model in risk assessment, the model should be evaluated. The purpose of this is 
to assess the available toxicokinetic and dose-response data of the chemical-biological system 
and also to depict the uncertainty associated with the parameter values used. Further, in the 
context of risk assessment the suitability and the applicability of the model for regulatory 
purposes should be assessed (U.S.EPA, 2006a). Model evaluation consist of validation and 
verification, that is whether the model is correctly build and whether it is the right model, 
respectively (Balci, 1997; U.S.EPA, 2006a).  

The model verification includes checking the biological plausibility of the model structure and 
parameters (U.S.EPA, 2006a). 

The purpose of the validation process is to verify whether the biological system is described 
adequately by the chosen compartments and parameters in the model, i.e. answer the 
question: is the model correctly build? This can be done by comparing model predictions with 
experimental data by visual inspection, statistical tests or discrepancy measures (a 
quantitative representation of the deviation between model prediction and experimental 
data) (Krishnan and Andersen, 2001). 

A validated model is a model that has been calibrated against one dataset and afterwards has 
adequately simulated another dataset. However, this only means that the model is capable to 
simulate within the domain that these two dataset covers (U.S.EPA, 2006a).  

17 APPLICATION OF PBTK MODELS IN RISK ASSESSMENT 

A PBTK model is useful for predicting internal dose levels for hypothetical exposure regimens 
and this is the main application of PBTK models. It is possible to simulate the dose metrics in 
the test species and/or humans for the actual exposure route and exposure scenario of 
concern. The internal concentration of the chemical will provide a better relationship to the 
observed toxic effects than the external or exposure concentration of the chemical and this 
knowledge will reduce the uncertainty in risk assessment. It is also possible to predict 
overload of toxicokinetic pathways and to do high-dose to low-dose extrapolation. Further, 
PBTK models can improve the estimation of risk from chemical mixtures. These are all useful 
tools that can offer an improvement when applied to risk assessment. 
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17.1 EXTRAPOLATIONS 

Route-to-route extrapolation 
With a PBTK model it is possible to simulate exposure from different routes, e.g. dietary or 
gavage intake, dermal uptake or inhalation, that is, to extrapolate from one route to another in 
animals using equivalent dose metric. This can be performed by adding appropriate equations 
to represent each exposure pathway.  

Route-to-route extrapolation can also be used to predict target tissue dose in humans for one 
route based on available data from an animal toxicity study for another route on the basis of 
equivalent dose metric (Clewell, 2010; U.S.EPA, 2006a).  

Exposure scenario extrapolation  
Exposure scenario extrapolations are done by introducing a mathematical function that 
explains the temporal change in exposure level and time frame. Thereby it is possible to 
predict tissue dose during short-duration exposure to higher concentrations or during 
variable-exposure concentrations (Krishnan and Andersen, 2001). Clewell points out that 
PBTK modelling is generally not very useful for extrapolating from acute to subchronic or 
from subchronic to chronic exposure scenarios primarily due to toxicodynamic factors (such 
as damage accumulation, repair and compensation) during the different time frames. 
Therefore, Clewell suggests to use an uncertainty factor to account for the differences in 
duration of exposure as it is common in the default approach for non-cancer risk assessment 
(Clewell, 2010).  

High-dose to low-dose extrapolation 
High-dose to low-dose extrapolation in PBTK models is accomplished by a description of the 
nonlinear kinetic behaviour of chemicals. The often used Michaelis-Menten equation 
describes how the rate of metabolism varies with substrate concentration by a nonlinear 
curve where the rate of metabolism increases toward a maximum. Two metabolic pathways 
are described in the Michaelis-Menten model: first-order kinetic at low concentrations and 
saturation at high concentrations – this makes the model suitable for the high-dose to low-
dose extrapolation (National Research Council, 1987; U.S.EPA, 2006a). 

Interspecies extrapolation 
When a model has been built and evaluated in for instance rats, the model is ready for 
extrapolation to other species including humans. The steps in developing a PBTK model for 
interspecies extrapolation is as follows: 1) the model is built for the appropriate species (e.g. 
rats), 2) the a priori predictions are compared with experimental data and the structure and 
parameters in the model are evaluated. If necessary the parameters may be adjusted. 3) The 
species specific model parameter values (i.e. partition coefficients, physiological parameters 
and metabolic rate constants) should be replaced by appropriate estimates for the species of 
interest (e.g. humans) (U.S.EPA, 2006a). This extrapolation between species can however be 
difficult due to an often unpredictable pattern for metabolic rate constants between the 
species. The metabolic rate constants should therefore most preferably be obtained in the 
species of interest. However, in vivo approaches for determining these constants are not 
always possible for application in humans. Therefore, in many cases the solution is to either 
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obtain such data by scaling from in vitro assays (using rodents or human tissue fractions) or 
from in vivo rodent data (Krishnan and Andersen, 2001). 

17.2 METHODS FOR DEVELOPMENT OF MIXTURE PBTK MODELS 

Different ways to describe interactions in PBTK models have been suggested: 1) describing 
each binary interaction in the mixture, 2) modelling of the maximal effect of metabolic 
interactions in the mixture, 3) lumping of chemicals in the mixture, 4) using Km as Ki for 
competing substrates in the mixture, and 5) fitting parameter values to experimental mixture 
data. These methods are described in more details below.  

Binary interaction-based PBTK model 
The first step in the development of a PBTK model for a binary mixture is to develop PBTK 
models for the individual compounds and the next step is to include descriptors that account 
for the interactions. As mentioned previously the most frequently seen type of interaction in 
PBTK models is metabolic inhibition. The rate of metabolism of compound 1 (RAM1) is 
calculated by a modified Michaelis-Menten equation including a modulation factor reflecting 
the effect of interaction (e.g. competitive inhibition): 

)/KiC(1KC
CVmaxRAM

212*m11

1*1
1 ++
=

 (20)
 

where the Vmax1 and Km1 are the maximum velocity and Michaelis-Menten constant for 
compound 1, C1 is the concentration of compound 1 and C2 is the concentration of the 
competing compound – both at the site of metabolism. The inhibition constant Ki21 reflects the 
concentration of compound 2 (C2) at which 50 % inhibition occurs (Krishnan et al., 2002). 

A similar equation can be set up for compound 2 (Haddad et al., 2010): 

)/KiC(1KC
CVmax2RAM

121*m22

2*
2 ++
=

 (21)
 

where Vmax2 and Km2 are the maximum velocity and Michaelis-Menten constant for 
compound 2, and Ki12 corresponds to the concentration of compound 1 at which 50 inhibition 
occurs. 

Krishnan and co-workers have very nicely described how to extend the method for 
extrapolation of interactions from binary to more complex mixtures (Krishnan et al., 2002).  

In a ternary mixture of compound 1, 2 and 3, the compounds interact with each other in pairs 
(1-2, 1-3 and 2-3) as shown in Figure 15. Further, compared to a binary mixture compound 3 
not only interacts directly with compound 1 and 2 but it also influences the interaction 
between 1 and 2 by inhibiting their metabolism.  
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Figure 15. Ternary mixture. Interactions among the three compounds are shown with arrows. 
The inhibition constants KiXY of compound X on compound Y are shown (X and Y denotes the 
three compounds 1, 2, and 3).  

In a similar way a network of binary toxicokinetic interactions is created for a mixture of five 
compounds as shown in Figure 16. Each binary interaction will affect the kinetics of all other 
compounds in the network. 

  

Figure 16. Network of binary toxicokinetic interactions between five compounds, A, B, C, D 
and E. The arrows represent the connection between the compounds. Modified from (Haddad 
et al., 2010).  

With a more complex mixture of n compounds the equation above is expanded to account for 
binary inhibition between the other compounds in the mixture and the rate of metabolism of 
compound 1 can be calculated as: 

)Ki/C...Ki/CKi/C1(KmC
CmaxVRAM

1nn313212*11

1*1
1 +++++
=

 (22)
 

Similar equations should be included for each compound in the mixture (Krishnan et al., 
2002). 

In this way PBPK models for complex mixtures can be developed as long as the quantitative 
information of the mechanism of interaction for each interacting pair is available or can be 
hypothesised. However, this is also the limitation of the technique as this requires knowledge 
(from studies) for a great number of binary interactions. The number of binary interactions, 
N, in a mixture of n compounds is: N=n(n-1)/2) (Haddad et al., 2010; Krishnan et al., 2002). 
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Until now this method has only been used on volatile organic compounds and its broader 
applicability still remains to be evaluated. 

Modelling of maximal effect of metabolic interactions 
For PBTK models to be used for risk assessment purposes a pragmatic approach has been 
suggested in cases where insufficient information on mechanisms of binary interactions is 
available (Haddad et al., 2000; Krishnan et al., 2002). The method assumes that interactions 
only occur at the level of hepatic metabolism. The rate of metabolism is calculated by: 

RAM=Ql*E*Ca (23) 

where Ql is the blood flow in liver, E is the hepatic extraction ratio and Ca is the arterial blood 
concentration. This equation expresses the same as the Michaelis-Menten equation but it 
makes it possible to simulate the theoretical limits of the impact of metabolic interactions. 
This is done by varying the value for the hepatic extraction ratio. The maximum value of E is 1 
(corresponding to a maximum organ blood flow) and this value constitutes the maximal value 
for enzyme induction. In case of metabolic inhibition the E value is decreased to the minimal 
hepatic extraction ratio (E=0). The results from the PBTK simulations using these two limits 
for the hepatic extraction ratio make it possible to predict the corresponding theoretical limits 
of blood concentrations due to metabolic interactions: E=1 constitutes the theoretically 
plausible lower limit and E=0 the upper limit of the blood concentration. 

The applicability of the method was tested on data for mixtures of up to ten volatile organic 
chemicals (rat inhalation). The authors found that the limits were well predicted for nine out 
of the ten volatile organics and the method is useful for identifying compounds for which 
metabolic interactions are likely to be important (Haddad et al., 2000). 

Lumping of chemicals in mixtures 
For modelling of very complex mixtures such as gasoline, it has been suggested to lump the 
chemicals in groups of similar compounds so that a group of compounds are handled as if it 
was only one compound. This method can be used when the compounds in the mixture act in 
the same way so that their properties can be described by a central estimate and when it is 
not necessary to distinguish one compound in the lump from another. The simplest lumping 
approach is to split those compounds where individual toxicokinetic information is needed 
and then lump the rest of the compounds (Dennison et al., 2004; Dennison et al., 2003). 

Dennison and co-workers developed a six lump PBTK model to describe exposure to gasoline 
in an inhalation study with rats. Five of the six lumps were single compounds (benzene, 
toluene, n-hexane, ethylbenzene, o-xylene (i.e. BTHEX)) and the sixth lump consisted of the 
rest of the compounds in the mixture (aromatics, isoparaffins, naphthalenes etc.). The five 
single compounds have different modes of toxicity and they represent different chemical 
structures and therefore they were chosen to be treated separately. The authors determined 
parameter values for the lump as a whole. The metabolic interactions between the six 
compounds / pseudo-compounds in the mixture were simulated using the binary interaction-
based approach described above. The model simulations were in good agreement with 
experimental data for the single compounds, the pseudo-compound and the mixtures. They 
found the lumping method useful to predict the toxicokinetic of the compounds in gasoline 
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and recommended the method to be used for other mixtures and for other routes of exposure 
(Dennison et al., 2004; Dennison et al., 2003). 

Use of QSAR for estimating Km and Vmax 
Another method for PBTK modelling of mixtures in the absence of data for binary interaction 
studies was presented by Price and Krishnan. They used QSAR to predict values for Km, Vmax 
and partition coefficients for single compounds based on data for 53 volatile organic 
compounds. These values were then used as input in interaction-based PBTK models in order 
to predict toxicokinetics for mixtures of up to ten compounds (benzene, toluene, m-xylene, o-
xylene, p-xylene, ethylbenzene, dichloromethane, trichloroethylene, tetrachloroethylene, and 
styrene). They also assumed that the Michaelis-Menten constants, Km, were equal to the 
metabolic inhibition constant, Ki, for competing compounds and compared the simulation 
results based on this assumption with simulations using experimental data for Ki. The authors 
conclude that the method is useful as a first step in identifying the assumption of competitive 
inhibition in cases where the compounds in the mixture compete at the metabolic level, and 
that QSAR is a helpful tool in deriving parameters for PBTK modelling (Haddad et al., 2010; 
Price and Krishnan, 2011). 

Obtaining parameter values by fitting to data on mixtures 
PCB congeners are highly lipophilic and kinetic data are available. Due to the known 
lipophilicity of these compounds Emond and co-workers (2005) assumed that the lipid 
content was determining for the distribution of the compounds to the tissue compartments 
and that their solubility in water and water-like fractions of tissues and blood is negligible. 
Instead of modelling every binary interaction in the mixture, they obtained toxicokinetic data 
for these compounds from studies on a mixture of PCBs. 

They developed a model for simulating the PCB concentration in blood and lipid tissue based 
on data estimated in rats exposed to an environmentally relevant mixture of PCB congeners. 
Equations describing the elimination due to metabolism were included in the liver 
comparment.  

The concentration of PCBs in adipose tissue and plasma lipids of rats were simulated at four 
different exposure scenarios at three dose levels. The elimination rate constant for each PCB 
were determined based on fit of the model to hepatic concentrations of PCBs measured on day 
41 and 90 following exposure of rats to a mixture of PCBs by various doses and exposure 
scenarios.  

The authors concluded that the model based on the neutral lipid content of tissues alone 
(without the use of tissue:blood partition coefficients) was sufficient to simulate the 
accumulation and elimination kinetics of PCBs as well as the lipid concentrations of PCBs in 
the mixture (Emond et al., 2005).  

This is an example of the use of a PBTK model to obtain parameter values based on data from 
exposure of a mixture. The method is only expected to be of value in conducting 
interpolations covering the range of doses and exposure scenarios for which the metabolic 
rates were optimized (Emond et al., 2005; Haddad et al., 2010).  
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17.3 INTERACTION BASED HAZARD INDEX USING PBTK MODELS 

Haddad et al. have shown how estimates from PBTK models can be used successfully in the 
risk assessment. They used the PBTK model approach to account for interactions in 
occupational inhalation exposure of mixtures of five volatile organic chemicals (benzene, 
dichloromethane, ethylbenzene, toluene and m-xylene) (Haddad et al., 2001). This approach is 
similar to the one proposed by the same group for calculating the biological hazard index for 
chemical mixtures to be used in biological monitoring of worker exposure (Haddad et al., 
1999). The interaction based hazard index for systemic toxicant mixtures was calculated from 
tissue dose levels in a similar way as the hazard index: 

∑
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where TRi and TMi are estimates of tissue dose levels derived from PBTK models. TRi is the 
tissue dose levels calculated (by PBTK models) based on guideline values of individual 
compounds in the mixture (in this case they used threshold limit values; but as the 
background equation just requires the “acceptable level” ADI or RfD may also be used). TMi is 
the estimated tissue dose levels of each compound in the mixture during human exposure 
calculated in mixture PBTK models which take interactions into account.  

The same group of scientists suggested a similar approach for mixtures of carcinogenic 
compounds in that they revised the following equation for calculation of the carcinogenic risk 
related to mixture exposure (CRM): 
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where q*i is the carcinogenic potential of compound i expressed as risk per unit dose and E is 
the exposure. 

Rewriting this equation gives 

∑
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where q*tti is the tissue dose based unit risk for each carcinogenic compound in the mixture 
and this level is estimated in PBTK models for the individual compounds in the mixture. TMi is 
defined above. By using TMi in the calculation of CRM interactions are taken into account as it 
describes the target tissue dose of the compounds in the mixture. 

17.4 INTERACTION THRESHOLDS 

El-Masri and co-workers have studied the different modes of inhibition mechanism between 
trichloroethylene (TCE) and 1,1-dichloroethylene (DCE) at different doses administered to 
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rats and examined the presence of an interaction threshold between the two compounds in a 
gas uptake experiment (El-Masri et al., 1996).  

A PBTK model was developed to simulate this experiment. At first they examined the different 
modes of inhibition interactions i.e. whether the interaction between the two compounds 
could be described by competitive, non-competitive or uncompetitive equations in the PBTK 
model. They examined the gas uptake in rats exposed to various concentrations of TCE and/or 
DCE. The simulations of this experiment showed that the competitive inhibition interaction 
was the best description of the results from the experiment.  

In order to predict the range at which the interaction threshold would be found, mathematical 
descriptions of the percentage of available enzyme sites occupied by one chemical in the 
absence and presence of the other was inserted in the PBTK model. For a range of 
concentrations of both TCE and DCE they performed simulation calculating the percentage of 
enzyme sites occupied by each compound. The results were plotted in curves showing the 
percentage of enzyme sites occupied by one of the compounds in the absence and presence of 
the other compound as a function of the concentration of the first compound. The curves for 
both compounds showed that the two lowest concentrations of the second compound did not 
deviate from the absence of the second compound. This means that at a concentration range 
of 100 ppm or less DCE and TCE did not competitively inhibit each other’s metabolism. 
Finally, this interaction threshold was verified experimentally by determining the gas uptake 
of rats exposed to 2000 ppm of one chemical and the other chemical was set to 100 ppm in 
one experiment and 50 ppm in another (El-Masri et al., 1996). 

This experiment illustrates how interaction threshold can be estimated using a PBTK model. 
Another example is explained in chapter 18 describing a model for the two organophosphorus 
pesticides chlorpyrifos and parathion developed by (El-Masri et al., 2004). 

18 PBTK/TD MODELS ON PESTICIDES 

PBTK models have been developed for decades especially in the area of pharmacology. In the 
area of toxicology and risk assessment the model development started in the mid 1980ies 
with work on volatile compounds. PBTK models describing dietary or gavage administration 
have been more rarely published than models using inhalation exposure. A literature search 
was performed in 2009 and an alert was set up in The National Center for Biotechnology 
Information (NCBI). This has up till now resulted in about 40 papers describing PBTK models 
on single pesticide exposure by dietary or gavage administration in rodents or humans and 
only two describing mixtures of pesticides.  

An overview of these PBTK/TD models build for single pesticides in rodents or humans are 
shown in Appendix I as well as a table on the two PBTK/TD models built for mixtures of 
pesticides. In the following the two models on pesticide mixtures will be described.  

A PBTK model for the two organophosphorus pesticides chlorpyrifos and parathion and their 
metabolites chlorpyrifos-oxon and paraoxon, respectively, were developed by El-Masri and 
co-workers in order to simulate the interaction threshold for the joint toxicity of the two 
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pesticides in rats (El-Masri et al., 2004). A schematic overview of the model is shown in Figure 
17. At first a model for each of the parent compounds was developed in order to estimate the 
blood concentrations of their metabolites. Second the output from these models i.e. the 
concentrations of metabolites in blood were linked to a sub-model describing the kinetic of 
acetylcholinesterase. That is, the model consists of four sub-models for the compounds incl. 
metabolites and one model describing acetylcholinesterase kinetics. The models for the two 
parent compounds were linked with their respective metabolites via the liver: the metabolites 
produced act as a sink for the parent compounds. The overall model describes the 
interactions between the pesticides at the P450 enzymatic bio-activation site and at the 
acetylcholinesterase binding sites (El-Masri et al., 2004). 

The interaction between chlorpyrifos and parathion was described by equations for 
competitive inhibition (see equations in Table 5). The authors assumed that the hydrolysis of 
the metabolites would not undergo interaction mechanisms. 

They simulated the plasma acetylcholinesterase activity for oral doses from 0.08 to 0.1 mg/kg 
and plotted the area under the acetylcholinesterase activity-time curve as a function of the 
oral dose. They calculated the response addition (algebraic addition of the response from 
single compound exposures of parathion and chlorpyrifos) and compared this with the model 
prediction of the effect from the mixture (El-Masri et al., 2004). It is not clear why they 
calculated response addition for the two similar acting compounds.  

El-Masri assumed that the interaction threshold is equal to the dose where the above 
calculated response addition were equal to the model simulation of the response from the 
mixture. They concluded that the interaction threshold was at an oral dose of 0.08 mg/kg of 
each compound. Above this threshold they concluded that antagonism by enzymatic 
competitive inhibition is the mode of interaction (El-Masri et al., 2004). 
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Figure 17: Schematic overview of a PBTK model for the two pesticides chlorpyrifos and 
parathion and their metabolites chlorpyrifos-oxon and paraoxon, respectively. The model 
consists of five sub-models, one for each parent compound and metabolite, as well as one sub-
model describing the kinetic of acetylcholinesterase linked to the two sub-models for the 
metabolites. Adapted from (El-Masri et al., 2004). 

Timchalk and Poet developed a binary PBPK/PD model for the two organophosphorus 
pesticides chlorpyrifos and diazinon as well as their oxon metabolites (Timchalk and Poet, 
2008). The model describes tissue dosimetry as well as esterase (acetylcholine-, 
butyrylcholinesterase and carboxylesterase) inhibition in rats after oral (gavage and dietary) 
and dermal exposure. The basic structure was similar to the one developed by El-Masri and 
co-workers and described above.  

It was anticipated that chlorpyrifos and diazinon due to similar pharmacokinetics, 
pharmacodynamics and mode of action could interact at a number of metabolic steps (“oral 
absorption, CYP450 mediated activation/detoxification, PON-1 detoxification, protein binding 
and blood/tissue cholinesterase (ChE) binding/inhibition”), see Table 6. The model was 
developed based on previously published models for the individual insecticides (published in 
(Timchalk et al., 2002b) (Poet et al., 2004)) and the model was evaluated against data from a 
study on rats performed earlier (published in (Timchalk et al., 2005)).  
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Table 6. Hypothesised interactions of organophosphates at different metabolic steps as well 
as the response interactions. Table adopted from (Timchalk, 2010).  

Parameters Importance Type of chemical interaction Implications  
CYP450 mixed-function 
oxidase metabolism 

Metabolic 
activation/detoxification of 
parent compound 

Substrate (parent compound) 
competition for enzyme 

Changes in oxon concentrations 

Reversible plasma-protein 
binding 

Systemic transport of parent 
compound 

Substrate (parent compound) 
competition for available 
protein binding sites 

Increased levels of “free” parent 
chemical available for 
metabolism 

A-esterase metabolism Important metabolic step 
responsible for detoxification 

Substrate (oxon) competition 
for enzyme 

Changes in oxon concentrations 

AChE binding/inhibition Toxicological response Substrates (oxon) combine to 
increase inhibition of AChE 

Increased toxicity due to 
additive response 

 

The metabolic CYP450 interaction of chlorpyrifos and diazinon to oxon and chlorpyrifos to 
3,5,6-trichloro-2-pyridinol were described as non-competitive whereas the metabolism of 
diazinon to 2-isopropyl-methyl-6-hydroxypyrimidine was described as competitive based on 
in vitro experiments (see equations in Table 5). The B-esterase metabolism was described as 
dose additive while no interactions were assumed for the hydrolysis of oxon (PON-1). 

Experimentally they found that at high doses there might have been a competition between 
chlorpyrifos and diazinon for CYP450 metabolism. However, at environmental relevant 
exposures the authors conclude that interactions will most likely be negligible and the 
pharmacokinetics at that level are expected to be linear and the inhibition of cholinesterase 
dose-additive.  

In the rat study chlorpyrifos was found to be more potent than diazinon in vivo. This 
corresponds with the findings in vitro where chlorpyrifos was found to be more readily 
metabolised to its oxon metabolite than diazinon and thereby to a larger extent metabolised 
to the actual substrate for A- and B-esterase.  

The authors conclude that the model simulations were consistent with the experimental data. 
They showed a dose- and time-dependent inhibition of the cholinesterase activity in brain, red 
blood cells (RBC) and plasma. The extent of inhibition followed plasma > RBC > brain for both 
chlorpyrifos and diazinon.  

19 ORGANOPHOSPHATES: MECHANISM OF ACTION AND 
BIOTRANSFORMATION 

Organophosphates are widely used as insecticides in the food production and residues are 
often found in food. These compounds are esters of phosphoric acid and their primary 
toxicological effect is associated with the inhibition of acetylcholinesterase activity in both 
central and peripheral nerve tissues.  

Earlier work on combined action of pesticides in food revealed that organophosphates are 
well-studied (Reffstrup, 2002). As mentioned in chapter 9, U.S. EPA and Food Standard 
Agency in United Kingdom have performed cumulative risk assessment of this group of 
pesticides. The amount of data available for this group of pesticides makes it suitable as a 
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starting point in PBTK/TD modelling. Therefore, one of the organophosphates, chlorpyrifos, 
was chosen for PBTK/TD modelling in the present thesis.  

The mechanism behind the inhibition of acetylcholinesterase and other cholinestrases by 
organophosphates and the similar acting carbamates is described in the following as is the 
biotransformation of organophosphates. 

19.1 FUNCTION AND INHIBITION OF CHOLINESTERASE 

In the body afferent neurons carry signals from the peripheral nerve endings into the central 
nervous system (CNS) whereas efferent neurons carry signals from CNS to muscles or gland 
cells. Interneurons connect the afferent and efferent neurons in CNS, see Figure 18. 
Interneurons account for 99 percent of all neurons. The efferent division of the peripheral 
nervous system is subdivided into the somatic and autonomic nervous system. Neurons of the 
somatic nervous system stimulate skeletal muscle whereas the autonomic neurons innervate 
smooth and cardiac muscle, glands and the neurons that form the enteric nervous system.  

 

Figure 18: Schematic representation of the location of afferent neurons, efferent neurons as 
well as interneurons. The direction of transmission of neural activity is indicated with arrows. 
The cell body and the long peripheral process of the axon are outside the CNS whereas the 
relatively short central process enters the brain or spinal cord. The dendrites are not shown 
in the figure. Figure from (Vander et al., 1990).  

The autonomic nervous system is further divided in the parasympathetic and sympathetic 
division. The main neurotransmitter responsible for the stimulation of the parasympathetic 
system is acetylcholine (Vander et al., 1990). 

Figure 19 shows an overview of the peripheral nervous system. 
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Figure 19: Overview of the peripheral nervous system (Vander et al., 1990). 

19.1.1 ACETYLCHOLINE AND ACETYLCHOLINESTERASE 

Acetylcholine is the major neurotransmitter in the efferent division of the peripheral / 
parasympathetic nervous system. It is synthesised from choline and acetyl coenzyme A in the 
cytoplasm of synaptic terminals and then stored in synaptic vesicles. Fibres that release 
acetylcholine are called cholinergic fibres. 

Acetylcholine is released from the presynaptic axon terminal into the synaptic cleft followed 
by a binding to the receptors on the postsynaptic membrane, see Figure 20. Both the esteratic 
and the anionic site of acetylcholine will bind to acetylcholinesterase as shown in Figure 21. 

 

Figure 20: Action of chemicals at synapses. “(A) Increase leakage of neurotransmitter from 
vesicle to cytoplasm, exposing it to enzyme breakdown, (B) increase transmitter release, (C) 
block transmitter release, (D) inhibit transmitter synthesis, (E) block transmitter reuptake, 
(F) block enzymes that metabolize transmitter, (G) bind to receptor to block (antagonist) or 
mimic (agonist) transmitter action, (H) inhibit or facilitate second-messenger activity” 
(Vander et al., 1990). 
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Figure 21. Reaction of acetylcholine with acetylcholinesterase. Figure from (Hayes and Laws, 
1991). 

The concentration of acetylcholine at the postsynaptic membrane is reduced by diffusion 
away from the receptors and thereby the receptor activation will stop. When acetylcholine is 
released from the receptors it will be decomposed to choline by acetylcholinesterase which is 
located on the pre- and postsynaptic membranes and this will also decrease the concentration 
of acetylcholine (Vander et al., 1990). The decomposition of acetylcholine by 
acetylcholinesterase happens almost instantly and therefore under normal conditions there is 
no accumulation of the ester. The rapid destruction of acetylcholine accounts for the brevity 
and unity of each normal propagated impulse (Hayes and Laws, 1991). Choline is actively 
transported back into the axon terminals where it is re-used to synthesize acetylcholine. 

In addition to its presence in synapses acetylcholinesterase is also present in the outer 
membrane of RBC and to a lesser extent in plasma. However, its physiological functions in 
blood are unknown (Lotti, 2010). 

19.1.2 INHIBITION OF ACETHYLCHOLINESTRASE 

Organophosphates in the body can be hydrolysed by A-esterases and B-esterases. A-esterases 
hydrolyse these esters to products that are inactive as inhibitors for cholinesterase and in 
most cases these products are of low toxicity. Contrary to this, hydrolysis of 
organophosphates by B-esterases, including cholinesterases, causes an inhibition of 
cholinesterase, as seen in the following. 

Some of the organophosphates are thiophosphates which are desulphurated by cytochrome 
P450 enzymes (CYP450, which is one of the most important groups of xenobiotic 
metabolising enzymes) in the body resulting in oxons ((RO)2P(O)OX) which are the actual 
substrate for A- and B-esterases.  

Organophosphate oxons, (RO)2P(O)OX, attack the active site in the acetylcholinesterase 
protein, EOH, namely a serine hydroxyl group. This results in a temporary intermediate 
complex that partially hydrolyzes resulting in the loss of the X-substituent group. The reaction 
is progressive and the amount of reaction (i.e. inhibition) increases over time. It involves two 
molecules, namely the enzyme and the inhibitor; therefore the process is called bimolecular 
(Hayes and Laws, 1991; O'Brien, 1967).  
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Figure 22. Interaction of an organophosphate with an esterase (e.g. acetylcholinesterase). In 
step 1 an enzyme-inhibitor complex is formed followed by the formation of oxon-esterase, 
step 2. Step 3 is the hydrolysis of the phosphorylated ester, i.e. a reactivation process 
(releases esterase) and step 4 is the aging process. Figure modified from (Lotti, 2010). 

The reaction of paraoxon with acetylcholinesterase is shown in Figure 23 which is another 
way of showing how an organophosphate is bound to esterase i.e. the first step in Figure 22. 
Paraoxon and most other organophosphorus pesticides only react with acetylcholinesterase 
at its esteratic site and not its anionic site because of lack of a positive charge in the acidic 
group, see the reaction between acetylcholine and acetylcholinesterase in Figure 21 for 
comparison. The phosphorus esters are bound more strongly to the esteratic site of 
acetylcholinesterase than the carbonyl group in acetylcholine is to the same esteratic site. 
Therefore, breakage of the bound between a phosphorus ester and enzyme (step 3) takes 
much longer time (hr) compared to breakage of the acetylcholine-enzyme bound (µseconds) 
(Hayes and Laws, 1991; Klaassen, 1996). 
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Figure  23.  Reaction  of  paraoxon  with  acetylcholinesterase.  Figure  from  (Hayes  and  Laws, 
1991) 

The  phosphorylated  enzyme  is  inhibited  because  its  active  site  is  occupied  and  therefore 
incapable  of  carrying  out  its  normal  function.  When  the  enzyme  is  inhibited  it  causes 
accumulation of acetylcholine. The ion channels in the presynaptic terminal remain open and 
the  depolarization  is  maintained  causing  that  the  membrane  cannot  generate  an  action 
potential.  For many  organophosphates  the  breakage  between  the  ester  and  the  esterase  is 
very slow and the toxicity will persist until acetylcholinesterase is re‐synthesised in sufficient 
quantities to efficiently decompose the excess acetylcholine (Hayes and Laws, 1991; Klaassen, 
1996). 

The reaction in step 2 in Figure 22 is the hydrolysis of the phosphorylated ester by A‐esterase 
(e.g.  paraoxonase,  PON‐1)  resulting  in  reactivation  of  the  esterase  and  release  of  a 
dialkylester. 

Reaction  4  in  Figure  22  is  a  process  where  the  stability  of  the  phosphorylated  enzyme  is 
enhanced by  the  loss of one of  the alkyl  groups  (R‐group). This process  is  called  the aging‐
process. Aging is defined as the development of an inability to be reactivated (O'Brien, 1967). 
The  formation of  aged  compounds decreases  the possibility of  regeneration. The portion of 
oxon‐esterase  that  can be  regenerated decreases  exponentially  (a  first  order  reaction) with 
time at a given temperature (Klaassen, 1996). The rate of  the aging‐process depends on the 
enzyme involved and on the attached phosphoryl residue. For example in humans the rate of 
the  aging‐process  for  a  particular  dialkoxy  phosphate  is  5‐10  times  faster  for  plasma 
cholinesterase  than  for  RBC  cholinesterase.  The  aging  process  for  both  enzymes  is  most 
rapidly with  isopropoxy  phosphate.  The  rates  of  aging  of  acetylcholinesterase  in mammals 
will  increase  in  the  order:  diethyl  <  diisopropyl  ≥  dimethyl  <  isopropyl‐methyl  (Hayes  and 
Laws, 1991). 

A good correlation has been seen between signs of poisoning and the degree of inhibition of 
acetylcholinesterase  in  RBC.  However,  since  acute  poisoning  requires  prompt  treatment,  a 
measurement of inhibition of acetylcholinesterase in RBC is only used as a confirmation of a 
diagnosis of acute organophosphorus poisoning (Lotti, 2010). 
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19.1.3 SYNTHESIS OF NEW ACETYLCHOLINESTERASE 

If acetylcholinesterase is inhibited irreversible, synthesis of new acetylcholinesterase is the 
only way to re-establish the activity. New acetylcholinesterase in the blood is produced in 
erythropoietic cells of the bone marrow and the plasma enzyme is synthesized in the liver and 
brain acetylcholinesterase is synthesized within the nerve cell body (Hayes and Laws, 1991). 

19.1.4 INHIBITION OF ACETYLCHOLINESTERASE BY CARBAMATES 

Another group of insecticides that inhibit acetylcholinesterases are carbamates. They inhibit 
acetylcholinesterase in a similar manner as organophosphates: 

E OH+
Free esterase

+ XOH

O

NH CH3XO

Carbamate

O

NH CH3EO E OH +
O

NH CH3HO

Carbamate esterase  

The main difference between the processes for organophosphates and carbamates is the rate 
at which the reactivation takes place (determined by a regeneration rate constant). For 
organophosphates the rate is extremely low which is why the process is considered as 
irreversible (even though it is not totally irreversible). However, for carbamates the 
reactivation is sufficiently rapid to be considered as reversible and the turnover rates are low 
(Klaassen, 1996; Krieger, 2010). 

19.1.5 EFFECTS OF ACETYLCHOLINESTERASE INHIBITION 

Respiratory failure is the most important clinical sign of severe poisoning by 
organophosphates. Symptoms of a mild poisoning are variable and no clear-cut signs have 
been recognised. The symptoms and signs depend on the chemical, the dose, and the time 
from exposure to observation (Lotti, 2010). 

According to Hayes and Laws a minimal excess of acetylcholine compared to the normal level 
causes “(a) excessive activity of the parasympathetic system (miosis, sweating, profuse 
secretions in the upper respiratory tract, abdominal cramps and discomfort in the chest from 
overactivity of smooth muscle, and nausea, vomiting, and diarrhea); (b) central nervous 
system effects (headache, giddiness, and nervousness); and (c) overreactivity of the voluntary 
muscles (fasciculations).” (Hayes and Laws, 1991) A higher accumulation of acetylcholine 
increases the parasympathetic and central nervous system symptoms but it causes noticeable 
weakness of the muscles (Hayes and Laws, 1991). This is due to the previously described 
depolarization at the presynaptic membrane causing that the membrane cannot generate an 
action potential – and this further results in a deficient ability of the muscle to contract in 
response to nerve stimulation resulting in skeletal-muscle paralysis and death from 
asphyxiation (deficient supply of oxygen to the body) (Vander et al., 1990). 

Respiratory failure and consequent death after intake of organophosphorus pesticides is 
typically caused by excessive secretion of mucus in the respiratory tract, bronchoconstriction, 



74 

 

weakness of the muscles of respiration or failure of the respiratory center (Hayes and Laws, 
1991). 

19.1.6 BUTYRYLCHOLINESTRASE AND CARBOXYLESTERASE 

Butyrylcholinesterase and carboxylesterase can also bind organophosphates irreversibly (1:1 
ratio) and these esterases are thereby being inactivated. The binding is without an adverse 
effect and therefore is considered as a detoxification pathway since it reduces the amount of 
organophosphate or oxon available to inhibit acetylcholinesterase (Timchalk, 2010). 
According to Chambers and co-workers this process is not considered as a metabolising step 
because of the irreversibility, leading to a stoichiometric destruction of one organophosphate 
(or oxon) molecule per serine esterase molecule (i.e. the active site in the acetylcholinesterase 
protein, EOH) and thereby inhibiting the esterase for a long time. However, these processes 
are resulting in the same product produced in dearylation and hydrolysis reactions 
(Chambers et al., 2010). 

Butyrylcholinesterase has different substrate specificity than acetylcholinesterase as it 
hydrolyses butyrylcholine. Measurement of the inhibition of plasma butyrylcholinesterase is a 
valuable indication of exposure to organophosphates but since the physiological function of 
butyrylcholinesterase is unknown such an inhibition does not necessarily indicate that the 
exposure is poisonous (Lotti, 2010). 

In human serum butyrylcholinesterase is the main cholinesterase (>99 %) and therefore it is 
the primary defence against chlorpyrifos (CPF) (Testai et al., 2010). 

19.2 BIOTRANSFORMATION OF ORGANOPHOSPHORUS PESTICIDES 

Organophosphorus pesticides in the body can be hydrolysed by A-esterases to products that 
are inactive as inhibitors of cholinesterase and in most cases the products are of low toxicity. 
The organophosphorus pesticides can also be split by transferases (glutathione S-
alkyltransferase and glutathione S-aryltransferase) producing gluthathione conjugates, see 
Figure 24. 
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Figure 24: General scheme of biotransformation of dialkylphosphorothionate pesticides. 
Figure modified from (Spencer et al., 2000).  

The desulphuration of the phosphorthionate to an oxon can be mediated by either CYP450 
enzymes or by flavin monooxygenases (FMOs, which are capable of oxidizing N, P or S 
occurring in xenobiotics) (Chambers et al., 2010).  

The hydrolysis reactions are catalysed by A-esterase (phosphotriesterases) (Chambers et al., 
2010). 

The organophosphate malathion has a lower toxicity in mammals than other 
organophosphate because carboxylesterases perform an important catalytic hydrolysis of the 
carboxylic acid esters in malathion resulting in a detoxification. The hydrolysis to acid-groups 
occur more readily than the CYP-mediated desulphuration, leading to an effective 
detoxification (Chambers et al., 2010). 

Phase 2 (conjugation) reactions frequently take place and will make the organophosphates 
more water soluble allowing the metabolites to be readily excreted. Hydrophilic conjugates 
like sulphate and glucuronide conjugates catalysed by sulphotranferases and glucuronosyl 
transferases can occur. These metabolites are not inhibitors of cholinesterase and in that 
sense this pathway leads to detoxification (Chambers et al., 2010). 

The parent organophosphate and the oxon are well distributed in the body and due to 
extensive metabolism they are rarely excreted in the urine (Timchalk, 2010). 

20 CHLORPYRIFOS – BIOTRANSFORMATION AND INHIBITION OF 
CHOLINESTERASE 

Chlorpyrifos does not directly inhibit acetylcholinesterase. First it must be metabolised to the 
corresponding oxygen analogue (an oxon). In the body chlorpyrifos will be desulphurated by 
CYP450 primarily in the liver resulting in chlorpyrifos-oxon which is the actual substrate for 
A- and B-esterase. Extrahepatic metabolism has also been reported in other tissues, including 
brain (Timchalk, 2010). For example chlorpyrifos is mainly metabolized in the liver, but 
metabolism in brain and intestine has also been reported (Testai et al., 2010). 
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Detoxification of chlorpyrifos can happen in different ways: 

• dearylation of chlorpyrifos to 3,5,6-trichloro-2-pyridinol (TCP) and 
diethylthiophosphate mediated by CYP450 (detoxification pathway D1 in Figure 
25) 

• hydrolysis of chlorpyrifos-oxon to TCP and diethylphosphate mediated by A-
esterases (paraoxonases, PON-1) (detoxification pathway D2 in Figure 25) 

• hydrolysis of chlorpyrifos-oxon by the B-esterases butyrylcholinesterase and 
carboxylesterase – this binding detoxifies the oxon, however, the B-esterase 
become stoichiometrically inhibited (detoxification pathway D3 in Figure 25).  

• conjugation of chlorpyrifos-oxon by glutathione-S-transferases with reduced 
glutathione (GSH) (detoxification pathway D4 in Figure 25). This pathway is not 
included in the PBTK model 

• conjugation of TCP by glucuronyl-transferases and sulphotransferases resulting 
in the corresponding glucuronide and sulphate conjugates (detoxification 
pathway D5 in Figure 25) . 

(Testai et al., 2010; Timchalk et al., 2002b; Timchalk et al., 2007b; Timchalk, 2010) 

Pathway D1 and D2 in Figure 25 are the main detoxification pathways for chlorpyrifos. TCP, 
but also diethylthiophosphate, diethylphosphate, GSH conjugates, sulphates and glucuronides 
are excreted in the urine. Chlorpyrifos is not found in the urine. In the PBTK model TCP is 
functioning as a marker of detoxification. 

The ratio of activation to detoxification can differ by species, gender and age (Timchalk, 
2010), however this is not taken into account in the present model. 

The half-life for elimination of chlorpyrifos from various organs is between 10 and 16 hr, 
however, elimination from fat is estimated to be 62 hr (Testai et al., 2010). 

The hydrolysis of chlorpyrifos-oxon by the B-esterases butyrylcholinesterase and 
carboxylesterase shown as detoxification pathway D3 in Figure 25 is resulting in the same 
metabolites (TCP and diethylphosphate) as pathway D2 (Chambers et al., 2010). Therefore, 
sometimes the reaction scheme for the model are simplified by using only one arrow to 
describe these two pathways, even though they are handled differently in the model. 
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Figure 25: Metabolic scheme for chlorpyrifos. D1-D5 denotes detoxification pathways as 
explained in the text. AChE: acetylcholinesterase, BuChE: butyrylcholinesterase, CaE: 
carboxylesterase. 

Interaction of chlorpyrifos-oxon with acetylcholinesterase is shown in Figure 26. This 
bimolecular process is described by a bimolecular inhibition rate constant, Ki, and the 
reactivation of free esterase is described by the rate constant Kr, and Ka is the aging rate 
constant. The bimolecular inhibition rate constant is an indicator of inhibitory potency as it 
describes the affinity of the oxon for B-esterase as well as the phosphorylation of the complex 
between cholinesterase and organophosphate, i.e. step 1 and 2 in Figure 22. 
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Figure 26: Inhibition of cholinesterase by chlorpyrifos-oxon. For simplicity the formation of 
the Michaelis-Menten complex (step 1 in Figure 22) is omitted. 

21 DESCRIPTION OF THE PBTK/TD MODEL FOR CHLORPYRIFOS IN 
RATS 

The PBTK/TD model for chlorpyrifos describes the disposition of the parent compound and 
the two metabolites chlorpyrifos-oxon and TCP in rats and humans as well as the inhibition of 
acetylcholinesterase by chlorpyrifos-oxon. The present model is build based on the model 
made by Timchalk and co-workers published in (Timchalk et al., 2002b). The original model 
contained three routes of administration namely dietary, gavage, and dermal. In the present 
model dermal exposure is omitted (and so are the skin compartment) because the present 
project only aims at developing models for use in risk assessment of chemical substances in 
food i.e. only oral intake is relevant. This is the primary modification in the structure 
compared to the model by Timchalk and co-workers, however, the major changes are to be 
found in the parameter values which will be explained in section 21.2 and discussed in 
chapter 24.  

The metabolic scheme for chlorpyrifos is shown in Figure 27 and the structure of the 
PBTK/TD model is shown in Figure 28. 

The present model constists of eight compartments: liver, brain, diaphragm, fat, rapid 
perfused tissues, slowly perfused tissues and blood (arterial and venous). Experiments have 
shown that there can be significant differences between arterial and venous blood 
concentrations of diisopropylfluorophosphate (DFP) (Gearhart et al., 1994). It is believed that 
the same accounts for chlorpyrifos therefore separate compartments for arterial and venous 
blood were introduced in the model by Timchalk and co-workers.  

The model on diisopropylfluorophosphate developed by Gearhart and co-workers  included a 
kidney-compartment (Gearhart et al., 1990). It was not explained why this compartment was 
not included in the model by Timchalk et al. (2002b). Instead of a kidney-compartment a 
compartment describing the appearance of metabolite TCP and its urinary excretion was 
included. Lu and co-workers developed a child-specific PBTK model based on the model in 
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(Timchalk et al., 2002b) extending the TCP compartment describing the urinary excretion 
with a physiologic description in order to be able to  incorporate known differences between 
children and adults (Lu et al., 2010). However, in the present model the excretion will be 
described similar to the work done by Timchalk et al. (2002b). 
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Figure 27: Metabolism of chlorpyrifos in rats and humans. The numbers and colours refer to 
Figure 28.  
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Figure 28: PBTK/TD model to describe the disposition of chlorpyrifos, chlorpyrifos-oxon and 
TCP in rats and humans as well as the inhibition of acetylcholinesterase. The colours and 
number 1-3 refer to the metabolism of chlorpyrifos as shown in Figure 27 and number 4 
refers to inhibition of acetylcholinesterase as described in Figure 26. 

21.1 MODEL CODE 

The overall equations in the model will be outlined below. The model equations are described 
in the following order: absorption of chlorpyrifos after dietary and gavage exposure, 
distribution of chlorpyrifos and chlorpyrifos-oxon in the compartments, metabolism of 
chlorpyrifos to chlorpyrifos-oxon by CYP450, metabolism of chlorpyrifos-oxon to TCP by A-
esterase (PON-1) as well as inhibition of B-esterase s by chlorpyrifos-oxon which in the case 
of acetylcholinesterase leads to toxicity and in the case of butyrylcholinesterase and 
carboxylesterase leads to detoxification. 

As mentioned before the present model is a re-building and modification of the model 
presented in (Timchalk et al., 2002b), and the model code was made by inspiration from 
(Timchalk et al., 2007b). The latter paper presented an age-dependent PBTK/TD model on 
chlorpyrifos including the model code developed in the SimuSolv and adapted to asclXtreme 
for sensitivity analysis.  

The model code presented in this thesis is written in Berkeley Madonna and a list of 
abbreviations used in the model can be seen in Appendix II. The abbreviations used in the 
following are based on the two publications by Timchalk and co-workers (2002b and 2007b) 
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and they may sometimes differ from those used in the theoretical chapters 13-17. The 
parameters used in the equations will be described in section 21.2. 

Concerning the mathematical notation in the text a differential equation du/dt will be written 
as du’.  

21.1.1 INPUT TO THE MODEL 

As mentioned before (and seen in Figure 28) the present model contains two oral routes of 
administration namely dietary and by gavage. Under specific exposure situations where 
contribution from both dietary and gavage exposure appears the total exposure or input to 
the liver will be the sum of each of the routes (see equation 7) 

Dietary exposure 
The dietary exposure, Dietexp, is expressed as a constant zero-order rate over a 12-hr interval 
to describe 12 hr eating followed by 12 hr rest. In Berkeley Madonna a function named MOD 
was used for that. The MOD-function makes the program repeat the function periodically 
meaning that the input will last for 12 hr and then the input will be 0 for the next 12 hr: 

Dietexp = IF MOD(TIME, 24) <= 12 THEN kzero ELSE 0 (µmol/hr) (1) 

where kzero is the zero-order uptake rate (µmol/hr) during 12 hr consumption in a 24 hr 
interval and is calculated from the dietary administration of chlorpyrifos, Diet (µmol/day) and 
the fractional absorption, Fa: 

kzero=Diet*Fa/(12 hr/day)  (µmol/hr) (2) 

The fractional absorption expresses how much of the compound will be absorbed after intake. 
The dietary administration of chlorpyrifos is calculated from the oral administration 
(Oral_adm, mg/kg bw/day) taking body weight (BW, kg) and molecular weight of chlorpyrifos 
(Mc, mg/µmol) into account: 

Diet=Oral_adm*BW/Mc  (µmol/day) (3) 

Gavage exposure 
The gavage administration of the organophosphate in the model is described as a two-
compartment uptake model, see Figure 28. The two compartments are stomach (Stom) and 
intestine (Intes) and uptake and transfer between the two are described by first-order rate 
equations. At time zero the total gavage dose of chlorpyrifos is delivered in the stomach. 
Disappearance of chlorpyrifos from the stomach will depend on the absorption rate constant 
for the stomach (KaS, hr-1) (i.e. from the stomach to the liver) as well as the rate constant for 
transfer between the stomach and the intestine (KsI, hr-1). In other words the rate of change 
in the amount of chlorpyrifos in stomach (Stom’) is the rate of change in the amount leaving 
the stomach to the liver and to the intestine: 

Stom' = -KaS*Stom - KsI*Stom  (µmol/hr) (4) 
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When solving this differential equation the initial value of the amount in the stomach (Stom) 
is the gavage exposure (converted to µmol). 

The rate of change in the amount of chlorpyrifos in the intestine (Intes’) is the amount of 
compound entering the intestine from the stomach minus the amount absorbed from the 
intestine into the liver: 

Intes' = KsI*Stom - KaI*Intes (µmol/hr) (5) 

where KaI (hr-1) is the rate constant for absorption of chlorpyrifos from the intestine to the 
liver and Intes is the amount of chlorpyrifos in the intestine. 

The rate of oral absorption (Oral_abs’, µmol/hr) (input to the liver-compartment) from gavage 
exposure is equal to the sum of absorption rates from stomach and intestine: 

Oral_abs'=KaS*Stom+KaI*Intes  (µmol/hr) (6) 

Total exposure 
The rate of total input to liver from diet and gavage (Input_l’, µmol/hr) is calculated from: 

Input_l'=Oral_abs'+Dietexp  (µmol/hr) (7) 

Normally only one of the two methods of oral administration is used. In this case the input 
from the other will be zero. 

Repeated bolus exposure 
In some experiments chlorpyrifos is given to the test species for example once a day for a 
certain time period. In order to simulate this repeated exposure scenario (Repeat_exp, 
µmol/hr) the following equation was used:  

Repeat_exp=PULSE(dose,0,R)*SQUAREPULSE(0,repeated)  (µmol/hr) (8) 

PULSE(dose,0,R) is a pulse-function in Berkeley Madonna describing a pulse with the volume 
of size “dose” (see equation (9)) giving the first pulse at time 0 and repeated with the dosing 
interval R (e.g. 24 hr in case of a daily dosage).  

The second part of equation (8) is another pulse-function called the square pulse. The height 
of this pulse is 1 and in equation (8) it is starting at time 0 and lasting for duration “repeated” 
(in hr).  

“dose” is the repeated dose of chlorpyrifos calculated from the exposure (dose_in, mg/kg 
bw/day) similarly to equations (2) and (3):  

dose=(dose_in)*BW*Fa/Mc (µmol/day) (9) 

In this scenario equation (7) for rate of total input to liver (Input_l’, µmol/hr) is extended with 
the input from repeated bolus exposure: 

Input_l'=Oral_abs'+Dietexp+Repeat_exp  (µmol/hr) (10) 
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Simulation of repeated bolus exposure was not included in (Timchalk et al., 2002b), but as the 
present model was used to simulate experiments with this kind of dosing scenario (see 
section 23.3) it was included. 

21.1.2 DISTRIBUTION 

Phosphothionate pesticides such as chlorpyrifos are generally well distributed in tissue 
throughout the body. The parent phosphothionate or oxon is not excreted due to extensive 
metabolism (Timchalk, 2010). 

After absorption chlorpyrifos enters the bloodstream and in the model (see Figure 28) the 
amount of absorbed chlorpyrifos is added directly to the liver compartment (first-pass effect). 
A major part of the chlorpyrifos (and chlorpyrifos-oxon) will be bound to plasma proteins but 
only free chlorpyrifos is metabolised in the liver to the active metabolite chlorpyrifos-oxon or 
to the detoxification product TCP. Only free chlorpyrifos and free chlorpyrifos-oxon are 
assumed to be capable of entering the other tissue compartments. This distribution is shown 
in Figure 29. The binding of the pesticide to proteins are expected to be so rapid that 
equilibrium is established within milliseconds (Rowland and Tozer, 1995; Timchalk et al., 
2002b). In the model the concentration of chlorpyrifos and chlorpyrifos-oxon are multiplied 
by a factor for plasma protein binding (FBc and FBco for chlorpyrifos and chlorpyrifos-oxon, 
respectively) to calculate the concentration of free compound entering the other tissues. This 
is further described later. 

 

Figure 29: distribution of the compound in the body is dependent on the binding to plasma 
proteins and in the tissue compartments. Only non-bound compound is capable of entering 
the tissue compartments. Figure modified from (Rowland and Tozer, 1995). 

Distribution in compartments 
For each tissue compartment t (i.e. liver, brain, diaphragm, rapid perfused tissues, slowly 
perfused tissues, and fat) a mass balance differential equations were included describing the 
concentration of chlorpyrifos in venous blood leaving the tissues.  

The rate of change in chlorpyrifos concentration in tissues that does not form chlorpyrifos-
oxon (all tissues except the liver) is described by the blood flow rate to the tissue times the 
difference between the concentrations of the free compound in arterial blood entering the 
tissues (CA_free, (µmol/l) and venous blood leaving the tissue t (CVt_free, µmol/l):  

Ct’ = Qt/Vt*(CA_free-CVt_free)  (µmol/l/hr) (11) 
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where Qt (l/hr) and Vt (l) is the blood flow and volume of the relevant tissue t, respectively. 
CA_free is calculated from equation (22). The concentration of free chlorpyrifos in venous 
blood leaving tissue t is calculated as: 

CVt_free=Ct/PCtc  (µmol/l) (12) 

where Ct (µmol/l) is determined from the above differential equation and PCtc (unitless) is 
the tissue:blood partition coefficient for chlorpyrifos.  

Chlorpyrifos-oxon in compartments 
Similar equations for each compartment are included in the model to describe the distribution 
of chlorpyrifos-oxon as well. However, the concentration of chlorpyrifos-oxon in liver, brain, 
diaphragm and blood compartments are influenced by binding to (inhibition) and metabolism 
performed by B-esterase as described in section 21.1.4. 

Chlorpyrifos in the liver compartment 
The distribution in the liver is calculated as described above. However, the equations are 
slightly expanded taking metabolism into account. This is explained later in section 21.1.3. 

Chlorpyrifos in the blood compartment 
The concentration of chlorpyrifos in blood (Cbl, µmol/l) is calculated from the following 
differential equation which is similar to the equation for Ct’ (equation 11). However, in the 
blood-compartment the input is the sum of concentration of chlorpyrifos draining from all 
other tissues, CV, minus the concentration in arterial blood, CA. The rate of change in 
concentration of chlorpyrifos in blood (Cbl’, µmol/l/hr) is: 

Cbl'=QC/Vbl*(CV-CA)   (µmol/l/hr)  (13) 

where QC (l/hr) is the cardiac output and Vbl (l) is the volume of blood. Total concentration of 
chlorpyrifos in venous blood, CV (µmol/l) is the sum of free (CV_free, µmol/l) and bound 
(Cbl_bound, µmol/l) chlorpyrifos in blood: 

CV=CV_free+Cbl_bound   (µmol/hr)  (14) 

How to determine CV_free is shown in equation (20). The concentration of bound chlorpyrifos 
in blood (µmol/l) is calculated from the blood concentration (Cbl, µmol/l) using a factor for 
plasma protein binding, FBc (%): 

Cbl_bound=Cbl*FBc/100   (µmol/l)  (15) 

The total concentration of chlorpyrifos in mixed venous blood (CV, µmol/l), should be 
calculated from the following differential equation describing the rate of change in venous 
blood (CV’): 

CV’*V=∑(Qi*CVi)-QC*CV   (µmol/hr)  (16) 

(Johanson, 1997). The right hand side is the sum of the individual flows (Qi, l/hr) times the 
individual concentrations in venous blood (CVi, µmol/l) leaving the tissue minus the product 
of cardiac output and the concentration in mixed venous blood. 
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The sum of the individual flows is equal to the cardiac output. However, it is assumed that 
steady-state is almost immediately reached in mixed venous blood which in mathematical 
terms can be written as CV’*V=0. Inserting this into equation (16) and rearranging: 

0=∑(Qi*CVi)-QC*CV (µmol/hr)  (17) 

∑(Qi*CVi)=QC*CV  (µmol/hr)  (18)  

Then the total concentration of free chlorpyrifos in mixed venous blood from tissues (µmol/l) 
is: 

CV=(∑(Qi*CVi))/QC  (µmol/l)  (19) 

The assumption that the steady-state is almost immediately reached in mixed venous blood is 
used in most PBPK models (Johanson, 1997). In the present model the equation for CV_free 
(µmol/l) becomes: 

CV_free=(CVf*Qf+CVs*Qs+CVr*Qr+CVdi*Qdi+CVbr*Qbr+CVl*Ql)/QC  (20) 

which is the sum of the individual flows times the individual concentrations in venous blood 
leaving each tissue and then divided by the cardiac output. f=fat, s=slowly perfused, r=rapidly 
perfused, di=diaphragm, br= brain and l=liver. 

Concentration of chlorpyrifos in arterial blood (CA µmol/l) is calculated as the concentration 
of chlorpyrifos in blood divided by the partition coefficient for chlorpyrifos (which is actually 
1): 

CA=Cbl/PCbl  (µmol/l)  (21) 

This means that in the model the concentration in arterial blood is equal to the concentration 
in blood. 

The concentration of free chlorpyrifos in arterial blood (CA_free, µmol/l) is determined as the 
concentration in arterial blood times 1 minus the fraction of bound chlorpyrifos (FBc, %): 

CA_free=CA*(1-FBc/100)  (µmol/l)  (22) 

21.1.3 METABOLISM BY CYP450 AND A-ESTERASE 

CYP450 metabolism of chlorpyrifos to chlorpyrifos-oxon 
The main metabolic activation as well as detoxification of chlorpyrifos occurs in the liver 
(Timchalk, 2010). The metabolism of free chlorpyrifos to chlorpyrifos-oxon and to TCP by 
CYP450 in liver is described as saturable enzymatic processes and modelled with Michaelis-
Menten equation which was described in chapter 13. The rate of change in the amount of free 
chlorpyrifos (µmol/hr) is calculated from: 

AML1'=(Vmax1*Cl)/(Km1+Cl)  (µmol/hr)  (23) 

for chlorpyrifos to chlorpyrifos-oxon, and  
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AML2'=(Vmax2*Cl)/(Km2+Cl)  (µmol/hr)  (24) 

for chlorpyrifos to TCP.  

Vmax1 and Km1 are the maximum velocity (µmol/h) and Michaelis-Menten constant (µmol/l) 
for metabolism of chlorpyrifos to chlorpyrifos-oxon. Vmax2 and Km2 are the maximum 
velocity (µmol/h) and Michaelis-Menten constant (µmol/l) for metabolism of chlorpyrifos to 
TCP. Cl is the concentration of chlorpyrifos in liver (µmol/l). 

The rate of change in concentration of chlorpyrifos in liver (Cl’, µmol/l/hr) is calculated as the 
difference between the concentration in arterial and venous blood plus the rate of intake from 
dietary and/or gavage exposure minus the sum of rate of change in concentration of free 
chlorpyrifos metabolised to chlorpyrifos-oxon and TCP: 

Cl'=(Ql*(CA_free-CVl)+Input_l'-AML1'-AML2')/Vl  (µmol/l/hr)  (25) 

where Vl is the volume of the liver and the concentration of free chlorpyrifos in venous blood 
draining the liver, CVl, (µmol/l) is calculated as described for CVt_free in equation (12). 

The maximum velocity for the two metabolism processes (Vmax1 and Vmax2, µmol/hr), were 
obtained from VmaxC1 and VmaxC2 (µmol/hr/kg) by allometric scaling to the body weight 
(BW, kg) as described by El-Masri and co-workers: 

Vmax=VmaxC*BW^0.7 (µmol/hr) (26) 

(El-Masri et al., 1996). 

The 0.7 in the above equation from El-Masri et al. is also used as exponent in the present 
model as no figure were presented in (Timchalk et al., 2002b). Different exponents have been 
used in the literature varying from 0.67 to 0.75 (U.S.EPA, 2006a). These scaling functions have 
been determined by measuring body weight and metabolic rate of different species (adult 
animal) covering a broad size range. Plotting these data on a double logarithmic scale give a 
straight line from which the exponent can be estimated as the slope of the curve (Travis and 
Hattemer-Frey, 1990). 

A-esterase metabolism of chlorpyrifos-oxon to TCP 
The hydrolysis of chlorpyrifos-oxon by PON-1 in liver and blood (step D2 in Figure 25) is also 
described by Michaelis-Menten equation. The rate of this A-esterase metabolism (µmol/hr) of 
chlorpyrifos-oxon to TCP in liver (AML3l’, µmol/hr) and blood (AML3bl’, µmol/hr) is 
calculated by the following two equations:  

AML3l'=(Vmax3*Clo)/(Km3+Clo)  (µmol/hr) (27) 

AML3bl'=(Vmax4*Cblo)/(Km4+Cblo)  (µmol/hr)  (28) 

where Vmax3 and Vmax4 are the maximum velocity for metabolism (µmol/h) of chlorpyrifos-
oxon to TCP in liver and blood respectively, and Km3 and Km4 are the Michaelis-Menten 
constants (µmol/l) for metabolism to TCP. Clo and Cblo are the concentration of chlorpyrifos-
oxon in liver and blood (µmol/l), respectively. 
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21.1.4 METABOLISM BY B-ESTERASES 

B-esterases are described in four compartments in the model namely liver, brain, diaphragm 
and blood (plasma and RBC). The choice of compartments for exhibiting B-esterase activity is 
only explained by Timchalk et al. for RBC: they point out that RBC acetylcholinesterase 
inhibition is an important biomarker for exposure to e.g. chlorpyrifos (Timchalk et al., 2002b).  

This assumption is supported by a study performed by Chen and co-workers. They found that 
inhibition of acetylcholinesterase in RBC is an important biomarker of organophosphorus 
pesticide exposure since RBC acetylcholinesterase is 12- to 14-fold more sensitive as indicator 
of chlorpyrifos exposure than acetylcholinesterase inhibition in e.g. brain (Chen et al., 1999).  

Gearhart and co-workers pointed out that blood acetylcholinesterase is a useful indication of 
acetylcholinesterase activity in less accessible organs and blood is an important site of 
diisopropylfluorophosphate metabolism (Gearhart et al., 1994). The FAO/WHO Joint Meeting 
on Pesticide Residues (JMPR) has concluded that in the absence of data on brain 
acetylcholinesterase activity, measurements of acetylcholinesterase activity in RBC would 
better display toxicity than plasma acetylcholinesterase activity (IPCS, 1990).  

Nostrandt et al. examined the inhibition of acetylcholinesterase by chlorpyrifos in different 
tissues after gavage administration of 0, 10, 30, 60 and 100 mg/kg to rats. They found the 
following order of potency of the inhibition: blood (whole blood, RBC, plasma) >> heart > 
retina ≈ brain ≈ liver > diaphragm > quadriceps (Nostrandt et al., 1997). Based on this study it 
seems reasonably to include B-esterase for blood (incl. RBC), brain, liver and diaphragm in the 
model. However, it is not obvious why heart is not included in the model by (Timchalk et al., 
2002b). 

Chlorpyrifos-oxon in liver, brain, diaphragm and blood 
The set of equations describing the changes in the four compartments with B-esterase activity 
(liver, brain, diaphragm and blood) will be exemplified by the liver in the following.  

The rate of change in amount of chlorpyrifos-oxon in liver (µmol/h) is the sum of the change 
in chlorpyrifos-oxon amount in liver (Cao_free – CVlo_free) and chlorpyrifos-oxon that have 
been formed by metabolism of chlorpyrifos by CYP450 (AML1’) minus the amount of 
chlorpyrifos-oxon metabolised by A-esterase to TCP (AML3l’) or metabolised by B-esterases 
(AML4’, AML5’ and AML6’). The rate of change in concentration of chlorpyrifos-oxon in liver 
(µmol/l/h) is then calculated as the rate of change in amount of chlorpyrifos-oxon in liver 
divided by the liver volume (Vl, l): 

Clo'=(Ql*(CAo_free-CVlo_free)+AML1'-AML3l'-(AML4'+AML5'+AML6'))/Vl 
     (µmol/l/hr) (29) 

The concentration of free chlorpyrifos-oxon in arterial blood, CAo_free (µmol/l) and the 
concentration of free chlorpyrifos-oxon in venous blood draining the liver (CVlo, µmol/l), are 
calculated in a similar way as CA_free and CVt_free in equation (22) and (12) respectively 
using chlorpyrifos-oxon relevant parameters and concentrations. AML1’ and AML3l’ are 
described in equations (23) and (27). 
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The rate of metabolism of chlorpyrifos-oxon to TCP by acetylcholinesterase (µmol/hr) in the 
four relevant compartments are described by second order processes as a product of the 
amount of esterase binding sites in tissue t, AAChEt (µmol/hr), the bimolecular inhibition rate 
constant (Ki (µmol*hr)-1), and the concentration of chlorpyrifos-oxon in tissue t (Cto, µmol/l): 

AML4t'=AAChEt*Ki*Cto (µmol/hr) (30) 

The rate of change of acetylcholinesterase (AAChEt, µmol/hr) in tissue t is calculated by 
solving equation (33) for each of the four tissues (liver, brain, diaphragm and blood). Cto for 
brain and diaphragm is calculated from equations similar to equation (29) omitting AML1’ 
(only relevant in liver) and AML3l’ (only relevant in liver and blood).  

The rate of metabolism by butyrylcholinesterase (AML5t’) and carboxylesterase (AML6t’) are 
calculated for the four compartments similarly to equation (30). 

B-esterase inhibition in the liver, brain, diaphragm and blood compartment: 
In the following the equations concerning acetylcholinesterase is outlined, see Figure 30. A 
similar set of equations are included for butyrylcholinesterase and carboxylesterase, see 
model code Appendix II.  

 

Figure 30. An extract of Figure 28 showing the compartments in which B-esterase activity is 
described and the differential equations describing the esterase activity. The equations are 
written for acetylcholinesterase but similar ones are used to describe butyrylcholinesterase 
and carboxylesterase in brain, liver, diaphragm and blood. 

The following equations are included in the model for the four compartments for which B-
esterase inhibition is taken into account and specific parameters are used for each tissue. 

The synthesis rate for acetylcholinesterase in tissue t (KsAChEt, µmol/hr) is described as a 
zero order process calculated as the product of the initial amount of acetylcholinesterase 
binding sites (IAAChEt, µmol) and the enzyme degradation rate (Kd, h-1): 

KsAChEt=IAAChEt*Kd (µmol/hr) (31) 

The initial amount of acetylcholinesterase binding sites is calculated from the enzyme 
turnover rate (TRAChE, enzyme hydrolysed/hr), and enzyme activity (EAChEt, µmol/kg 
tissue/hr) for the specific tissue: 

IAAChEt=EAChEt*Wt/TRAChE (µmol) (32) 
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where Wt is the weight of the specific tissue t (kg). 

The rate of change of amount acetylcholinesterase in tissue t, AAChEt’ (µmol/hr) is calculated 
as the enzyme synthesis (KsAChEt) minus the degradation and loss of enzyme due to oxon-
bound acetylcholinesterase plus the reactivation of inactive enzyme: 

AAChEt'=KsAChEt-AAChEt*(Kd+Ki*Cto)+INactive_AChEt*Kr (µmol/hr) (33) 

where Kr is the reactivation rate constant (hr-1). The initial amount of acetylcholinesterase 
binding sites, IAAChEt (equation (32)) is the initial value when solving this differential 
equation. 

INactive_AChEt (µmol) in equation (33) is the amount of acetylcholinesterase inactivated 
(inhibited) due to phosphorylation. The rate of change in amount of inactivated 
acetylcholinesterase, INactive_AChEt’ (µmol/hr) is calculated as the difference between the 
rate of change in amount of acetylcholinesterase bound to oxon (described as a second-order 
process) and the rate of change in amount of acetylcholinesterase which is no longer bound as 
oxon-esterase due to either reactivation or aging (first-order processes): 

INactive_AChEt'=AAChEt*Ki*Cto-INactive_AChEt*(Ka+Kr) (µmol/hr) (34) 

The percentage of inhibited acetylcholinesterase in tissue t, Inhib_AChEt, is calculated as the 
proportion of the amount of available acetylcholinesterase and the initial amount of 
acetylcholinesterase binding sites: 

Inhib_AChEt=AAChEt*100/IAAChEt (µmol)  (35) 

A similar set of equations are included for both butyrylcholinesterase and carboxylesterase 
for the brain, diaphragm, liver and plasma. The total B-esterase inhibition in tissue t 
(B_EST_total_t, µmol) can be calculated as the sum of amount of inhibited acetylcholinesterase 
(AAChEt), butyrylcholinesterase (ABuChEt) and carboxylesterase (ACaEt): 

B_EST_total_t=AAChEt+ABuChEt+ACaEt (µmol) (36) 

Then the total B-EST inhibition in each tissue can be calculated as percentage of the initial 
inhibition of esterase by acetylcholinesterase (IAAChEt), butyrylcholinesterase (IABuChEt) 
and carboxylesterase (IACaEt): 

Inhib_tot_t=B_EST_total_t*100/(IAAChEt+IABuChEt+IACaEt) (%) (37) 

The total cholinesterase inhibition in tissue t can be calculated from: 

Inhib_ChEt_total=(AAChEt+ABuChEt)*100/(IAAChEt+IABuChEt) (%) (38) 

21.1.5 ELIMINATION AS TCP 

The formation of TCP due to the phosphorylation of acetylcholinesterase is calculated in 
equation (30). As seen in Figure 28 input to the TCP compartment origin from chlorpyrifos in 
liver (AML2’), chlorpyrifos-oxon in liver (AML3l’) and blood (AML3bl’) as well as from the 
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metabolism of chlorpyrifos-oxon by B-esterases (AML4t’, AML5t’, AML6t’). The rate of change 
in the total TCP formation is calculated as: 

TCP_form’=AML2’+AML3bl'+AML3l'+∑AML4t’+∑AML5t’+∑AML6t’ (µmol/hr)  

(40) 

To describe the TCP-compartment the urinary excretion should also be taken into account. 
TCP is 100 % excreted via the urine. The rate of urinary excretion of TCP (TCPexc’, µmol/hr) 
is described as: 

TCPexc'=ATCP*Ke (µmol/hr)  (41) 

where Ke is the first order elimination rate constant (hr-1). The amount of TCP (ATCP, µmol) is 
calculated by solving the following equation describing the rate of change in the amount of 
TCP (ATCP’, µmol/hr): 

ATCP'=TCP_form'-TCPexc' (µmol/hr) (42) 

TCP_form’ is the rate of change in the amount of TCP formed from all sources (i.e. CYP450, A-
EST, B-EST) and TCPexc’ is the rate of change in the amount of TCP eliminated urinary.  

The concentration of TCP in blood (CTCPbl, µmol/l) is calculated as the amount of TCP divided 
by the volume of distribution (Vd, l): 

CTCPbl=ATCP/Vd (µmol/l)  (43) 

The volume of distribution is not a measurable volume. It represents that volume in which a 
compound will distribute in the body depending on several physicochemical properties. It 
relates the plasma concentration with the amount of compound in the body during the 
elimination phase (Rowland and Tozer, 1995). 

21.1.6 MASS BALANCE CHECK 

The total mass (µmol) of chlorpyrifos (total_massCPF), chlorpyrifos-oxon (total_massOxon) 
and TCP (total_massTCP) are calculated as: 

total_massCPF=Input_l+∑Cti*Vti (µmol)  (44) 

where Cti is the concentration of chlorpyrifos in tissue i and Vti is the volume of each tissue i in 
the model (fat, slowly perfused tissues, rapidly perfused tissues, diaphragm, brain and blood). 

total_massOxon=∑Ctio*Vtio  (µmol)  (45) 

where Ctio is the concentration of chlorpyrifos-oxon in tissue i and Vti is the volume of  each 
tissue i in the model. 

total_massTCP= ATCP+TCPexc (µmol)  (46) 
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Total amount of chlorpyrifos delivered in the experiment should equal the amount calculated 
by the code. This means that the equation below for TOTAL (which is the total amount of 
metabolites delivered to tissues or excreted) should equal total_massCPF. 

TOTAL=total_massOxon+total_massTCP (µmol) (47) 

21.2 PARAMETERS 

This section contains a critical evaluation of the parameters in (Timchalk et al., 2002b) which 
are used in the model. The origins of the parameters will be described to the extent it has 
been possible to track them.  

The following species specific and chemical specific parameters are used in the model for 
chlorpyrifos: 

- Species specific parameters: body weights, tissue weights, tissue volumes, cardiac 
output, and tissue flow rates. 

- Chemical specific parameters: molecular weights, partition coefficients, plasma protein 
binding, fractional absorption, Michaelis-Menten constants, maximum velocity of 
metabolic reactions, bimolecular inhibition rate, reactivation rate, aging time, volume 
of distribution, first order elimination rate constant, enzyme turnover rates, enzyme 
activity, and enzyme degradation rate. 

An overview of the parameters and their origins, assumptions and deviations from (Timchalk 
et al., 2002b) are shown in Table 7 and the values of the parameters used in the present 
model on rat are shown in Table 8. 

Table 7. Overview of parameters used in the PBTK/TD model for chlorpyrifos in rats. 

Parameter 
abbreviation 

Parameter Estimated / measured/ 
calculated/ fitted 

Source Assumptions 
/comments 

Deviations from 
the model by 
(Timchalk et al., 
2002b) 

KaS Absorption in 
stomach (hr-1) 

Fitted by Timchalk et al. (Timchalk et 
al., 2002b) 

  

KaI Absorption in 
intestine (hr-1) 

Fitted by Timchalk et al. (Timchalk et 
al., 2002b) 

  

KsI Transfer 
stomach-
intestine (hr-1) 

Fitted by Timchalk et al. (Timchalk et 
al., 2002b) 

  

Fa Fractional 
absorption (%) 

“Unpublished data” (Timchalk et 
al., 2002b) 

Timchalk et al. have 
stated 0.80 % for rats 
and 0.72 % for humans. 
For humans Nolan et al. 
(1984) has stated 72 %, 
and therefore it seems 
as the data should have 
been presented as 80 % 
(and 72 % for humans).  

 

BW Body weight (kg)     
Mc  Molecular weight 

of CPF 
(mg/µmol) 

Calculated    

PEbl, PEbr, PEdi, 
PEf, PEl, PEr, PEs  

Tissue weight as 
percentage of 
body weight (%) 

 (Gearhart et al., 
1990; Gearhart 
et al., 1994) 

Tissue volume is equal 
to tissue weight (1:1). 
Weight of blood is equal 

Timchalk et al. / 
present model: 
PEbr=1.2 / 1.16 
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Parameter 
abbreviation 

Parameter Estimated / measured/ 
calculated/ fitted 

Source Assumptions 
/comments 

Deviations from 
the model by 
(Timchalk et al., 
2002b) 

to weight of venous 
(PEv) and arterial (PEa) 
blood: PEbl=PEv+PEa. 
Weight of slowly 
perfused tissues, PEs, is 
from (Gearhart et al., 
1994) 

PEr=4 / 3.88 
PEs=78 / 68.66 
PEdi=0.03 / 0.3 

Vbrc, Vlc, Vrc, Vfc, 
Vsc, Vdic, Vvc, Vac, 
Vblc 

Tissue volumes 
as percentage of 
body weight (%) 

 (Gearhart et al., 
1990; Gearhart 
et al., 1994) 

Tissue volume is equal 
to tissue weight (1:1). 
Volume of blood is equal 
to volume of venous and 
arterial blood: 
Vblc=Vvc+Vac.  
Vsc is from (Gearhart et 
al., 1994) 

Timchalk et al. / 
present model: 
Vbrc=1.2 / 1.16 
Vrc=4 / 3.88 
Vsc=78 / 68.66 
Vdic=0.03 / 0.3 

QC Cardiac output 
(l/hr) 

Calculated  
 

(Andersen et 
al., 1987) 

  

Qbrc, Qdi, Qfc, Qlc, 
Qrc, Qsc 

Blood flow in 
organ as 
percentage of 
cardiac output 
(%) 

 (Gearhart et al., 
1990) 

In the present model Q 
for rapidly perfused 
tissues(Qrc) is equal to 
the published values for 
Q richly perfused + 
kidney given by 
(Gearhart et al., 1990) 

Timchalk et al / 
present model: 
Qrc=42.6 / 47.96 
Qsc=14 / 14.4 

PCbrc, PCdic, PCfc, 
PClc, PCrc, PCsc, 
PCbl, PCbro, PCdio, 
PCfo, PClo, PCro, 
PCso, PCblo, 

Partition 
coefficient of CPF 
and CPF-oxon 

Calculated by Timchalk et al. 
based on in vitro data 

(Timchalk et 
al., 2002b) 

Measured data not 
reported, therefore data 
not checked 

 

FBc, FBo Plasma protein 
binding of CPF 
and CPF-oxon 

Measured by Sultatos et al.: 
97 % CPF were reversible 
bound to blood.  

(Sultatos et al., 
1984; 
Timchalk et al., 
2002b) 

Timchalk et al. assumed 
that binding for CPF-
oxon is slightly higher 
than for CPF (98%) 

 

Km1 Michaelis-
Menten constant 
for desulfuration 
of CPF to CPF-
oxon (µM) 

Measured (Ma and 
Chambers, 
1994) 

Data for female rats. 
Timchalk et al. used 
Km1=2.86 referring to 
Ma and Chambers but 
this value is not 
reported in that 
publication. 

Timchalk et al. 
used Km1=2.86. 
In present model 
Km1=3.23 (data 
for female rats – 
as Timchalk et al. 
selected for Km2) 

VmaxC1 Maximum 
velocity of CPF 
desulfuration to 
CPF-oxon in liver 
microsomes 
(µmol/hr/kg) 

Measured by Ma and 
Chambers. Re-calculated by 
Timchalk et al. 

(Ma and 
Chambers, 
1994; 
Timchalk et al., 
2002b)  

Calculation could not be 
verified (see text) 

 

Vmax1 Maximum 
velocity of CPF 
desulfuration to 
CPF-oxon in liver 
microsomes 
(µmol/hr) 

Calculated from VmaxC1 (El-Masri et al., 
1996) 

  

Km2 Michaelis-
Menten constant 
for dearylation of 
CPF to TCP (µM) 

Measured (Ma and 
Chambers, 
1994; 
Timchalk et al., 
2002b) 

Data for female rats Timchalk et al. 
used Km2=24. In 
present model 
Km2=24.3 as 
given by Ma and 
Chambers  

VmaxC2 Maximum 
velocity of CPF 
dearylation to 
TCP in liver 
microsomes 
(µmol/hr/kg) 

Measured by Ma and 
Chambers. Re-calculated by 
Timchalk et al. 

(Ma and 
Chambers, 
1994) 

Calculation could not be 
verified (see text) 

 

Vmax2 Maximum 
velocity of CPF 

Calculated from VmaxC1: 
Vmax1=VmaxC1*BW^0.7 

(El-Masri et al., 
1996) 
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Parameter 
abbreviation 

Parameter Estimated / measured/ 
calculated/ fitted 

Source Assumptions 
/comments 

Deviations from 
the model by 
(Timchalk et al., 
2002b) 

dearylation to 
TCP in liver 
microsomes 
(µmol/hr) 

 

TRAChE, 
TRBuChE, TRCaE 

Enzyme turnover 
rate of AChE, 
BuChE and CaE 
(enzyme 
hydrolysed/hr) 

Data from literature – 
Timchalk et al. refers to 
Maxwell et al. (1987). 
Maxwell et al. refers to 
literature values: 
AChE: measured for DFP 
(Wang and Murphy, 1982) OK 
BuChE: measured for DFP 
(Main et al., 1972) not OK 
(see comments) 
CaE: (Ikeda et al., 1977) No 
value for enzyme turnover 
rate found 

(Main et al., 
1972; Maxwell 
et al., 1987; 
Wang and 
Murphy, 1982)  

Assumed that turnover 
rate is the same for CPF 
and DFP. 
Concerning BuChE: 
Timchalk et al and 
Maxwell et al have used 
the turnover rate for 
acetylthiocholine 
(6.10*104 min-1) instead 
of that for BuChE 
(1.71*105 min-1) 
measured by Main et al.  
Unclear origin of the 
value for CaE 

Timchalk et al. 
used TRBuChE= 
3.66*106. In the 
present model, 
TRBuChE = 
1.71*105 min-1 = 
1.03 *107 h-1 as 
measured by 
Main et al. 

EAChEbr, EAChEdi, 
EAChEp, 
EBuChEbr, 
EBuChEdi, 
EBuChEl, 
EBuChEp, ECaEbr, 
ECaEdi, ECaEl, 
ECaEp  

Enzyme activity 
(µmol/kg 
tissue/hr) 

EAChEt, ECaEt and 
EChEt_total measured by 
Maxwell et al., converted 
from (µmol/min/g tissue) to 
(µmol/hr/kg tissue). 
EBuChEt= EChEt_total – 
EAChEt 

(Maxwell et al., 
1987) 

 Timchalk et al. 
used 
ECaEbr=6*103 
µmol/kg 
tissue/hr. 
In present model 
ECaEbr=6*104 
µmol/kg 
tissue/hr which 
corresponds to 
the data in 
(Maxwell et al., 
1987). 

Kd1-Kd13 Enzyme 
degradation rate 
(hr-1) 

Kd for AChE was determined 
for DFP in plasma and brain 
by Gearhart et al. from 
literature data. These two 
values are used for other 
tissues as well as for BuChE 
RBC AChE: estimated by 
Timchalk et al. from RBC life-
span. 
For CaE: estimated for each 
tissue by fitting model to data 
from literature – by Timchalk 
et al. 

(Gearhart et al., 
1990; 
Timchalk et al., 
2002b) 

Assumed that Kd for 
DFP is the same for CPF.  
It is not clear how 
Timchalk et al. decided 
to disperse the two 
measured Kd-values to 
the other organs. 

 

Ki1-Ki13 Bimolecular 
inhibition rate 
(1/(µM*hr)) 

For AChE and BuChE: fitting 
model to experimental data.  
For RBC AChE: fitted to data 
from literature. 
For CaE: estimated based on 
ratio of Ki for AChE and CaE 
from (Gearhart et al., 1990). 
(Timchalk et al., 2002b) 

(Gearhart et al., 
1990; 
Timchalk et al., 
2002b) 

For AChE and BuChE: 
assume same Ki for all 
tissues (except RBC) 

 

Kr1-Kr13 Reactivation rate 
(hr-1) 

Measured in brain for AChE 
by Carr and Chambers. This 
value used for all relevant 
compartments as well as for 
BuChE and CaE (Timchalk et 
al., 2002b). 
AChE RBC: measurement and 
fitting performed by 
(Timchalk et al., 2002b). 

(Carr and 
Chambers, 
1996; 
Timchalk et al., 
2002b) 

Reactivation rate is the 
same for AChE, BuChE 
and CaE – and in all 
compartments (except 
AChE RBC) 

In present model 
Kr1-4 = 0.01403 
hr-1 as measured 
by (Carr and 
Chambers, 1996).  
Timchalk et al. 
wrote Kr1-4 = 
0.0143 hr-1 but 
this must be a 
typing error 

Ka1-Ka13 Aging rate (hr-1) Measured in brain for AChE 
by Carr and Chambers.  
Ka for BuChE and CaE: set 
equal to Ka for AChE 

(Carr and 
Chambers, 
1996) 

Rate of aging is the same 
for AChE, BuChE and 
CaE – and in all 
compartments 
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Parameter 
abbreviation 

Parameter Estimated / measured/ 
calculated/ fitted 

Source Assumptions 
/comments 

Deviations from 
the model by 
(Timchalk et al., 
2002b) 

(Timchalk et al., 2002b) 
Km3 Michaelis-

Menten constant 
for CPF-oxon -> 
TCP in liver (µM) 

1) Calculated by Mortensen et 
al. from experiment 
2) Km3 optimized in 
(Timchalk et al., 2007b) 

1) (Mortensen 
et al., 1996) 
2) (Timchalk et 
al., 2007b) 

Km3 was changed in 
present model due to 
wrong output of the 
model (see section 
21.2.1) 

Timchalk et al. / 
present model: 
240 / 577 µM 

Vmax3 Maximum 
velocity of CPF–
oxon hydrolysed 
to TCP in liver 
(µmol/hr)  

1) Vmax3 is calculated by 
Mortensen et al. from 
experimental data  
2) Vmax3 changed in 
(Timchalk et al., 2007b) 

1) (El-Masri et 
al., 1996; 
Mortensen et 
al., 1996) 
2) (Timchalk et 
al., 2007b) 

Vmax3 was changed in 
present model due to 
wrong output of the 
model (see section 
21.2.1) 

Timchalk et al. / 
present model: 
VmaxC3 = 74421 
/ 38002 µmol/hr 

Km4 Michaelis-
Menten constant 
for CPF-oxon -> 
TCP in blood 
(µM) 

1) Calculated by Mortensen et 
al. from experimental data 
2) Km4 optimized in 
(Timchalk et al., 2007b) 

1)(Mortensen 
et al., 1996) 
2) (Timchalk et 
al., 2007b) 

Km4 was changed in 
present model due to 
wrong output of the 
model (see section 
21.2.1) 

Timchalk et al. / 
present model: 
250 / 464 µM 

Vmax4 Maximum 
velocity of CPF–
oxon hydrolysed 
to TCP in blood 
(µmol/hr) 

1) Vmax4 is calculated by 
Mortensen et al. from 
experimental data  
2) Vmax4 changed in 
(Timchalk et al., 2007b) 

1) (El-Masri et 
al., 1996; 
Mortensen et 
al., 1996) 
2) (Timchalk et 
al., 2007b) 

Vmax4 was changed in 
present model due to 
wrong output of the 
model (see section 
21.2.1) 

Timchalk et al. / 
present model: 
VmaxC4 = 57003 
/ 40377 µmol/hr 

Vd Volume of 
distribution (l) 

Calculated based on 
“unpublished data” 

(Timchalk et 
al., 2002b) 

  

Ke 1. order 
elimination rate 
constant (hr-1) 

Calculated based on 
“unpublished data” 

(Timchalk et 
al., 2002b) 

  

 

Kas, KaI, KsI (l/hr) 
These constants are estimated by Timchalk et al. (2002b) by fitting the model to experimental 
data for inhibition of plasma cholinesterase in F344 rats administered chlorpyrifos by gavage 
exposure at dose levels between 0.5 and 100 mg/kg bw (Timchalk et al., 2002b). 

Fractional absorption (%) 
Nolan et al. have stated that the fractional absorption of chlorpyrifos, Fa, is 72 % for humans 
(Nolan et al., 1984). This level of fractional absorption is in accordance with other published 
data: Up to 90 % chlorpyrifos were absorbed in rats within 72 h, and 70 % in humans within 
96 h (JMPR, 2000). Timchalk et al. stated that Fa was 0.80 % for rats and 0.72 % for humans. 
It should have been presented as 80 % and 72 %.  

Body weight (kg) 
Timchalk et al. have not directly stated the size of body weight used in their model. They used 
a cardiac output of 5.4 l/h referring to the calculation-method presented by Andersen and co-
workers (1987) (see below in the section: “Cardiac output”) and this indicates a body weight 
of 250 g for rats. Therefore, in the present model for rats 0.25 kg is used.  

Tissue weight as percentage of body weight and tissue volumes as percentage of body 
weight (%) 
It is anticipated that tissue weight and tissue volumes are the same i.e. 1 litre weighs 1 kg. 
Unit density (litre=kg) is a generally used assumption and it seems reasonable since the 
typical range is from 0.9 kg/l for fat to 1.06 kg/l for muscle (U.S.EPA, 2006a).  
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Timchalk and co-workers refer to (Gearhart et al., 1990) for the data on rats, however some of 
the values deviates from the ones given in that paper: 

• Brain, Vbrc=1.2 % (Timchalk et al., 2002b) and 1.16 % (Gearhart et al., 1990): 
difference due to round off (1.16 % used in present model) 

• Rapidly perfused tissues, Vrc=4 % (Timchalk et al., 2002b) and 2 % (Gearhart et al., 
1990): difference probably due to: Vrc = richly perfused + kidney + lung = 2+0.73+1.15 
= 3.88 %, as kidney and lung is not included in the model. (3.88 % used in present 
model)  

• Slowly perfused tissues, Vsc=78 % (Timchalk et al., 2002b)/ 74.7(Gearhart et al., 1990) 
(concerning value used in present model, see below) 

The total weight of tissues is 100.23 and 99.74 % of body weight, respectively, using the 
datasets in (Timchalk et al., 2002b) and in (Gearhart et al., 1990). This seems a bit odd since 
e.g. weight of skeleton is not included. Therefore, the dataset given by Gearhart and co-
workers in 1994 seems more realistic since the total weight of tissues is 90.73 % of the body 
weight leaving about 10 % to other tissues and the skeleton. Bones have been reported to 
constitute 5-7 % of the body weight for rats (Brown et al., 1997). The difference in the values 
of total weight of tissues is due to differences in the value for the tissue weight for slowly 
perfused tissues. Timchalk et al. (2002b) and Gearhart et al. (1990) used 78 % and 74.7 %, 
respectively wheras Gearhart et al. (1994) reported 68.66 %. The value of 68.66 % is used in 
the present model for weight of the slowly perfused tissues.  

The tissue weight as percentage of body weight for diaphragm was given for rats to be 0.3 % 
in (Gearhart et al., 1990) but 0.03 % in (Gearhart et al., 1994). For mice 0.3 % was given in 
both references (and also for humans in (Gearhart et al., 1994)). Therefore, the value of 0.03 
% is considered to be a typing error in the Gearhart et al. paper from 1994. In the present 
model the value of 0.3 % was used.  

Cardiac output (l/hr) 
Andersen and co-workers (Andersen et al., 1987) have calculated the cardiac output (QC) by 
the following equation:  

QC=15 l/h/kg*(BW)0.74 = 15 l/h/kg*(0.25 kg) 0.74 =5.4 l/h 

Blood flow in organ as percentage of cardiac output (%)  
According to Timchalk and co-workers (2002b) they used data on blood flow in organs (Qt) 
presented by (Gearhart et al., 1990), however there are certain discrepancies: 

Timchalk et al. (2002b) used Qrc=42.6 % for blood flow as percentage of cardiac output in 
rapidly perfused tissues. However, Gearhart and co-workers (1990) stated 27.96 % for 
rapidly perfused tissues. It might be that Timchalk et al. added the value for blood flow in 
kidney (20.0 %), however this would give a Qrc=47.96 %. The difference may be due to their 
incorporation of a skin-compartment with blood flow set to 5.8 % (however, this would give 
Qrc=(47.96-5.8)% = 42.16 %). No data for blood flow in skin is given by Gearhart et al., and no 
reference indicated by Timchalk et al. 
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In the present model blood flow for rapidly perfused tissues is equal to the published value of 
blood flow for rapidly perfused tissues plus kidney, both values given by (Gearhart et al., 
1990), i.e. Qrc=(27.96+20)%=47.96 %. 

Timchalk et al. (2002b) used Qs=14 % for slowly perfused tissues. In the present model 
Qs=14.4 % (value from (Gearhart et al., 1990)). 

The sum of organ blood flows used in the model is 99.96 %, which is acceptable. 

Partition coefficient of chlorpyrifos and chlorpyrifos-oxon 
The partition coefficients of chlorpyrifos and chlorpyrifos-oxon are calculated by Timchalk 
and co-workers based on in vitro data (Timchalk et al., 2002b). 

Plasma protein binding of chlorpyrifos and chlorpyrifos-oxon (%) 
Timchalk and co-workers used the value for plasma protein binding for chlorpyrifos (FBc = 97 
%) measured by Sultatos and co-workers (Sultatos et al., 1984). They assumed that plasma 
protein binding for chlorpyrifos-oxon was slightly higher than for chlorpyrifos (Timchalk et 
al., 2002b), and therefore set to FBo = 98 %.  

Michaelis-Menten constant for desulfuration (CPF -> CPF-oxon), Km1 (µM) 
The Michaelis-Menten constant for the desulfuration process was measured by (Ma and 
Chambers, 1994). Timchalk et al. used Km1 = 2.86 µmol/l, however this value is not given in 
the publication by Ma and Chambers. In the present model Km1 = 3.23 µmol/l as measured by 
Ma and Chambers for female rats is used. The selected Km1-value is for females because the 
value for Km2 given by Timchalk et al. was for females as well. 

Maximum velocity of metabolism, VmaxC1 and Vmax1 (µmol/hr/kg and µmol/hr) 
Timchalk et al. (2002b) refer to (Ma and Chambers, 1994) concerning the data on VmaxC1 but 
they did not explain how they performed the calculation of Vmax to the right unit. Ma and 
Chambers have measured Vmax in vitro as nmol product formed/min/g wet weight 
equivalent of liver microsomes and VmaxC1 is given by Timchalk et al. in the unit µmol/hr/kg.  

El-Masri et al. (1996) have shown how such data can be re-calculated. First step is to calculate 
a constant, f, expressing the amount of total protein in a liver: 

htliver_weigwet_whole_
rg_wet_live

nmol_P450
nmol_P450

nmal_proteimg_microsof ∗∗=   

using the following data: 

• cytochrome P-450 content in liver tissue: 33.8 nmol P450/g wet liver (Igari et al., 
1982) 

• cytochrome P-450 content in liver microsomes: 0.695 nmol P450/mg microsomal 
protein (Igari et al., 1982) 

• the actual wet weight of liver which in the present model is: Wl = PEl*BW/100 = 4 %* 
0.25 kg/100 = 10 g wet liver (Timchalk et al., 2002b) 

Insertion of these data gives:  
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mg_protein486htliver_weigwet_whole_10
rg_wet_live

45033.8nmol_P
P4500.695nmol_

nmal_proteimg_microsof =∗∗=  

The second step is to calculate VmaxC: 

tbody_weigh
_measuredmaxVfCmaxV ∗

=
 

Ma and Chambers (1994) have measured the following values for Vmax1: 

Male: 6.32 nmol product formed/min/g wet weight equivalent of liver microsomes 

Female: 3.25 nmol product formed/min/g wet weight equivalent of liver microsomes 

Calculation of VmaxC1 for male rats gives:  

/h/kg_bwmolμ737.0

h/min60/nmolmolμ10mg/g10
0.250kg

_proteinnmol/min/g32.6mg_protein4861CmaxV 3-3-

=

∗∗∗
∗

=

Calculation of VmaxC1 for female rats gives:  

/h/kg_bwmolμ379.0

h/min60/nmolmolμ10mg/g10
0.250kg

_proteinnmol/min/g25.3mg_protein4861CmaxV 3-3-

=

∗∗∗
∗

=

These results are not in accordance with the value of 80 µmol/h/kg bw calculated by 
Timchalk et al. (2002b). The calculations were also performed with different values of liver 
and body weight but it was not possible to verify the values given by Timchalk et al. 

It was decided to use the values from Timchalk et al. (2002b) on VmaxC1 even though the 
data could not be verified.  

In the model Vmax1 is the parameter used in the equations. This is calculated from VmaxC1 
using equation (26).  

Michaelis-Menten constant for dearylation (CPF -> TCP), Km2 (µM) 
Michaelis-Menten constant for the dearylation process was measured by Ma and Chambers 
(Ma and Chambers, 1994). They found that Km2 was 15.6 ± 3.5 µM for males and 24.3 ± 8.1 
µM for females. Timchalk and co-workers used Km2 = 24 µM with no explanation of choice of 
sex. Km2 = 24.3 µM is used in the present model. 

Maximum velocity of metabolism, VmaxC2 and Vmax2 (µmol/hr/kg and µmol/hr) 
Timchalk et al. refer to Ma and Chambers (1994) concerning the data on VmaxC2 but it has 
not been possible to figure out how they made the calculation. The calculations described for 
VmaxC1 were also performed for VmaxC2 but the results were not in accordance with the 
value calculated by Timchalk et al. It was decided to use the values from Timchalk et al. on 
VmaxC2 even though the data could not be verified.  
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In the model Vmax2 is the parameter used in the equations. This is calculated from VmaxC2 
using equation (26).  

Enzyme turnover rates for esterases (enzyme hydrolysed/hr) 
Timchalk et al. (2002b) used (Maxwell et al., 1987) as reference for the enzyme turnover 
rates. However, Maxwell and co-workers used values from the literature: 

• For acetylcholinesterase: 1.17*107h-1 (Wang and Murphy, 1982), value verified in the 
literature. 

• For butyrylcholinesterase: 1.71*105 min-1 (=1.03*107h-1) (Main et al., 1972). Timchalk 
et al. and Maxwell et al. have used the turnover rate for acetylthiocholine (6.10*104 
min-1=3.66*106h-1) instead of that for butyrylcholinesterase measured by (Main et al., 
1972). However, this may be a mistake. In the present model, TRBuChE = 1.71*105 
min-1 as measured by Main et al. was used. 

• As reference for the value of carboxylesterase Maxwell and co-workers used (Ikeda et 
al., 1977). However it has not been possible to find the enzyme turnover rate in that 
paper. Therefore, it was not possible to verify the value used by Timchalk et al. 
However, the value was used in the present model. 

Enzyme activity (µmol/kg tissue/hr) 
Activity of acetylcholinesterase, total cholinesterase and carboxylesterase in control rat 
tissues were measured by Maxwell et al. (1987). Butyrylcholinesterase activity was calculated 
from these data as: butyrylcholinesterase = total cholinesterase – acetylcholinesterase. The 
activities in the paper by Maxwell et al. were given in (µmol/min/g tissue) and then converted 
to (µmol/hr/kg tissue) by Timchalk et al. (2002b) (i.e. multiplication with a factor: 60 min/h 
*103g/kg) 

The values given by Timchalk et al. are in accordance with Maxwell et al. except for one case: 
for the enzyme activity of carboxylesterase in brain. Timchalk et al. used 6*103 µmol/kg 
tissue/hr instead of 6*104 µmol/kg tissue/hr. The value 6*104 µmol/kg tissue/hr corresponds 
with the data in Maxwell et al. 1987 and was therefore used in the present model. 

Enzyme degradation rate, Kd (hr-1) 
The degradation rate for acetylcholinesterase was determined in plasma and brain for 
diisopropylfluorophosphate from literature data (Gearhart et al., 1990). Assuming that the 
degradation rate is the same for chlorpyrifos, the same levels were used for chlorpyrifos in the 
model for all tissues as well as for butyrylcholinesterase (Timchalk et al., 2002b). It is not 
clear on what basis Timchalk et al. decided to disperse the two measured Kd-values to the 
other organs. The same values for Kd was used in the present model 

The degradation rate for acetylcholinesterase in RBC was estimated by Timchalk et al. based 
on RBC life-span. 

The degradation rate for carboxylesterase in all tissues were found by Timchalk et al. by 
fitting to data from literature (Timchalk et al., 2002b). 
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Bimolecular inhibition rate, Ki (1/(µM*hr)) 
Timchalk and co-workers (2002b) determined the bimolecular inhibition rate for 
acetylcholinesterase and butyrylcholinesterase by fitting the model to experimental data. It is 
unclear from paper whether data on plasma or brain were used. They found that using in vitro 
data of Ki for acetylcholinesterase and butyrylcholinesterase in plasma (values found in 
literature) caused overestimation of the inhibition of both B-esterases in plasma in vivo. 
Therefore, they reduced the values of Ki to better describe the in vivo data (Timchalk et al., 
2002b). 

The bimolecular inhibition rate for RBC acetylcholinesterase was estimated by fitting the 
model to data from literature (Timchalk et al., 2002b).  

The bimolecular inhibition rate for carboxylesterase for each tissue were estimated based on 
ratio of Ki for acetylcholinesterase and carboxylesterase using data from Gearhart et al. 
(1990) and Timchalk et al. (2002b): 

1-1-1-
1-

1-
/h)Mμ(20/h)Mμ(9.18/h)Mμ(243

/h)Mμ14.16(
/h)Mμ1.10(

kom_TimchalKi_AChE_fr
tom_GearharKi_AChE_fr

m_GearhartKi_CaE_froKi_CaE

≅=∗=

∗=

 

Reactivation rate, Kr (hr-1) 
The reactivation rate for acetylcholinesterase was determined in rat brains by Carr and 
Chambers (1996). Data were not available for butyrylcholinesterase and carboxylesterase, 
therefore the reactivation rate for these were set equal to Kr for acetylcholinesterase 
(Timchalk et al., 2002b). Timchalk et al. wrote Kr1-4 = 0.0143hr-1 but this must be a typing 
error since Carr and Chambers measured Kr1-4 = 0.01403 hr-1 (Carr and Chambers, 1996). 
This latter value was used in the present model. 

The acetylcholinesterase was measured in RBC by Timchalk and co-workers. The reactivation 
rate for RBC was determined by fitting to experimental data and set to 0.04 hr-1 (Timchalk et 
al., 2002b). 

Aging rate, Ka (hr-1) 
The aging rate was measured for chlorpyrifos-oxon interaction with acetylcholinesterase in 
rat brains by Carr and Chambers (Carr and Chambers, 1996). Ka for butyrylcholinesterase and 
carboxylesterase were not available and were therefore set equal to the rate measured for 
acetylcholinesterase (Timchalk et al., 2002b) 

Michaelis-Menten constants for CPF-oxon -> TCP in liver, Km3 (µM), and for CPF-oxon -> 
TCP in blood, Km4 (µM) 
The Km values were calculated based on kinetic analysis for chlorpyrifos performed by 
Mortensen et al. (Mortensen et al., 1996). These values were used in Timchalk et al. (2002b). 
The parameters were optimized by (Timchalk et al., 2007b), and since the value of Km3, 
Vmax3, Km4 and Vmax4 from (Timchalk et al., 2007b) resulted in the best model output 
compared with the experimental data presented in (Timchalk et al., 2002b) it was decided to 
use the values from (Timchalk et al., 2007b). This topic is further explained in section 21.2.1. 
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VmaxC3 and Vmax3 for liver (µmol/hr/kg) 
Mortensen et al. performed kinetic analysis for chlorpyrifos. Based on these data they 
calculated the velocity of chlorpyrifos-oxon hydrolysed to TCP in liver, Vmax3, to 47 
µmol/min/mL or gram tissue (Mortensen et al., 1996). Recalculating the unit: 

Vmax3 = 47 µmol/min/mL tissue * 60 min/hr * 10 mL tissue = 28200 µmol/hr 

where the volume of a rat liver was calculated from the organ volume as percentage of body 
weight: 

Vl = Vlc*BW/100 = 4 % * 0.25 kg/100 = 10 mL 

Timchalk et al. used VmaxC3 = 74421 µmol/hr/kg. This can be recalculated to Vmax3 by 
equation (26): 

Vmax3 = VmaxC3 * BW0.7 = 74421 µmol/hr/kg * 0.25 kg0.7 = 28200 µmol/hr 

These calculations show agreement between the data in (Mortensen et al., 1996) and in 
(Timchalk et al., 2002b). In a newer paper by Timchalk and co-workers (Timchalk et al., 
2007b) another value of Vmax3 were used, eventhough the reference was also made to 
(Mortensen et al., 1996). There is no explanation in the reference by Timchalk and co-workers 
(2007b) concerning this discrepancy. Irrespective the discrepancy it was decided to use the 
parameter-value for VmaxC3 (as well as Km3, VmaxC4 and Km4) from (Timchalk et al., 
2007b) since it resulted in the best model output compared with the experimental data 
presented in (Timchalk et al., 2002b). This topic is further explained in section 21.2.1. 

VmaxC4 and Vmax4 for blood (µmol/hr/kg) 
As for Vmax3 Mortensen et al. calculated the velocity of chlorpyrifos-oxon hydrolysed to TCP 
in blood, Vmax4, to 24 µmol/min/mL or gram tissue (Mortensen et al., 1996). Recalculation in 
the same way as for Vmax3 gives Vmax4 = 21600 µmol/hr (Vmax4 = 24 µmol/min/mL tissue 
* 60 min/hr * 15 mL tissue = 21600 µmol/hr, where Vbl = Vblc*BW/100 = 6 % * 0.25 kg/100 
= 15 mL). This corresponds with VmaxC4 = 57003 µmol/hr/kg (Vmax4 = 57003 µmol/hr/kg * 
0.25 kg0.7 = 21600 µmol/hr). 

These calculations show agreement between the data in (Mortensen et al., 1996) and in 
(Timchalk et al., 2002b). However, as described for Vmax3 (and in section 21.2.1) Timchalk 
and co-workers (2007b) presented other values for the metabolic rate constants in a more 
recent paper (Timchalk et al., 2007b), and these values resulted in better model output 
compared with the experimental data presented in (Timchalk et al., 2002b). Therefore, it was 
decided to use the metabolic rate constants (incl. Vmax4) from (Timchalk et al., 2007b). 

Volume of distribution, Vd (l) 
Volume of distribution was calculated by Timchalk et al. from unpublished data (Timchalk et 
al., 2002b). 

1. order elimination constant, Ke (hr-1) 
The first order elimination constant was calculated by Timchalk et al. from unpublished data 
(Timchalk et al., 2002b).  



Table 8. Parameter values used in the rat 
and human models for chlorpyrifos and 
chlorpyrifos-oxon 

Parameter Abbrevia-
tion 

Rat Human 

Absorption in stomach (hr-1) KaS 0.01 0.01 
Absorption in intestine (hr-1) KaI 0.5 0.5 
Transfer stomach-intestine (hr-1) KsI 0.5 0.5 
Fractional absorption (%) Fa 0.8 0.72 
Body weight (kg) BW 0.25 70 
Molecular weight of CPF (mg/µmol) Mc 0.35 0.35 
Weight of brain as percentage of 
body weight (%) 

PEbr 1.16 2 

Weight of liver as percentage of 
body weight (%) 

PEl 4 2.57 

Weight of rapidly perfused tissue as 
percentage of body weight (%) 

PEr 3.88 5.48 

Weight of fat as percentage of body 
weight (%) 

PEf 7 21.42 

Weight of slowly perfused tissue as 
percentage of body weight (%) 

PEs 68.66 43.71 

Weight of diaphragm as percentage 
of body weight (%) 

PEdi 0.3 0.3 

Weight of blood as percentage of 
body weight (%) 

PEbl 6 7.7 

Cardiac output (l/hr) QC 5.4 347.9 
Blood flow in brain as percentage of 
cardiac output (%) 

Qbrc 3 11.4 

Blood flow in diaphragm as 
percentage of cardiac output (%) 

Qdic 0.6 0.6 

Blood flow in fat as percentage of 
cardiac output (%) 

Qfc 9 5.2 

Blood flow in liver as percentage of 
cardiac output (%) 

Qlc 25 22.7 

Blood flow in rapidly perfused 
tissue as percentage of cardiac 
output (%) 

Qrc 47.96 39.6 

Blood flow in slowly perfused tissue 
as percentage of cardiac output (%) 

Qsc 14.4 20.5 

Volume of brain as percentage of 
body weight (%) 

Vbrc 1.16 2.14 

Volume of liver as percentage of 
body weight (%) 

Vlc 4 2.57 

Volume of rapidly perfused tissue as 
percentage of body weight (%) 

Vrc 3.88 5.48 

Volume of fat as percentage of body 
weight (%) 

Vfc 7 21.42 

Volume of slowly perfused tissue as 
percentage of body weight (%) 

Vsc 68.66 43.71 

Volume of diaphragm as percentage 
of body weight (%) 

Vdic 0.3 0.3 

Volume of venous blood as 
percentage of body weight (%) 

Vvc 4 5.7 

Volume of arterial blood as 
percentage of body weight (%) 

Vac 2 2 

Volume of blood as percentage of 
body weight (%) 

Vblc 6 7.7 

Blood:brain partition coefficient for 
chlorpyrifos 

PCbrc 33 33 

Blood:diaphragm partition 
coefficient for chlorpyrifos 

PCdic 6 6 

Blood:fat partition coefficient for 
chlorpyrifos 

PCfc 435 435 

Blood:liver partition coefficient for 
chlorpyrifos 

PClc 22 22 

Blood:rapidly perfused partition 
coefficient for chlorpyrifos 

PCrc 10 10 

Blood:slowly perfused partition 
coefficient for chlorpyrifos 

PCsc 6 6 

Blood:blood partition coefficient for 
chlorpyrifos 

PCbl 1 1 

Plasma protein binding of 
chlorpyrifos 

FBc 97 97 

Michaelis-Menten constant for 
desulfuration (µM) 

Km1 3.23 3.23 

Velocity of CPF desulfuration to 
CPF-oxon in liver microsomes 
(µmol/hr/kg) 

VmaxC1 80 80 

Michaelis-Menten constant for Km2 24.3 24.3 

Parameter Abbrevia-
tion 

Rat Human 

dearylation (µM) 
Velocity of CPF dearylation to TCP 
in liver microsomes(µmol/hr/kg) 

VmaxC2 273 273 

Blood:brain partition coefficient for 
chlorpyrifos-oxon 

PCbro 26 26 

Blood:diaphragm partition 
coefficient for chlorpyrifos-oxon 

PCdio 4.9 4.9 

Blood:fat partition coefficient for 
chlorpyrifos-oxon 

PCfo 342 342 

Blood:liver partition coefficient for 
chlorpyrifos-oxon 

PClo 17 17 

Blood:rapidly perfused partition 
coefficient for chlorpyrifos-oxon 

PCro 8.1 8.1 

Blood:slowly perfused partition 
coefficient for chlorpyrifos-oxon 

PCso 4.9 4.9 

Blood:blood partition coefficient for 
chlorpyrifos-oxon 

PCblo 1 1 

Enzyme turnover rate of AChE 
(enzyme hydrolysed/hr) 

TRAChE 1.17*107 1.17*107 

Enzyme turnover rate of BuChE 
(enzyme hydrolysed/hr) 

TRBuChE 1.03*107 1.03*107 

Enzyme turnover rate of CaE 
(enzyme hydrolysed/hr) 

TRCaE 109000 109000 

Enzyme activity, brain AChE 
(µmol/kg tissue/hr) 

EAChEbr 440000 440000 

Enzyme activity, diaphragm AChE 
(µmol/kg tissue/hr) 

EAChEdi 77400 77400 

Enzyme activity, liver AChE 
(µmol/kg tissue/hr) 

EAChEl 10200 10200 

Enzyme activity, plasma (in human: 
RBC) AChE (µmol/kg tissue/hr) 

EAChEp 13200 EAChErbc
13200 

Enzyme activity, brain BuChE 
(µmol/kg tissue/hr) 

EBuChEbr 46800 46800 

Enzyme activity, diaphragm BuChE 
(µmol/kg tissue/hr) 

EBuChEdi 26400 26400 

Enzyme activity, liver BuChE 
(µmol/kg tissue/hr) 

EBuChEl 30000 30000 

Enzyme activity, plasma BuChE 
(µmol/kg tissue/hr) 

EBuChEp 15600 1.73*106 

Enzyme activity, brain CaE 
(µmol/kg tissue/hr) 

ECaEbr 60000 6000 

Enzyme activity, diaphragm CaE 
(µmol/kg tissue/hr) 

ECaEdi 318000 318000 

Enzyme activity, liver CaE (µmol/kg 
tissue/hr) 

ECaEl 1.94*106 1.94*106 

Enzyme activity, plasma CaE 
(µmol/kg tissue/hr) 

ECaEp 456000 456000 

Enzyme degradation rate, brain, 
AChE (hr-1) 

Kd1 0.01 0.01 

Enzyme degradation rate, 
diaphragm AChE (hr-1) 

Kd2 0.01 0.01 

Enzyme degradation rate, liver 
AChE (hr-1) 

Kd3 0.1 0.1 

Enzyme degradation rate, plasma 
AChE (hr-1) 

Kd4 0.1 - 

Enzyme degradation rate, RBC AChE 
(hr-1) 

Kd5 0.008 8*10-4 

Enzyme degradation rate brain 
BuChE (hr-1) 

Kd6 0.01 0.01 

Enzyme degradation rate, 
diaphragm BuChE (hr-1) 

Kd7 0.01 0.01 

Enzyme degradation rate, liver 
BuChE (hr-1) 

Kd8 0.1 0.1 

Enzyme degradation rate, plasma 
BuChE (hr-1) 

Kd9 0.1 0.0042 

Enzyme degradation rate, brain CaE 
(hr-1) 

Kd10 7.54*10-4 7.54*10-4 

Enzyme degradation rate, 
diaphragm CaE (hr-1) 

Kd11 0.001 0.001 

Enzyme degradation rate, liver CaE 
(hr-1) 

Kd12 0.001 0.001 

Enzyme degradation rate, plasma 
CaE (hr-1) 

Kd13 0.0033 0.0033 

Bimolecular inhibition rate, all 
tissues, AChE (1/(µM*hr)) 

Ki1 243 243 

Bimolecular inhibition rate, RBC 
AChE (1/(µM*hr)) 

Ki5 100 100 

Bimolecular inhibition rate, all 
tissues BuChE (1/(µM*hr)) 

Ki6 2000 2000 

Bimolecular inhibition rate, brain 
CaE (1/(µM*hr)) 

Ki10 20 20 
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Parameter Abbrevia-
tion 

Rat Human 

Bimolecular inhibition rate, 
diaphragm CaE (1/(µM*hr)) 

Ki11 20 20 

Bimolecular inhibition rate, liver 
CaE (1/(µM*hr)) 

Ki12 20 20 

Bimolecular inhibition rate, plasma 
CaE (1/(µM*hr)) 

Ki13 20 20 

Reactivation rate (hr-1), AChE Kr1 0.01403 0.01403 
Reactivation rate (hr-1), RBC AChE Kr5 0.04 0.04 
Reactivation rate (hr-1), BuChE Kr6 0.01403 1.43*10-3 
Reactivation rate (hr-1), CaE Kr10 0.01403 0.01403 
Aging rate (hr-1), AChE Ka1 0.0113 0.0113 
Aging rate (hr-1), BuChE Ka6 0.0113 0.0113 
Aging rate (hr-1), CaE Ka10 0.0113 0.0113 

Parameter Abbrevia-
tion 

Rat Human 

Michaelis-Menten constant for CPF-
oxon -> TCP in liver (µM) 

Km3 577 577 

Velocity of CPF–oxon hydrolysed to 
TCP in liver (µmol/hr/kg)  

VmaxC3 38002 38002 

Michaelis-Menten constant for CPF-
oxon -> TCP in blood (µM) 

Km4 464 464 

Velocity of CPF–oxon hydrolysed to 
TCP in blood (µmol/hr/kg) 

VmaxC4 40377 40377 

Volume of distribution (l) Vd 35 35 
1. order elimination rate constant 
(hr-1) 

Ke 0.017 0.017 

Plasma protein binding of 
chlorpyrifos-oxon 

FBo 98 98 

 
 

21.2.1 PROBLEMS WITH THE METABOLIC PARAMETERS ON CHLORPYRIFOS-OXON 

The toxicodynamic part of the model caused the most problems in developing the model in 
this project. The toxicokinetic part was fairly straight forward but when running the 
toxicodynamic part describing the metabolism by B-esterases the model output (e.g. the 
percentage of inhibition of acetylcholinesterase in a tissue) did not look like the graphs 
presented in (Timchalk et al., 2002b). The efforts done to solve this problem are illustrated in 
this section. When not otherwise stated the figures are model output from the present project. 

Simulations of the inhibition of acetylcholinesterase using the parameter-values from 
(Timchalk et al., 2002b) showed levels of inhibition much lower than expected from that 
paper and from other references. As an example, simulation of inhibition of 
acetylcholinesterase in rat brain after exposure to chlorpyrifos at 5-100 mg/kg bw is shown in 
Figure 31A – to be compared with that of Timchalk et al. (2002b) in Figure 32.  

When zooming in on the curve in Figure 31A (zoom not shown) it was seen that the shape of 
the curve was the same as in Figure 32 meaning that the equations were correct and the 
difference must be due to some of the parameters. 
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A: B:  

Figure 31. Inhibition (shown as % of control) of acetylcholinesterase in rat brain by 
chlorpyrifos. Curves are model simulations for gavage doses: 5 (Inhib_AChEbr:1), 10 
(Inhib_AChEbr:2), 50 (Inhib_AChEbr:3) and 100 (Inhib_AChEbr:4) mg/kg. Data points 
(Data_Inhib_AChEbr) are experimental data from (Timchalk et al., 2002b), doses as for the 
curves, except that Data_Inhib_AChEbr:1 is 0-5 mg/kg. Values of VmaxC3, Km3, VmaxC4 and 
Km4 (see Table 9) from A: (Timchalk et al., 2002b) and B: (Timchalk et al., 2007b). Please 
note that there is no agreement between colours of data points and the corresponding 
simulation curves at the various concentrations in the figure. 

 

 

Figure 32. Inhibition of brain acetylcholinesterase in rats administered chlorpyrifos by gavage 
at the following dose levels: 0.5-5 (filled circle), 10 (filled triangle), 50 (filled square) and 100 
mg/kg (filled diamond). Lines show the PBTK simulations and data points show the 
experimental data. Figure from (Timchalk et al., 2002b). 

The model code and parameters were examined closely and it was deduced that the problem 
in the model was related to the low chlorpyrifos-oxon concentration in blood leaving the liver 
resulting in too low tissue concentrations in all other compartments (except liver) to execute 
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a visible effect on acetylcholinesterase inhibition. This means that the metabolism described 
in the model could be too fast to allow chlorpyrifos-oxon to distribute to the other 
compartments. Therefore, the metabolic rate constants Km3, VmaxC3, Km4 and VmaxC4 were 
examined more closely. In the more recent paper by Timchalk and co-workers (2007b) values 
of these parameters were used that differed from the values given in Timchalk et al. (2002b), 
see Table 9. In both papers reference was made to (Mortensen et al., 1996) for the VmaxC-
values. The Michaelis-Menten constants Km3 and Km4 were “optimized” in (Timchalk et al., 
2007b) and therefore changed compared to (Timchalk et al., 2002b).  

Table 9. Values of VmaxC3, Km3, VmaxC4 and Km4 from (Timchalk et al., 2002b) and 
(Timchalk et al., 2007b). In both papers reference were made to Mortensen et al. for the 
VmaxC-values. 

Parameter (Timchalk et al., 2002b) (Timchalk et al., 2007b) 
Km3 (µmol/l), liver 2401) 5772) 
VmaxC3 (µmol/h/kg), liver 744211) 380021) 
Km4 (µmol/l), blood 2501) 4642) 
VmaxC4 (µmol/h/kg), blood 570031) 403771) 

1) “Fixed”. Calculated by (Mortensen et al., 1996)  
2) “Optimized parameter”. Optimization performed by (Timchalk et al., 2007b) 

 

When using the Timchalk et al. (2007) set of parameters from Table 9, keeping all the other 
parameters unchanged the model presented a picture (see Figure 31B) much more similar to 
Timchalk et al. (2002b), Figure 32. 

The difference of the model predictions when using the two sets of parameters in Table 9 are 
also illustrated in Figure 33. The figure shows simulation of the inhibition of brain 
acetylcholinesterase (Figure 33A) and plasma cholinesterase (which is the sum of acetyl- and 
butyrylcholinesterase) (Figure 33B) in rats administered by gavage with chlorpyrifos at 100 
mg/kg bw using VmaxC3, Km3, VmaxC4 and Km4 from the two references (Timchalk et al., 
2002b) and (Timchalk et al., 2007b). 
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A: B:  

Figure 33. A: Model prediction of inhibition of brain acetylcholinesterase (shown as % of 
control) after a gavage dose of 100 mg/kg bw. Simulation using VmaxC3, Km3, VmaxC4 and 
Km4 values from (Timchalk et al., 2002b) (Inhib_AChEbr:1, yellow curve) and from (Timchalk 
et al., 2007b) (Inhib_AChEbr:2, red curve). B: Model prediction of inhibition of plasma 
cholinesterase (sum of acetyl- and butyrylcholinesterase) by chlorpyrifos (shown as % of 
control) after a gavage dose of 100 mg/kg bw. Simulation using VmaxC3, Km3, VmaxC4 and 
Km4 values from (Timchalk et al., 2002b) (Inhib_ChEp_total:1, blue curve) and from 
(Timchalk et al., 2007b) (Inhib_ChEp_total:2, black curve). 
Data points in both figures are experimental data from (Timchalk et al., 2002b).  

In Figure 34 the plasma cholinesterase inhibition (sum of acetyl- and butyrylcholinesterase) is 
shown. The same graphs presented by Timchalk et al. (2002b) are shown in Figure 35. The 
curves are very similar. However, it seems as the recovery of cholinesterase activity in Figure 
34 is faster than in the simulations in Figure 35 presented by Timchalk et al. (2002b). 
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Figure 34. PBTK prediction of cholinesterase (sum of acetylcholine- and 
butyrylcholinesterase) inhibition in plasma (shown as % of control) after gavage doses: 0.5, 1, 
5, 10, 50 and 100 mg/kg (Inhib_ChEp_total:1-6). Values of VmaxC3, Km3, VmaxC4 and Km4 
were from (Timchalk et al., 2007b). Data points (Data_Inhib_ChEp_1-6) are experimental data 
from (Timchalk et al., 2002b). Please note that there is no agreement between colours of data 
points and the corresponding simulation curves at the various concentrations in the figure. 

 

Figure 35. Inhibition of plasma cholinesterase in F344 rats administered chlorpyrifos by 
gavage at the following dose levels: 0.5 (open circle), 1 (open square), 5 (open diamond), 10 
(filled circle), 50 (filled triangle) and 100 mg/kg (filled diamond). Lines show the PBTK 
simulations and data points show the experimental data. Figure from (Timchalk et al., 2002b) 

The re-calculation of the Vmax data from (Mortensen et al., 1996) was shown in the previous 
section. That re-calculation supported the values for Vmax3 and Vmax4 that Timchalk and co-
workers used in (Timchalk et al., 2002b). In (Timchalk et al., 2007b) they also referred to 
Mortensen et al. (1996). However, the values for Vmax3 and Vmax4 were different and 
thereby not in agreement with Mortensen et al. (1996). There is no explanation in the 
reference concerning this discrepancy. The simulations of acetylcholinesterase inhibition 
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using the parameters from 2007 were not quite the same as the ones shown in (Timchalk et 
al., 2002b) but they resulted in curves which were more similar to the curves shown in 
(Timchalk et al., 2002b) than simulations using values from the 2002 paper.  

Irrespective of the discrepancy it was decided to use the parameter-values for VmaxC3, Km3, 
VmaxC4 and Km4 from Timchalk et al. (2007b) since they resulted in the best model output 
compared with the experimental data presented in Timchalk et al. (2002b). 

22 DESCRIPTION OF THE PBTK/TD MODEL FOR CHLORPYRIFOS IN 
HUMANS 

A set of parameters for a PBTK/TD model for chlorpyrifos in humans was presented by 
Timchalk and co-workers (2002b). The PBTK/TD model for humans was included in the 
present project in order to perform extrapolations from animals to humans as an important 
part of the risk assessment.  

There is one major difference between the two models: acetylcholinesterase activity in 
plasma is not included in the model for humans. Timchalk and co-workers stated that human 
plasma do not contain acetylcholinesterase (with reference to (Ecobichon and Comeau, 
1973)) but only butyrylcholine- and carboxylesterase (Timchalk et al., 2002b). This 
assumption is supported by (Testai et al., 2010) stating that >99 % of the human serum 
cholinesterase is butyrylcholinesterase. Therefore, the present model for humans is 
developed in the same way as was done by Timchalk et al. (2002b). 

The species specific (physiological) parameters were changed from rats to humans. These 
includes weight (and volume) of tissue as percentage of body weight. The fractional 
absorption was also changed in the human model. 

The enzyme activity for butyrylcholinesterase in plasma was decreased and the degradation 
rate and reactivation rate for butyrylcholinesterase was decreased (Timchalk et al., 2002b). 
The level of cholinesterase activity was supposed to be similar in rats and humans. In order to 
compensate for the lack of acetylcholinesterase the amount of butyrylcholinesterase in 
plasma was increased. 

The enzyme degradation rate for acetylcholinesterase in RBC was lowered compared to the 
rat model (Timchalk et al., 2002b).  

Table 10 shows the parameters that have been changed in the human model compared to the 
rat model in order to make a model that can describe the toxicokinetic and toxicodynamic in 
humans exposed to chlorpyrifos.  

The values of parameters used in the present model on humans are shown in Table 8. 

 

  



108 

 

Table 10. Overview of those parameters that are changed in the PBTK/TD model for 
chlorpyrifos in humans compared to rats. 

Parameter 
abbreviation 

Parameter Estimated / measured/ 
calculated/ fitted 

Source Assumptions /comments Deviations from 
the model by 
(Timchalk et al., 
2002b) 

Fa Fractional 
absorption (%) 

Measured (Nolan et al., 
1984; 
Timchalk et 
al., 2002b) 

Timchalk et al. have stated 
0.72 % for humans. For 
humans Nolan et al. (1984) 
have stated 72 %, and 
therefore it seems as the 
data should have been 
presented as 72 %  

 

BW Body weight (kg)   Calculated from the same 
equation as used to calculate 
QC (see below) 

 

PEbl, PEdi, PEf, 
PEl, PEr, PEs  

Tissue weight as 
percentage of body 
weight (%) 

Values form literature 
reported by Brown et al. (not 
all consistent with the values 
reported by (Timchalk et al., 
2002b), see text). 
Tissue weights for 
diaphragm and blood were 
taken from Gearhart et al. 

(Brown et 
al., 1997; 
Gearhart et 
al., 1994) 

Tissue volume is equal to 
tissue weight (1:1). 
Volume of blood is equal to 
volume of venous and 
arterial blood: 
Vblc=Vvc+Vac. 
 

Timchalk et 
al./present 
model: 
PEl: 3 / 2.57; PEr: 
4 / 5.48; PEf: 21 / 
21.42; PEs: 63 / 
43.71; PEdi: 0.03 
/ 0.3; PEbl: 7 / 
7.7. 

Vlc, Vrc, Vfc, 
Vsc, Vdic, Vvc, 
Vac, Vblc 

Tissue volumes as 
percentage of body 
weight (%) 

Values form literature 
reported by Brown et al. (not 
all consistent with the values 
reported by (Timchalk et al., 
2002b), see text). 
Tissue volumes for 
diaphragm and blood were 
taken from Gearhart et al. 

(Brown et 
al., 1997; 
Gearhart et 
al., 1994) 

Tissue volume is equal to 
tissue weight (1:1). 
Volume of blood is equal to 
volume of venous and 
arterial blood: 
Vblc=Vvc+Vac.  
 

Timchalk et 
al./present 
model: 
Vlc: 3 / 2.57; Vrc: 
4 / 5.48; Vfc: 21 / 
21.42; Vsc: 63 / 
43.71; Vdic: 0.03 
/ 0.3; Vblc: 7 / 7.7 

QC Cardiac output 
(l/hr) 

Calculated from  
QC=15 l/h*(BW)^0.74 where 
BW=70kg 

(Andersen et 
al., 1987) 

  

Qdic, Qrc, Qsc Blood flow in 
diaphragm, rapidly 
and slowly 
perfused tissues as 
percentage of 
cardiac output (%) 

Qdic (diaphragm) from 
(Gearhart et al., 1994). Q for 
rapidly perfused tissues, Qrc, 
calculated as sum of Q for 
heart, kidneys and 
hepatoportal system using 
data from (Brown et al., 
1997).  
Q for slowly perfused tissues, 
Qsc, is calculated as 100-
(sum of all other Qic) 

(Brown et 
al., 1997; 
Gearhart et 
al., 1994) 

 Timchalk et al / 
present model: 
Qrc=40 / 39.6 
Qsc=14 / 20.5 

EAChErbc, 
EBuChEp 

Enzyme activity for 
AChE in RBC, and 
BuChE in plasma 
(µmol/kg 
tissue/hr) 

Value for EAChE in plasma 
used for EAChErbc.  
EBuChEp was optimised 
(together with reactivation 
rate for BuChE, Kr6) by 
Timchalk et al. by fitting to 
experimental data 

(Timchalk et 
al., 2002b) 

Present model: it was 
assumed that enzyme 
activity for AChE in humans 
RBC was equal to enzyme 
activity for AChE in plasma 
in rat. Uncertain whether 
Timchalk et al. did the same 

See comments 

Kd5, Kd9 Enzyme 
degradation rate 
for AChE in RBC 
and BuChE in 
plasma (hr-1) 

Kd5 for RBC AChE: estimated 
by Timchalk et al. from RBC 
life-span.  
Kd9 for BuChE in plasma 
fitted by Timchalk et al. to 
data from literature 

(Timchalk et 
al., 2002b) 

  

Kr6 Reactivation rate 
for BuChE (hr-1) 

Kr6 was optimised (together 
with enzyme activity for 
BuChE in plasma) by 
Timchalk et al. by fitting to 
experimental data 

(Timchalk et 
al., 2002b) 
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Fractional absorption (%) 
Nolan et al. have stated that the fractional absorption for chlorpyrifos, Fa, is 72 % for humans 
(Nolan et al., 1984). Timchalk et al. (2002b) stated that Fa was 0.72 % for humans, however, it 
should have been presented as 72 %.  

Body weight (kg) 
Timchalk et al. (2002b) did not directly state the size of body weight used in their model. They 
used a cardiac output of 347.9 l/h referring to the calculation-method presented by Andersen 
and co-workers (1987) (see below in the section: “Cardiac output”) and this indicates a body 
weight of 70 kg for humans, which therefore was used in the present model for humans.  

Tissue weight as percentage of body weight and tissue volumes as percentage of body 
weight (%) 
The weight of tissues presented (Timchalk et al., 2002b) were taken from (Brown et al., 
1997). However, several discrepancies were observed: 

• The weight of slowly perfused tissues were calculated as the sum of muscle and skin 
using data from (Brown et al., 1997), PEs=40+3.71=43.71 %. Timchalk and co-workers 
stated 63%. 

• The weight of rapidly perfused tissues was calculated as the sum of several organs 
(adrenals + gastrointestinal tract + stomach + small intestine + large intestine + heart + 
kidneys + lungs + pancreas + spleen + thyroid = 0.02 + 1.71 + 0.21 + 0.91 + 0.53 + 0.47 
+ 0.44 + 0.76 + 0.14 + 0.26 + 0.03 = 5.48 %) using data from Brown et al. (1997). 
Timchalk and co-workers used 4 %. The sum calculated above (5.48 %) was used in 
the present model.  

• Brown et al. did not give a value for diaphragm and blood, therefore Timchalk and co-
workers must have used another source. In the present model the value 0.3 % for 
diaphragm from (Gearhart et al., 1994) was used. The weight of blood for use in the 
present model were calculated as the sum of the weight of arterial and venous blood 
(=2+5.7=7.7 %) from (Gearhart et al., 1994). Timchalk and co-workers stated 0.03 % 
for diaphragm and 7 % for blood.  

There are consistency between the values for weight of liver and fat given in (Brown et al., 
1997) and (Timchalk et al., 2002b) and the differences are due to rounding off. 

The sum of all weight of tissues gives 83.18 %. This leaves 16.8 % to bones, which is 
consistent with the 14.29 % stated by Brown and co-workers. 

Cardiac output (l/hr) 
Andersen and co-workers (Andersen et al., 1987) have calculated the cardiac output (QC) by 
the following equation:  

QC=15 l/h/kg*(BW)0.74 = 15 l/h/kg*(70 kg) 0.74 =347.9 l/h 

Blood flow in organ as percentage of cardiac output (%)  
Timchalk and co-workers (2002b) stated that the blood flow in organs were taken from 
(Brown et al., 1997), however, the value for blood flow in diaphragm, Qdi, is not given by 
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(Brown et al., 1997). In the present model the value (0.3%) is taken from (Gearhart et al., 
1994) whereas Timchalk et al. used 0.03 %.  

Blood flow in rapidly perfused tissues, Qrc, was calculated as the sum of the blood flow for 
heart, kidneys and hepatoportal system using data from (Brown et al., 1997): 
Qrc=4+17.5+18.1=39.6% which is in good agreement with the 40% used in (Timchalk et al., 
2002b).  

Blood flow in slowly perfused tissues, Qsc, is supposed to account for blood flow in the rest of 
the body, i.e. Qsc=100-(sum of all other Qic)=20.5 %. This value was used in present model. 
Timchalk and co-workers used Qsc =14 % but they also had a separate value for blood flow in 
skin (5.8%), meaning that their total Qsc=19.8 % (i.e. almost the same value). 

Enzyme activity for acetylcholinesterase in RBC and butyrylcholinesterase in plasma 
(µmol/kg tissue/hr) 
As the acetylcholinesterase activity in plasma was assumed to be almost equal to zero and 
therefore was omitted in the model the amount of butyrylcholinesterase in plasma was 
increased in the model since the level of cholinesterase were supposed to be unchanged 
compared to the rat. This was done by increasing the enzyme activity for 
butyrylcholinesterase in plasma, and decreasing the degradation rate and the reactivation 
rate for butyrylcholinesterase as described above (Timchalk et al., 2002b). 

Concerning the determination of the enzyme activity for butyrylcholinesterase in plasma 
there are inconsistencies between text and table in Timchalk et al. (2002b). In the text they 
explain that the enzyme activity for butyrylcholinesterase in plasma (together with the 
reactivation rate for butyrylcholinesterase, Kr6) was optimised against experimental data for 
butyrylcholinesterase inhibition in plasma. However, in the table with parameters they refer 
to a figure showing data on plasma concentrations of chlorpyrifos and TCP. 

The enzyme activity for acetylcholinesterase in RBC was not stated by Timchalk et al. (2002b). 
This parameter should be used for calculation of the amount of esterase binding sites in RBC. 
It was not explained what value they used. In the present rat model, enzyme activity for 
acetylcholinesterase in RBC was set equal to enzyme activity for acetylcholinesterase in 
plasma. The same could not be done in the model for humans due to the lack of 
acetylcholinesterase in plasma.  As no figure for enzyme activity for acetylcholinesterase in 
human plasma was available the value for acetylcholinesterase in rat plasma was used in the 
present model. However, it is negotiable whether this is biologically plausible.  

Enzyme degradation rate for acetylcholinesterase in RBC and butyrylcholinesterase in 
plasma, Kd5 and Kd9 (hr-1) 
The enzyme degradation rate for acetylcholinesterase in RBC, Kd5, was estimated by 
Timchalk et al. from the RBC life-span (Timchalk et al., 2002b).  

Timchalk et al. estimated enzyme degradation rate for butyrylcholinesterase in plasma, Kd9, 
by fitting to experimental data from literature (Timchalk et al., 2002b). 
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Reactivation rate for butyrylcholinesterase, Kr6 (hr-1) 
The reactivation rate for butyrylcholinesterase, Kr6, was optimised together with enzyme 
activity for butyrylcholinesterase in plasma by fitting to experimental data from a human 
study (Timchalk et al., 2002b).  

Volume of distribution, Vd (l) 
Volume of distribution was calculated by Timchalk et al. from data from literature (Timchalk 
et al., 2002b). 

1. order elimination constant, Ke (hr-1) 
The first order elimination constant was calculated by Timchalk et al. from data from 
literature (Timchalk et al., 2002b).  

23 RESULTS FROM PBTK/TD MODELLING 

In this section simulations performed in the present models will be compared with 
simulations and experimental data presented in (Timchalk et al., 2002b). This was done in 
order to evaluate the applicability of the model.  

Subsequently it will be shown how a NOAEL for chlorpyrifos in rats and humans can be 
estimated from simulations in the two PBTK/TD models. 

When not otherwise stated the figures are model output from the present project (all curves 
are on grey background).  

Method for numerical integration 
There are five numerical integration methods available in Berkeley Madonna. These are Euler’ 
Method, Runge-Kutta 2, Runge-Kutta 4, Auto-stepwise and Rosenbrock (stiff). Berkeley 
Madonna uses Runge-Kutta 4 by default, however using this method in the present model 
resulted in an error message concerning “Floating-point exception(s): invalid overflow”. This 
problem is described by so-called stiffness which can be solved by using the Rosenbrock 
(stiff) method in Berkeley Madonna (Yang and Lu, 2007). The maximum step-size was 
decreased in the rat model (decreased from 1 to 0.1) in order to make the curves smoother. 

23.1 COMPARISON OF THE RAT MODEL WITH RESULTS FROM TIMCHALK ET AL. 

In the following simulations of the concentrations of chlorpyrifos and chlorpyrifos-oxon in 
blood, inhibition of acetylcholinesterase in brain and inhibition of cholinesterase 
(acetylcholinesterase + butyrylcholinesterase) in plasma will be compared with experimental 
data as well as simulations by Timchalk and co-workers from (Timchalk et al., 2002b). 

Concentration of chlorpyrifos and chlorpyrifos-oxon in blood 
Simulations of the blood concentrations of chlorpyrifos after exposure to various dose levels 
are shown in Figure 36. The concentrations ranged from 4.6*10-2 to 1.4 µM. 
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A: B:  

 

Figure 36. Concentration of chlorpyrifos in blood after gavage exposure of various dose levels. 
Upper figure is simulations from present project / lower figure from (Timchalk et al., 2002b). 
A: 50 (green/triangle) and 100 (blue/square) mg/kg bw/day and B: 5 (black/diamond) and 
10 (red/circle) mg/kg bw/day. Data points in all figures are experimental data from 
(Timchalk et al., 2002b) and lines are simulations. 

Visual inspection of the graphs shows good agreement between the simulations from the 
present project, data points as well as the simulations performed by Timchalk and co-
workers. However, both models underestimate the peak value (maximum concentration) at 
all doses. 

The concentrations of chlorpyrifos-oxon in blood (Figure 37) ranged from 6.8*10-4 to 1.9*10-2 
µM. These concentrations are about 100 times less that the concentration of chlorpyrifos in 
blood. Timchalk and co-workers stated that the measured concentrations of chlorpyrifos-
oxon in blood were in the range of 2*10-3 to 7*10-3 µM. Their simulations resulted in slightly 
higher concentrations for chlorpyrifos-oxon: 3*10-3 to 3.6*10-2 µM. Although not exactly 
similar the concentration levels simulated in the two models as well as the experimental data 
are comparative. The simulation curves also have the same shape as the curves for 
chlorpyrifos oxon-concentration presented in (Timchalk et al., 2007b). 
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Figure 37. Simulation of chlorpyrifos-oxon concentration in blood after gavage exposure at 
(from bottom to top) 5, 10, 50, 100 mg/kg bw/day. 

Inhibition of acetylcholinesterase 
Figure 31B and 34 in the previous chapter show simulations of inhibition of 
acetylcholinesterase in brain and cholinesterase (acetylcholine- and butyrylcholinesterase) in 
plasma, respectively. These simulations should be compared with the experimental data as 
well as the simulations performed by Timchalk and co-workers shown in Figure 32 and 35. 

The simulated curves of acetylcholinesterase inhibition in brain over time showed the same 
overall pattern as the experimental results. However, at some doses the inhibition was 
underestimated (10, 50 and 100 mg/kg bw/day), at 5 mg/kg bw/day a minor overestimation 
was seen but below 5 mg/kg/day the prediction was good.   

Concerning the simulation of the sum of acetyl- and butyrylcholinesterase inhibition in 
plasma the results were not clear-cut (see Figure 34). At the two lowest doses (0.5 and 1 
mg/kg bw/day) the simulations were good compared to the experimental data. At 5 and 10 
mg/kg bw/day the estimation was good for the first 12 hr but after that the model 
underestimated the inhibition. At the two highest doses (50 and 100 mg/kg bw/day) the 
model overestimated the inhibition during the first 11-12 hr (actually, at 100 mg/kg bw/day 
the simulated curve goes straight through the data point at 12 hr), and thereafter the 
inhibition was underestimated. 

For doses from 10-100 mg/kg bw the curves for inhibition of acetylcholinesterase in brain 
and plasma from 12-24 hr are far above the experimental data and it seems as the model 
overestimates the regeneration of cholinesterase.  

Maximum plasma cholinesterase 
Figure 38 shows the inhibition of acetylcholinesterase, butyrylcholinesterase and total 
cholinesterase (sum of acetylcholinesterase and butyrylcholinesterase) in plasma over a 
broad range of dose levels. The simulation in the present model results in a delayed increase 
in inhibition of cholinesterase compared to (Timchalk et al., 2002b). However, the overall 
course of the curves is consistent with the simulations performed by Timchalk and co-
workers. 
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A: B:  

C:  

Figure 38. Dose response curves performed as parameter plots (1000 runs). A: simulated 
inhibition (% of control) of plasma acetylcholinesterase (black), butyrylcholinesterase (green) 
and total cholinesterase (sum of acetylcholinesterase and butyrylcholinesterase; blue curve) 
in rats after a single gavage dose in the range of 0.001-100 mg/kg bw. B: simulated inhibition 
of butyrylcholinesterase in humans after a single gavage dose in the range of 0.001-100 
mg/kg bw. C: Simulated inhibition of the acetylcholine- and butyrylesterases in rats and 
humans in the range of 0.001-100 mg/kg bw. Figure from (Timchalk et al., 2002b).  

Extent of inhibition 
Gearhart et al. (1990) experimentally found (based on the sizes of the bimolecular rate 
constants) that the extent of inhibition of the three esterases were in the following order: 
butyrylcholinesterase >> acetylcholinesterase > carboxylesterase. The same result was found 
in the present model after a single gavage dose of 50 mg/kg bw/day. 

Concerning the extent of inhibition in the different compartments, Timchalk et al. (2002b) 
found the following order: plasma > RBC ≥ brain . This is similar to the finding in the present 
model: plasma ≥ RBC > brain. 

Mass balance check 
There is an overlay between simulated curves of the mass of chlorpyrifos and of the sum of 
the mass of TCP and chlorpyrifos-oxon meaning that the overall mass balance in the model is 
alright. There is only a slight difference between the curves for chlorpyrifos and for TCP (and 
this difference is accounted for by chlorpyrifos-oxon) demonstrating that the amount of free 
chlorpyrifos-oxon very quickly disappears in the model. 

Conclusion on the comparisons 
The results from the present model are in good agreement with the experimental data and the 
simulations performed by Timchalk et al. (2002b) especially concerning concentrations of 
chlorpyrifos and chlorpyrifos-oxon in blood.  
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The simulations of acetylcholinesterase in brain and cholinesterase in plasma are reasonably 
comparative with the experimental data as well as the simulations performed by Timchalk 
and co-workers (2002b). However, there is a tendency of underestimation, especially at 
higher doses and the recovery after inhibition also seems to be too fast compared with the 
experimental data. 

23.2 COMPARISON OF THE HUMAN MODEL WITH RESULTS FROM TIMCHALK ET 
AL. 

As for the rat model, simulations were made in order to compare the results with the 
experimental data and simulations in (Timchalk et al., 2002b). In the following examples of 
these simulations will be shown. 

Concentration of chlorpyrifos in blood after poisoning  
Figure 39A shows a time series of chlorpyrifos concentration in serum in a 25-year-old male 
after drinking a concentrated formulation of chlorpyrifos. Timchalk et al. found that it was 
possible to use the model to find the dose (180 mg/kg bw) resulting in the acute toxicological 
responses. In the present project concentrations of chlorpyrifos in blood were simulated 
(single bolus dose) for various dose values. The simulations showed that a smaller dose (140 
mg/kg bw) would fit the data better by the present model, see Figure 39B. 

A: B:   

Figure 39. A: Chlorpyrifos in serum from a single poisoned victim that originally ingested a 
commercial product containing chlorpyrifos. Timchalk simulated that the dose was: 180 
mg/kg bw/day. B: Simulation in the present model of chlorpyrifos in blood: 180 (red) and 140 
(green) mg/kg bw/day. Data points are measured in victim, as reported by (Timchalk et al., 
2002b) 

Plasma concentration of TCP 
Five volunteers were administered a single dose of 1 or 2 mg chlorpyrifos/kg bw and 
inhibition of acetylcholinesterase in plasma was measured. Experimental data on 
concentrations of TCP in plasma as well as simulation of this scenario is shown in Figure 40. 
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A: B:  

C: D:  

E:  

Figure 40. Concentrations of chlorpyrifos (lower curves and data points) and TCP (upper 
curves and data points) in plasma of volunteers after a single dose of chlorpyrifos at 1 mg/kg 
bw (A and B) or 2 mg/kg bw (C, D and E). Data points are experimental data from (Timchalk 
et al., 2002b) for human volunteers receiving a single oral dose. Simulations were performed 
as a single bolus dose. 
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Figure 41. Experimental (data points) and model simulations (lines) of plasma concentrations 
of TCP (upper curves and data points) and chlorpyrifos (lower curves and data points) from 
five volunteers (A-E) after receiving a single dose of chlorpyrifos. A and B: 1 mg/kg bw. C, D 
and E: 2 mg/kg bw. Figure from (Timchalk et al., 2002b).  

Comparison of experimental data and simulations in Figure 40 shows that the present model 
is making a good prediction for volunteer E. For volunteer A (1 mg/kg bw) the chlorpyrifos 
concentration was underestimated but in all other simulations the concentration of 
chlorpyrifos and TCP were overestimated. The overestimation of volunteer C and D was about 
a factor 2: simulation of 1 mg/kg bw in the model would better had described the 
experimental data of these two volunteers exposed to 2 mg/kg bw.  

The simulations performed by Timchalk and co-workers (Figure 41) fitted the experimental 
data very well. 

Inhibition of acetylcholinesterase in RBC 
In the same study as described above inhibition of acetylcholinesterase in RBC were 
measured. The inhibition of acetylcholinesterase in RBC was close to zero. Timchalk and co-
workers found that the slight inhibition found in the volunteers was only due to inhibition in 
volunteer E, see Figure 42.  

Simulation of acetylcholinesterase inhibition in RBC in Figure 42A was about 3 % i.e. in good 
agreement with the results from (Timchalk et al., 2002b). 
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A: B:  

Figure 42. Inhibition of acetylcholinesterase (shown as % of control) in human RBC after an 
oral dose of 2 mg CPF/kg bw. A: Simulation by the present model (blue line) as single bolus 
dose. Green data points are mean of six females and red data points are volunteer E. 
Experimental data from (Timchalk et al., 2002b) (equal to the ones shown in B). B: Figure 
from (Timchalk et al., 2002b). 

Concentration in blood of TCP  
The blood concentration of TCP was simulated at 0.5 mg/kg bw given as a single bolus dose in 
humans, see Figure 43A. The present model failed to simulate the peak value of the TCP 
concentration in blood but the simulation was comparative with the experimental data from 
20 hr. Figure 43B (upper curve) shows the same results from (Timchalk et al., 2002b). It is 
difficult to see from the figure whether their model also fails to simulate the peak 
concentration but it seems as the curve fits the data points slightly better. 

A: B:  

Figure 43. Blood concentrations (log scale) of TCP in human volunteers administered an oral 
dose of 0.5 mg/kg bw. A: Simulation by the present model performed as a single bolus dose 
(line), data points are experimental data as reported by Timchalk et al. B: Simulation and 
experimental data from (Timchalk et al., 2002b) (The lower curve on the graph is the 
concentration of TCP after a dermal dose of 5 mg/kg bw).  

Extent of inhibition 
The extent of inhibition of the three esterases in brain, plasma and RBC were found to be in 
the following order: butyrylcholinesterase >> acetylcholinesterase > carboxylesterase, i.e. the 
same order as in the rat model. 

Concerning the extent of inhibition in the different compartments, the cholinesterase was 
inhibited in the following order of compartments: plasma BuChE > RBC AChE >> brain AChE. 
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Mass balance check 
The mass balance was checked and found to be satisfying in the same way as for the rat 
model. 

Conclusion on the comparisons 
The results from the present model are in good agreement with the simulations performed by 
Timchalk et al. (2002b). The concentrations of chlorpyrifos and TCP in blood were described 
within a factor of 2 of the experimental data. There is a tendency that the model overestimates 
the concentration compared to the experimental data as well as the simulations performed by 
Timchalk and co-workers. 

Only one simulation was performed to describe inhibition of acetylcholinesterase activity in 
RBC of humans. This simulation was performed at a low dose of chlorpyrifos. The result was 
comparable with the experimental data. 

23.3 USE OF THE PBTK/TD MODELS 

The process of estimating a NOAEL for chlorpyrifos in the developed PBTK/TD models for 
rats and humans including extrapolation between the species will be described in the 
following. 

23.3.1 ESTIMATION OF NOAEL’S FOR CHLORPYRIFOS BY THE PBTK/TD MODEL 

The FAO/WHO Joint Meeting on Pesticide Residues (JMPR) has established an acceptable 
daily intake (ADI) for chlorpyrifos of 0.01 mg/kg bw on the basis of a NOAEL of 1 mg/kg 
bw/day for inhibition of acetylcholinesterase in brain in studies in mice, rats and dogs (100-
fold safety factor) and a NOAEL of 0.1 mg/kg bw/day for inhibition of acetylcholinesterase in 
RBC in humans (10-fold safety factor) (JMPR, 2000). In this chapter focus will be on three 
studies: two of the long-term rat studies and one study in humans.  

Simulation of the scenarios in these three studies will be shown including evaluation of the 
NOAELs used by JMPR. Further it will be shown how to derive a NOAEL from the rat model 
and make extrapolation to humans. However, first it will briefly be described how to interpret 
the results of acetylcholinesterase inhibition in animals and humans. 

23.3.1.1 INTERPRETATION OF CHOLINESTERASE INHIBITION 

The primary end-points of concern in toxicological studies on compounds that inhibit 
acetylcholinesterase are inhibition of brain acetylcholinesterase activity and clinical signs 
(JMPR, 1999). JMPR also considers RBC acetylcholinesterase inhibition to be an adverse effect 
as it can be used as a biomarker of acetylcholinesterase activity in nerve synapses. However, 
the esterase activity in brain is of greater value in risk assessment than data on 
acetylcholinesterase inhibition in RBC. Acetylcholinesterase in RBC is not playing a role in the 
cholinergic transmission, however, the cholinesterase in RBC and in nervous system are 
considered biochemically identical (IPCS, 1990; JMPR, 1999).  
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Plasma cholinesterase is not regarded to play any role in cholinergic transmission and is not 
considered toxicologically relevant (IPCS, 1990).  

JMPR considered that use of inhibition of acetylcholinesterase in RBC as a surrogate for 
peripheral target tissue effects is justified for acute exposures resulting in greater 
acetylcholinesterase inhibition in RBC than in the brain when data on inhibition of 
acetylcholinesterase activity in periferal target tissues are not available. They point out that in 
repeated-dose studies the acetylcholinesterase inhibition in RBC might overestimate the 
inhibition in peripheral tissues because the resynthesis of acetylcholinesterase in RBC is 
lower than in the nervous system. Therefore, they recommended in these cases to compare 
dose-response curves for inhibition of acetylcholinesterase in RBC and brain and the 
occurrence of clinical signs (JMPR, 1999). 

Butyrylcholinesterase inhibition in plasma is not considered to be a sign of an adverse 
toxicological effect. But it is a useful tool for monitoring occupational exposure as it can be 
used as a biomarker (JMPR, 1999).  

There are certain uncertainties in the measurement of inhibition of cholinestearase activity: 
timing of sampling, sample storage conditions (ex-vivo reactivation of cholinesterase inhibited 
by organophosphorus pesticides have been identified), conditions of the assay (especially 
important for cholinesterase activity in RBC because the resyntesis rate is smaller than in the 
nervous system) (JMPR, 1999). 

JMPR considered that statistically significant inhibition of acetylcholinesterase above 20 % 
represent a clear toxicological effect. When a statistically significant inhibition of less than 20 
% or statistically insignificant inhibition above 20 % is observed, a more detailed analysis of 
the data is necessesary (JMPR, 1999). 

23.3.1.2 NO-EFFECT LEVEL IN RATS – RAT STUDY 1  

One of the studies JMPR used for establishing the ADI for chlorpyrifos was a 2-year study in 
which groups of rats (25 male and 25 female per group) were given chlorpyrifos in the diet at 
doses of 0, 0.01, 0.03, 0.1, 1 or 3 mg/kg bw/day. In the following this study will be referred to 
as study 1. Cholinesterase activities in plasma and erythrocytes and were measured in 5-7 
rats at 1 week, 1, 3, 6, 9, 12, 18 months and 2 year, and brain cholinesterase activities at 6 and 
12 months and 2 year. 

Plasma cholinesterase activity was significantly inhibited at 3 mg/kg bw: 20-40 % in males 
and 55-74 % in females. At 1 mg/kg bw the activity was less severely inhibited at the first 
months of dosing but from 6 months and onwards the activity was significantly inhibited by 
18-38 % in males and 50-69 % in females (JMPR, 2000). 

At 1 and 3 mg/kg bw/day the erythrocyte (RBC) cholinesterase activity was inhibited by 13-90 
% and 60-100 %, respectively, and little effect were found at the lower doses. The brain 
cholinesterase activity was also significantly inhibited by 30-53 % after treatment at 3 mg/kg 
bw/day and to a lesser degree (3-16 %) at 1 mg/kg bw/day. Full restoration of cholinesterase 
activity was seen (JMPR, 2000).  
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The NOAEL for inhibition of cholinesterase activity in plasma and erythrocytes was 0.1 mg/kg 
bw/day based on significant inhibition at 1 mg/kg bw/day and the NOAEL for inhibition of 
acetylcholinesterase activity in brain was 1 mg/kg bw/day based on the significant inhibition 
at 3 mg/kg bw/day (JMPR, 2000). 

Using the developed PBTK/TD model in the present model simulations of inhibition of 
acetylcholinesterase in rats at the dosage regimen in study 1 were performed as daily oral 
administration during 12 hr for a two year period (= 17520 hr). 

Simulation of acetylcholinesterase inhibition in brain 
In Figure 44 is shown the simulation of inhibition of acetylcholinesterase in rat brain after 
repeated dietary intake at the dosage regimen in the rat study 1 (0.01, 0.03, 0.1, 1 and 3 
mg/kg bw/day for two years (17520 hr)). Acetylcholinesterase inhibition at the doses 
corresponding to the NOAEL (1 mg/kg bw/day) and lowest observed adverse effect level 
(LOAEL: 3 mg/kg bw/day) was around 1 % and 3-5 %, respectively. These levels of inhibition 
are lower than found in study 1: 3-16 % inhibition at 1 mg/kg bw/day and 30-53 % at 3 
mg/kg bw/day (JMPR, 2000). The corresponding concentrations are shown in Table 11. 

 

Figure 44. Simulation of inhibition of brain acetylcholinesterase (shown as % of control) in 
rats after repeated dietary intake of 0.01 (green), 0.03 (black), 0.1 (pink), 1 (blue) and 3 (red) 
mg/kg bw/day for two years (17520 hr). Please note that the y-axis is from 95 to 100 %. 

Simulation of acetylcholinesterase inhibition in RBC 
The inhibition of the acetylcholinesterase activity in RBC was greater than in brain, see Figure 
45. At 1 mg/kg bw/day and 3 mg/kg bw/day the inhibition were 4-9 % and 16-24 %, 
respectively (whereas 13-90 % and 60-100 % respectively, in experiment). As for the 
acethylcholinesterase inhibition in brain these levels of inhibition are lower than found in 
study 1 (NOAEL for acetylcholinesterase inhibition in RBC was 0.1 mg/kg bw/day).  



122 

 

 

Figure 45. Simulation of inhibition of RBC acetylcholinesterase (shown as % of control) in rats 
after repeated dietary intake of 0.01 (yellow), 0.03 (green), 0.1 (black), 1 (pink) and 3 (blue) 
mg/kg bw/day for two years (17520 hr). Please note that the y-axis is from 75 to 100%.  

Brain and red blood cell acetylcholinesterase 
In Figure 44 and 45 the acetylcholinesterase inhibition is increased during the first dosages 
before a steady state level is reached. However, in all scenarios steady state is reached after 
400 hr. 

It seems as the model underestimates the acetylcholinesterase inhibition for both brain and 
RBC. As mentioned earlier JMPR considers that a 20 % inhibition of acetylcholinesterase 
represents a clear toxicological effect. Based on this assumption simulations were made in 
order to find the dose that corresponded to about 20 % inhibition. By using the feature 
“parameter plot” in Berkeley Madonna it is possible to get at plot of the result from each run 
as a single point on the graph over a range of parameter values. In this specific case the 
variable parameter is the dose administered orally (Oral_adm). In order to determine the dose 
corresponding to about 20 % inhibition of acetylcholinesterase, a parameter plot was 
performed using the “minimum” inhibition of acetylcholinesterase on the Y-axis. This is the 
lowest data points of the amplitudes seen in graphs like Figure 44 and 45, i.e. the maximum 
inhibition of acetylcholinesterase at the actual dose. The corresponding maximal 
concentrations of chlorpyrifos in blood was also calculated and plotted in the parameter plot. 
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Figure 46. Parameter plot (10 runs). Simulation of the maximal inhibition of 
acetylcholinesterase (shown as % of control) in brain (red), RBC (blue) and plasma (green) as 
well as the maximal concentrations of chlorpyrifos in blood (black line, right Y-axis) in rats at 
various dietary dose-levels in the range from 0 to 10 mg/kg bw/day. 

From the parameter plot is seen that the NOAEL for brain acetylcholinesterase activity (i.e. 
the dose corresponding to 20 % inhibition on the graph) would be between 9 and 10 mg/kg 
bw/day and for RBC the dose would be between 2 and 3 mg/kg bw/day. 

Simulations of two years exposure to these doses showed that the NOAEL for brain 
acetylcholinesterase activity would be 9 mg/kg bw/day resulting in 13-18 % inhibition. For 
RBC the NOAEL was 2 mg/kg bw/day resulting in 10-17 % inhibition. The corresponding 
blood and brain concentrations of chlorpyrifos can be seen in Table 12. 

Table 11. The results from the simulations of acetylcholinesterase inhibtion in brain and RBC 
after 2 years of exposure in rats (red) and humans (black). The three dose levels correspond 
to the NOAEL and LOAEL values found in study 1. All simulations were made as daily oral 
administration during 12 hr followed by 12 hr rest. 

Dose (mg/kg 
bw/day) 

Rats 
Inhibition 

AChE in brain 
(%) 

Humans 
Inhibition 

AChE in brain 
(%) 

Rats 
Inhibition 

AChE in RBC 
(%) 

Humans 
Inhibition 

AChE in RBC 
(%) 

Rats 
Concentration of 
CPF in blood and 

brain (µM) 

Humans 
Concentration of 
CPF in blood and 

brain (µM) 
0.1 (JMPR 

NOAEL for RBC 
in rat) 

<1 <1 1 1-2 Up to 0.00047 Up to 0.0021 

1 (JMPR NOAEL 
for brain in rat) 

1 <1 4-9 38-40 Up to 0.0047 Up to 0.022 

3 (JMPR LOAEL 
in brain in rat) 

3-5 3-5 16-24 72-75 Up to 0.014 Up to 0.065 
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Table 12. The results from the simulations of acetylcholinesterase inhibition in brain and RBC 
after 2 years of exposure to rats (red) and humans (black). The dosage levels simulated are 
estimated as NOAEL from Figure 46 and 47 for rats and humans, respectively. The upper two 
lines are dose-levels determined as NOAEL values in the model in rats and the results of the 
extrapolation to humans. The two lines below are NOAEL values determined based on a 
parameter plot performed in the human model (see section 23.3.1.3). All simulations are 
made as daily oral administration (during 12 hr). 

Dose (mg/kg 
bw/day) 

Rats 
Inhibition 

AChE in brain 
(%) 

Humans 
Inhibition 

AChE in brain 
(%) 

Rats 
Inhibition 

AChE in RBC 
(%) 

Humans 
Inhibition 

AChE in RBC 
(%) 

Rats 
Concentration of 
CPF in blood and 

brain (µM) 

Humans 
Concentration of 
CPF in blood and 

brain (µM) 
2 2-3 1-3 10-17 (NOAEL 

in simulation) 
60-64 Up to 0.0095 Up to 0.043 

9 13-18 (NOAEL 
in simulation) 

25-33 37-58 92-96 Up to 0.043 Up to 0.20 

0.5 - <1 - 18-19 (NOAEL 
in simulation) 

- Up to 0.011 

7 - 14-19 (NOAEL 
in simulation) 

- 89-93 - Up to 0.15 

 

Inhibition of plasma acetylcholinesterase 
As mentioned before, the experimental result reported by JMPR for study 1 indicated a 
tendency of increased plasma acetylcholinesterase activity over time in that the activity at 1 
mg/kg bw/day was low during the first six months but increased from six months and 
onwards to a level of 18-38 % in males and 50-69 % in females (JMPR, 2000). Such a course 
was not found in the model. In the simulation the first couple of dosages resulted in a slightly 
higher inhibition of plasma acetylcholinesterase than the subsequent dosages but a steady 
state level was reached after about 120 hr.  

As seen in the parameter plot, Figure 46, a dosage of 3 mg/kg bw/day would result in about 
20 % inhibition of acetylcholinesterase in plasma. The same result was achieved in the 2-year 
simulations: a dosage of 3 mg/kg bw/day resulted in an inhibition of up to 20 % with a high 
amplitude as the activity was in the range of 80-101 %. Comparing this with the experimental 
result (20-40 % in males and 55-74 % in females) showed that the model also underestimated 
the acetylcholinesterase inhibition in plasma but not as much as the inhibition of 
acetylcholinesterase in brain and RBC. However, model simulation of a single gavage dose of 
chlorpyrifos at 3 mg/kg bw showed an inhibition of acetylcholinesterase in plasma of 25 % 
indicating that the model might be better for prediction of dosages over a shorter time period. 

As plasma is not regarded to be relevant in the cholinergic transmission (IPCS, 1990) it was 
decided not to make simulations of this endpoint in the following. 

23.3.1.3 EXTRAPOLATION FROM RATS TO HUMANS 

In order to find a NOAEL for chlorpyrifos in humans the results from the rat model were 
extrapolated by using the model for humans. Simulations were made for the dose-levels 
corresponding to the NOAEL found in study 1 (Table 11). The simulations were made as oral 
doses over a period of 2 years similar to the simulations in the rat model. Results from the 
simulations are shown in Table 11. 
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The simulated inhibition of acetylcholinesterase in brain was the same in both rats and 
humans at these dose levels, however, the simulated inhibition of acetylcholinesterase in RBC 
is much higher in humans than in rats. This is due to a lower degradation rate for 
acetylcholinesterase in RBC in rats. 

In order to establish a NOAEL in humans a parameter plot were made in the human model 
(Figure 47) in the same way as described above for the rat model.  

Figure 47. Parameter plot (10 runs). Simulation of the maximal inhibition of 
acetylcholinesterase (shown as % of control) in brain (red) and RBC (green) as well as the 
maximal concentrations of chlorpyrifos in blood (black line, right Y-axis) in humans at various 
dietary dose-levels in the range from 0 to 10 mg/kg bw/day. 

From Figure 47 a 20 % inhibition of acetylcholinesterase in brain (i.e. the NOAEL) was found 
to occur after around 7 mg/kg bw/day and for RBC around 0.5 mg/kg bw/day. Simulations 
were made for acetylcholinesterase activity in human brain and red blood cell as well as 
chlorpyrifos concentration in blood and brain for these dose ranges. The simulations (and 
choosing a value with only one digit) confirmed these NOAELs. The inhibition of 
acetylcholinesterase and the chlorpyrifos concentration in blood are shown in Table 12.  

The parameter plots of acetylcholinesterase activity in RBC in Figure 47 (human) shows a 
much steeper curve than in Figure 46 (rat). This illustrates the higher acetylcholinesterase 
inhibition in human RBC compared to rats. 

23.3.1.4 NO-EFFECT LEVEL IN RATS – RAT STUDY 2  

In another long-term study used by JMPR for establishing ADI, rats (60 males and 60 females 
per group) were given a diet containing chlorpyrifos at 0, 0.05, 0.1, 1 or 10 mg/kg bw/day for 
2 year. This study will be referred to in the following as study 2. Cholinesterase activities in 
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plasma and erythrocytes were measured in ten rats of each sex per group at 6, 12, 18 and 24 
months. At 12 and 24 month acetylcholinesterase activity was measured in half-brain samples 
examined at necropsies (JMPR, 2000). 

At 10 mg/kg bw/day cholinesterase activities were inhibited in plasma (56-87 %), 
erythrocyte (20-40 %) and brain (57-61 %). At 1 mg/kg bw/day the inhibition in plasma was 
39-71 % in males and 60-87 % in females; in erythrocytes it was 20-40 % in males and ≤22 % 
in females, and the activity of cholinesterase was not affected in brain. Doses of 0.05 and 0.1 
mg/kg bw/day did not result in any treatment-related effects.  

The NOAEL for inhibition of cholinesterase activity in erythrocytes was 0.1 mg/kg bw/day 
based on > 20 % or statistically significant inhibition at 1 mg/kg bw/day. The NOAEL for 
brain cholinesterase activity was 1 mg/kg bw/day based on the inhibition observed at 10 
mg/kg bw/day (JMPR, 2000). 

Simulation of the inhibition of acetylcholinesterase in brain, RBC and plasma as well as 
chlorpyrifos concentration in blood after a dosage regimen as described from study 2 is 
shown in Table 13 together with the experimental results. 

Table 13. Experimental results (black) (JMPR, 2000) and results from the simulation of rat 
study 2 (blue). Dose levels at 0.1, 1 and 10 mg/kg bw/day, simulation for one year. 

Dose (mg/kg 
bw/day) 

Rat 
Inhibition AChE 

in brain (%) 

Rat 
Inhibition AChE 

in RBC (%) 

Rat 
Inhibition AChE in 

plasma (%) 

Rat 
Concentration 
in blood (µM) 

10, experiment 57-61 20-40 56-87 Not analysed 
10, simulation 16-21 40-61 52 (amplitude: 48-

106 % activity) 
Up to 0.048 

1, experiment (JMPR 
NOAEL for brain) 

Not affected Males: 20-40 
Females ≤22 

Males: 39-71 
Females: 60-87 

Not analysed 

1, simulation 1-2 5-9 6-7 Up to 0.0047 
0.1, experiment (JMPR 
NOAEL for RBC) 

Not affected  Not affected Not affected Not analysed 

0.1, simulation <1 <1 <1 Up to 4.7*10-4 

 

The model underestimated the inhibition of acetylcholinesterase, especially in brain. A small 
underestimation was seen of the inhibition of acetylcholinesterase in RBC and plasma. 
However, at the highest dose the inhibition of acetylcholinesterase in RBC was overestimated. 

The deviation within and between the experimental results from rat study 1 and 2 are high, 
especially in the level of acetylcholinesterase inhibition in brain: 13-90 % in study 1 and 20-
40 % in study 2. For study 2 the measured values of acetylcholinesterase activity were given 
in (JMPR, 2000). For comparison Figure 48 shows results from model simulations together 
with experimental data for this study scenario. The experimental data consist of one time 
series for males and one for females. These data points are plotted jointly in Figure 48. The 
PBTK/TD model is developed without any considerations concerning sex and the parameters 
were not selected to account for possible differences in sensitivity between the sexes. 
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A: B:  

C: D:  

Figure 48. Inhibition of acetylcholinesterase (shown as % of control) in RBC in rats after doses 
at 0.05 (A), 0.1 (B), 1 (C) and 10 (D) mg/kg bw/day during two years. Curves are model 
simulations and data points are experimental values (for both males and females) as given in 
(JMPR, 2000). The width of the curves is due to fluctuations between night and day (eating 
and not eating periods). At 10 mg/kg bw/day one of data point are hidden behind the curve: 
59.5 % at 8760 hr. 

The variation of the experimental data is wide which is clearly seen from Figure 48. For the 
two lowest doses, the simulation lies within the range of the data points. At 1 mg/kg bw/day 
the model underestimates the inhibition whereas at 10 mg/kg bw/day the inhibition is 
overestimated. 

23.3.1.5 NO-EFFECT LEVEL IN HUMANS  

The ADI of 0.01 mg/kg bw for chlorpyrifos was also established based on a NOAEL of 0.1 
mg/kg bw/day (highest dose tested) for inhibition of red blood cell acetylcholinesterase 
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activity found in a study on humans (10-fold safety factor). Groups of four healthy males 
received tablets with 0, 0.014, 0.03 or 0.1 mg CPF/kg bw/day for 48, 27, 20 and 9 days, 
respectively, with breakfast. A 70 % inhibition of plasma cholinesterase activity was 
measured and “runny nose, blurred vision and a feeling of faintness” were reported on day 9 
in one of the men dosed with 0.1 mg/kg/day. Also “marked” inhibition of plasma 
cholinesterase activity was seen in the other men in this dosage group (JMPR, 2000). 

No inhibition of erythrocytes cholinesterase or other treatment-related effects were seen in 
any of the men. At 0.03 mg/kg bw/day, more than 20 % inhibition of mean plasma 
cholinesterase was seen on days 16-20 of treatment. A 20 % inhibition of plasma 
cholinesterase was seen on day 13 at 0.014 mg/kg bw/day but no inhibition was seen on day 
20 to 27. However, the statistically analysis only showed significant inhibition of mean plasma 
cholinesterase activity at 0.1 mg/kg bw/day (JMPR, 1973; JMPR, 2000). 

Simulation of the NOAEL-study in humans described by JMPR 
In the simulation scenario based on the two rat studies repeated dosage is simulated as an 
uptake through 12 hr followed by 12 hr sleep. In simulating the human study described above 
this is not the optimum conditions as the subjects in the experiment were given a tablet 
containing chlorpyrifos with breakfast for 9 to 27 days i.e. the exposure is more like a bolus 
dose. In order to simulate this scenario, another equation was introduced in the model, as 
described in section 21.1.1 (look for “Repeated bolus exposure”). The simulation of the 
experiment is shown in Figure 49. The inhibition of acetylcholinesterase in both brain and 
RBC were very small in the model simulation (below 0.1 and 0.4 %, respectively) as well as in 
the experiment. 

A: B:  

Figure 49. Simulation of brain and RBC acetylcholinesterase inhibition (shown as % of 
control) as well as concentration of chlorpyrifos in blood in humans after a daily bolus dose of 
0.014, 0.03 or 0.1 mg CPF/kg bw/day for 27, 20 and 9 days, respectively. Lower part of the 
figures shows concentration of chlorpyrifos in blood (right Y-axes in both graphs) after 
dosage at 0.014 (black), 0.03 (yellow) or 0.1 (red) mg CPF/kg bw/day. A: Inhibition of 
acetylcholinesterase in brain 0.014 (red), 0.03 (pink) and 0.1 (green), B: Inhibition of 
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acetylcholinesterase in RBC 0.014 (green), 0.03 (turquoise) and 0.1 (blue). Please note that 
the inhibition of acetylcholinesterase in both graphs is very low. 

Results of the simulations of inhibition of acetylcholinesterase in brain and RBC were the 
same whether the simulations were made as repeated bolus dose or as daily oral 
administration during 12 hr intervals. The only difference was the amplitude of the curves 
with the bolus dose scenario (not surprisingly) giving the highest fluctuations in the curves.  

As explained earlier (in “Description of the PBTK/TD model for chlorpyrifos in humans”) 
acetylcholinesterase activity for plasma was not incorporated in the model. Therefore, it is not 
possible to simulate this. However, it is possible to simulate the inhibition of 
butyrylcholinesterase in plasma, see Figure 50. 

 

Figure 50. Simulation of plasma butyrylcholinesterase inhibition (shown as % of control) in 
humans after a daily bolus dose of 0.014 (black), 0.03 (green) or 0.1 (yellow) mg CPF/kg 
bw/day for 27, 20 and 9 days, respectively.  

Comparison of the simulation with the experimental data reported by (JMPR, 2000) shows a 
large underestimation in the model. Butyrylcholinesterase activity is inhibited by 28 % in the 
model compared with up to 70 % for the experimental data at the highest dose. At 0.03 mg/kg 
bw/day the inhibition was simulated to be 13 % but it was more than 20 % in the study. At 
the lowest dose the inhibition increased to 6 % after 27 days but in the study a 20 % 
inhibition was found on day 13 and no inhibition on day 27. 
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24 DISCUSSION ON PBTK/TD MODELS 

One of the objectives of this Ph.D.-project was to establish PBTK/TD models in order to 
improve methods for risk assessment of mixtures of chemicals. However, during the work it 
became obvious that the development of the model was more complicated than expected. 
Therefore, the focus changed to a critical examination of the PBTK/TD model on chlorpyrifos 
published by Timchalk et al. (2002b). This work revealed many problems and pitfalls 
especially concerning the parameters which will be discussed in section 24.1.  

The other objective was to examine the applicability of PBTK/TD models in risk assessment of 
mixtures. However, it was not possible to develop new PBTK/TD models describing mixtures 
within the timeframe of the project. The advantages and disadvantages of their use in risk 
assessment will, however, be presented and discussed in section 24.2. 

When a model is used in risk assessment it is very important to know the quality of the 
parameters used, including the justification of their use. This includes a comprehensive 
documentation of the modelling in order to make it possible for risk assessors to assess the 
quality of the model and for other scientists to reproduce the model. These requirements will 
be reviewed in section 24.3. 

24.1 DISCUSSION OF THE MODELS FOR CHLORPYRIFOS IN RATS AND HUMANS 
IN THIS THESIS 

It is clear from this thesis that it is not straightforward to reproduce a model published in 
literature. The model for chlorpyrifos was chosen because the publication seemed good at 
first sight – in fact it seemed to be one of the best described models available on pesticides. 
However, the work on re-building the model clearly showed that the authors of such 
publications should report their results in much more detail in order to enable colleagues to 
reproduce their work and e.g. evaluate part of it for further developing the model.  

The development of the toxicodynamic part of the model (description of e.g. inhibition of 
acetylcholinesterase) was the most problematic. The difficulties arose due to problems with 
the values of some of the metabolic parameters (maximum velocity and Michaelis-Menten 
constants) because these parameters had a huge impact on the outcome of the toxicodynamic 
model. Figure 34 showing the simulated concentration of chlorpyrifos in blood could be made 
early on in this project whereas the PBTD part (which was dependent on the metabolic 
description) of the model caused a lot of trouble due to uncertainties in and unclear 
descriptions of the selection of appropriate parameters for the model. 

In addition, several of the parameters used were absent in the literature and not determined 
by Timchalk and co-workers (2002b) in relation to their model development. Therefore, 
various assumptions had to be made in order to fill in the data gaps. Other parameters were 
not clearly defined and documented by Timchalk et al. Some of these parameters are 
discussed in this section focussing on the metabolic parameters.  

A change in some of the parameters may result in outcome of the present model more similar 
to the experimental data. However, such a change needs to be biologically justified. The 
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justifications for changing the reactivation rate, degradation rate and bimolecular inhibition 
constants in the description of acetylcholinesterase will be discussed in section 24.1.2.  

The usefulness of the present models for estimating a NOAEL for rats and humans will be 
discussed. Further, the overall outcome from the process of model development and the 
following visual evaluation of the models will be discussed followed by some concluding 
remarks on these models. 

24.1.1 PROBLEMS WITH PARAMETERS 

Many assumptions were made during the development of the PBTK/TD models not least in 
the selection of parameters. Some parameters are missing in the literature making it 
necessary e.g. to estimate them and to use data for other compounds than the actual 
compound. For example some parameters (e.g. enzyme turnover rates and degradation rate) 
were assumed to be equal for chlorpyrifos and diisopropylfluorophosphate.  

Due to lack of data on chlorpyrifos-oxon the plasma protein binding for this compound was 
assumed to be slightly higher than for chlorpyrifos. Other parameters like the bimolecular 
inhibition rate, aging rate and reactivation rate were assumed to be the same for two or all 
three B-esterases due to lack of data on all esterases. However, it was not evaluated by 
Timchalk et al. (2002b) whether these assumptions were appropriate.  

Some of the parameters were insufficient. In such cases it is very important to document and 
justify the choice of alternative parameters to fill in the data gaps. However, this was not 
always done in Timchalk et al. (2002b) making it difficult to to assess the assumptions. 

Other parameters were cited wrongly from the original literature e.g. enzyme turnover time 
for butyrylcholinesterase, enzyme activity for carboxylesterase in brain and the reactivation 
rates for acetylcholinesterase, butyrylcholinesterase and carboxylesterase. 

Some of the parameter values for tissue weights, tissue volume and blood flow for tissues 
given in Timchalk et al. (2002b) were not consistent with the data found in original literature. 
A set of standardized physiological parameters would make it easier to choose such 
parameter values for the PBTK modelling.  

Evaluation of the models developed in the present project was performed by comparing 
model predictions with experimental data as well as with model predictions from Timchalk et 
al. (2002b) – by visual inspection. It was clear that the metabolic parameters had substantial 
impact on the outcome of the model. However, their origins were not clearly defined and 
documented. 

Knaak and co-workers have compiled physicochemical and biological data for development of 
PBTK models describing organophosphorus pesticides (Knaak et al., 2004). Parameter values 
from this compilation will be used in the following for comparison with the values used in the 
present model. 
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Km1, Km2, VmaxC and VmaxC2 
The values of the Michaelis-Menten constants for desulfuration (chlorpyrifos to chlorpyrifos-
oxon, Km1) differed by a factor 6 in (Knaak et al., 2004). The lowest value (1.11 µM) was 
measured for males by (Ma and Chambers, 1994). The value used in the present model is from 
the same paper, selecting the value for the female rat which was three times higher (3.23 µM). 
Ma and Chambers found a 10-fold difference between the Km-value for the desulfuration 
process between their experiment and literature values from (Ma and Chambers, 1994; 
Sultatos et al., 1984).  

It was not possible to verify the values for maximum velocities for the metabolism of 
chlorpyrifos to chlorpyrifos-oxon and to TCP (VmaxC1 and VmaxC2) presented by (Timchalk 
et al., 2002b). Knaak et al. found values of VmaxC1 for chlorpyrifos in literature varying by 
about a factor of 8 (from 10.2 to 76.9 µmol/hr/kg bw) (Knaak et al., 2004). Compared to this, 
the value used in Timchalk et al (2002b) and the present model (80 µmol/hr/kg bw) is high. 

The Km1 and VmaxC1 used in a present model results in a high intrinsic clearance (extraction 
ratio) for the desulfuration: VmaxC1/Km1=80/3.23≈25. This is twice as much as the other 
values of intrinsic clearance calculated by Knaak et al. (9.2 and 12.6) for the two set of 
reference values they showed (Knaak et al., 2004). 

The Km1 and VmaxC1 values were from a study performed by Ma and Chambers (Ma and 
Chambers, 1994). These authors made a new study where they found that the desulfuration of 
chlorpyrifos was biphasic and therefore described by two Km1 and VmaxC1 values (Ma and 
Chambers, 1995). This result was not incorporated in the present model but it may probably 
improve the model to do it.  

The variance in the values collected for the Michaelis-Menten constant for dearylation 
(chlorpyrifos to TCP, Km2) is of a factor 5 (4.8 to 24.3 µM) with the highest value used in the 
present model (Knaak et al., 2004; Ma and Chambers, 1994). The maximum velocity chosen by 
Timchalk and co-workers (2002b) for this process was also high: 273 µmol/hr/kg bw 
compared with the range from 34 to 161.6 µmol/hr/kg bw in other papers as referred in 
(Knaak et al., 2004). 

The intrinsic clearance calculated based on data for the dearylation was in the range of 2.4 to 
33.7 (Knaak et al., 2004). The intrinsic clearance calculated using data from Timchalk et al. 
(2002b) was 11.4. 

It seems as if there is a variance between the males and females in values for the Michaelis-
Menten constant and maximum velocity of metabolism for both desulfuration and 
dearylation. However, it is beyond the scope of this project to elucidate this. 

Km3, Km4, VmaxC3 and VmaxC4 
The problems with these parameters were shown in section 21.2. It was not possible to verify 
the values for the maximum velocities and Michaelis-Menten constants for the metabolism of 
chlorpyrifos-oxon to TCP in liver and blood (VmaxC3, Km3 and VmaxC4, Km4, respectively) 
presented by Timchalk and co-workers (2007b). Furthermore, it was not explained why the 
parameters were changed compared to their previous model (Timchalk et al., 2007b). 
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The biochemical parameters (Michaelis-Menten constants, Km3, Km4) were determined by 
fitting the model to data from in vivo studies. The values used in the present model were fitted 
by Timchalk and co-workers in (Timchalk et al., 2007b). Such data are dependent on the 
model structure and the other parameters used in that model. Therefore, U.S. EPA points out 
that caution should be taken in using such data in other models with a different structure or 
parameter values (U.S.EPA, 2006a). 

Km3 values given by Knaak et al. (2004) varied by a factor 7.7 (200 and 1530 µM) but 
VmaxC3 varied by a factor of about 2300 (40.5 and 92109 µmol/hr/kg bw). Km3 and VmaxC3 
from (Timchalk et al., 2007b) used in the present model were both within these ranges 
(Km3=577 µM and VmaxC3=38002 µmol/hr/kg bw). Concerning the lower values for Km3 
and VmaxC3, Knaak et al. refers to Mortensen et al. (1996). The low value of VmaxC3 seems 
strange compared to VmaxC3 calculated in the present thesis from data in Mortensen et al. 
(1996): VmaxC3=74421 µmol/hr/kg bw. The lower value of Km3 (40.5 µM) in Knaak et al. 
(2004) is also given with reference to Mortensen et al. (1996). However, Mortensen et al. 
states Km3=47 µM. 

The parameter values used in (Timchalk et al., 2007b) and in the present model resulted in an 
extraction ratio of: VmaxC3/Km3=38002/577=66 which is of the same size as given in Knaak 
et al. (0.2 to 60) (Knaak et al., 2004). The values for VmaxC3 and Km3 in (Timchalk et al., 
2002b) resulted in a much higher ratio (310).  

The Michaelis-Menten constant for the hydrolysis of chlorpyrifos-oxon to TCP in blood, Km4, 
deviated by a factor 2.7 between rats and humans (200 µM for rats and 75 µM for humans) 
(Knaak et al., 2004).  The value for the rat was at the same level as used by Timchalk and co-
workers (250 µM) (Timchalk et al., 2002b) but in the present model and in (Timchalk et al., 
2007b) a 2.3 higher value was used (464 µM). 

The maximum velocity for the hydrolysis of chlorpyrifos-oxon to TCP in blood, VmaxC4, was 
stated to be 27.5 µmol/hr/kg bw for rats and 4.4 µmol/hr/kg bw measured in human blood 
(Knaak et al., 2004). These values are order of magnitudes lower than given in (Timchalk et 
al., 2002b) and (Timchalk et al., 2007b): 57003 and 40377 µmol/hr/kg bw, respectively.  

Like the data for Km3 and VmaxC3 there ought to be a mix-up of units for VmaxC4. The 
VmaxC4-value of 27.5 is given with reference to (Mortensen et al., 1996) and should be 
comparable with the 57003 µmol/hr/kg bw, see section 21.2.  

The Km4 and VmaxC4 for rat and human blood given in (Knaak et al., 2004) resulted in 
extraction ratios of the same magnitude (0.138 and 0.058 respectively), whereas the values 
used in (Timchalk et al., 2002b) resulted in a much higher value (228). The values used in the 
present model (and in (Timchalk et al., 2007b)) gave an extraction ratio of: 
VmaxC4/Km4=40377/464=87. 

An updated version of the model by Timchalk et al. 
A search in Web of Science showed that the paper by Timchalk et al. (2002b) had been cited 
89 times and these citations include model development based on this paper. It has not been 
elucidated whether the developers of these new models (or extensions/improvement of the 
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model) have realised the problems with the original paper. Timchalk and co-workers have 
published several papers in which they present further work based on this paper – one 
example is their paper from 2007b, which also have been used in the present thesis. In 2010 
they presented an updated version of their model from 2002 (Timchalk et al., 2010).  

The new model is structurally equal to the old one but it was extended with equations 
describing CYP450 metabolism of chlorpyrifos to chlorpyrifos-oxon in the brain 
compartment. The metabolic parameters Km1, VmaxC1, Km2, VmaxC2, Km3 and Km4 are 
changed giving reference to (Poet et al., 2003), but with no explanation of the calculations. 
Concerning the parameters VmaxC3 and VmaxC4 these were changed to the values used in 
(Timchalk et al., 2007a). 

Changing these parameters (Km1, VmaxC1, Km2, VmaxC2, Km3 and Km4) in the present 
model resulted primarily in a change in chlorpyrifos concentration in blood (higher) and the 
inhibition of brain acetylcholinesterase (lower).  

Partition coefficients, blood flow in tissues and the TCP parameters (volume of distribution 
and elimination rate constant) were also changed in the toxicokinetic part of the model.  

With respect to the parameters used in the toxicodynamic part (parameters describing the 
inhibition of esterases by chlorpyrifos-oxon), there are more discrepancies between the 
values in the parameter-table in (Timchalk et al., 2010) and the accompanying model code 
than between the parameters used in their model in 2002 and in 2010. 

Timchalk and co-workers did not explain why the changes were made. 

Metabolic constants, conclusion 
The magnitude of the Michaelis-Menten constants and maximum velocities has substantial 
impact on the outcome of the model. El-Masri and co-workers developed a PBTK/TD model 
for chlorpyrifos and parathion and their metabolites (see chapter 18). In developing this 
model they found, that the most sensitive parameters were the Michaelis-Menten constant 
(Km) and maximal velocity (Vmax) as well as the binding and dissociation constants of free 
and bound acetylcholinesterase for both compounds (i.e. a small change in these parameters 
would result in a significant change in the model outcome) (El-Masri et al., 2004). 

For parathion Knaak and co-workers have pointed out that “the variation in Vmax and Km is 
most likely due to differences in the number of active CYPs in harvested microsomes and their 
specific content” (Knaak et al., 2004). This most likely also accounts for chlorpyrifos. 

As described above several discrepancies are observed between the studies on these 
metabolic parameters (Michaelis-Menten constants and maximum velocities) and they have 
high impact on the outcome of the model. VmaxC1, VmaxC2 (both from (Timchalk et al., 
2002b)), Km4 and Vmax4 (both from (Timchalk et al., 2007b)) used in the present model are 
all beyond the range of values compiled from the literature by Knaak and co-workers (2004). 
Furthermore, the origin of these values is unclear. Therefore, it is uncertain whether there is a 
biological evidence for these values. There is a glaring need for further studies in order to 
better determine these parameters.  
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24.1.2 JUSTIFICATION FOR CHANGES IN RATE CONSTANTS DESCRIBING ESTERASE? 

The simulations of inhibition of acetylcholinesterase in the different compartments in the 
present model were not in total agreement with the simulations by Timchalk and co-workers 
(2002b). The introduced change in the metabolic parameters, VmaxC3, VmaxC4, Km3 and 
Km4 resulted in more similar predictions compared to their simulations and the experimental 
data. However, still the results are not identical. The observed deviations may also be 
explained by differences in software and the method of numerical integration. However, this 
has not been examined further. 

Simulations of the inhibition of brain acetylcholinesterase and plasma cholinesterase in the 
present rat model resulted in curves with too high steepness after the initial inhibition (i.e. 
from about 12 hr). The curves are far above the experimental data for doses from 10 to 100 
mg/kg bw (compare the data points at 24 hr and the simulation curves in Figure 31B and 34). 
This means that the model overestimates the recovery of cholinesterase. It is seen from Figure 
30  that this overestimation must be due to one or more of the following three possibilities: 1) 
a too high reactivation rate (Kr), 2) a too high degradation of esterase (Kd) or 3) that the 
bimolecular inhibition constant (Ki) is too low.  

The bimolecular inhibition constant (Ki) determines the size of inhibition (i.e. to what extent 
the inhibition will be) but it also changes the recovery-part of the curve. The reactivation rate 
(Kr) together with the degradation of esterase (Kd) determine the steepness of the recovery-
part of the curve. The smaller the more flat the curve will be. 

Decrease in the reactivation rate for acetylcholinesterase in brain and plasma (Kr1) or for 
acetylcholinesterase in RBC (Kr5) give a lower slope of the increasing part of the curve. An 
increase in the bimolecular inhibition rate also results in a curve of acetylcholinesterase 
inhibition which is more similar to the experimental data for brain and RBC. However, for 
plasma a change in Kr1 (decrease) and Ki1 (increase) will still result in overestimation of the 
experimental data. The enzyme degradation rate, Kd affects the ability of esterase-curves to 
regenerate after decreased activity (after the inhibition). A smaller Kd (Kd1-Kd5) gives a 
slower recovery of acetylcholinesterase. Simultaneous changes of reactivation rate (decrease) 
or degradation rate (decrease) and bimolecular inhibition rate (increase) can change the 
curves to fit the data even better. However, there is not necessarily biological evidence for 
such changes in parameters. 

A higher value of Ki1 (for acetylcholinesterase) may be supported by the results from other 
authors who measured values twice as high as the value in (Timchalk et al., 2002b) (243 µM-

1hr-1): 558 µM-1hr-1 (Amitai et al., 1998) and 450 µM-1hr-1 (Carr and Chambers, 1996). The 
values for the Ki used in the present model were estimated by Timchalk et al. (2002b) by 
fitting the model to experimental data. It was unclear from the paper whether data on plasma 
or brain were used. Their initial values of Ki for acetylcholinesterase and 
butyrylcholinesterase in plasma and acetylcholinesterase in RBC were in vitro data taken from 
Amitai et al. (1998). They found that the model overestimated the inhibition of both B-
esterases in plasma in vivo and therefore Timchalk and co-workers reduced the values of Ki to 
better describe the in vivo data. Inserting the values for Ki stated by Amitai et al. in the present 
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model resulted in some improvement of the esterase inhibition curves but in overestimation 
in some and no changes in others. Hence, such a change did not solve the problem with the 
fast recovery of esterase. 

Timchalk et al. assumed that acetylcholinesterase, butyrylcholinesterase and carboxylesterase 
could be described by the same reactivation rate, Kr, and in all compartments (except 
acetylcholinesterase in RBC) (Timchalk et al., 2002b). Kousba et al. measured an in vitro 
determined rat salivary butyrylcholinesterase reactivation rate of 0.07 hr-1 which was similar 
to a Kr for paraoxon found in the literature (Kousba et al., 2003). This is a factor of 5 higher 
than the value used in the present model and in (Timchalk et al., 2002b) (0.01403 hr-1). In 
another study Kr for acetylcholinesterase in rat brains were determined to 0.084-0.087 hr-1 
(Kousba et al., 2004) which is a factor 6 higher than the value used in the present model. This 
indicates that a lowering of Kr may not be biologically plausible.  

The enzyme degradation rate, Kd, was determined for acetylcholinesterase bound to 
diisopropylfluorophosphate in plasma and brain and it was assumed to be equal to Kd for 
acetylcholinesterase and butyrylcholinesterase for chlorpyrifos and also equal to Kd in liver 
and diaphragm (Timchalk et al., 2002b). It is not clear on what basis Timchalk et al. decided to 
disperse the two measured Kd-values to the other tissues. Kd for acetylcholinesterase and 
butyrylcholinesterase was set equal in brain and diaphragm, and ten times higher in liver and 
plasma. The biological argumentation of this assumption was not explained by Timchalk et al. 
(2002b).  

24.1.3 SPECIAL CONDITIONS CONCERNING THE HUMAN MODEL 

Almost all data from the rat model were used in the human model as well. That is, the ADME 
as well as most of the description of the B-esterase activity are assumed to be the same in rats 
and humans. This assumption may need to be investigated further.  

Acetylcholinesterase in plasma was omitted from the human model because this esterase is 
only present in minor amount in plasma. Timchalk and co-workers adjusted the parameters 
describing butyrylcholinesterase in plasma in order to let butyrylcholinesterase compensate 
for the lack of acetylcholinesterase in this compartment. The biological reasoning of these 
changes in parameters was not explained. 

In the present model it was assumed that the enzyme activity of acetylcholinesterase in 
human RBC was equal to enzyme activity of acetylcholinesterase in plasma in rat. It was not 
explained whether Timchalk et al. (2002b) did the same. From the data given by Timchalk et 
al. it seems like the only possible way, they could have done it. However, the biological 
evidence of this has not been examined. 

24.1.4 USEFULNESS OF THE DEVELOPED MODELS IN THIS THESIS FOR ESTIMATING 
NOAEL 

The PBTK/TD models for rats and humans developed in the present thesis were used for 
estimating NOAELs for chlorpyrifos in rats and humans, see section 23.3.1.  The results from 
these simulations will be discussed in the following. 
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Brain acetylcholinesterase 
The simulations showed that a dosage of 9 mg/kg bw/day in rats resulted in about 20 % 
inhibition of acetylcholinesterase in brain, i.e. this is the NOAEL for this endpoint. The 
corresponding chlorpyrifos concentration in blood was up to 0.043 µM, see Table 12. In the 
human model this blood concentration was achieved after a dose of 2 mg/kg bw/day resulting 
in only 1-3 % acetylcholinesterase inhibition in brain. In the human model an about 4.5 times 
higher chlorpyrifos concentration in blood (up to 0.15 µM) was necessary to give about 20 % 
inhibition of brain acetylcholinesterase. The 20 % inhibition occurred after an external dose 
(7 mg/kg bw/day) similar to the NOAEL in rats (9 mg/kg bw/day).  

This shows that the there is a difference between humans and rats in how high internal dose a 
certain exposure will cause. However, there is a good correlation between the dosage and the 
inhibition of brain acetylcholinesterase in rats and humans i.e. the species are evenly sensitive 
in relation to this end point in relation to exposure (even though different internal doses are 
achieved from the same dosage level in the two species).  

RBC acetylcholinesterase 
For inhibition of acetylcholinesterase in RBC the relationship between internal dose and effect 
from the rat and the human model is more comparable, see Table 12. A dose of 2 mg/kg 
bw/day results in an inhibition in RBC acetylcholinesterase of 10-17 % in rats (i.e. NOAEL in 
simulation) and a chlorpyrifos blood concentration of up to 0.0095 µM. In the human model 
this blood concentration level (up to 0.011 µM) also results in about 20 % inhibition of RBC 
acetylcholinesterase, however, after a dose of 0.5 mg/kg bw/day.  

In the human model the enzyme degradation rate for acetylcholinesterase in RBC was 
lowered compared to the rat model (Timchalk et al., 2002b). This change in the parameter-
value might be the reason why the simulations result in a better correlation between internal 
dose and inhibition of RBC acetylcholinesterase than for brain acetylcholinesterase in the 
model.  

Short-term versus long-term simulations 
As mentioned in section 23.3.1.2, model simulation in the rat model of a single gavage dose of 
chlorpyrifos at 3 mg/kg bw showed an inhibition of acetylcholinesterase in plasma of 25 % 
which is higher than the level of inhibition after 2 years repeated dosage (up to 20 %). This 
indicates that the rat model might be better for prediction of dosages over a shorter time 
period. This impression is supported by the results from the comparisons of predictions from 
the present model with the experimental data as described in sections 23.1 and 23.2. The 
inhibition of plasma acetylcholinesterase in rats simulated over a shorter timeframe was 
reasonably comparative with the experimental data, especially at low doses (below 5 mg/kg 
bw/day). Nevertheless, underestimation was seen especially from 12 hr i.e. the prediction of 
the recovery of acetylcholinesterase was too fast. When the recovery in the present model is 
too fast it prevents accumulation of inhibited acetylcholinesterase and leading to an 
underestimation of the inhibition after simulation of long-term exposure in the model. 
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24.1.5 POSSIBLE EXPLANATIONS FOR DEVIATIONS FROM THE EXPERIMENTAL DATA 

It is at present discussed whether metabolites of organophosphorus compounds formed in 
the environment e.g. in food may influence the amount measured in the human body (Lu et al., 
2010). The underestimation of the TCP concentrations in the human model (Figure 40 and 
43) may be explained by the existence of external formed TCP that would increase the 
concentrations measured in the experiments. However, the predicted concentrations of 
chlorpyrifos were also lower than the measured concentrations. Therefore, this explanation 
does not account for the total deviation from the experimental data. 

Timchalk and co-workers (2002b) suggested that an overestimation in the model at 
environmentally relevant doses may be due to the lack of incorporation of metabolism in the 
intestine. The model only takes metabolism in the liver into consideration, however, CYP450 
and PON1 metabolism has also been observed in the intestine. Especially at low doses this 
first-pass metabolism may remove chlorpyrifos-oxon from the circulation. Therefore, a 
description of metabolism in the intestine should be incorporated in the model (Poet et al., 
2003). From the simulations presented in (Timchalk et al., 2002b) and in the present thesis 
there is no indication that overestimation should be the major problem with the models. In 
the present model only a minor overestimation of inhibition of brain acetylcholinesterase was 
seen at low doses (5 mg/kg bw/day; < 5 mg/kg/day: no overestimation). For plasma 
acetylcholinesterase inhibition the predictions were good at low doses.  

24.1.6 CONCLUSION ON THE OUTCOME OF THE MODELLING 

The present model was not able to perform simulations identical to the ones performed by 
Timchalk and co-workers (2002b), however, the shape of the curves were similar at low doses 
and over short timeframes (12 hr). Simulations during longer timeframes resulted in a too 
fast recovery of acetylcholinesterase compared to the experimental data. An underestimation 
of acetylcholinesterase inhibition was also seen in (Timchalk et al., 2002b) but not to the same 
extent. It will require further work to elucidate what causes these differences. 

The simulations performed for estimating NOAELs indicate species differences in the 
inhibition of acetylcholinesterase in brain and RBC in relation to the chlorpyrifos blood 
concentration and dosage. In the model the human are more sensitive than the rat when it 
comes to inhibition of RBC acetylcholinesterase in relation to the exposure. However, in 
humans a lower dosage level (exposure) results in this internal dose. When it comes to 
inhibition of brain acetylcholinesterase the simulations show that the same dose level gives 
rise to the same degree of inhibition in rats and humans (i.e. the species are equally sensitive  
in relation to this end point), but the internal dose has to be 4.5 times higher in humans than 
in rats to result in the same response.  

The simulations show that the present model underestimates the risk in many cases. The 
NOAEL for inhibition of RBC acetylcholinesterase was predicted to be 5 to 20 times higher in 
humans and rats, respectively, compared to the NOAELs established for this endpoint based 
on experimental studies. For the inhibition of brain acetylcholinesterase the NOAEL was 
predicted 9 times higher than was found in the rat study. A NOAEL established based on 
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experimental data will of course also contain uncertainties e.g. due to interspecies variations 
(see Figure 48) and by the selection of doses and dose-spacing in the study. 

The model for rats was able to make good predictions of the concentrations of chlorpyrifos 
and chlorpyrifos-oxon in blood. The model for humans predicted the concentrations of 
chlorpyrifos and chlorpyrifos-oxon within a factor of 2 of the experimental data which is a 
relatively good prediction. This suggests that the toxicokinetic part of the model is more in 
line with the experimental data, whereas, the simulations of esterase inhibition suggest that 
the toxicodynamic part of the model need to be improved. A model that underestimates the 
risk is not appropriate in the risk assessment.  

Overall, the work in re-building/developing and using these two PBTK/TD models for 
chlorpyrifos show that it is extremely important to carefully select the parameters to be used 
in a PBTK model. Further, the documentation and reasoning of the model structure, 
parameters and equations are of great importance in order to make a robust model and to 
enable other scientists to reproduce the model. This will be discussed further more broadly in 
the following section. 

24.2 ADVANTAGES/DISADVANTAGES OF PBTK MODELS AND THEIR USE IN RISK 
ASSESSMENT 

Application of PBTK/TD models to risk assessment has certain advantages and disadvantages.  

The obtainable advantages are: 

• The models can predict tissue concentrations and true toxicokinetic parameter values 
under a variety of conditions and thereby make the risk assessment more biologically 
realistic 

• Mechanistic information on interactions can be incorporated and interaction threshold 
determined 

• Decreased need for e.g. in vivo studies in the risk assessment 
• Possible to make interspecies, high-dose to low-dose, route-to-route and exposure 

scenario extrapolations. In this way the risk assessor can simulate various scenarios 
including scenarios which cannot be studied experimentally 

• Models for subpopulations such as children may help the risk assessor determine 
whether special care should be taken for such groups  

• The use of uncertainty factors will be more scientifically based e.g. justifying a decrease 
in the uncertainty factor from the normally used default factor of 100. 

The disadvantages are: 

• Require extensive physiological, biochemical and physicochemical parameter-related 
data. No internationally accepted reference values exist 

• Requires extensive documentation including justifications for the choices made in the 
model development  
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• Parameters especially for humans are sometimes difficult to obtain because not all 
data are measurable  

• Mathematically complex compared to other calculations used in risk assessment. 

The advantages and disadvantages will be discussed in the following. 

Parameters 
The importance of keeping the statement “The model is only as good as the input parameters” 
(Krishnan and Andersen, 2010) in mind has been clearly elucidated in this thesis. It is of 
paramount importance to make use of good and well defined parameters in the modelling.  

It has been found that metabolic rate constant values for carbon tetrachloride in rats 
estimated from PBTK models were sensitive not only to compound specific partition 
coefficients (for blood and fat) but also to the physiological parameters fat volume and blood 
flow in fat, liver and slowly perfused tissues. Therefore, an accurate characterization of values 
for physiological parameters is also important for the establishment of metabolic rate 
constants from a PBTK model (Brown et al., 1997). This will probably also be relevant for 
other compounds like e.g. pesticides. 

It is necessary to establish internationally acceptable reference values for physiological and 
anatomical parameters such as tissue weights and blood flows. Significant work has already 
been done in making reference values for use in PBTK modelling (Brown et al., 1997; Davies 
and Morris, 1993; Thompson et al., 2009; U.S.EPA, 1988a; U.S.EPA, 2009). However, there is 
still no consensus on these data. 

With respect to biochemical parameters especially metabolic parameters such as Vmax and 
Km a standardized experimental method for deriving these parameters is important.  A clear 
method for normalising these data is also crucial in order to make it possible to use the data in 
PBTK models. 

Tissue dose 
The classical practice of estimating risk assumes that the toxic effect is related to the 
administered dose. In the application of a PBTK model in risk assessment it is assumed that 
the toxic effect of a chemical in the target tissue can be related in some way to the dose of the 
chemical in the tissue. In other words it is assumed that except for toxicodynamic differences 
between animal species equivalent tissue dose will result in similar responses regardless of 
species, exposure route, or experimental regimen (Clewell, 2010; Travis and Hattemer-Frey, 
1990).  

Use of PBTK models in the risk assessment will provide knowledge about the connection 
between exposure and internal dose taking absorption, distribution, metabolism and 
elimination into account and this will form a biological more realistic basis for the risk 
assessment. 

A validated PBTK model can be used to derive NOAELs in the way described in this thesis. 
However, at present this model as it is presented, is not yet reliable i.e. sufficiently robust for 
this use. 
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Extrapolations 
In the area of risk assessment including cumulative risk assessment, the ability to make 
interspecies extrapolation is of great value. As seen in this thesis an extrapolation from rats to 
humans is performed primarily by changing the parameters for the model, not the equations. 
In this process it is important to consider possible differences between the species e.g. as in 
the present model the lack of acetylcholinesterase in plasma in humans. The parameters are 
sometimes difficult to obtain in humans since not all data are measurable. In such cases in 
vitro assays, in vivo rodent data or data estimated by QSAR might help. 

Experiments are normally performed at high doses compared to the exposure from the levels 
found in food. Therefore, high-dose to low-dose extrapolation is an important feature in the 
risk assessment making it possible to simulate scenarios at dose levels relevant for e.g. intake 
of pesticides as residues in food.  

For future use of the model the probability of changing the route of exposure might be useful. 
For the time being the model can simulate dietary and gavage exposure. Both exposure routes 
can be simulated as single or repeated exposures. These different scenarios have been 
demonstrated in this thesis. If it becomes necessary to take dermal exposure into account (e.g. 
from occupational use) a few equations could be inserted in order to simulate this exposure 
route. 

Interactions 
Several methods to describe interactions in PBTK models have been presented in this thesis. 
Metabolic inhibition is the most frequently seen type of interaction in PBTK models and 
equations describing competitive, non-competitive and uncompetitive interactions have been 
proposed. 

Unfortunately, it was not possible to test these methods in this project. Development of a 
PBTK/TD model for diisopropylfluorophosphate based on a model developed by Gearhart and 
co-workers (Gearhart et al., 1990; Gearhart et al., 1994) was initiated. The plan was to 
combine the models for chlorpyrifos and diisopropylfluorophosphate and simulate a 
combined intake of these two compounds via food. Because the work with the chlorpyrifos-
model took much longer time than expected, the model for a mixture of the two 
organophosphates with similar mechanism of action is not finished and will not be included in 
this thesis. 

Subpopulations 
The National Institute for Public Health and the Environment in the Netherlands (RIVM) have 
made an overview of data concerning differences between children and adults with respect to 
exposure, toxicokinetic and toxicodynamic (Wolterink et al., 2002). There are a lot of 
physiological and toxicokinetic difference between children and adults which may result in 
different internal doses. However, it is not possible to make an overall prediction of the 
different processes. For example, a compound that is more extensively absorbed may be less 
metabolised to a toxic metabolite or excreted more rapidly. RIVM recommends to use PBTK 
modelling to get more insight in these differences (Wolterink et al., 2002) 
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Large differences in toxicodynamics between children and adults have been observed 
especially during early development. Generally, children are supposed to be more sensitive to 
effects of toxic chemicals than adults. These effects will in principal be identified in the 
reproduction and developmental neurotoxicity studies which are normally performed for 
pesticides. However, the critical windows in development of rodents and humans are not 
always the same and therefore care should be taken with respect to route and level of 
exposure in order to make it possible to extrapolate between species (Wolterink et al., 2002). 

PBTK models can be developed for subpopulations such as infants and children. Initial work 
has already been done in this direction, e.g. the age-dependent model for chlorpyrifos in pre-
weanling rats which indicated that the neonatal rats were quantitatively more sensitive than 
adults to high dose acute effects (Timchalk et al., 2007b). Based on the model by Timchalk et 
al. (2002b) Lu and co-workers developed a model for children with focus on the urinary 
excretion of the chlorpyrifos-metabolite TCP using data for 3-6 years old children (Lu et al., 
2010). 

Law of Parsimony 
Woodruff and co-workers examined the difference between a five-compartment PBTK model, 
a three-compartment PBTK model and a non-physiological compartment model of benzene 
toxicokinetic. Each model was fitted to four sets of experimental data (three sets of in vivo 
experiments and one hypothetical) using Monte Carlo simulations to take the variability of the 
parameters into account. They found a larger difference between the predictions by the same 
model fitted to different data sets than between the predictions from the three models, i.e. the 
three-compartment (with two thirds the number of parameters and two differential equations 
less) and the five-compartment PBTK model produced the same predictions. Therefore, they 
recommend using a reduced model. A large number of parameters can cause a large 
variability. However, the authors found that despite the number of parameters in the PBTK 
models these models did not produce much more variability than the non-physiological 
compartment model. The variability of the predictions was more affected on the type of data 
than the type of model and the number of parameters (Woodruff et al., 1992).  

Their results are in line with the Law of Parsimony. As mentioned earlier large numbers of 
compartments in a model are not necessarily equal to accuracy and usefulness of the model 
(Krishnan and Andersen, 2001; Yang and Lu, 2007). The International Programme on 
Chemical Safety has suggested to develop simple PBTK models for preliminary assessments 
while more complex PBTK model may be relevant for compounds for which the margin 
between exposure and effect is small (IPCS, 2010). 

Uncertainty factors  
An uncertainty factor of 100 has been used as a default in risk assessment for more than 50 
years. This standard uncertainty factor includes a factor of 10 for intraspecies uncertainties 
and a factor of 10 for interspecies uncertainties. It has been suggested to further divide these 
10-fold factors to allow incorporation of e.g. toxicokinetic differences and thereby replace or 
minimize the relevant part of the overall default uncertainty factor. The 10-fold uncertainty 
factor for interspecies differences was suggested to be divided in 100.6 (4) and 100.4 (2.5) for 
uncertainties in toxicokinetics and toxicodynamics, respectively. The intraspecies uncertainty 
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factor was suggested to be subdivided in the square root of 10 for uncertainties in both 
toxicokinetics and toxicodynamics (Dorne and Renwick, 2005; IPCS, 2005). 

This concept was tried in a model for isopropanol. Gentry and co-workers developed a PBTK 
model for isopropanol for use in risk assessment. They stated that the uncertainty factor by 
using this PBTK model can be decreased from 100 to 30. They divided both 10-fold 
uncertainty factors in the square root of 10. They assumed that the use of their PBTK model in 
risk assessment decreased the uncertainties in toxicokinetic differences between species. 
Therefore, the uncertainty by using their model was decreased to a square root of 10 (i.e. ≈ 3). 
The total uncertainty factor applied for this model was therefore 3*10=30 (Gentry et al., 
2002a). 

However, concerning models developed and presented in this thesis it seems as when it 
comes to inhibition of acetylcholinesterase an uncertainty factor of 10 for interspecies 
differences would be appropriate.  

Uncertainties and model evaluation 
There are no formal guidelines or guidance on how to validate PBTK models but it is a 
developing area. For the application of PBTK models in risk assessment the focus should be on 
the purpose-specific evaluation rather than generic validation. This means that aspects 
relating to the biological basis of the model structure and parameters are just as important as 
the comparison of model simulations with toxicokinetic data and dose metrics. This should be 
supplemented with analysis of variability, uncertainty and sensitivity (IPCS, 2010; Krishnan 
and Andersen, 2010).  

When a PBTK model does not adequately describe the behaviour of the system this may be 
due to: 

1) mistakes in the structure of the model i.e. the model does not describe the system 
adequately 

2) incorrect level of detail in the structure (e.g. incorrect lumping of important 
compartments) which may not be consistent with the type of experimental data 

3) wrong mathematical description of the relationship between the compartments 
4) uncertainties in the extrapolations which means that the new scenario simulated 

deviates from the application domain for which the model was developed and tested  
5) uncertainties in the parameter values as a result of:  

a. limitations in the precision and accuracy of measurements resulting in random 
errors 

b. systematic biases 
c. an indirectly measured parameter used instead of a parameter that was not 

measurable directly 
d. no data to support the parameters 
e. uncertainties in the experimental data used to determine parameters by fit of 

the model  
(Isukapalli et al., 2010; Krishnan and Andersen, 2010). 
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In vitro assays and QSAR 
Efforts in using in vitro data as input to the PBTK models describing in vivo data would be 
valuable. However, Loizou and co-workers states that some examples in the scientific 
literature showed limitation of models to predict in vivo data using metabolic parameters 
estimated from in vitro studies (Loizou et al., 2008). 

There is a need for improving the scientific basis for making extrapolations from well studied 
chemicals to compounds with limited information. An example is metabolites of pesticides 
formed in plants before consumption. The range of toxicological studies required for placing a 
pesticide on the market does not to the same extent include studies on their metabolites 
compared to the parent compound. Therefore, limited information on the toxicological 
properties of these compounds is available. 

QSAR could be used to derive chemical specific parameters such as Km, Vmax and partition 
coefficients. Use of QSAR in deriving parameters for PBTK modelling may accelerate screening 
applications in risk assessment for compounds such as the pesticide metabolites that have not 
undergone extensive toxicity testing (Andersen, 1995).  

These kinds of extrapolations if successful could decrease the need for additional studies 
including the use of experimental animal studies. 

24.3 REQUIREMENTS OF DOCUMENTATION OF A PBTK MODEL 

Andersen et al. has provided a good suggestion on how to document and present PBTK 
models in publications (Andersen et al., 1995). They stated that a manuscript describing a 
PBTK model should include sufficient information about the model in order to make it 
possible for an experienced modeller to reproduce the structure of the model. Table 14 shows 
the necessary information to be presented in the manuscript. 

Table 14. A list on how to document a model in publications. Adapted from (Andersen et al., 
1995).  

Characteristics of a good modeling paper: 
1. Clear presentation of all equations 
2. Computer program made available on request 
3. Clear definition of all variables/parameters 
4. Clear definition of units to ensure proper dimensions 
5. Definition of criteria to evaluate predictions or fits 
6. Time, species, and exposure domain where model is valid 
7. Hypothesis testing and model discrimination as necessary 

 

A workshop held on good modelling practice (International Workshop on the Development of 
GMP for PBPK Models in Greece on April 27–29, 2007) recommended to prepare a standard, 
brief model description summary which should be readable for all risk assessors and then a 
more detailed model documentation for specialists published separately. The summary 
should include: 

1. “Introduction including problem formulation (applicability of model). 
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2. A text description of the model (species, routes, etc) with schematic diagram, and an 
overview of the information and data supporting the model structure. 

3. Metabolic pathways for the chemical and an overview of the supporting information 
and data. 

4. Relationship to mode of action including dose metric predictions and supporting 
information. 

5. Distributional predictions of model outputs and their implications (e.g., Monte Carlo 
simulation of human variability). 

6. Overview of uncertainty and sensitivity analyses. 
7. Source of complete information (e.g., citation)” (Loizou et al., 2008). 

Additionally, model documentation and supporting information such as calculations done to 
convert published scientific information into the form used in the model should be accessible 
e.g. via the internet (Loizou et al., 2008). 

These recommendations are in line with the methodology described by the International 
Programme on Chemical Safety (IPCS, 2010). 

25 FUTURE PERSPECTIVES 

Overall, development of PBTK models for the most common chemical mixtures of concern to 
be used routinely would be of great value in future risk assessments. However, PBTK 
modelling is data demanding and resource intensive and this should be counterbalanced by 
the increased accuracy and scientifically basis assessed using them. Therefore, in the near 
future they will only be used for higher tier assessment.  

Validation of the models and development of principles and guidance for good modelling 
practice (Loizou et al., 2008) as well as statistical research to support model assumptions is 
needed. Teuschler has specified the statistical research to “include testing for similar shapes 
of component dose–response curves, determining whether additivity assumptions are 
applicable or not for describing mixture risk, and using algorithms to form groups of similar 
components or similar mixtures” (Teuschler, 2007).  

In addition, developments in the area of toxicogenomics have also been suggested as a way of 
increasing our knowledge of mechanism of toxicity in order to better understand and improve 
the approaches for risk assessment of combined actions of chemicals (Andersen and Krewski, 
2009; El-Masri, 2007; Groten et al., 2001).  

PBTK modelling using Bayesian Markov Chain Monte Carlo calculations of the parameters is a 
developing field which is expected to provide more robust parameters. 

Looking into the crystal ball an integration of PBTK modelling with the biochemical reaction 
network will be a forthcoming tool in handling very complex mixtures of chemicals. Such a 
computer simulation platform will provide a possibility for modelling biological systems from 
the whole body down to the molecular interaction level.  
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The methods integrating PBTK with either Bayesian Markov Chain Monte Carlo calculations 
or the biochemical reaction network will be described shortly in two separate sections in the 
following. 

25.1 USE OF BAYESIAN ANALYSIS USING MARKOV CHAIN MONTE CARLO 
CALCULATIONS 

It has been debated whether effort should be put in developing parameters based on key 
sensitive datasets to be used for evaluating the predictive ability for PBTK models or whether 
it would be better to make use of all data as training-sets and in that way parameterise the 
model. Bayesian analysis using Markov Chain Monte Carlo calculations is being used for this 
purpose (Krishnan et al., 2010). In the Bayesian analysis a priori knowledge of physiological, 
anatomical and physiochemical parameters can be summarized as prior distributions. The 
prior knowledge on parameters can be obtained from the scientific literature, in vitro 
experiments or from fitting previous data values. In the Bayesian analysis the prior 
distributions of parameter values will be combined with the data likelihood to yield posterior 
parameter distributions instead of single data point estimates. When Bayesian analysis is 
coupled to Markov Chain Monte Carlo simulations the model can assess distributions for 
population parameters (Bois, 2000; Jonsson et al., 2001).  

In the area of PBTK modelling of pesticides an example of a PBTK model using Bayesian 
Markov Chain Monte Carlo calculations of the parameters was performed by Nong and co-
workers (Nong et al., 2008). The model was developed for the carbamate carbaryl based on 
the models on diisopropylfluorophosphate and parathion previously published by Gearhart 
and co-workers (Gearhart et al., 1990) describing the metabolism as well as the inhibition of 
cholinesterase. Some of the prior estimates for the parameters used in the model were 
obtained by fitting with mean experimental values from rat studies while the Markov Chain 
Monte Carlo calculations made use of the individual measurements from the experiments. The 
posterior parameter distributions estimated by the present Bayesian analysis was assessed to 
be more robust as it takes the physiological and experimental variability for the kinetics and 
the inhibition response of carbaryl into account. Distributions of the model output were 
generated by conducting a Monte Carlo simulation based on the mean and standard 
deviations of the marginal posterior distributions for the parameters from Markov Chain 
Monte Carlo analysis (Nong et al., 2008). 

25.2 BIOCHEMICAL REACTION NETWORK  

An integration of PBTK models and biochemical reaction networks has been predicted to be a 
forthcoming important tool to be used for handling very complex chemical mixtures (Yang 
and Lu, 2007).  

The reaction network tool was originally developed in the chemical and petroleum 
engineering field for prediction of the amounts of reactants, intermediates and products as a 
function of time for a series of coupled chemical reactions. In the area of toxicology of 
chemical mixtures this method has been modified in order to examine biochemical reaction 
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networks associated with the toxicological processes in an organism after exposure to toxic 
chemicals. This is done by considering the individual processes in the oil refinery equivalent 
to the organs in the body even though the mechanisms in organs are more complicated. By 
doing so, the already developed modelling tool can be used in toxicology. The input to the 
model database is information such as chemical structures, chemical properties and chemical 
reaction mechanisms. When the model have been fed with enough information, it is supposed 
to accurately predict the metabolic pathways (i.e. biochemical reaction networks) showing 
the interconnections between the metabolites and the concentrations of the compounds in the 
mixture over time. The output from such a model can be coupled to a PBTK model to give a 
more complete picture of the risk (Yang and Lu, 2007). Klein and co-workers have described 
the linking of biochemical reaction networks with PBTK models in more details. They point 
out: “The recent explosive growth of genomics, proteomics, and related bioinformatics in the 
biomedical field again parallel the availability of analytical and IT technologies to chemical 
engineering. A logical question is whether biologically based modelling can be advanced to the 
biochemical reaction network level by using proven chemical engineering modeling 
technology” (Klein et al., 2002). 

26 CONCLUSION 

The overall objectives of this Ph.D. project were to evaluate the existing knowledge on 
methods for risk assessment of combined actions of chemicals, establish PBTK models in 
order to improve methods for risk assessment of mixtures of chemicals and to examine the 
applicability of PBTK models in risk assessment of mixtures. 

Of the various approaches for risk assessment of mixtures of chemicals discussed, the whole 
mixture approaches would be the ideal choice for assessment of e.g. pesticide residues in food. 
However, they are normally not applicable since they require a large number of experimental 
data that are rarely available. This leaves the single compound approaches as the more 
realistic ones. 

In the risk assessment of multiple residues of pesticides in food, the individual compounds 
will be considered for possible candidates in one (or more) cumulative assessment groups. 
When adequate data are available, a common mechanism group should be established. The 
cumulative risk assessment of this group will then be performed assuming simple similar 
action using preferably the point of departure index, but in practice the hazard index based on 
a health based guidance value i.e. ADI/RfD might normally be sufficient. In some cases a 
refinement may be required i.e. using the NOAEL as point of departure for a relevant and 
critical toxicological effect different from the effect on which the cumulative assessment group 
is based.  

Where more than one common mechanism group based on simple similar actions are 
identified, they should be assessed separately as indicated above. In addition, the potential for 
interactions between the groups (or single compounds) have to be considered. If interactions 
between the groups (or compounds) can be ruled out, simple dissimilar action can be 
anticipated, and the effect of the mixture should be assessed by response addition. However, it 
is a common perception that at very low doses of dissimilar acting compounds (where none of 
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the compounds in the mixture have any toxic effect) no adverse effect of the mixture will be 
anticipated as well.  

In many cases it can be predicted that evaluators will tend to use very pragmatic approaches, 
such as assuming that all compounds in the mixture show simple similar actions, and thus use 
the hazard index or point of departure index, as such evaluations would be more convincing if 
lack of interaction between the compounds at the actual dose level had been demonstrated.  

Therefore, a crucial point in the assessment is whether there is interaction or no interaction 
between the compounds in the mixture. Although interactions among chemicals at high doses 
are well-known, there is currently no single simple approach to judge upon potential 
interactions at the low doses that humans are exposed to from pesticide residues in food. For 
this purpose, PBTK models in the future could be useful as a tool to assess combined tissue 
doses and to help predict potential interactions including thresholds for such effects. 

The use of PBTK modelling in the risk assessment of mixtures is an upcoming field involving 
challenges. PBTK models are complex and should of course only be used when it is considered 
essential. If reliable models are developed they can provide better knowledge and 
understanding of the effects of mixtures in the organism and provide improved information 
on tissue dose levels and variations between species and within a population. Moreover, 
scientifically supportable results in the risk assessment of mixtures of pesticides would help 
the risk managers in making more reliable decisions.  

If the PBTK models are expanded by a toxicodynamic part, the model could be even better and 
make it possible to identify deviations from additivity at the toxicodynamic level. However, 
this area is still in its infancy and it will probably be better to put more effort into improving 
the toxicokinetic part especially by establishing internationally acceptable reference values 
for various parameters before extending the model with a toxicodynamic part. 

The work in this thesis clearly emphasizes the importance of a higher degree of transparency 
in relation to the developed models. The documentation should include considerations 
concerning the model structure and equations as well of the choice of parameters and their 
origin. The parameter values should of course by correctly cited in the published papers. 
Without such documentation it is not possible for other scientists to reproduce, evaluate and 
further develop the models. The credibility of the PBTK models is crucial for a spreading of 
their use in risk assessment.  

There is at present a lack of adequate data for use in the PBTK models. Further studies are 
needed in order to extend the database of parameters but it will not be realistic to perform 
studies to determine all parameters for all chemicals. Therefore, development of a model will 
also involve assumptions. It is important that these assumptions are reasonable and 
biologically based. Further, these assumptions should be documented. 

PBTK models have a potential as an important tool in the risk assessment, but there is still a 
lack of acceptance of their use by the regulatory agencies. As shown in this thesis the 
development of PBTK models requires a lot of knowledge and not at least data and it is quite 
time consuming to compile. However, this problem is maybe not the main point in the lack of 
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acceptance of the use of these models. It is more likely that the PBTK model is perceived as a 
black box to many toxicologists. As this thesis has shown there is a glaring need for 
transparency in the modelling both concerning the parameters and the model structure. A 
clear description of the model as well as a consensus on the criteria for model evaluation 
would most likely increase the chances of a broad acceptance of the use of PBTK models.  

This Ph.D.-project constitutes the initial work on implementing PBTK/TD models in the risk 
assessment of combined toxic action of chemical substances in food at the DTU National Food 
Institute. The work has revealed some major problems and pitfalls in the developing process. 
However if reliable, these models will provide knowledge of the relationship between internal 
concentration of the chemical and the observed toxic effects and this knowledge will reduce 
the uncertainty in the risk assessment. Therefore, the work will continue implementing these 
models as a helpful tool in the future risk assessment.  
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APPENDIX I 

OVERVIEW OF PBTK/TD MODELS ON A SINGLE PESTICIDE 

Substances Species Route of 
administration 

Purpose of model simulation. 
Model structure 

Computer 
program 
used 

Model developed Reference 

2,4-D (chlorophenoxy 
herbicide) 

Humans: 
worker 
exposure 

Skin. Studies: 
rats: i.v. or oral. 
Humans: single 
oral dose. (Data 
from literature) 

PK in rats and humans. Tissue binding, binding to plasma, high-
dose inhibition of urinary excretion. Simple representation of 
the inhibitory effects of 2,4-D on renal excretory transport. 
Provides basis for comparing concentration of 2,4-D in plasma 
in experimental mammals and humans. 

 Own model (Durkin et al., 
2004) 

2,4-D (chlorophenoxy 
herbicide) 

Rats, 
rabbits  

Rats: i.v. or oral; 
rabbit: i.p. 

Concentration in plasma, brain. Kinetics in central nervous 
system. 
Model consisted of brain, body, venous and arterial 
compartments 

SimuSolv Own model (Kim et al., 1994) 

2,4-D (chlorophenoxy 
herbicide) 

Rabbits  i.p., i.v. Dosimetry in discrete areas of the brain, blood SimuSolv Own model (Kim et al., 1995) 

2,4-D (chlorophenoxy 
herbicide) 

Rabbits  I.v. or i.p. Dosimetry in developing rabbit brain.  
Model consisted of brain, body and venous and arterial 
compartments for the mother linked to the fetus by placenta 

SimuSolv Own model (Kim et al., 1996) 

2,4-D (chlorophenoxy 
herbicide) 

Rats  I.v., s.c. Concentration in blood and 6 brain regions. 
6 compartments + 6 brain regions 

SimuSolv Based on (Kim et 
al., 1994; Kim et al., 
1995) 

(Kim et al., 2001 

Aldicarb (carbamate) Rats, 
humans 

Oral, i.v. AChE inhibition. Objective: determine the interspecies 
toxicokinetic uncertainty factor. 
Lungs, brain, liver, stomach, kidney, fat, rest of body, venous 
and arterial blood  

ACSL Own model (Pelekis and 
Emond, 2009) 

Atrazine -> 3 metabolites 
(triazine) 

Rats  Oral Time courses of individual chlorotriazines after dosing with 
atrazine. Absorption and oxidative metabolism. 
Liver, lumped body compartment, (gut) for each metabolite – 
linked together 

Berkeley 
Madonna 

Own model (McMullin et al., 
2007) 

Atrazine and metabolites 
(triazine) 

Rats  Oral Time courses of total chlorotriazine after dosing with atrazine. 
Blood, body, brain compartment 

ACSL Own model (McMuillin et al 
2003 

Carbaryl (carbamate)-> 
metabolites 

Rats  I.v., oral, gavage Tissue concentrations. Subsequently predict ChE inhibition in 
brain, blood. Markov Chain Monte Carlo calibration of model 
parameters. 
5 compartments, 3 linked models 

ACSL Own model (Nong et al., 2008) 

Carbofuran (carbamate) -> 16 
metabolites 

Rats Oral Tissue dosimetry + PD (blood and brain AChE).  
12 compartments + portal, venous, arterial blood 

ERDEM 
PBPK/PD 
(Exposure-
Related Dose 
Estimating 

Own model (Zhang et al., 2007) 
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Substances Species Route of 
administration 

Purpose of model simulation. 
Model structure 

Computer 
program 
used 

Model developed Reference 

Model) 
Chlordecone (Kepone) Rats I.v., oral Enteric transport.  

A whole body PBPK model with detailed description of GI tract 
 Own model (Bungay et al., 

1981) 
Chlordecone, mirex, 
hexafluoroacetone 

Rats, 
rhesus 
monkeys 

Oral, inhalation or 
s.c. 

Differences in liver and fat partitioning. 
5 compartments (chlordecone, mirex), hexafluoroacetone: 6 
compartments (extra compartment: ventilatory uptake and 
elimination from alveoli) 

ACSL Own model (Belfiore et al., 
2007) 

Chlorofenvinfos (OP) Rats  Oral, i.v. Effect of chlorofenvinfos pretreatment of chlorofenvinfos 
concentrations in plasma and liver as well as changes in 
parameters. 
Model consisted of slowly and rapidly equilibrating tissues, 
liver and gut compartments 

MULTI Own model (Ikeda et al., 1992) 

Chlorpyrifos (OP) -> 
chlorpyrifos-oxon, TCP 

Rats  Acute and chronic 
oral and dermal 

PK/PD model modified to account for altered lipid-tissue 
partition coefficients and major physiological and biochemical 
changes of pregnancy. 
Target tissue dosimetry, plasma protein binding of chlorpyrifos 
and oxon + dynamic response (esterase inhibition) 

AcslXtreme 
v2.4 

Based on 
(Timchalk and 
Poet, 2008) 
(Timchalk et al., 
2002b; Timchalk et 
al., 2007b; 
Timchalk et al., 
2005) 

(Lowe et al 2009 

Chlorpyrifos (OP) -> TCP Humans - 
children 3-
6 years 

Oral, inhalation Urinary excretion of TCP (the metabolite description was 
expanded compared to original model in order to simulate 
differences at different life stages) 

ERDEM 
(Exposure-
Related Dose 
Estimating 
Model) 

Based on 
(Timchalk et al., 
2002b) 

(Lu et al., 2010) 

Chlorpyrifos (OP) -> 
chlorpyrifos-oxon, TCP 

Rats  Dietary, gavage, 
dermal 

Tissue dosimetry + PD (inhibition of AChE, BuChE, CaE ) in 
preweanling and adult rats. Model from Timchalk et al., (2002b) 
were modified by incorporating age-dependent PBPK/PD 

SimuSolv Based on 
(Timchalk et al., 
2002b) 

(Timchalk et al., 
2007b) 

Chlorpyrifos (OP) -> 
chlorpyrifos-oxon, TCP 

Humans Dermal, oral, 
gavage 

“Impact of CPF-oxonase status on the theoretical concentration 
of CPF-oxon in the human brain.” “The impact of the human 
CPF-oxonase metabolic polymorphism on CPF metabolism and 
detoxification was evaluated using Monte Carlo analysis” 

SimuSolv Based on 
(Timchalk et al., 
2002b) 

(Timchalk et al., 
2002a) 

Chlorpyrifos (OP) -> 
chlorpyrifos-oxon, TCP 

Rats Gavage Incorporation of a compartment in the existing model to 
describe the time-course of TCP concentration in blood and 
saliva 

SimuSolv Based on 
(Timchalk et al., 
2002b) 

(Timchalk et al., 
2007a) 

Chlorpyrifos (OP) -> 
chlorpyrisfos-oxon,  
TCP 

Rats, 
humans 

Dermal, dietary, 
gavage 

Tissue dosimetry. PD: inhibition of AChE, BuChE, CaE SimuSolv Own model (Timchalk et al., 
2002b) 

Chlorpyrifos (OP) -> 
chlorpyrisfos-oxon,  
TCP 

Rats Gavage, i.v., s.c. 
(one or more 
exposure route) 

Concentration in blood, brain, plasma, urine, fat. 
Chlorpyrifos more extensively metabolised after oral 
administration than after i.v. or s.c. exposure 

 Based on 
(Timchalk et al., 
2002b) 

(Smith et al., 2009) 

Deltamethrin (pyrethroid) Rats, Oral, i.v. Absorption in gastrointestinal tract excluding saturable AcslXtreme Based on (Godin et al., 2010) 
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Substances Species Route of 
administration 

Purpose of model simulation. 
Model structure 

Computer 
program 
used 

Model developed Reference 

humans absorption process (unlike Mirfazaelian et al.)  (Mirfazaelian et al., 
2006) 

Deltamethrin (pyrethroid) Rats  Po, i.v., oral. (Data 
from (Kim et al., 
2008)) 

Cytochrome P-450 mediated metabolism in liver, CaE-mediated 
metabolism in plasma in liver. Dosimetry in the central nervous 
system - tissue concentration in plasma blood, brain, fat, 
muscle. 
7 compartments 

AcslXtreme 
v1.3.2 

Own model (Mirfazaelian et al., 
2006) 

Diazinon (OP) -> diazinon-oxon 
and 2-isopropyl-4-methyl-6-
hydroxypyrimidine (IMHP)  

Rats, 
humans 

Dermal, oral 
(gavage, dietary) 

Concentration of the compounds in plasma and urinary 
elimination of IMHP. Inhibition of AChE and BuChE 

SimuSolv Based on 
(Timchalk et al., 
2002b; Timchalk et 
al., 2002a) 

(Poet et al., 2004) 

Dieldrin (chlorinated 
hydrocarbon insecticides)  

Rats, 
humans 

Mammals Tissue concentration especially adipose and lipid-phase in 
blood. 
Based upon lipid-phase transport and transfer to tissue lipids. 8 
tissues characterised by blood lipid flows and tissue lipid 
masses 

 Own model (Lindstrom et al., 
1975; Lindstrom et 
al., 1976; 
Lindstrom et al., 
1974) 

Diisopropylfluorophosphate 
(OP)  

Rats, mice I.v., s.c. Inhibition of AChE in brain, liver, kidney, rapidly perfused 
tissues, venous and arterial blood.  
9 compartments + blood 

ACSL Model structure 
based on (Ramsey 
and Andersen, 
1984) 

(Gearhart et al., 
1990) 

Diisopropylfluorophosphate 
(OP). Model adapted for 
parathion and its metabolite 
paraoxon 

Rats, mice, 
humans 

Inhalation, i.v. 
injection 

Simulate PK data from mice and rats. Inhibition of AChE in 
brain, liver, kidney, rapidly perfused tissues, venous and 
arterial blood.  
9 compartments + blood 

ACSL Own model (Gearhart et al., 
1994) 

Endosulfan (chlorinated 
hydrocarbon insecticides) and 
metabolites 

Rats Oral, single dose Tissue concentration: liver, kidney, brain, testes, blood. 
9 compartment model based on PK data. Model verified by data 
from experiments in literature 

Microsoft 
Visual Basic 
6.3 

Model structure 
based on (Ramsey 
and Andersen, 
1984) 

(Chan et al., 2006) 

Hexachlorobenzene (aromatic 
hydrocarbon, fungicide) 

Male rats  Oral, i.v. Blood is divided in plasma and RBC. RBC binding. Elimination 
process of HCB from plasma to GI.  
Compartment: plasma, RBC, liver, fat, slowly and rapidly 
perfused tissue, GI lumen 

ACSL Own model (Lu et al., 2006) 

Hexachlorobenzene (aromatic 
hydrocarbon, fungicide) 

Rats 
(growing), 
humans 
(growing) 

Oral, intubation ADME in growing rats and humans. 8-9 compartments  Own model (Yesair et al., 1986) 

Lindane (chlorinated 
hydrocarbon insecticides) 

Rats  Oral or i.p. Concentration in blood, brain, fat, muscle. 
5 compartment model based on PK data. Model verified by data 
from literature 

ACSL Model structure 
based on (Lutz et 
al., 1977) 

(Dejongh and 
Blaauboer, 1997) 

Malathion (OP) Humans  Dermal  ADME. Simulate the urinary excretion of metabolites  Own model Dong et al, 1994 as 
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Substances Species Route of 
administration 

Purpose of model simulation. 
Model structure 

Computer 
program 
used 

Model developed Reference 

cited in (Belfiore, 
2005) 

Malathion (OP) Humans  Dermal  ADME. Simulate the urinary excretion of metabolites  Own model Rabovsky and 
Brown, 1993 as 
cited in (Belfiore, 
2005) 

Malathion + 4 metabolites (OP) humans I.v, oral, dermal Tissue concentration + urinary excretion. 
From NOAEL it predicts corresponding biological reference 
values 

MathCad Own model (Bouchard et al., 
2003) 

p,p’-DDE (a Persistent 
metabolite of p,p’-DDT) 

Rats For gestation: 
oral. For 
dam/pup: milk 

Tissue dosimetry. How maternal exposure to DDE affects 
perinatal sexual development in utero or in early postnatal 
period. Models for gestation, dam and pup 

SimuSolv Based on 
O’Flaherty et al 
1992 

(You et al 1999  

Parathion (OP) In vitro Mice Parameters determined in vitro were used in model to predict 
tissue levels of parathion measured after i.v. dosing 

 Own model Sultatos et al, 1990 
as cited in 
(Belfiore, 2005) 

Parathion (OP), (also model for 
warfarin) 

 I.v., s.c. Incorporate information on polymorphism into analysis of 
toxicokinetic variability. Metabolism of parathion to paraoxon. 
Inhibition of AChE, BuChE, CaE. 
8 compartments for parathion and for paraoxon. Authors 
conclude that “combining PBTK modeling with Monte Carlo 
analysis provides a powerful (although labor-intensive) 
approach for quantitatively characterizing the effects of 
polymorphisms on human variability in tissue dose.” 

 Based on (Gearhart 
et al., 1994) 

(Gentry et al., 
2002b) 

Soman (pinocolyl 
methylphosphonofluoridate) 
(OP) 

Rats  i.m. or i.v. 
injection 

PD-model. Inhibition of AChE. 
8 compartments 

GEAR 
software 

Own model (Maxwell et al., 
1988) 
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OVERVIEW OF PBTK/TD MODELS ON A MIXTURE OF PESTICIDES 

Substances Species Route of 
administration 

What do they simulate Computer 
program 
used 

Model developed Reference 

Mixture: chlorpyrifos and 
parathion (OPs) 

Rats S.c. injection, oral Originally: 2 PBPK models to estimate blood concentration of 
their respective metabolite. Then linked to submodel of AChE 
kinetics  
a) P-450 enzymatic site b) AChE binding sites 

Simulink and 
M-files 
software of 
Matlab 

Own model (El-Masri et al., 
2004) 

Mixture: chlorpyrifos, diazinon 
(and metabolites of both) 

Rats Dietary, gavage, 
dermal 

Tissue dosimetry + PD (inhibition of ChE). CYP450 interaction: 
non-competitive (chlorpyrifos and diazinon -> oxon, 
chlorpyrifos -> 3,5,6-trichloro-2-pyridinol), competitive: 
(diazinon -> 2-isopropyl-methyl-6-hydroxypyrimidine). B-
esterase metabolism described as dose additive. No 
interactions for hydrolysis of oxon (PON-1) 

SimuSolv Based on (Poet et 
al., 2004; Timchalk 
et al., 2002b) 

(Timchalk and 
Poet, 2008) 

 

 



APPENDIX II 

The model code written in Berkeley Madonna for the PBTK/TD model describing chlorpyrifos 
and chlorpyrifos-oxon in rats are presented below. This is followed by a list of abbreviations 
used in the model. 

MODEL CODE FOR THE PBTK/TD MODEL FOR CHLORPYRIFOS IN RATS 

Program: PBTK/TD model for chlorpyrifos (CPF) and chlorpyrifos-oxon (CPF-oxon) in rats. Model name: 
PBTK-TD for CPF.mmd 
Model re-build by Trine Klein Reffstrup, DTU-Food, Søborg, Denmark.  
Original model developed by Timchalk et al., 2002. A physiologically based pharmacokinetic and 
pharmacodynamic (PBPK/PD) model for the organophosphate insecticide chlorpyrifos in rats and humans. 
Toxicological Sciences, 66, 34-53. 
Parameters primarily from Timchalk et al. 2002, Gearhart et al 1990, 1994 as indicated.  
Vmax3, Vmax4, Km3 and Km4 is from Timchalk et al., 2007 
 
 
METHOD STIFF; Rosenbrock (stiff) 
 
STARTTIME = 0; (hr) 
STOPTIME=24; (hr)  
DT = 0.02 
 
 
 
INPUT TO LIVER 
 
PARAMETERS 
;Oral absorption parameters, Timchalk et al. 2002 
KaS=0.01; Rate constant, absorption in stomach (1/hr) 
KaI=0.5; Rate constant, absorption in intestine (1/hr) 
KsI=0.5; Rate constant, transfer stomach-intestine (1/hr) 
Fa=0.80; Fractional absorption (80 %) 
 
;Body weight 
BW=0.25; body weight for rats (kg) 
 
;Molecular weight, calculated 
Mc=0.350; Molecular weight for chlorpyrifos (mg/micromol) 
 
EQUATIONS 
;Dietary exposure 
Dietexp = IF MOD(TIME, 24) <= 12 THEN kzero ELSE 0; Dietary exposure of chlorpyrifos (micromol/hr) 
kzero=Diet*Fa/12; Zero-order uptake rate (micromol/hr). Consumption during 12 hr in a 24 hr interval 
Oral_adm=0.1; Dietary administration of chlorpyrifos (mg/kg bw/day) 
Diet=Oral_adm*BW/Mc; Dietary administration of chlorpyrifos (recalculation of unit) (micromol/day) 
 
;Repeated dietary exposure of Oral_adm every "R" hr for "repeated" times 
Repeat_exp=PULSE(dose,0,R)*SQUAREPULSE(0,repeated); repeated dietary exposure (micromol/hr) 
dose_in=1; dose (mg/kg bw/day) 
dose=dose_in*BW*Fa/Mc; administered dose of chlorpyrifos (recalculation of units) (micromol/day) 
R=24; dosing intervals, 24 hr 
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repeated=648; time over which the dosage is repeated  
 
;Gavage exposure 
Stom'=-KaS*Stom - KsI*Stom; Absorption rate in stomach (micromol/hr) 
Init Stom=Gavage; Initial amount of chlorpyrifos in stomach (micromol) 
Gavage_in=1; Gavage administration of chlorpyrifos (mg/kg bw) 
Gavage=Gavage_in*BW/Mc; Gavage administration of chlorpyrifos (recalculation of unit) (micromol) 
Intes'=KsI*Stom - KaI*Intes; Absorption rate in intestine (micromol/hr) 
Init Intes=0; Initial amount of chlorpyrifos in intestine (micromol) 
 
Oral_abs'=KaS*Stom+KaI*Intes; Rate of oral absorption of chlorpyrifos is equal to sum of absorption rates 
from Stomach (Stom) and intestine (Intes) (micromol/hr) 
Init Oral_abs=0; Initial amount of chlorpyrifos absorbed oral, gavage (micromol) 
 
;Total input to liver from diet and gavage 
Input_l'=Oral_abs'+Dietexp+ Repeat_exp; Rate of total input of chlorpyrifos to liver from diet and gavage 
(micromol/hr) 
Init Input_l=0; Initial amount of chlorpyrifos to liver from diet and gavage (micromol) 
 
 
 
MODEL FOR CHLORPYRIFOS 
 
PARAMETERS 
Physiological Parameters; Data from Gearhart et al. 1990 and 1994 
;Tissue as percentage of body weight. (Expresses how much of bw the organ represents (kg/kg bw)) 
PEbr=1.16; brain as percentage of body weight (%) 
PEl=4.00; liver as percentage of body weight (%) 
PEr=3.88; rapidly perfused tissues as percentage of body weight (%) (=richly perfused+kidney+lung = 
2+0.73+1.15 from Gearhart et al. 1990) 
PEf=7.00; fat as percentage of body weight (%) 
PEs=68.66; slowly perfused tissues as percentage of body weight (%) (Gearhart et al. 1994) 
PEdi=0.30; diaphragm as percentage of body weight (%)  
PEbl=6; blood as percentage of body weight (%) (=venous+arterial = 4+2 from Gearhart et al. 1990) 
 
Organ blood flows as percentage of cardiac output; Data from Gearhart et al. 1990 
QC=5.4; cardiac output (l/hr) 
Qbrc=3; blood flow in brain as percentage of cardiac output (%) 
Qdic=0.6; blood flow in diaphragm as percentage of cardiac output (%) 
Qfc=9; blood flow in fat as percentage of cardiac output (%) 
Qlc=25; blood flow in liver as percentage of cardiac output (%) 
Qrc=47.96; blood flow in rapidly perfused tissues as percentage of cardiac output (%) (=richly perf+kidney 
= 27.96+20 from Gearhart et al. 1990) 
Qsc=14.4; blood flow in slowly perfused tissues as percentage of cardiac output (%) 
 
Organ blood flows calculation 
Qbr=Qbrc*QC/100; blood flow in brain (l/hr) 
Qdi=Qdic*QC/100; blood flow in diaphragm (l/hr) 
Qf=Qfc*QC/100; blood flow in fat (l/hr) 
Ql=Qlc*QC/100; blood flow in liver (l/hr) 
Qr=Qrc*QC/100; blood flow in rapidly perfused tissues (l/hr) 
Qs=Qsc*QC/100; blood flow in slowly perfused tissues (l/hr) 
 
Organ volumes as percentage of body weight; Data from Gearhart et al. 1990 and 1994 
Vbrc=1.16; volume of brain as percentage of body weight (%) 
Vlc=4.00; volume of liver as percentage of body weight (%) 
Vrc=3.88; volume of rapidly perfused tissues as percentage of body weight (%) (=richly 
perfused+kidney+lung = 2+0.73+1.15 from Gearhart et al. 1990) 
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Vfc=7.00; volume of fat as percentage of body weight (%) 
Vsc=68.66; volume of slowly perfused tissues as percentage of body weight (%) (Gearhart et al., 1994) 
Vdic=0.30; volume of diaphragm as percentage of body weight (%)  
Vvc=4.00;  volume of venous blood as percentage of body weight (%) 
Vac=2.00; volume of arterial blood as percentage of body weight (%) 
Vblc=6; volume of blood as percentage of body weight (%) (=Vvc+Vac = 4+2 from Gearhart et al. 
1990) 
 
Organ volume calculation 
Vbr=Vbrc*BW/100; volume of brain (l)  
Vl=Vlc*BW/100; volume of liver (l) 
Vr=Vrc*BW/100; volume of rapidly perfused tissues (l) 
Vf=Vfc*BW/100; volume of fat (l) 
Vs=Vsc*BW/100; volume of slowly perfused tissues (l) 
Vdi=Vdic*BW/100; volume of diaphragm (l) 
Vv=Vvc*BW/100;  volume of venous blood (l) 
Va=Vac*BW/100; volume of arterial blood (l) 
Vbl=Vblc*BW/100; volume of blood (l) 
 
Tissue weight calcuation 
Wbl=PEbl*BW/100; weight of blood (kg) 
Wbr=PEbr*BW/100; weight of brain (kg) 
Wdi=PEdi*BW/100; weight of diaphragm (kg) 
Wf=PEf*BW/100; weight of fat (kg) 
Wl=PEl*BW/100; weight of liver (kg) 
Wr=PEr*BW/100; weight of rapidly perfused tissues (kg) 
Ws=PEs*BW/100; weight of slowly perfused tissues (kg) 
 
Partition coefficients for chlorpyrifos, Timchalk et al., 2002 
PCbrc=33; brain:blood partition coefficient  
PCdic=6; diaphragm:blood partition coefficient  
PCfc=435; fat:blood partition coefficient 
PClc=22; liver:blood partition coefficient 
PCrc=10; rapidly perfused tissues:blood partition coefficient 
PCsc=6; slowly perfused tissues:blood partition coefficient 
PCbl=1; blood:blood partition coefficient 
 
;Plasma protein binding, Timchalk et al., 2002 
FBc=97; plasma protein binding for chlorpyrifos (%) 
 
Metabolic parameters, Timchalk et al., 2002 
;Chlorpyrifos to chlorpyrifos-oxon 
Km1=3.23;  Michaelis-Menten constant for metabolism of chlorpyrifos to chlorpyrifos-oxon 
(liver) by CYP450 (micromol/l) (from Ma & Chambers, 1994) 
VmaxC1=80;  CYP450 metabolism of chlorpyrifos to chlorpyrifos-oxon (liver) (micromol/hr/kg) 
Vmax1=VmaxC1*BW^0.7; Allometric scaling of Vmax1 (as described by El-Masri et al, 1996). Maximum 
velocity for metabolism of chlorpyrifos to chlorpyrifos-oxon by CYP450 (micromol/hr) 
 
;Chlorpyrifos to TCP 
Km2=24.3;  Michaelis-Menten constant for metabolism of chlorpyrifos to TCP (liver) by 
CYP450 (micromol/l) (from Ma & Chambers, 1994) 
VmaxC2=273;  CYP450 chlorpyrifos metabolism to TCP (liver) (micromol/hr/kg) 
Vmax2=VmaxC2*BW^0.7; Allometric scaling of Vmax2 (as described by El-Masri et al, 1996). Maximum 
velocity for metabolism of chlorpyrifos to TCP by CYP450 (micromol/hr) 
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EQUATIONS 
Mass balance differential equations for each compartment. Concentration of chlorpyrifos in venous blood 
leaving tissues 
;Fat 
Cf'=Qf/Vf*(CA_free-CVf_free); rate of change in chlorpyrifos concentration in fat (micromol/l/hr) 
Init Cf=0;   initial chlorpyrifos concentration (micromol/l) 
CVf_free=Cf/PCfc;  concentration of free chlorpyrifos in blood leaving fat (micromol/l) 
 
;Slowly perfused tissues 
Cs'=Qs/Vs*(CA_free-CVs_free); rate of change in chlorpyrifos concentration in slowly perfused 
tissues (micromol/l/hr) 
Init Cs=0;   initial chlorpyrifos concentration (micromol/l) 
CVs_free=Cs/PCsc;  concentration of free chlorpyrifos in blood leaving slowly 
perfused tissues (micromol/l) 
 
;Rapid perfused tissues 
Cr'=Qr/Vr*(CA_free-CVr_free); rate of change in chlorpyrifos concentration in rapid perfused 
tissues (micromol/l/hr) 
Init Cr=0;  initial chlorpyrifos concentration (micromol/l) 
CVr_free=Cr/PCrc; concentration of free chlorpyrifos in blood leaving rapid perfused tissues 
(micromol/l) 
 
;Diaphragm 
Cdi'=Qdi/Vdi*(CA_free-CVdi_free); rate of change in chlorpyrifos concentration in diaphragm 
(micromol/l/hr) 
Init Cdi=0;   initial chlorpyrifos concentration (micromol/l) 
CVdi_free=Cdi/PCdic;  concentration of free chlorpyrifos in blood leaving diaphragm 
(micromol/l) 
 
;Brain 
Cbr'=Qbr/Vbr*(CA_free-CVbr_free); rate of change in chlorpyrifos concentration in brain 
(micromol/l/hr) 
Init Cbr=0;   initial chlorpyrifos concentration (micromol/l) 
CVbr_free=Cbr/PCbrc;  concentration of free chlorpyrifos in blood leaving brain 
(micromol/l) 
 
;Liver 
Cl'=(Ql*(CA_free-CVl_free)+Input_l'-AML1'-AML2')/Vl; Rate of change in concentration of chlorpyrifos in 
liver (micromol/l/hr)  
Init Cl=0;   Concentration of chlorpyrifos in liver (micromol/l) 
AML1'=(Vmax1*Cl)/(Km1+Cl); Rate of change in amount of free chlorpyrifos metabolised to 
chlorpyrifos-oxon by hepatic CYP450 (micromol/hr) 
Init AML1=0;    Initial amount of free chlorpyrifos metabolised to chlorpyrifos-
oxon by hepatic CYP450 (micromol) 
AML2'=(Vmax2*Cl)/(Km2+Cl); Rate of change in amount of free chlorpyrifos metabolised to 
TCP by hepatic CYP450 (micromol/hr) 
Init AML2=0;    Amount of free chlorpyrifos metabolised to TCP by hepatic 
CYP450 (micromol) 
CVl_free=Cl/PClc;  Concentration of free chlorpyrifos in venous blood draining the 
liver (micromol/l) 
 
 
;Concentration of chlorpyrifos in blood  
Cbl'=QC/Vbl*(CV-CA); rate of change in chlorpyrifos concentration in mixed blood (micromol/l/hr)  
Init Cbl=0;  chlorpyrifos concentration in blood (micromol/l) 
Cbl_bound=Cbl*FBc/100; concentration of chlorpyrifos bound in mixed blood (micromol/l)  
Cbl_free=Cbl*(1-FBc/100); concentration of free chlorpyrifos in mixed blood (micromol/l) 
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;Concentration of chlorpyrifos in venous blood 
CV=CV_free+Cbl_bound; total chlorpyrifos concentration in venous blood (micromol/l) 
CV_free=(CVf_free*Qf+CVs_free*Qs+CVr_free*Qr+CVdi_free*Qdi+CVbr_free*Qbr+CVl_free*Ql)/QC; 
 total concentration of free chlorpyrifos in mixed venous blood from tissues (micromol/l) 
 
;Concentration of chlorpyrifos in arterial blood 
CA=Cbl/PCbl;  chlorpyrifos concentration in arterial blood (micromol/l) 
CA_free=CA*(1-FBc/100); concentration of free chlorpyrifos in arterial blood (micromol/l) 
 
 
 
MODEL FOR CHLORPYRIFOS-OXON 
 
PARAMETERS 
Partition coefficients for chlorpyrifos-oxon, Timchalk et al., 2002 
PCbro=26; brain:blood partition coefficient  
PCdio=4.9; diaphragm:blood partition coefficient  
PCfo=342; fat:blood partition coefficient 
PClo=17; liver:blood partition coefficient 
PCro=8.1; rapidly perfused tissue:blood partition coefficient 
PCso=4.9; slowly perfused tissue:blood partition coefficient 
PCblo=1; blood:blood partition coefficient (from Timchalk et al., 2007 supplemental data)  
 
Pharmacodynamic parameters 
;Enzyme turnover rate 
TRAChE=1.17*10^(+7); Enzyme turnover rate AChE (enz. hydro./hr) (Wang and Murphy, 1982) 
TRBuChE=1.03*10^(+7); Enzyme turnover rate BuChE (enz. hydro./hr) (Main et al. 1972)  
TRCaE=1.09*10^(+5); Enzyme turnover rate CaE (enz. hydro./hr) (Maxwell et al. 1987) 
 
;Enzyme activity (Maxwell et al. 1987) 
EAChEbr=4.4*10^(+5); Enzyme activity brain AChE (micromol/kg/hr) 
EAChEdi=7.74*10^(+4); Enzyme activity diaphragm AChE (micromol/kg/hr) 
EAChEl=1.02*10^(+4); Enzyme activity liver AChE (micromol/kg/hr) 
EAChEp=1.32*10^(+4); Enzyme activity plasma AChE (micromol/kg/hr) 
EBuChEbr=4.68*10^(+4); Enzyme activity brain BuChE (micromol/kg/hr) 
EBuChEdi=2.64*10^(+4); Enzyme activity diaphragm BuChE (micromol/kg/hr) 
EBuChEl=3.0*10^(+4); Enzyme activity liver BuChE (micromol/kg/hr) 
EBuChEp=1.56*10^(+4); Enzyme activity plasma BuChE (micromol/kg/hr) 
ECaEbr=6.0*10^(+4); Enzyme activity brain CaE (micromol/kg/hr) 
ECaEdi=3.18*10^(+5); Enzyme activity diapgragm CaE (micromol/kg/hr) 
ECaEl=1.94*10^(+6); Enzyme activity liver CaE (micromol/kg/hr) 
ECaEp=4.56*10^(+5); Enzyme activity plasma CaE (micromol/kg/hr) 
 
;Enzyme degradation rate (Gearhart et al. 1990 and Timchalk et al. 2002) 
Kd1=0.01;  Brain AChE (1/hr) (from Gearhart et al. 1990) 
Kd2=0.01;  diaphragm AChE (1/hr) 
Kd3=0.1;  Liver AChE (1/hr) 
Kd4=0.1;  Plasma AChE (1/hr) (from Gearhart et al. 1990) 
Kd5=0.008;  RBC AChE (1/hr) 
Kd6=0.01;  Brain BuChE (1/hr) 
Kd7=0.01;  diaphragm BuChE (1/hr) 
Kd8=0.1;  Liver BuChE (1/hr) 
Kd9=0.1;  Plasma BuChE (1/hr) 
Kd10=7.54*10^(-4); Brain CaE (1/hr) 
Kd11=0.001;  diaphragm CaE (1/hr) 
Kd12=0.001;  Liver CaE (1/hr) 
Kd13=0.0033; Plasma CaE (1/hr) 
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;Bimolecular inhibition rate (Gearhart et al. 1990 and Timchalk et al. 2002) 
Ki1=243; All tissues AChE (1/(microM*hr)) 
Ki5=100; RBC AChE (1/(microM*hr)) 
Ki6=2000; All tissues BuChE (1/(microM*hr)) 
Ki10=20; Brain CaE (1/(microM*hr))  
Ki11=20; diaphragm CaE (1/(microM*hr)) 
Ki12=20; Liver CaE (1/(microM*hr)) 
Ki13=20; Plasma CaE (1/(microM*hr)) 
 
;Reactivation rate (Carr and Chambers, 1996 and Timchalk et al. 2002) 
Kr1=1.403*10^(-2); AChE (1/hr) 
Kr5=4.0*10^(-2); RBC AChE (1/hr) 
Kr6=1.403*10^(-2); BuChE (1/hr) 
Kr10=1.403*10^(-2); CaE (1/hr) 
 
;Aging time (Carr and Chambers, 1996) 
Ka1=1.13*10^(-2); AChE (1/hr) 
Ka6=1.13*10^(-2); BuChE (1/hr) 
Ka10=1.13*10^(-2); CaE (1/hr) 
 
Metabolic parameters; Data from Timchalk et al., 2007 
;A-EST chlorpyrifos-oxon to TCP (liver)  
Km3=577;  Michaelis-Menten constant for saturable process (micromol/l) 
VmaxC3=38002; Maximum metabolism rate of chlorpyrifos-oxon to TCP in liver per kg body weight 
(micromol/hr/kg) 
Vmax3=VmaxC3*BW^0.7; Allometric scaling of Vmax3 (as described by El-Masri et al, 1996). Maximum 
velocity for metabolism to TCP by CYP450 (micromol/hr) 
 
;A-EST chlorpyrifos-oxon to TCP (blood)  
Km4=464;  A-EST chlorpyrifos-oxon to TCP (blood) (micromol/l) 
VmaxC4=40377; Maximum metabolism rate of chlorpyrifos-oxon to TCP in blood per kg body weight 
(micromol/hr/kg) 
Vmax4=VmaxC4*BW^0.7; Allometric scaling of Vmax4 (as described by El-Masri et al, 1996). Maximum 
velocity for metabolism to TCP by CYP450 (micromol/hr) 
 
 
;TCP model parameters (Timchalk et al., 2002) 
Vd=35; Volume of distribution (l) 
Ke=0.017; 1. order elimination constant(1/hr) 
 
;Plasma protein binding, Timchalk et al., 2002 
FBo=98; plasma protein binding for chlorpyrifos-oxon (%) 
 
EQUATIONS 
Mass balance differential equations for each compartment 
;Fat 
Cfo'=Qf/Vf*(CAo_free-CVfo_free); Rate of change in chlorpyrifos-oxon concentration in fat (micromol/l/hr) 
Init Cfo=0; Initial chlorpyrifos-oxon concentration (micromol/l) 
CVfo_free=Cfo/PCfo; concentration of free chlorpyrifos-oxon in blood leaving fat (micromol/l) 
 
;Slowly perfused tissues 
Cso'=Qs/Vs*(CAo_free-CVso_free); Rate of change in chlorpyrifos-oxon concentration in slowly perfused 
tissues (micromol/l/hr) 
Init Cso=0; Initial chlorpyrifos-oxon concentration (micromol/l) 
CVso_free=Cso/PCso; concentration of free chlorpyrifos-oxon in blood leaving slowly perfused tissues 
(micromol/l) 
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;Rapid perfused tissues 
Cro'=Qr/Vr*(CAo_free-CVro_free); Rate of change in chlorpyrifos-oxon concentration in rapid perfused 
(micromol/l/hr) 
Init Cro=0; Initial chlorpyrifos-oxon concentration (micromol/l) 
CVro_free=Cro/PCro; concentration of free chlorpyrifos-oxon in blood leaving rapid perfused (micromol/l) 
 
;Diaphragm 
Cdio'=(Qdi*(CAo_free-CVdio_free)-(AML4di'+AML5di'+AML6di'))/Vdi; rate of change in chlorpyrifos-oxon 
concentration in diaphragm (micromol/l/hr) 
Init Cdio=0; Initial chlorpyrifos-oxon concentration (micromol/l) 
CVdio_free=Cdio/PCdio; concentration of free chlorpyrifos-oxon in blood leaving diaphragm (micromol/l) 
AML4di'=AAChEdi*Ki1*Cdio; Rate of metabolism of chlorpyrifos-oxon to TCP by AChE in diaphragm 
(micromol/hr) 
Init AML4di=0; Initial amount of chlorpyrifos-oxon metabolised to TCP by AChE in diaphragm (micromol) 
AML5di'=ABuChEdi*Ki6*Cdio; Rate of metabolism of chlorpyrifos-oxon to TCP by BuChE in diaphragm 
(micromol/hr) 
Init AML5di=0; Initial amount of chlorpyrifos-oxon metabolised by BuChE to TCP in diaphragm (micromol) 
AML6di'=ACaEdi*Ki11*Cdio; Rate of metabolism of chlorpyrifos-oxon to TCP by CaE in diaphragm 
(micromol/hr) 
Init AML6di=0; Initial amount of chlorpyrifos-oxon metabolised by CaE to TCP in diaphragm (micromol) 
 
;Brain 
Cbro'=(Qbr*(CAo_free-CVbro_free)-(AML4br'+AML5br'+AML6br'))/Vbr; rate of change of chlorpyrifos-oxon 
concentration in brain (micromol/l/hr) 
Init Cbro=0; Initial chlorpyrifos-oxon concentration (micromol/l) 
CVbro_free=Cbro/PCbro; concentration of free chlorpyrifos-oxon in blood leaving brain (micromol/l) 
AML4br'=AAChEbr*Ki1*Cbro; Rate of metabolism of chlorpyrifos-oxon to TCP by AChE in brain 
(micromol/hr) 
Init AML4br=0; Initial amount of chlorpyrifos-oxon metabolised to TCP by AChE in brain (micromol) 
AML5br'=ABuChEbr*Ki6*Cbro; Rate of metabolism of chlorpyrifos-oxon to TCP by BuChE in brain 
(micromol/hr) 
Init AML5br=0; Initial amount of chlorpyrifos-oxon metabolised to TCP by BuChE in brain (micromol) 
AML6br'=ACaEbr*Ki10*Cbro; Rate of metabolism of chlorpyrifos-oxon to TCP by CaE in brain (micromol/hr) 
Init AML6br=0; Initial amount of chlorpyrifos-oxon metabolised to TCP by CaE in brain (micromol) 
 
;Liver 
Clo'=(Ql*(CAo_free-CVlo_free)+AML1'-AML3l'-(AML4l'+AML5l'+AML6l'))/Vl; Rate of change in concentration 
of chlorpyrifos-oxon in liver (micromol/l/hr) 
Init Clo=0; Initial concentration of chlorpyrifos-oxon in liver (micromol/l) 
CVlo_free=Clo/PClo; Concentration of free chlorpyrifos-oxon in venous blood draining the liver (micromol/l) 
AML3l'=(Vmax3*Clo)/(Km3+Clo); Rate of A-EST metabolism, chlorpyrifos-oxon -> TCP 
Init AML3l=0; Initial amount of chlorpyrifos-oxon metabolised to TCP by A-EST in liver (micromol) 
AML4l'=AAChEl*Ki1*Clo; Rate of metabolism of chlorpyrifos-oxon to TCP by AChE in liver (micromol/hr) 
Init AML4l=0; Initial amount of chlorpyrifos-oxon metabolised to TCP by AChE in liver (micromol) 
AML5l'=ABuChEl*Ki6*Clo; Rate of metabolism of chlorpyrifos-oxon to TCP by BuChE in liver (micromol/hr) 
Init AML5l=0; Initial amount of chlorpyrifos-oxon metabolised to TCP by BuChE in liver (micromol) 
AML6l'=ACaEl*Ki12*Clo; Rate of metabolism of chlorpyrifos-oxon to TCP by CaE in liver (micromol/hr) 
Init AML6l=0; Initial amount of chlorpyrifos-oxon metabolised to TCP by CaE in liver (micromol) 
 
;Blood 
Cblo'=QC*(CVo-CAo)/Vbl-AML3bl'/Vbl-(AML4bl'+AML5bl'+AML6bl')/Vbl; Rate of change in concentration of 
chlorpyrifos-oxon in blood (micromol/l/hr) 
Init Cblo=0; Initial concentration of chlorpyrifos-oxon in blood (micromol/l) 
Cblo_bound=Cblo*FBo/100; Concentration of bound chlorpyrifos-oxon in mixed blood compartment 
(micromol/l) 
Cblo_free=Cblo*(1-FBo/100); Concentration of free chlorpyrifos-oxon in blood (micromol/l) 
AML3bl'=(Vmax4*Cblo_free)/(Km4+Cblo_free); Rate of A-EST metabolism, chlorpyrifos-oxon -> TCP 
(micromol/hr) 
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Init AML3bl=0; Initial amount of chlorpyrifos-oxon metabolised to TCP by A-EST in blood (micromol) 
AML4bl'=AAChEp*Ki1*Cblo; Rate of metabolism of chlorpyrifos-oxon to TCP by AChE in blood 
(micromol/hr) 
Init AML4bl=0; Initial amount of chlorpyrifos-oxon metabolised to TCP by AChE in blood (micromol) 
AML5bl'=ABuChEp*Ki6*Cblo; Rate of metabolism of chlorpyrifos-oxon to TCP by BuChE in blood 
(micromol/hr) 
Init AML5bl=0; Initial amount of chlorpyrifos-oxon metabolised to TCP by BuChE in blood (micromol) 
AML6bl'=ACaEp*Ki13*Cblo; Rate of metabolism of chlorpyrifos-oxon to TCP by CaE in blood (micromol/hr) 
Init AML6bl=0; Initial amount of chlorpyrifos-oxon metabolised to TCP by CaE in blood (micromol) 
 
;RBC 
AML4rbc'=AAChErbc*Ki5*Cblo; Rate of metabolism of chlorpyrifos-oxon to TCP by AChE in RBC 
(micromol/hr) 
Init AML4rbc=0; Initial amount of chlorpyrifos-oxon metabolised to TCP by AChE in RBC (micromol) 
AML5rbc'=ABuChErbc*Ki6*Cblo; Rate of metabolism of chlorpyrifos-oxon to TCP by BuChE in RBC 
(micromol/hr) 
Init AML5rbc=0; Initial amount of chlorpyrifos-oxon metabolised to TCP by BuChE in RBC (micromol) 
AML6rbc'=ACaEl*Ki13*Cblo;  Rate of metabolism of chlorpyrifos-oxon to TCP by CaE in RBC (micromol/hr) 
Init AML6rbc=0; Initial amount of chlorpyrifos-oxon metabolised to TCP by CaE in RBC (micromol)  
 
 
;Venous blood 
CVo=CVo_free+Cblo_bound;  total concentration of chlorpyrifos-oxon in venous blood (micromol/l) 
CVo_free=(CVfo_free*Qf+CVso_free*Qs+CVro_free*Qr+CVdio_free*Qdi+CVbro_free*Qbr+CVlo_free*Ql)/Q
C; total concentration of free chlorpyrifos-oxon in mixed venous blood from tissues (micromol/l) 
 
;Arterial blood 
CAo=Cblo/PCblo; concentration of chlorpyrifos-oxon in arterial blood (micromol/l) 
CAo_free=CAo*(1-FBo/100); concentration of free chlorpyrifos-oxon in arterial blood (micromol/l) 
CAo_bound=CAo*FBo/100; concentration of bound chlorpyrifos-oxon in arterial blood (micromol/l) 
 
 
 
B-EST tissue inhibition by chlorpyrifos-oxon 
 
;BRAIN 
;Equations describing AChE inhibition in the brain compartment: 
IAAChEbr=EAChEbr*Wbr/TRAChE; initial amount of esterase binding sites brain, AChE (micromol) 
KsAChEbr=IAAChEbr*Kd1; zero order synthesis rate of brain AChE (micromol/hr) 
AAChEbr'=KsAChEbr-AAChEbr*(Kd1+Ki1*Cbro)+INactive_AChEbr*Kr1; rate of change in brain AChE 
enzyme (micromol/hr) 
Init AAChEbr=IAAChEbr; initial amount of esterase binding sites brain, AChE (micromol) 
INactive_AChEbr'=AAChEbr*Ki1*Cbro-INactive_AChEbr*(Ka1+kr1); rate of change in amount of AChE that 
is inactivated (micromol/hr) 
Init INactive_AChEbr=0; initial amount of inactivated AChE (micromol)   
Inhib_AChEbr=AAChEbr*100/IAAChEbr; % AChE inhibition in brain 
 
 
;Equations describing BuChE inhibition in the brain compartment: 
IABuChEbr=EBuChEbr*Wbr/TRBuChE; initial amount of esterase binding sites brain, BuChE (micromol) 
KsBuChEbr=IABuChEbr*Kd6; zero order synthesis rate of brain BuChE (micromol/hr) 
ABuChEbr'=KsBuChEbr-ABuChEbr*(Kd6+Ki6*Cbro)+INactive_BuChEbr*Kr6; rate of change in brain BuChE 
enzyme (micromol/hr) 
Init ABuChEbr=IABuChEbr; initial amount of esterase binding sites brain, BuChE (micromol) 
INactive_BuChEbr'=ABuChEbr*Ki6*Cbro-INactive_BuChEbr*(Ka6+kr6); rate of change in amount of BuChE 
that is inactivated (micromol/hr) 
Init INactive_BuChEbr=0; initial amount of inactivated BuChE (micromol) 
Inhib_BuChEbr=ABuChEbr*100/IABuChEbr; % BuChE inhibition in brain 



180 

 

 
;Equations describing CaE inhibition in the brain compartment: 
IACaEbr=ECaEbr*Wbr/TRCaE; initial amount of esterase binding sites brain, CaE (micromol) 
KsCaEbr=IACaEbr*Kd10; zero order synthesis rate of brain CaE (micromol/hr) 
ACaEbr'=KsCaEbr-ACaEbr*(Kd10+Ki10*Cbro)+INactive_CaEbr*Kr10; rate of change in brain CaE enzyme 
(micromol/hr) 
Init ACaEbr=IACaEbr; initial amount of esterase binding sites brain, CaE (micromol) 
INactive_CaEbr'=ACaEbr*Ki10*Cbro-INactive_CaEbr*(Ka10+kr10); rate of change in amount of CaE that is 
inactivated (micromol/hr) 
Init INactive_CaEbr=0; initial amount of inactivated CaE (micromol) 
Inhib_CaEbr=ACaEbr*100/IACaEbr; % CaE inhibition in brain 
 
;Total B-esterase inhibition in brain 
B_EST_total_br=AAChEbr+ABuChEbr+ACaEbr; total B-EST in brain (micromol) 
Inhib_tot_br=B_EST_total_br*100/(IAAChEbr+IABuChEbr+IACaEbr); % total B-EST inhibition in brain 
 
 
;DIAPHRAGM 
;Equations describing AChE inhibition in the diaphragm compartment: 
IAAChEdi=EAChEdi*Wdi/TRAChE; initial amount of esterase binding sites diaphragm, AChE (micromol) 
KsAChEdi=IAAChEdi*Kd2; zero order synthesis rate of diaphragm AChE (micromol/hr) 
AAChEdi'=KsAChEdi-AAChEdi*(Kd2+Ki1*Cdio)+INactive_AChEdi*Kr1; rate of change of diaphragm AChE 
enzyme (micromol/hr) 
Init AAChEdi=IAAChEdi; initial amount of esterase binding sites diaphragm, AChE (micromol) 
   
INactive_AChEdi'=AAChEdi*Ki1*Cdio-INactive_AChEdi*(Ka1+Kr1); rate of change in amount of AChE that is 
inactivated (micromol/hr) 
Init INactive_AChEdi=0; initial amount of inactivated AChE (micromol) 
Inhib_AChEdi=AAChEdi*100/IAAChEdi; % AChE inhibition in diaphragm 
 
;Equations describing BuChE inhibition in the diaphragm compartment: 
IABuChEdi=EBuChEdi*Wdi/TRBuChE; initial amount of esterase binding sites diaphragm, BuChE 
(micromol) 
KsBuChEdi=IABuChEdi*Kd7; zero order synthesis rate of diaphragm BuChE (micromol/hr) 
ABuChEdi'=KsBuChEdi-ABuChEdi*(Kd7+Ki6*Cdio)+INactive_BuChEdi*Kr6; rate of change of diaphragm 
BuChE enzyme (micromol/hr) 
Init ABuChEdi=IABuChEdi; initial amount of esterase binding sites diaphragm, BuChE (micromol) 
   
INactive_BuChEdi'=ABuChEdi*Ki6*Cdio-INactive_BuChEdi*(Ka6+Kr6); rate of change in amount of BuChE 
that is inactivated (micromol/hr) 
Init INactive_BuChEdi=0; initial amount of inactivated BuChE (micromol) 
Inhib_BuChEdi=ABuChEdi*100/IABuChEdi; % BuChE inhibition in diaphragm 
 
;Equations describing CaE inhibition in the diaphragm compartment: 
IACaEdi=ECaEdi*Wdi/TRCaE; initial amount of esterase binding sites diaphragm, CaE (micromol) 
KsCaEdi=IACaEdi*Kd11; zero order synthesis rate of diaphragm CaE (micromol/hr) 
ACaEdi'=KsCaEdi-ACaEdi*(Kd11+Ki11*Cdio)+INactive_CaEdi*Kr10; rate of change of diaphragm CaE 
enzyme (micromol/hr) 
Init ACaEdi=IACaEdi; initial amount of esterase binding sites diaphragm, CaE (micromol) 
INactive_CaEdi'=ACaEdi*Ki11*Cdio-INactive_CaEdi*(Ka10+Kr10); rate of change in amount of CaE that is 
inactivated (micromol/hr) 
Init INactive_CaEdi=0; initial amount of inactivated CaE (micromol) 
Inhib_CaEdi=ACaEdi*100/IACaEdi; % CaE inhibition in diaphragm 
 
;Total B-esterase inhibition in diaphragm 
B_EST_total_di=AAChEdi+ABuChEdi+ACaEdi; total B-EST in diaphragm (micromol) 
Inhib_tot_di=B_EST_total_di*100/(IAAChEdi+IABuChEdi+IACaEdi); % total B-EST inhibition in diaphragm 
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;LIVER 
;Equations describing AChE inhibition in the liver compartment: 
IAAChEl=EAChEl*Wl/TRAChE; initial amount of esterase binding sites liver, AChE (micromol) 
KsAChEl=IAAChEl*Kd3; zero order synthesis rate of liver AChE (micromol/hr) 
AAChEl'=KsAChEl-AAChEl*(Kd3+Ki1*Clo)+INactive_AChEl*Kr1; rate of change of liver AChE enzyme 
(micromol/hr) 
Init AAChEl=IAAChEl; initial amount of esterase binding sites liver, AChE (micromol) 
INactive_AChEl'=AAChEl*Ki1*Clo-INactive_AChEl*(Ka1+Kr1); rate of change in amount of AChE that is 
inactivated (micromol/hr) 
Init INactive_AChEl=0; initial amount of inactivated AChE (micromol) 
Inhib_AChEl=AAChEl*100/IAAChEl; % AChE inhibition in liver 
 
;Equations describing BuChE inhibition in the liver compartment: 
IABuChEl=EBuChEl*Wl/TRBuChE; initial amount of esterase binding sites liver, BuChE (micromol) 
KsBuChEl=IABuChEl*Kd8; zero order synthesis rate of liver BuChE (micromol/hr) 
ABuChEl'=KsBuChEl-ABuChEl*(Kd8+Ki6*Clo)+INactive_BuChEl*Kr6; rate of change of liver BuChE enzyme 
(micromol/hr) 
Init ABuChEl=IABuChEl; initial amount of esterase binding sites liver, BuChE (micromol) 
INactive_BuChEl'=ABuChEl*Ki6*Clo-INactive_BuChEl*(Ka6+Kr6); rate of change in amount of BuChE that is 
inactivated (micromol/hr) 
Init INactive_BuChEl=0; initial amount of inactivated BuChE (micromol) 
Inhib_BuChEl=ABuChEl*100/IABuChEl; % BuChE inhibition in liver 
 
;Equations describing CaE inhibition in the liver compartment: 
IACaEl=ECaEl*Wl/TRCaE; initial amount of esterase binding sites liver, CaE (micromol) 
KsCaEl=IACaEl*Kd12; zero order synthesis rate of liver CaE (micromol/hr) 
ACaEl'=KsCaEl-ACaEl*(Kd12+Ki12*Clo)+INactive_CaEl*Kr10; rate of change of liver CaE enzyme 
(micromol/hr) 
Init ACaEl=IACaEl; initial amount of esterase binding sites liver, CaE (micromol) 
INactive_CaEl'=ACaEl*Ki12*Clo-INactive_CaEl*(Ka10+Kr10); rate of change in amount of CaE that is 
inactivated (micromol/hr) 
Init INactive_CaEl=0; initial amount of inactivated CaE (micromol) 
Inhib_CaEl=ACaEl*100/IACaEl; % CaE inhibition in liver 
 
;Total B-esterase inhibition in liver 
B_EST_total_l=AAChEl+ABuChEl+ACaEl; total B-EST in liver (micromol) 
Inhib_tot_l=B_EST_total_l*100/(IAAChEl+IABuChEl+IACaEl); % total B-EST inhibition in liver 
 
 
;PLASMA 
;Equations describing AChE inhibition in the plasma: 
IAAChEp=EAChEp*Wbl/TRAChE; initial amount of esterase binding sites plasma, AChE (micromol) 
KsAChEp=IAAChEp*Kd4; zero order synthesis rate of plasma AChE (micromol/hr) 
AAChEp'=KsAChEp-AAChEp*(Kd4+Ki1*Cblo)+INactive_AChEp*Kr1; rate of change of plasma AChE 
enzyme (micromol/hr) 
Init AAChEp=IAAChEp; initial amount of esterase binding sites plasma, AChE (micromol) 
INactive_AChEp'=AAChEp*Ki1*Cblo-INactive_AChEp*(Ka1+Kr1); rate of change in amount of AChE that is 
inactivated (micromol/hr) 
Init INactive_AChEp=0; initial amount of inactivated AChE (micromol) 
Inhib_AChEp=AAChEp*100/IAAChEp; % AChE inhibition in plasma 
 
 
;Equations describing BuChE inhibition in the plasma: 
IABuChEp=EBuChEp*Wbl/TRBuChE; initial amount of esterase binding sites plasma, BuChE (micromol) 
KsBuChEp=IABuChEp*Kd9; zero order synthesis rate of plasma BuChE (micromol/hr) 
ABuChEp'=KsBuChEp-ABuChEp*(Kd9+Ki6*Cblo)+INactive_BuChEp*Kr6; rate of change of plasma BuChE 
enzyme (micromol/hr) 
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Init ABuChEp=IABuChEp; initial amount of esterase binding sites plasma, BuChE (micromol) 
INactive_BuChEp'=ABuChEp*Ki6*Cblo-INactive_BuChEp*(Ka6+Kr6); rate of change in amount of BuChE 
that is inactivated (micromol/hr) 
Init INactive_BuChEp=0; initial amount of inactivated BuChE (micromol) 
Inhib_BuChEp=ABuChEp*100/IABuChEp; % BuChE inhibition in plasma 
 
;Equations describing CaE inhibition in the plasma: 
IACaEp=ECaEp*Wbl/TRCaE; initial amount of esterase binding sites plasma, CaE (micromol) 
KsCaEp=IACaEp*Kd13; zero order synthesis rate of plasma CaE (micromol/hr) 
ACaEp'=KsCaEp-ACaEp*(Kd13+Ki13*Cblo)+INactive_CaEp*Kr10; rate of change of plasma CaE enzyme 
(micromol/hr) 
Init ACaEp=IACaEp; initial amount of esterase binding sites plasma, CaE (micromol) 
INactive_CaEp'=ACaEp*Ki13*Cblo-INactive_CaEp*(Ka10+Kr10); rate of change in amount of CaE that is 
inactivated (micromol/hr) 
Init INactive_CaEp=0; initial amount of inactivated CaE (micromol) 
Inhib_CaEp=ACaEp*100/IACaEp; % CaE inhibition in plasma 
 
;Total B-esterase inhibition in plasma 
B_EST_total_p=AAChEp+ABuChEp+ACaEp; total B-EST in plasma (micromol) 
Inhib_tot_p=B_EST_total_p*100/(IAAChEp+IABuChEp+IACaEp); % total B-EST inhibition in plasma 
 
;Total cholinesterase (AChE+BuChE) 
Inhib_ChEp_total=(AAChEp+ABuChEp)*100/(IAAChEp+IABuChEp); % total cholinesterase inhibition in 
plasma 
 
 
;RBC 
;Equations describing AChE inhibition in the RBC  
IAAChErbc=EAChEp*Wbl/TRAChE; initial amount of esterase binding sites RBC, AChE (micromol) 
KsAChErbc=IAAChErbc*Kd5; zero order synthesis rate of RBC AChE (micromol/hr) 
AAChErbc'=KsAChErbc-AAChErbc*(Kd5+Ki5*Cblo)+INactive_AChErbc*Kr5; rate of change of RBC AChE 
enzyme (micromol/hr) 
Init AAChErbc=IAAChErbc; initial amount of esterase binding sites RBC, AChE (micromol) 
INactive_AChErbc'=AAChErbc*Ki5*Cblo-INactive_AChErbc*(Ka1+Kr5); rate of change in amount of AChE 
that is inactivated (micromol/hr)   
Init INactive_AChErbc=0; initial amount of inactivated AChE (micromol) 
Inhib_AChErbc=AAChErbc*100/IAAChErbc; % AChE inhibition in RBC 
 
;Equations describing BuChE inhibition in the RBC: 
IABuChErbc=EBuChEp*Wbl/TRBuChE; initial amount of esterase binding sites RBC, BuChE (micromol) 
KsBuChErbc=IABuChErbc*Kd9; zero order synthesis rate of RBC BuChE (micromol/hr) 
ABuChErbc'=KsBuChErbc-ABuChErbc*(Kd9+Ki6*Cblo)+INactive_BuChErbc*Kr6; rate of change of RBC 
BuChE enzyme (micromol/hr) 
Init ABuChErbc=IABuChErbc; initial amount of esterase binding sites RBC, BuChE (micromol) 
INactive_BuChErbc'=ABuChErbc*Ki6*Cblo-INactive_BuChErbc*(Ka6+Kr6); rate of change in amount of 
BuChE that is inactivated (micromol/hr) 
Init INactive_BuChErbc=0; initial amount of inactivated BuChE (micromol) 
Inhib_BuChErbc=ABuChErbc*100/IABuChErbc; % BuChE inhibition in RBC 
 
;Equations describing CaE inhibition in the RBC: 
IACaErbc=ECaEp*Wbl/TRCaE; initial amount of esterase binding sites RBC, CaE (micromol) 
KsCaErbc=IACaErbc*Kd13; zero order synthesis rate of RBC CaE (micromol/hr) 
ACaErbc'=KsCaErbc-ACaErbc*(Kd13+Ki13*Cblo)+INactive_CaErbc*Kr10; rate of change of RBC CaE 
enzyme (micromol/hr) 
Init ACaErbc=IACaErbc; initial amount of esterase binding sites RBC, CaE (micromol) 
INactive_CaErbc'=ACaErbc*Ki13*Cblo-INactive_CaErbc*(Ka10+Kr10); rate of change in amount of CaE that 
is inactivated (micromol/hr) 
Init INactive_CaErbc=0; initial amount of inactivated CaE (micromol) 
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Inhib_CaErbc=ACaErbc*100/IACaErbc; % CaE inhibition in RBC 
 
;Total B-esterase inhibition in RBC 
B_EST_total_rbc=AAChErbc+ABuChErbc+ACaErbc; total B-EST in RBC (micromol) 
Inhib_tot_rbc=B_EST_total_rbc*100/(IAAChErbc+IABuChErbc+IACaErbc); % total B-EST inhibition in RBC 
 
;Total cholinesterase (AChE+BuChE) 
Inhib_ChErbc_total=(AAChErbc+ABuChErbc)*100/(IAAChErbc+IABuChErbc); % total cholinesterase 
inhibition in RBC 
 
 
One-compartment model for TCP 
TCP_form'=AML2'+AML3bl'+AML3l'+AML4br'+AML5br'+AML6br'+AML4di'+AML5di'+AML6di'+AML4l'+AML5
l'+AML6l'+AML4bl'+AML5bl'+AML6bl'+AML4rbc'+AML5rbc'+AML6rbc'; rate of formation of TCP 
(micromol/hr) 
Init TCP_form=0; initial amount of TCP formed (micromol) 
TCPexc'=ATCP*Ke; rate of urinary excretion of TCP (micromol/hr) 
Init TCPexc=0; inital urinary excretion of TCP (micromol) 
ATCP'=TCP_form'-TCPexc'; rate of change in amount of TCP (i.e. TCP formation from all sources (i.e. 
CYP450, A-EST, B-EST) minus urinary elimination of TCP) (micromol/hr) 
Init ATCP=0; initial amount of TCP (micromol) 
CTCPbl=ATCP/Vd; blood concentration of TCP (micromol/hr), where Vd (liter) is volume of distribution  
 
 
Mass balances for chlorpyrifos, chlorpyrifos-oxon and TCP 
;Mass balance chlorpyrifos 
total_massCPF=Input_l+Cf*Vf+Cs*Vs+Cr*Vr+Cdi*Vdi+Cbr*Vbr+Cl*Vl+Cbl*Vbl; total mass of chlorpyrifos 
(micromol) 
 
;Mass balance chlorpyrifos-oxon 
total_massOxon=Cfo*Vf+Cso*Vs+Cro*Vr+Cdio*Vdi+Cbro*Vbr+Clo*Vl+Cblo*Vbl; total mass of chlorpyrifos-
oxon (micromol) 
 
;Mass balance TCP 
total_massTCP= ATCP+TCPexc; total mass of TCP (micromol)  
 
;Total mass balance 
Mass balance check; Total amount of chlorpyrifos delivered in experiment should equal to the amount 
calculated by the code. This means that the equation below for TOTAL (which is the total amount delivered) 
should equal total_massCPF 
TOTAL=total_massOxon+total_massTCP; total amount of chlorpyrifos delivered to tissues or excreted 
(micromol) 
 

ABBREVIATIONS IN THE MODEL CODE 

AAChEbr: initial amount of esterase binding sites brain, AChE (micromol) 
AAChEbr': rate of change in brain AChE enzyme (micromol/hr) 
AAChEdi: amount of esterase binding sites diaphragm, AChE (micromol)  
AAChEdi': rate of change of diaphragm AChE enzyme (micromol/hr) 
AAChEl: amount of esterase binding sites liver, AChE (micromol) 
AAChEl': rate of change of liver AChE enzyme (micromol/hr) 
AAChEp: amount of esterase binding sites plasma, AChE (micromol) 
AAChEp': rate of change of plasma AChE enzyme (micromol/hr) 
AAChErbc: amount of esterase binding sites RBC, AChE (micromol) 
AAChErbc': rate of change of RBC AChE enzyme (micromol/hr) 
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ABuChEbr: initial amount of esterase binding sites brain, BuChE (micromol) 
ABuChEbr': rate of change in brain BuChE enzyme (micromol/hr) 
ABuChEdi: amount of esterase binding sites diaphragm, BuChE (micromol) 
ABuChEdi': rate of change of diaphragm BuChE enzyme (micromol/hr) 
ABuChEl: amount of esterase binding sites liver, BuChE (micromol) 
ABuChEl': rate of change of liver BuChE enzyme (micromol/hr) 
ABuChEp: amount of esterase binding sites plasma, BuChE (micromol) 
ABuChEp': rate of change of plasma BuChE enzyme (micromol/hr) 
ABuChErbc: amount of esterase binding sites RBC, BuChE (micromol) 
ABuChErbc': rate of change of RBC BuChE enzyme (micromol/hr) 
ACaEbr: initial amount of esterase binding sites brain, CaE (micromol) 
ACaEbr': rate of change in brain CaE enzyme (micromol/hr) 
ACaEdi: amount of esterase binding sites diaphragm, CaE (micromol) 
ACaEdi': rate of change of diaphragm CaE enzyme (micromol/hr) 
ACaEl: amount of esterase binding sites liver, CaE (micromol) 
ACaEl': rate of change of liver CaE enzyme (micromol/hr) 
ACaEp: amount of esterase binding sites plasma, CaE (micromol) 
ACaEp': rate of change of plasma CaE enzyme (micromol/hr) 
ACaErbc: amount of esterase binding sites RBC, CaE (micromol) 
ACaErbc': rate of change of RBC CaE enzyme (micromol/hr) 
AML1': rate of change in amount of free chlorpyrifos metabolised to chlorpyrifos-oxon by hepatic CYP450 
(micromol/hr) 
AML2': rate of change in amount of free chlorpyrifos metabolised to TCP by hepatic CYP450 (micromol/hr) 
AML3bl': rate of A-EST metabolism, chlorpyrifos-oxon -> TCP (micromol/hr) 
AML3l': rate of A-EST metabolism, chlorpyrifos-oxon -> TCP 
AML4bl': rate of metabolism of chlopyrifos-oxon to TCP by AChE in blood (micromol/hr) 
AML4br': rate of metabolism of chlopyrifos-oxon to TCP by AChE in brain (micromol/hr) 
AML4di': rate of metabolism of chlopyrifos-oxon to TCP by AChE in diaphragm (micromol/hr) 
AML4l': rate of metabolism of chlopyrifos-oxon to TCP by AChE in liver (micromol/hr) 
AML4rbc': rate of metabolism of chlopyrifos-oxon to TCP by AChE in RBC (micromol/hr) 
AML5bl': rate of metabolism of chlopyrifos-oxon to TCP by BuChE in blood (micromol/hr) 
AML5br': rate of metabolism of chlopyrifos-oxon to TCP by BuChE in brain (micromol/hr) 
AML5di': rate of metabolism of chlopyrifos-oxon to TCP by BuChE in diaphragm (micromol/hr) 
AML5l': rate of metabolism of chlopyrifos-oxon to TCP by BuChE in liver (micromol/hr) 
AML5rbc': rate of metabolism of chlopyrifos-oxon to TCP by BuChE in RBC (micromol/hr) 
AML6bl': rate of metabolism of chlopyrifos-oxon to TCP by CaE in blood (micromol/hr) 
AML6br': rate of metabolism of chlopyrifos-oxon to TCP by CaE in brain (micromol/hr) 
AML6di': rate of metabolism of chlopyrifos-oxon to TCP by CaE in diaphragm (micromol/hr) 
AML6l': rate of metabolism of chlopyrifos-oxon to TCP by CaE in liver (micromol/hr) 
AML6rbc': rate of metabolism of chlopyrifos-oxon to TCP by CaE in RBC (micromol/hr) 
ATCP: amount of TCP (micromol) 
ATCP': rate of change for TCP formation from all sources (i.e. CYP450, A-EST, B-EST) (micromol/hr)  
B_EST_total_br: Total B-EST in brain (micromol) 
B_EST_total_di: Total B-EST in diaphragm (micromol) 
B_EST_total_l: Total B-EST in liver (micromol) 
B_EST_total_p: Total B-EST in plasma (micromol) 
B_EST_total_rbc: Total B-EST in RBC (micromol) 
BW: body weight for rats (kg) 
CA: chlorpyrifos concentration in arterial blood (micromol/l) 
CA_free: concentration of free chlorpyrifos in arterial blood (micromol/l) 
CAo: concentration of chlorpyrifos-oxon in arterial blood (micromol/l) 
CAo_bound: concentration of bound chlorpyrifos-oxon in arterial blood (micromol/l) 
CAo_free: concentration of free chlorpyrifos-oxon in arterial blood (micromol/l) 
Cbl: chlorpyrifos concentration in blood (micromol/l) 
Cbl': rate of change in mixed blood.  
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Cblo: concentration of chlorpyrifos-oxon in blood (micromol/l) 
Cblo': rate of change in concentration of chlorpyrifos-oxon in blood (micromol/l/hr) 
Cblo_bound: Concentration of bound chlorpyrifos-oxon in mixed blood compartment (micromol/l) 
Cblo_free: concentration of free chlorpyrifos-oxon in blood (micromol/l) 
Cbr: chlorpyrifos concentration in brain (micromol/l) 
Cbr': rate of change of chlorpyrifos concentration in brain (micromol/l/hr) 
Cbro: chlorpyrifos-oxon concentration in brain (micromol/l) 
Cbro': rate of change of chlorpyrifos-oxon concentration in brain (micromol/l/hr) 
Cdi: chlorpyrifos concentration in diaphragm (micromol/l) 
Cdi': rate of change in chlorpyrifos concentration in diaphragm (micromol/l/hr) 
Cdio: chlorpyrifos-oxon concentration diaphragm (micromol/l) 
Cdio': rate of change in chlorpyrifos-oxon concentration in diaphragm (micromol/l/hr) 
Cf: chlorpyrifos concentration in fat (micromol/l) 
Cf': rate of change in chlorpyrifos concentration in fat (micromol/l/hr) 
Cfo: chlorpyrifos-oxon concentration in fat (micromol/l) 
Cfo': rate of change in chlorpyrifos-oxon concentration in fat (micromol/l/hr) 
Cl: concentration of chlorpyrifos in liver (micromol/l) 
Cl': rate of change in concentration of chlorpyrifos in liver (micromol/l/hr)  
Clo: concentration of chlorpyrifos-oxon in liver (micromol/l) 
Clo': rate of change in concentration of chlorpyrifos-oxon in liver (micromol/l/hr) 
Cr: chlorpyrifos concentration in rapidly perfused tissues (micromol/l) 
Cr': rate of change in chlorpyrifos concentration in rapid perfused (micromol/l/hr) 
Cro: chlorpyrifos-oxon concentration in rapidly perfused tissues (micromol/l) 
Cro': rate of change in chlorpyrifos-oxon concentration in rapid perfused (micromol/l/hr) 
Cs: chlorpyrifos concentration in slowly perfused tissues (micromol/l) 
Cs': rate of change in chlorpyrifos concentration in slowly perfused tissues (micromol/l/hr) 
Cso: chlorpyrifos-oxon concentration in slowly perfused tissues (micromol/l) 
Cso': rate of change in chlorpyrifos-oxon concentration in slowly perfused tissues (micromol/l/hr) 
CTCPbl: blood concentration of TCP (micromol/hr)  
CV: total in chlorpyrifos concentration in venous blood (micromol/l) 
CV_bound: in chlorpyrifos concentration bound in mixed blood (micromol/l)  
CV_free: total concentration of free chlorpyrifos in mixed venous blood from tissues (micromol/l) 
CVbr_free: concentration of free chlorpyrifos in blood leaving brain (micromol/l) 
CVbro_free: concentration of free chlorpyrifos-oxon in blood leaving brain (micromol/l) 
CVdi_free: concentration of free chlorpyrifos in blood leaving diaphragm (micromol/l) 
CVdio_free: concentration of free chlorpyrifos-oxon in blood leaving diaphragm (micromol/l) 
CVf_free: concentration of free chlorpyrifos in blood leaving fat (micromol/l) 
CVfo_free: concentration of free chlorpyrifos-oxon in blood leaving fat (micromol/l) 
CVl_free: Concentration of free chlorpyrifos in venous blood draining the liver (micromol/l) 
CVlo_free: Concentration of free chlorpyrifos-oxon in venous blood draining the liver (micromol/l) 
CVo: total concentration of chlorpyrifos-oxon in venous blood (micromol/l) 
CVo_free: total concentration of free chlorpyrifos-oxon in mixed venous blood from tissues (micromol/l) 
CVr_free: concentration of free chlorpyrifos in blood leaving rapid perfused tissues (micromol/l) 
CVro_free: concentration of free chlorpyrifos-oxon in blood leaving rapid perfused tissues (micromol/l) 
CVs_free: concentration of free chlorpyrifos in blood leaving slowly perfused tissues (micromol/l) 
CVso_free: concentration of free chlorpyrifos-oxon in blood leaving slowly perfused tissues (micromol/l) 
Diet: Dietary administration of chlorpyrifos (micromol/day)  
Dietexp: Dietary exposure of chlorpyrifos (micromol/hr) 
dose: administered dose of chlorpyrifos (recalculation of units) (micromol/day) 
dose_in: administered dose of chlorpyrifos (mg/kg bw/day) 
EAChEbr: Enzyme activity brain AChE (micromol/kg/hr) 
EAChEdi: Enzyme activity diaphragm AChE (micromol/kg/hr) 
EAChEl: Enzyme activity liver AChE (micromol/kg/hr) 
EAChEp: Enzyme activity plasma AChE (micromol/kg/hr) 
EBuChEbr: Enzyme activity brain BuChE (micromol/kg/hr) 
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EBuChEdi: Enzyme activity diaphragm BuChE (micromol/kg/hr) 
EBuChEl: Enzyme activity liver BuChE (micromol/kg/hr) 
EBuChEp: Enzyme activity plasma BuChE (micromol/kg/hr) 
ECaEbr: Enzyme activity brain CaE (micromol/kg/hr) 
ECaEdi: Enzyme activity diaphragm CaE (micromol/kg/hr) 
ECaEl: Enzyme activity liver CaE (micromol/kg/hr) 
ECaEp: Enzyme activity plasma CaE (micromol/kg/hr) 
Fa: Fractional absorption (%) 
FBc: plasma protein binding for chlorpyrifos (%) 
FBo: plasma protein binding for chlorpyrifos-oxon (%) 
Gavage: Gavage administration of chlorpyrifos (micromol) 
Gavage_in: Gavage administration of chlorpyrifos (mg/kg bw) 
IAAChEbr: initial amount of esterase binding sites brain, AChE (micromol) 
IAAChEdi: Initial amount of esterase binding sites diaphragm, AChE (micromol) 
IAAChEl: Initial amount of esterase binding sites liver, AChE (micromol) 
IAAChEp: Initial amount of esterase binding sites plasma, AChE (micromol) 
IAAChErbc: Initial amount of esterase binding sites RBC, AChE (micromol) 
IABuChEbr: initial amount of esterase binding sites brain, BuChE (micromol) 
IABuChEdi: Initial amount of esterase binding sites diaphragm, BuChE (micromol) 
IABuChEl: Initial amount of esterase binding sites liver, BuChE (micromol) 
IABuChEp: Initial amount of esterase binding sites plasma, BuChE (micromol) 
IABuChErbc: Initial amount of esterase binding sites RBC, BuChE (micromol) 
IACaEbr: initial amount of esterase binding sites brain, CaE (micromol) 
IACaEdi: Initial amount of esterase binding sites diaphragm, CaE (micromol) 
IACaEl: Initial amount of esterase binding sites liver, CaE (micromol) 
IACaEp: Initial amount of esterase binding sites plasma, CaE (micromol) 
IACaErbc: Initial amount of esterase binding sites RBC, CaE (micromol) 
INactive_AChEbr: amount of inactivated AChE in brain (micromol)   
INactive_AChEbr': rate of change in amount of AChE that is inactivated in brain (micromol/hr) 
INactive_AChEdi: amount of inactivated AChE in diaphragm (micromol) 
INactive_AChEdi: rate of change in amount of AChE that is inactivated in diaphragm (micromol/hr) 
INactive_AChEl: amount of inactivated AChE in liver (micromol) 
INactive_AChEl': rate of change in amount of AChE that is inactivated in liver (micromol/hr) 
INactive_AChEp: amount of inactivated AChE in plasma (micromol) 
INactive_AChEp': rate of change in amount of AChE that is inactivated in plasma (micromol/hr) 
INactive_AChErbc: amount of inactivated AChE in red blood cells (micromol) 
INactive_AChErbc': rate of change in amount of AChE that is inactivated in RBC (micromol/hr) 
INactive_BuChEbr: amount of inactivated BuChE in brain (micromol) 
INactive_BuChEbr: rate of change in amount of BuChE that is inactivated in brain (micromol/hr) 
INactive_BuChEdi: amount of inactivated BuChE in diaphragm (micromol) 
INactive_BuChEdi': rate of change in amount of BuChE that is inactivated in diaphragm (micromol/hr) 
INactive_BuChEl: amount of inactivated BuChE in liver (micromol) 
INactive_BuChEl': rate of change in amount of BuChE that is inactivated in liver (micromol/hr) 
INactive_BuChEp: amount of inactivated BuChE in plasma (micromol) 
INactive_BuChEp': rate of change in amount of BuChE that is inactivated in plasma (micromol/hr) 
INactive_BuChErbc: amount of inactivated BuChE in RBC (micromol) 
INactive_BuChErbc': rate of change in amount of BuChE that is inactivated in RBC (micromol/hr) 
INactive_CaEbr: amount of inactivated CaE in brain (micromol) 
INactive_CaEbr': rate of change in amount of CaE that is inactivated in brain (micromol/hr) 
INactive_CaEdi: amount of inactivated CaE in diaphragm (micromol) 
INactive_CaEdi': rate of change in amount of CaE that is inactivated in diaphragm (micromol/hr) 
INactive_CaEl: amount of inactivated CaE in liver (micromol) 
INactive_CaEl': rate of change in amount of CaE that is inactivated in liver (micromol/hr) 
INactive_CaEp: amount of inactivated CaE in plasma (micromol) 
INactive_CaEp': rate of change in amount of CaE that is inactivated in plasma (micromol/hr) 
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INactive_CaErbc: amount of inactivated CaE in RBC (micromol) 
INactive_CaErbc': rate of change in amount of CaE that is inactivated in RBC (micromol/hr) 
Inhib_AChEbr: % AChE inhibition in brain 
Inhib_AChEdi: % AChE inhibition in diaphragm 
Inhib_AChEl: % AChE inhibition in liver 
Inhib_AChEp: % AChE inhibition in plasma 
Inhib_AChErbc: % AChE inhibition in RBC 
Inhib_BuChEbr: % BuChE inhibition in brain 
Inhib_BuChEdi: % BuChE inhibition in diaphragm 
Inhib_BuChEl: % BuChE inhibition in liver 
Inhib_BuChEp: % BuChE inhibition in plasma 
Inhib_CaEbr: % CaE inhibition in brain 
Inhib_CaEdi: % CaE inhibition in diaphragm 
Inhib_CaEl: % CaE inhibition in liver 
Inhib_CaEp: % CaE inhibition in plasma 
Inhib_ChEp_total: % total cholinesterase inhibition in plasma 
Inhib_ChErbc_total: % total cholinesterase inhibition in RBC 
Inhib_tot_br: % total B-EST inhibition in brain 
Inhib_tot_di: % total B-EST inhibition in diaphragm 
Inhib_tot_l: % total B-EST inhibition in liver 
Inhib_tot_p: % total B-EST inhibition in plasma 
Inhib_tot_rbc: % total B-EST inhibition in RBC 
Init AAChEbr:  initial amount of esterase binding sites brain, AChE (micromol) 
Init AAChEdi: Initial amount of esterase binding sites diaphragm, AChE (micromol)  
Init AAChEl: Initial amount of esterase binding sites liver, AChE (micromol) 
Init AAChEp: Initial amount of esterase binding sites plasma, AChE (micromol) 
Init AAChErbc: Initial amount of esterase binding sites RBC, AChE (micromol) 
Init ABuChEbr: initial amount of esterase binding sites brain, BuChE (micromol) 
Init ABuChEdi: Initial amount of esterase binding sites diaphragm, BuChE (micromol) 
Init ABuChEl: Initial amount of esterase binding sites liver, BuChE (micromol) 
Init ABuChEp: Initial amount of esterase binding sites plasma, BuChE (micromol) 
Init ABuChErbc: Initial amount of esterase binding sites RBC, BuChE (micromol) 
Init ACaEbr: initial amount of esterase binding sites brain, CaE (micromol) 
Init ACaEdi: Initial amount of esterase binding sites diaphragm, CaE (micromol) 
Init ACaEl: Initial amount of esterase binding sites liver, CaE (micromol) 
Init ACaEp: Initial amount of esterase binding sites plasma, CaE (micromol) 
Init ACaErbc: Initial amount of esterase binding sites RBC, CaE (micromol) 
Init AML1: Initial amount of free chlorpyrifos metabolised to chlorpyrifos-oxon by hepatic CYP450 (micromol) 
Init AML2: Initial amount of free chlorpyrifos metabolised to TCP by hepatic CYP450 (micromol) 
Init AML3bl: Initial amount of chlorpyrifos-oxon metabolised to TCP by A-EST in blood (micromol) 
Init AML3l: Initial amount of chlorpyrifos-oxon metabolised to TCP by A-EST in liver (micromol) 
Init AML4bl: Initial amount of chlorpyrifos-oxon metabolised to TCP by AChE in blood (micromol) 
Init AML4br: Initial amount of chlorpyrifos-oxon metabolised to TCP by AChE in brain (micromol) 
Init AML4di: Initial amount of chlorpyrifos-oxon metabolised to TCP by AChE in diaphragm (micromol) 
Init AML4l: Initial amount of chlorpyrifos-oxon metabolised to TCP by AChE in liver (micromol) 
Init AML4rbc: initial amount of TCP from metabolism by AChE in RBC (micromol) 
Init AML5bl: Initial amount of chlorpyrifos-oxon metabolised to TCP by BuChE in blood (micromol) 
Init AML5br: Initial amount of chlorpyrifos-oxon metabolised to TCP by BuChE in brain (micromol) 
Init AML5di: Initial amount of chlorpyrifos-oxon metabolised to TCP by BuChE in diaphragm (micromol) 
Init AML5l: Initial amount of chlorpyrifos-oxon metabolised to TCP by BuChE in liver (micromol) 
Init AML5rbc: initial amount of TCP from metabolism by BuChE in RBC (micromol) 
Init AML6bl: Initial amount of chlorpyrifos-oxon metabolised to TCP by CaE in blood (micromol) 
Init AML6br: Initial amount of chlorpyrifos-oxon metabolised to TCP by CaE in brain (micromol) 
Init AML6di: Initial amount of chlorpyrifos-oxon metabolised to TCP by CaE in diaphragm (micromol) 
Init AML6l: Initial amount of chlorpyrifos-oxon metabolised to TCP by CaE in liver (micromol) 
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Init AML6rbc: initial amount of TCP from metabolism by CaE in RBC (micromol)  
Init ATCP: Initial amount of TCP (micromol) 
Init C: initial in chlorpyrifos concentration (micromol/l) 
Init Cbl: initial chlorpyrifos concentration in blood (micromol/l) 
Init Cblo: Initial concentration of chlorpyrifos-oxon in blood (micromol/l) 
Init Cbr: initial chlorpyrifos concentration in brain (micromol/l) 
Init Cbro: initial chlorpyrifos-oxon concentration in brain (micromol/l) 
Init Cdi: initial chlorpyrifos concentration in diaphragm (micromol/l) 
Init Cdio: Initial chlorpyrifos-oxon concentration diaphragm (micromol/l) 
Init Cf: initial chlorpyrifos concentration in fat (micromol/l) 
Init Cfo: initial chlorpyrifos-oxon concentration in fat (micromol/l) 
Init Cl: initial concentration of chlorpyrifos in liver (micromol/l) 
Init Clo: initial concentration of chlorpyrifos-oxon in liver (micromol/l) 
Init Cr: initial chlorpyrifos concentration in rapidly perfused tissues (micromol/l) 
Init Cro: initial chlorpyrifos-oxon concentration in rapidly perfused tissues (micromol/l) 
Init Cs: initial chlorpyrifos concentration in slowly perfused tissues (micromol/l) 
Init Cso: initial chlorpyrifos-oxon concentration in slowly perfused tissues (micromol/l) 
Init INactive_AChEbr: initial amount of inactivated AChE in brain (micromol)   
Init INactive_AChEdi: initial amount of inactivated AChE in diaphragm (micromol) 
Init INactive_AChEl: initial amount of inactivated AChE in liver (micromol) 
Init INactive_AChEp: initial amount of inactivated AChE in plasma (micromol) 
Init INactive_AChErbc: initial amount of inactivated AChE in red blood cells (micromol) 
Init INactive_BuChEbr: initial amount of inactivated BuChE in brain (micromol) 
Init INactive_BuChEdi: initial amount of inactivated BuChE in diaphragm (micromol) 
Init INactive_BuChEl: initial amount of inactivated BuChE in liver (micromol) 
Init INactive_BuChEp: initial amount of inactivated BuChE in plasma (micromol) 
Init INactive_BuChErbc: initial amount of inactivated BuChE in RBC (micromol) 
Init INactive_CaEbr: initial amount of inactivated CaE in brain (micromol) 
Init INactive_CaEdi: initial amount of inactivated CaE in diaphragm (micromol) 
Init INactive_CaEl: initial amount of inactivated CaE in liver (micromol) 
Init INactive_CaEp: initial amount of inactivated CaE in plasma (micromol) 
Init INactive_CaErbc: initial amount of inactivated CaE in RBC (micromol) 
Init Input_l: initial amount of chlorpyrifos to liver from diet and gavage (micromol) 
Init Intes: initial amount absorbed in intestine (micromol) 
Init Oral: initial amount absorbed in liver from gastrointestinal tract (micromol) 
Init Oral_abs: Initial amount of chlorpyrifos absorbed oral, gavage (micromol) 
Init Stom: initial amount absorbed in stomach (micromol) 
Init TCP_form: initial amount of TCP formed (micromol) 
Init TCPexc: initial urinary excretion of TCP (micromol) 
Input_l': rate of total input of chlorpyrifos to liver from diet and gavage (micromol/hr) 
Intes': Absorption rate in intestine (micromol/hr) 
Ka1: aging time, AChE (1/hr) 
Ka10: aging time, CaE (1/hr) 
Ka6: aging time, BuChE (1/hr) 
KaI: rate constant, absorption in intestine (1/hr) 
KaS: rate constant, absorption in stomach (1/hr) 
Kd1: enzyme degradation rate brain AChE (1/hr) 
Kd10: enzyme degradation rate brain CaE (1/hr) 
Kd11: enzyme degradation rate diaphragm CaE (1/hr) 
Kd12: enzyme degradation rate liver CaE (1/hr) 
Kd13: enzyme degradation rate plasma CaE (1/hr) 
Kd2: enzyme degradation rate diaphragm AChE (1/hr) 
Kd3: enzyme degradation rate liver AChE (1/hr) 
Kd4: enzyme degradation rate plasma AChE (1/hr) 
Kd5: enzyme degradation rate RBC AChE (1/hr) 
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Kd6: enzyme degradation rate brain BuChE (1/hr) 
Kd7: enzyme degradation rate diaphragm BuChE (1/hr) 
Kd8: enzyme degradation rate liver BuChE (1/hr) 
Kd9: enzyme degradation rate plasma BuChE (1/hr) 
Ke: 1. order elimination constant, urinary elimination of TCP (1/hr) 
Ki1: bimolecular inhibition rate all tissues AChE (1/(microM*hr)) 
Ki10: bimolecular inhibition rate brain CaE (1/(microM*hr)) 
Ki11: bimolecular inhibition rate diaphragm CaE (1/(microM*hr)) 
Ki12: bimolecular inhibition rate liver CaE (1/(microM*hr)) 
Ki13: bimolecular inhibition rate all plasma CaE (1/(microM*hr)) 
Ki5: bimolecular inhibition rate RBC AChE (1/(microM*hr)) 
Ki6: bimolecular inhibition rate all tissues BuChE (1/(microM*hr)) 
Km1: Michaelis-Menten constant for metabolism of chlorpyrifos to chlorpyrifos-oxon (liver) by CYP450 
(micromol/l) 
Km2: Michaelis-Menten constant for metabolism of chlorpyrifos to TCP (liver) by CYP450 (micromol/l) 
Km3: Michaelis-Menten constant for saturable process. A-EST chlorpyrifos-oxon to TCP (liver) (micromol/l) 
Km4: Michaelis-Menten constant for saturable process. A-EST chlorpyrifos-oxon to TCP (blood) (micromol/l) 
Kr1: reactivation rate, AChE (1/hr) 
Kr10: reactivation rate, CaE (1/hr) 
Kr5: reactivation rate, RBC AChE (1/hr) 
Kr6: reactivation rate, BuChE (1/hr) 
KsAChEbr: zero order synthesis rate of brain AChE (micromol/hr) 
KsAChEdi: zero order synthesis rate of diaphragm AChE (micromol/hr) 
KsAChEl: zero order synthesis rate of liver AChE (micromol/hr) 
KsAChEp: zero order synthesis rate of plasma AChE (micromol/hr) 
KsAChErbc: zero order synthesis rate of RBC AChE (micromol/hr) 
KsBuChEbr: zero order synthesis rate of brain BuChE (micromol/hr) 
KsBuChEdi: zero order synthesis rate of diaphragm BuChE (micromol/hr) 
KsBuChEl: zero order synthesis rate of liver BuChE (micromol/hr) 
KsBuChEp: zero order synthesis rate of plasma BuChE (micromol/hr) 
KsBuChErbc: zero order synthesis rate of RBC BuChE (micromol/hr) 
KsCaEbr: zero order synthesis rate of brain CaE (micromol/hr) 
KsCaEdi: zero order synthesis rate of diaphragm CaE (micromol/hr) 
KsCaEl: zero order synthesis rate of liver CaE (micromol/hr) 
KsCaEp: zero order synthesis rate of plasma CaE (micromol/hr) 
KsCaErbc: zero order synthesis rate of RBC CaE (micromol/hr) 
KsI: rate constant, transfer stomach-intestine (1/hr) 
kzero: zero-order uptake rate (micromol/hr)  
Mc: molecular weight for chlorpyrifos (mg/micromol) 
Oral_abs': rate of oral absorption of chlorpyrifos is equal to sum of absorption rates from Stomach (Stom) 
and intestine (Intes) (micromol/hr) 
Oral_adm: Dietary administeration of chlorpyrifos (mg/kg bw/day) 
PCbl: blood:blood partition coefficient for chlorpyrifos  
PCblo: blood:blood partition coefficient for chlorpyrifos-oxon (from Timchalk et al., 2007 supplemental data)  
PCbrc: brain:blood partition coefficient  
PCbro: brain:blood partition coefficient for chlorpyrifos-oxon 
PCdic: diaphragm:blood partition coefficient  
PCdio: diaphragm:blood partition coefficient for chlorpyrifos-oxon 
PCfc: fat:blood partition coefficient 
PCfo: fat:blood partition coefficient for chlorpyrifos-oxon 
PClc: liver:blood partition coefficient 
PClo: liver:blood partition coefficient for chlorpyrifos-oxon 
PCrc: rapidly perfused tissue:blood partition coefficient 
PCro: rapidly perfused tissue:blood partition coefficient for chlorpyrifos-oxon 
PCsc: slowly perfused tissue:blood partition coefficient  
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PCso: slowly perfused tissue:blood partition coefficient for chlorpyrifos-oxon 
PEbl: blood percentage of body weight (%) 
PEbr: brain percentage of body weight (%) 
PEdi: diaphragm percentage of body weight (%) 
PEf: fat percentage of body weight (%) 
PEl: liver percentage of body weight (%) 
PEr: rapidly perfused tissues percentage of body weight (%) 
PEs: slowly perfused tissues percentage of body weight (%) 
Qbr: blood flow to brain (l/hr) 
Qbrc: blood flow in brain as percentage of cardiac output (%) 
QC: cardiac output (l/hr) 
Qdi: blood flow to diaphragm (l/hr) 
Qdic: blood flow in diaphragm as percentage of cardiac output (%) 
Qf: blood flow to fat (l/hr) 
Qfc: blood flow in fat as percentage of cardiac output (%) 
Ql: blood flow to liver (l/hr) 
Qlc: blood flow in liver as percentage of cardiac output (%) 
Qr: blood flow to rapidly perfused tissues (l/hr) 
Qrc: blood flow in rapidly perfused tissues as percentage of cardiac output (%) 
Qs: blood flow to slowly perfused tissues (l/hr) 
Qsc: blood flow in slowly perfused tissues as percentage of cardiac output (%) 
R: dosing intervals 
Repeat_exp: repeated dietary exposure (micromol/hr) 
Repeated: time over which the dosage is repeated  
Stom': absorption rate in stomach (micromol/hr) 
Stom: amount of chlorpyrifos in stomach (micromol) 
TCP_form': rate of formation of TCP (micromol/hr) 
TCPexc': rate of urinary excretion of TCP (micromol/hr) 
TCPexc: urinary excretion of TCP (micromol) 
TOTAL: total amount of chlorpyrifos delivered to tissues or excreted (micromol) 
total_massCPF: total mass of chlorpyrifos (micromol) 
total_massOxon: total mass of chlorpyrifos-oxon (micromol) 
total_massTCP: total mass of TCP (micromol) 
TRAChE: enzyme turnover rate AChE (enzyme hydrolysed/hr) 
TRBuChE: enzyme turnover rate BuChE (enzyme hydrolysed/hr) 
TRCaE: enzyme turnover rate CaE (enzyme hydrolysed/hr) 
Va: volume of arterial blood (l) 
Vac: volume of arterial blood as percentage of body weight (%) 
Vbl: volume of blood (l) 
Vblc: volume of blood as percentage of body weight (%)  
Vbr: volume of brain (l)  
Vbrc: volume of brain as percentage of body weight (%) 
Vd: volume of distribution (l) 
Vdi: volume of diaphragm (l) 
Vdic: volume of diaphragm as percentage of body weight (%) 
Vf: volume of fat (l) 
Vfc: volume of fat as percentage of body weight (%) 
Vl: volume of liver (l) 
Vlc: volume of liver as percentage of body weight (%) 
Vmax1: Maximum rate (velocity) for metabolism of chlorpyrifos to chlorpyrifos-oxon by CYP450 (micromol/hr) 
Vmax2: Maximum rate (velocity) for metabolism of chlorpyrifos to TCP by CYP450 (micromol/hr) 
Vmax3: Maximum rate (velocity) for metabolism of chlorpyrifos-oxon to TCP by CYP450 in liver (micromol/hr) 
Vmax4: Maximum rate (velocity) for metabolism of chlorpyrifos-oxon to TCP by CYP450 in blood 
(micromol/hr) 
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VmaxC1: Maximum rate for metabolism of chlorpyrifos to chlorpyrifos-oxon per kg body weight (liver) 
(micromol/hr/kg) 
VmaxC2: Maximum rate for metabolism of chlorpyrifos to TCP per kg body weight (liver) (micromol/hr/kg) 
VmaxC3: Maximum rate for metabolism of chlorpyrifos-oxon to TCP in liver per kg body weight 
(micromol/hr/kg) 
VmaxC4: Maximum rate for metabolism of chlorpyrifos-oxon to TCP in blood per kg body weight 
(micromol/hr/kg) 
Vr: volume of rapidly perfused tissue (l) 
Vrc: volume of rapidly perfused tissue as percentage of body weight (%) 
Vs: volume of slowly perfused tissues (l) 
Vsc: volume of slowly perfused tissues as percentage of body weight (%) 
Vv: volume of venous blood (l) 
Vvc: volume of venous blood as percentage of body weight (%) 
Wbl: weight of blood (kg) 
Wbr: weight of brain (kg) 
Wdi: weight of diaphragm (kg) 
Wf: weight of fat (kg) 
Wl: weight of liver (kg) 
Wr: weight of rapidly perfused tissues (kg) 
Ws: weight of slowly perfused tissues (kg) 
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APPENDIX III. REVIEW PAPER 

Trine Klein Reffstrup, John Christian Larsen, Otto Meyer, 2010. Risk assessment of mixtures of 
pesticides. Current approaches and future strategies. Regul. Toxicol. Pharmacol., 56, 174-192. 
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a b s t r a c t

The risk assessment of pesticide residues in food is based on toxicological evaluation of the single com-
pounds and no internationally accepted procedure exists for evaluation of cumulative exposure to multi-
ple residues of pesticides in crops, except for a few groups of pesticides sharing a group ADI. However,
several attempts have been suggested during the last decade. This paper gives an overview of the various
approaches. It is of paramount importance to consider whether there will be either no interaction or
interaction between the compounds in the mixture. When there are no interactions several approaches
are available for the risk assessment of mixtures of pesticides. However, no single simple approach is
available to judge upon potential interactions at the low doses that humans are exposed to from pesticide
residues in food. In these cases, PBTK models could be useful as tools to assess combined tissue doses and
to help predict potential interactions including thresholds for such effects. This would improve the qual-
ity of the risk assessment.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

During the last decades there has been increasing focus on the
fact that humans are concurrently exposed to a number of chemi-
cals via food and environment. These chemicals may have a com-
bined action that causes a lower or higher toxic effect than would
be expected from knowledge about the single compounds (Larsen
et al., 2003). Consequently, combined actions need to be addressed
in the risk assessment process. This paper will focus on risk assess-
ment of combined actions of pesticide residues in food.

Ideally, the evaluation of the toxicological properties of a pesti-
cide mixture requires detailed information on the composition of
the mixture and the mechanism of action of each of the individual
compounds. In order to perform a risk assessment, proper expo-
sure data are also needed, however, such detailed information is
normally not available. The mixture of pesticide residues that a
person would be exposed to via the food chain may change over
time in composition and quantity. Adequate testing of mixtures
is often not possible because the number of theoretical possible
combinations is enormous and furthermore the use of a sufficient
number of dose levels is not feasible. A full study design would re-
quire 2n � 1 test groups to identify interactions between all com-
pounds of interest (n is the number of chemicals in the mixture).
In addition, high-dose levels of a pesticide mixture as used in tox-
ll rights reserved.

rup), jchla@food.dtu.dk (J.C.
icological studies may have different types of effects than low dose
levels.

One of the main points to consider is whether there will be
either no interaction or interaction in the form of either synergism
or antagonism. These basic principles of combined actions of
chemical mixtures are purely theoretical and one often has to deal
with more than one of the concepts at the same time when mix-
tures consist of more than two compounds and when the toxicity
targets are more complex.

During the last two decades several suggestions have been
published on how to perform risk assessment on mixtures of pes-
ticides. In 1986 the Environmental Protection Agency in USA (US
EPA) published a guideline for health risk assessment of chemical
mixtures (US EPA, 1986). However, what really put focus on this
topic was the Food Quality Protection Act of 1996 which in rela-
tion to pesticide residues requires US EPA to consider ‘‘available
information concerning the cumulative effects of such residues
and other substances that have a common mechanism of toxicity”
(United States of America in Congress, 1996). Since then US EPA
has published several reports and guidelines on health risk
assessment of chemical mixtures (US EPA, 1999a, 2000, 2002,
2003).

The Agency for Toxic Substances and Disease Registry in USA
(ATSDR) has published two guidelines with instructions to users
on how to apply current methodologies for risk assessment of
combined actions of chemicals (ATSDR, 2001, 2004). In 2002 the
Health Council of The Netherlands as well as the Committee on
Toxicity of Chemicals in Food, Consumer Products and the Environ-
ment in United Kingdom published advisory reports (Committee
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on Toxicity, 2002; Feron et al., 2004; Health Council of the Nether-
lands, 2002).

The Danish Veterinary and Food Administration has published
the reports ‘‘Combined Actions of Pesticides in Food” (Reffstrup,
2002) and ‘‘Combined Actions and Interactions of Chemicals in
Mixtures” (Larsen et al., 2003) which summarised and evaluated
the present knowledge about combined toxic effects of mixtures
of chemicals. One of the main conclusions was that the existing
methods were uncertain and rough.

Since then, several international initiatives have been taken in
order to more closely explore what approaches can be used to eval-
uate chemical mixtures. Most notably, the European Food Safety
Authority (EFSA) organised a workshop on cumulative risk assess-
ment in 2006 (EFSA, 2007) and more recently the Norwegian Scien-
tific Committee for Food Safety and EFSA have published opinions
on risk assessment of combined actions on chemicals (EFSA, 2008;
Norwegian Scientific Committee for Food Safety, 2008).

These organizations and workshops recommended to introduce
physiologically based toxicokinetic (PBTK) modelling as a tool in
the risk assessment of chemical mixtures. These models can be
used as a technique for prediction of internal dose levels and there-
by it can be useful in for instance predicting kinetic overload and
levels at the target site. The models require a large amount of data
for construction and therefore they should only be used for higher
tier assessment. However, when the models are constructed and
evaluated they can reduce the need for data on specific scenarios.
2. Types of combined actions

The basic types of combined action of compounds are either no
interaction in the form of simple similar action (dose addition) and
simple dissimilar action (response addition) or combined effect
with interaction (antagonism, synergism). Many terms have been
used for additivity, but it seems as the terminology that has be-
come fairly common includes the terms simple similar action
and simple dissimilar action to describe additivity (Teuschler,
2007).

2.1. No interactions

The model for simple similar action (synonyms: dose additivity,
Loewe additivity) assumes that the compounds in the mixture be-
have as if they are dilutions of each other (Krishnan et al., 1997;
Svendsgaard and Hertzberg, 1994). This means that the com-
pounds act on the same biological site by the same mechanism/
mode of action and differ only in their potencies. The dose–re-
sponse curves for the single compounds in a mixture are allowed
to be nonparallel (on a linear-log graph). (Svendsgaard and Greco,
1995).

The theoretical basis for the simple dissimilar action (syn-
onyms: response additivity, Bliss independence) is probabilistic
independence. This means that the compounds in the mixture do
not interfere with each other but they all contribute to a common
result. The model assumes that the compounds in the mixture do
not act by the same mode of action and the nature and site of ac-
tion may also differ among the compounds.

2.2. Interactions

Interactions are defined as combined actions resulting in a
stronger (synergism) or weaker (antagonism) effect than would
be expected based on the assumption of additivity. Interactions
can be divided into direct chemical–chemical, toxicokinetic or tox-
icodynamic actions (ATSDR, 2001; Norwegian Scientific Committee
for Food Safety, 2008).
In direct chemical–chemical interactions, one chemical inter-
acts directly with another chemical causing a chemical change
which will lead to a change in the toxicity causing a stronger or
weaker effect. Toxicokinetic-based interactions may result in ef-
fects on absorption, distribution, metabolism or elimination of
the compounds. Toxicokinetic-based interaction is of particular
concern when it results in an increase in the internal dose of the
active form of another compound. Toxicodynamic interactions oc-
curs when the presence of two (or more) compounds change the
response without affecting the tissue dose of each of the com-
pounds. They occur at the cellular receptor site, or target molecule,
or among receptor sites or targets. When interaction takes place at
the same receptor site this usually results in antagonism.

It is difficult to predict interactions leading to toxicity at very
low exposure levels. Knowledge about combined actions has nor-
mally been obtained for considerably higher concentrations than
for the levels actually found in food and it is often unclear whether
knowledge about the combined action at higher concentrations are
relevant for the low exposure level. For example a combined toxic
action observed at high dose level may be based on mechanism
that is not relevant at low dose levels and high to low-dose extrap-
olation may be meaningless (Borgert et al., 2004). Overall, interac-
tions appear less often at relatively low exposure levels compared
to high exposure levels since they are primarily caused by various
thresholds and saturation phenomenon (saturation of activating,
detoxification or reparative processes). The main mode of toxico-
logic interaction is the alteration of the toxicokinetic process,
which strongly depends on the exposure levels of the compounds
in the mixture (US EPA, 2000). Slikker et al. (2004) have given
examples in which dose-dependent transition in the underlying ki-
netic and/or dynamic factors behind the toxicity occurs. It is often
difficult to interpret effects at high dose levels in animal studies
and the results may not reflect the actual toxicity at relevant hu-
man exposure levels. This is particularly the case if dose-depen-
dent transitions in the principal mechanism of toxicity occur
(Slikker et al., 2004).
2.3. Early experimental work on mixture toxicology

From the results of experimental short-term toxicity studies
Feron and co-workers concluded that combined exposure to arbi-
trarily chosen chemicals demonstrated less than an additive effect
when all chemicals in the mixture were administrated at their own
individual no observed adverse effect levels (NOAELs) whereas no
clear evidence of toxicity was found at slightly lower dose levels.
The examined compounds had either different target organs and/
or differed in the mode of action. Exposure levels at or below the
individual NOAELs of the compounds in a mixture are therefore
not expected to be associated with a greater hazard than exposure
to the individual chemicals. However, both synergistic and antag-
onistic effects may be seen at exposure levels higher than the NOA-
ELs (Feron et al., 1995b; Groten et al., 1997; Jonker et al., 1990,
1993, 1996).

The Dutch research group was of the opinion that the use of the
‘‘dose addition” approach to the risk assessment of chemical mix-
tures is only scientifically justifiable when the chemicals in the
mixture act in the same way, by the same mechanism and thus dif-
fer only in their potencies. Application of the ‘‘dose addition” mod-
el to mixtures of chemicals that act by mechanisms for which the
additivity assumptions are invalid could greatly overestimate the
risk (Cassee et al., 1998; Feron et al., 1995a). This group found it
reasonable to use the approaches based on toxicological similarity
and toxicological independency for risk assessment of pesticide
residues in food since these compounds are found at levels well be-
low the NOAELs for the compounds.
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However, the group did not define the criteria used to judge
whether two compounds in a mixture share a common mode of ac-
tion. This means that when looking on the same data other scien-
tists may come to another conclusion as to whether the
compounds are similar with respect to mode of action. Therefore
the results from these studies are not totally unambiguous.
3. Methods for risk assessment of mixtures of pesticides in
foods

Various approaches have been suggested in the scientific litera-
ture for use in the evaluation of the health risks from exposure to
mixtures of chemicals but there is no internationally accepted pro-
cedure. The most important approaches are summarised in this
section.

The first step in the cumulative risk assessment of mixtures is to
identify a group of compounds that induce a common toxic effect
by a common mechanism of toxicity. US EPA has described a pro-
cedure for that in ‘‘Guidance for identifying pesticide chemicals
and other substances that have a common mechanism of toxicity”
(US EPA, 1999a). In this guidance US EPA defined a common mech-
anism to be caused ‘‘by the same, or essentially the same, sequence
of major biochemical events”. This definition is equivalent to the
definition of the term mode of action (US EPA, 2002). In other re-
ports US EPA distinguished between mechanism of action and
mode of action: The term mode of action describes the key events
and processes starting with interaction of a compound with a cell
via operational and anatomical changes, resulting in the toxic ef-
fect. Mechanism of action implies a more detailed understanding
and description of steps at the molecular level (US EPA, 2000,
2005).

The International Life Sciences Institute (ILSI) convened a group
of experts to consider the definition of the term common mecha-
nism. They concluded that chemicals act via a common mechanism
of toxicity if they cause the same critical effect, act on the same
molecular target issue, act by the same biochemical mechanism
of action, or share a common toxic intermediate (Botham et al.,
1999; Mileson et al., 1998).

ATSDR do not define the terms mode of action and mechanism
of action. However, they point out that for mixtures of compounds
that have an effect on the same endpoint by the same mode of ac-
tion dose addition is the most appropriate method (ATSDR, 2001,
2004).

The requirement of knowledge on the mode of action is an
assumption made for the purpose of being able to perform the risk
assessment process for mixtures. However, the theoretical and
empirical basis for the term mode of action has yet to be estab-
lished. Thus, Borgert et al. (2004) have questioned the use of the
mode of action to predict combined actions of mixtures. They sta-
ted that in order to use mechanistic information for predicting
combined action on a scientific basis more research is needed to
better understand how mode of action for individual compounds
is related to the toxicity of the whole mixture and they concluded
that until then the use of mode of action to predict mixture toxicity
will remain tenuous (Borgert et al., 2004). Berenbaum (1989) de-
scribed why interactions cannot usefully be defined as departures
from what is expected from mechanism of action and how one in-
stead should analyse a mixture for departure from additivity rather
than for specific interactions by comparing dose–response infor-
mation for the compounds in the mixture to the observed re-
sponses induced by a specific mixture (Berenbaum, 1989).

Ideally the identification of a group of pesticides for cumulative
risk assessment should be based on criteria providing the best and
most robust grouping such as chemical structure, mechanism of
action, common toxic mode of action or common toxic effect.
Unfortunately, such data are seldom available for all of the com-
pounds of concern. Therefore, EFSA has suggested to group com-
pounds for cumulative assessment even in the absence of such
detailed data and make cumulative assessment groups (CAG)
based on less refined evaluation of the mode of action e.g. only
on target organ toxicity (EFSA, 2008).

The next step is to select an appropriate method and dataset for
combining the risks of the compounds in the group. In 1986, the US
EPA recommended three approaches for health risk assessment of
chemical mixtures (Mumtaz, 1995; US EPA, 1986): (1) the mixture
of concern approach, (2) the similar mixture approach and (3) the
single compounds approach.

The choice of method depends on the toxic effect, the available
data on toxicity of the mixture or the compounds in the mixture,
the predicted interactions among the compounds in the mixture
and on the quality of the exposure data. However, the US EPA
points out that it is ideal to conduct all three assessments when
possible in order to make the best risk assessment and to use all
the available data—in particular the incorporation of interaction
data when available. The uncertainties for the risk assessment
should be clearly discussed and the overall quality of the risk
assessment should be characterised (US EPA, 1986).

3.1. Mixture approaches

The guidance was supplemented in 2000 (US EPA, 2000) and the
flow chart for the different types of mixture assessments shown in
Fig. 1 was suggested. In this new guidance three methods for whole
mixture assessment and four compound-based methods were pre-
sented. The first step in the flow chart is to assess the quality of the
available data of the compounds of interest. When the data are
adequate for an assessment, it should be decided whether there
are data available for an assessment on the whole mixture or only
on the single compounds.

The assessment based on data on whole mixtures can be done
on the mixture of concern, on a sufficiently similar mixture (almost
the same compounds and in almost the same proportions as in the
mixture of concern) or on a group of similar mixtures (same com-
pounds but slightly different ratios, or lacking one or more com-
pounds or having one or more additional compounds compared
with the mixture one wants to evaluate). These assessments would
be the most appropriate for risk assessment of pesticide residues in
food; however, they are very data intensive and data for these
methods are rarely available.

3.2. Single compound approaches

US EPA has proposed guidance on how to perform a risk assess-
ment on a mixture of pesticides that act by a common mechanism
(US EPA, 2002). For mixtures of compounds that are toxicologically
similar, US EPA suggested three methods based on simple similar
action: the hazard index method (HI), the relative potency factor
method (RPF) and the special type of the relative potency factor
method named the toxicity equivalency factor method (TEF) (US
EPA, 2000).

The point of departure index (PODI) has also been suggested for
estimating the risk of a group of compounds which are toxicolog-
ically similar. Also the margin of exposure (MOE) as wells as the
cumulative risk index (CRI) have been suggested. These two meth-
ods are reciprocals of the point of departure and the hazard index,
respectively (US EPA, 2003).

These six methods based on simple similar action differ by the
required data on toxicological processes but in all cases the expo-
sure levels are added after having been multiplied by a scaling fac-
tor that accounts for differences in the toxicological potency (for
instance acceptable daily intake (ADI) or reference dose (RfD)) or
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point of departure doses (e.g. benchmark dose at 10% effect level,
BMD10). For compounds acting independently by simple dissimilar
action the response addition (Bliss independence) approach may
be used, and for compounds that interact, use of interaction hazard
index is applicable (US EPA, 2000).

When making a risk assessment of exposure to a mixture the
need to perform a comprehensive risk assessment should be deter-
mined early in the process and the most appropriate method
should be used (US EPA, 2002). The single compound approaches
are described in more details in the following.
Table 1
Data on three pesticides found as residues in oranges imported to Denmark. The
residues are the highest amount found in oranges in the latest Danish survey from
2005 (Christensen et al., 2006).

Compound Residue
(mg/
kg)

Exposurea

(mg/kg
bw/day)

NOAEL
(mg/
kg bw/
day)

ADI
(mg/
kg bw)

Acute
RfD
(mg/
kg bw)

TEF
(Jensen
et al.,
2003)

Chlorpyrifos 0.19 2.6 � 10�5 1 0.01b 0.1b 1
Methidathion 0.049 6.8 � 10�6 0.1 0.001c 0.01c 0.2
Malathion 0.12 1.7 � 10�5 29 0.3d 2d 2

a Exposure = (residue � intake)/(weight of person), where ‘‘weight of per-
son” = 72 kg and ‘‘intake” (of orange) is 0.01 kg/day (Jensen et al., 2003).

b Chlorpyrifos: ADI and Acute RfD from JMPR (JMPR, 2000).
c Methidathion: ADI from JMPR (JMPR, 1993); Acute RfD from JMPR (JMPR, 1998).
d Malathion: ADI from JMPR (JMPR, 1998); Acute RfD from JMPR (JMPR, 2004). It

should be noted that an ADI for malathion of 0.03 mg/kg bw and an ARfd = 0.3 mg/
kg bw in EU have been set more recently based on the same study but with an
uncertainty factor for 1000 and 100, respectively (EFSA, 2006).
3.3. Hazard index

In the hazard index approach the doses are standardised by
using health-based values such as the ADI. The hazard index is cal-
culated by the following equation:

HI ¼ E1

AL1
þ E2

AL2
þ � � � þ En

ALn
¼
Xn

i¼1

Ei

ALi
ð1Þ

where E1, E2, En and Ei are the levels of exposure of each individual
compound (i) in a mixture of n compounds. AL1, AL2, ALn and ALi are
the maximum acceptable level for each compound. The ‘‘acceptable
level” is often a regulatory goal for exposure to the ith compound
e.g. ADI or RfD (as used by US EPA) (US EPA, 1986, 2000). If the haz-
ard index exceeds 1, the mixture has exceeded the maximum
acceptable level (e.g. ADI or RfD) and there might thus be a risk.
The fractions (E1/AL1 etc.) are sometimes called the hazard quo-
tients, HQ. Since this method is based on an assumption of additiv-
ity it can lead to errors if a synergistic or antagonistic action occurs.

As an example of how to use the HI method we have examined
a mixture of three pesticides, see Table 1. Chlorpyrifos, methidathi-
on and malathion are chosen for the example as they are the three
most frequently found pesticides in the Danish monitoring pro-
gramme (Jensen et al., 2003). All three compounds can be found
in oranges and the residues used in the calculations are the highest
amount found in oranges in the latest Danish survey from 2005
(Christensen et al., 2006). The same uncertainty factor (UF = 100)
was used to derive the ADI for the three compounds. The hazard
index is then calculated from the values of exposure levels and
ADIs given:
HI ¼ 2:6� 10�5

0:01
þ 6:8� 10�6

0:001
þ 1:7� 10�5

0:3
ffi 0:0095

The calculated HI is well below one and the mixture is therefore
not expected to constitute a risk.
3.4. Relative potency factor and toxicity equivalency factor Approach

The relative potency factor method has been applied to mix-
tures of a single class of chemicals for which extensive information
are available for one of the chemicals in the group but less for the
other members. The method assumes simple similar action and
that the potency ratios between each chemical in the group remain
constant at all dose levels. It requires toxicological similarity for
specific conditions i.e. endpoint, route of exposure and duration.
In cases where data indicate that different modes of action may ap-
ply to different target organs or under different exposure condi-
tions or in cases where data are insufficient, endpoint specific
RPFs may be derived for each effect or exposure condition (Advi-
sory Committee on Hazardous Substances, 2007; US EPA, 2000).

The potency of each compound is expressed in relation to the
potency of an index chemical which is typically the most exten-
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sively studied chemical in the mixture. To evaluate a set of data of
combined effects it is necessary to know the dose–response curve
for the index compound and to know the effect of the other com-
pounds in the mixture (Seed et al., 1995; US EPA, 2000).

Recently the RPF method has been used in cumulative risk
assessment of effects of pesticides by combining it with an Inte-
grated Probabilistic Risk Assessment (IPRA) model. The RPF values
were estimated with the use of one or two index compounds and
the RPF for each compound were used to calculate the cumulative
residue level of each sample expressed as equivalents of the index
compound. Then the probabilistic approach was used to calculate
the distribution of the cumulative dietary exposure from consump-
tion data and residue data of a group of pesticides in a population.
The use of this approach has been demonstrated for a group of 40
acetylcholinesterase inhibiting pesticides (Boon and van Klaveren,
2003), for a group of 31 organophosphorus pesticides (Bosgra et al.,
2009) as well as in a study of three anti-androgenic pesticides
(Müller et al., 2009). This method makes it possible to better de-
scribe the uncertainties that are present in the data (Advisory Com-
mittee on Hazardous Substances, 2007).

The toxicity equivalency factor method is a special case of
RPF in which a single TEF is derived for each chemical in the
mixture across all endpoints and all exposure conditions. There-
fore it requires a strong degree of toxicologically similarity as
well as toxicological equivalence across all endpoints, i.e. it is
assumed that all the toxic effects of concern share a common
mode of action (US EPA, 2000). Other assumptions are that
the effects of each compound in the mixture are essentially
additive at sub-maximal levels of exposure and that the dose–
response curves are parallel (Advisory Committee on Hazardous
Substances, 2007; Safe, 1998; US EPA, 2000). The assumptions
for the TEF model imply that a large amount of data is collected
for the group of compounds under evaluation. So far the TEF ap-
proach has only been implied for a few mixtures of pesticides
e.g. for assessment of combined risk from exposure to mixtures
of organophosphorus compounds and carbamates (Boon and van
Klaveren, 2003; Jensen et al., 2003; Mileson et al., 1999; Na-
tional Research Council, 1993).

The TEF method was originally developed during the 1980s to
express the toxicological potency of mixtures of polychlorinated
dibenzo-p-dioxins and dibenzofurans by several authorities (US
EPA, 1989a). According to Safe (1990) TEF values should be derived
from data available for more than one response. These criteria
were used by Safe for deriving TEF values for polychlorinated
biphenyls, dibenzo-p-dioxins, dibenzofurans (‘‘dioxins”) and re-
lated compounds (Safe, 1990). Based on the experience from the
development of TEFs for dioxins in the beginning of the 1990s se-
ven guiding criteria were developed for the TEF approach for appli-
cation to dioxins and dioxin-like compounds (US EPA, 2000). In this
report EPA also described a procedure for developing a RPF ap-
proach for more general use. Similar criteria was used by an expert
meeting organised by WHO in 1997 with the purpose to derive
consensus TEF values for polychlorinated dibenzo-p-dioxins, dib-
enzofurans and dioxinlike polychlorinated biphenyls. They fol-
lowed a ranking order for weighting different types of studies:
in vivo studies were higher ranked than in vitro studies and/or
quantitative structural activity relationship (QSAR) data. In
accordance with the approach used by Safe the studies were then
further ranked due to the type of study (chronic > sub-
chronic > subacute > acute) (Van den Berg et al., 1998). The TEF
values for ‘‘dioxins” were re-evaluated at another WHO meeting
in 2005 (Van den et al., 2006).

The toxicity equivalent (TEQ) concentration is calculated by
multiplying the concentration of each compound (Ci) in a mixture
with the TEF value of the individual compounds in the mixture
(TEFi):
TEQ ¼
X

Ci � TEFi ð2Þ

The resulting TEQ is assumed to be an equivalent concentration
of the index compound and it can therefore be compared to the RfD
of the index compound (Botham et al., 1999). If the TEQ is greater
than the RfD, the mixture may constitute a risk.

In order to improve the application of relative potency factors to
pesticide mixtures US EPA has published a report with information
concerning biological concepts and statistical procedures (US EPA,
2003).

In the following the mixture of three pesticides in Table 1 in
Section 3.3 is used in an example of use of the TEF method. The
TEQ is calculated by the above equation in which the exposure data
(from Table 1) are inserted as the concentration of each compound:

TEQ ¼ðð2:6�10�5�1Þþð6:8�10�6�0:2Þ
þð1:7�10�5�2ÞÞmg=kgbw=dayffi6:1�10�5mg=kgbw=day

The ADI for the index compound chlorpyrifos is 0.01 mg/kg bw/
day (see Table 1) and the TEQ is then a factor of 165 below ADI.
Therefore the mixture is not expected to constitute a risk. In this
example the uncertainty factor is the same for the three com-
pounds and therefore the result does not depend on the index
compound chosen. However, if the uncertainty factor differs the
choice of index compound will affect the result in the way that a
higher uncertainty factor will result in a higher combined risk.
3.5. Point of departure, margin of exposure, cumulative risk index

In the point of departure index (PODI) method the exposures of
each compound in the mixture are summed and expressed as a
fraction of their respective PODs.

PODI ¼ E1

POD1
þ E2

POD2
þ � � � þ En

PODn
¼
Xn

i¼1

Ei

PODi
ð3Þ

The point of departure can be a data point (typically the NOAEL)
or an estimated point derived from observed dose response data
(e.g. benchmark dose at 10% effect level, BMD10). Thus in contrast
to the HI method the PODI method does not employ an uncertainty
factor. The point of departure for the index chemical is used for
extrapolating the risk of the cumulative assessment group. The
point of departure on each compound’s dose–response curve can
be determined as the toxic potency of the compound relative to
the other compounds (Larsen et al., 2003; US EPA, 2002).

An EFSA colloquium (EFSA, 2007) recommended the use of the
PODI instead of the less transparent HI method because it does not
involve a policy driven uncertainty factor. However, they state that
HI is a practical tool for screening purposes.

EFSA uses the term reference point (RP or RfP) to replace the
term point of departure (EFSA, 2008). Barlow et al. distinguish be-
tween the term reference point and point of departure in the way
that the reference point is used in description of the margin of
exposure approach and the point of departure is used in descrip-
tions of extrapolation approaches (Barlow et al., 2006).

Data from Table 1 in Section 3.3 is used to calculate PODI with
the NOAEL as the POD:

PODI ¼ 1
2:6� 10�5 þ

0:1

6:8� 10�6 þ
29

1:7� 10�5 ffi 9:5� 10�5

No international consensus exists on how to valuate the PODI.
However, the PODI can be converted into a ‘‘risk cup” unit by mul-
tiplying with a group UF. A suggestion could be to use a group UF of
100 and an acceptable risk cup unit should be below 1. In the above
example a risk cup unit of 0.0095 is obtained which is well below 1
and therefore is considered acceptable.
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In the margin of exposure (MOE) method the point of departure
(POD) is divided by the measured or estimated exposure (E) from a
given route:

MOE ¼ POD
E

ð4Þ

The margin of exposure approach has been used by EPA to
determine the acceptability of acute risks for single chemicals
and MOEs of >10 or >100 are usually considered acceptable when
derived from toxicological data from human and animal studies.
These levels are chosen since they are numerically the same as
the typical uncertainty factors that are used in calculating e.g. a
RfD from NOAEL (Wilkinson et al., 2000).

The combined margin of exposure (MOET) is the reciprocal of
the sum of the reciprocal of MOEs of each compound in the mix-
ture (Wilkinson et al., 2000):

MOET ¼
1

1=MOE1 þ 1=MOE2 þ � � � þ 1=MOEn
¼
Xn

i¼1

1
1=MOEi

ð5Þ

That is MOET is the reciprocal of PODI. A MOET higher than 100
is usually considered acceptable when derived from toxicological
data from animal studies (Wilkinson et al., 2000).

For the example in Table 1 (Section 3.3) the MOET can be calcu-
lated by inserting MOE from each of the three compounds in the
above equation:

MOET ¼
1

POD1=E1 þ POD2=E2 þ POD3=E3
¼ 1

PODI
¼ 1

9:5� 10�5

ffi 10;500

As MOET is higher than 100 it is considered acceptable.
US EPA has suggested to derive a cumulative risk index from the

MOE for compounds with different uncertainty factors. The risk in-
dex (RI) can be calculated as follows:

RI ¼ POD
E� UF

¼ RfD
E
¼ 1

HQ
ð6Þ

The cumulative risk index is the reciprocal of the sum of the re-
ciprocal of the RIs and thereby of HI:

CRI ¼ 1
1=RI1 þ 1=RI2 þ � � � þ 1=RIn

¼ 1
E1=RfD1 þ E2=RfD2 þ � � � þ En=RfDn

¼
Xn

i¼1

1
Ei=RfDn

ð7Þ

The risk increases as the CRI falls below 1, that is exposure is
higher than the RfD (Larsen et al., 2003; US EPA, 1999b; Wilkinson
et al., 2000).

The data from Table 1 in Section 3.3 will be used in this example
showing how to calculate the cumulative risk index for the three
compounds:

CRI ¼ 1
E1=RfD1 þ E2=RfD2 þ E3=RfD3

¼ 1
2:6� 10�5=0:1þ 6:8� 10�6=0:01þ 1:7� 10�5=2

ffi 1050

This is well above one and therefore the mixture is not expected
to constitute a risk.

3.6. Simple dissimilar action, response addition

The model for simple dissimilar action assumes that the com-
pounds in the mixture do not act by the same mode of action
and the model does not assume that the dose–response curves
have a similar shape. The nature and site of action may also differ
among the compounds and every compound in the mixture is
thought to provoke effects (response) independent of the presence
of other compounds present i.e. the effect of one compound is the
same whether or not another compound is present. An example of
simple dissimilar action is the combined risk of any kind of repro-
ductive toxicity for a set of chemicals with different modes of ac-
tion (US EPA, 2000).

If we look at a mixture of two compounds: compound 1 has a
probability for adverse effect, p1, then compound 2 can act only
on the remaining fraction 1 � p1 assuming that the maximum frac-
tion of total possible effect is 1 (Svendsgaard and Hertzberg, 1994).
Then the probability for adverse effect of compound 2 will be
p2 � (1 � p1) and the expected probability for an adverse effect
from the mixture according to the model of Bliss independence,
pmix, at the doses d1 and d2, respectively, will be:

pmixðd1;d2Þ ¼ p1ðd1Þ þ p2ðd2Þ � ð1� p1ðd1ÞÞ
¼ p1ðd1Þ þ p2ðd2Þ � p1ðd1Þ � p2ðd2Þ ð8Þ

Bliss independence occurs if the measured effect of the mixture
(stated as a probability for an adverse effect) equals pmix(d1,d2)
(Bliss, 1939; Könemann and Pieters, 1996; National Research
Council, 1989; US EPA, 2000).

In a more general form, the probability for an adverse effect to
arise from a mixture with more than two compounds is 1 minus
the probability of not responding to any of the single compounds:

pmixðd1; . . . ; dnÞ ¼ 1� ½ð1� pðd1ÞÞ � ð1� pðd2ÞÞ . . .� . . . ð1� pðdnÞÞ�

¼ 1�
Yn

i¼1

ð1� piÞ ð9Þ

(Advisory Committee on Hazardous Substances, 2007; US EPA,
2000).

The response to a mixture depends on the dose and on the cor-
relation of tolerances. This correlation can vary between �1 and 1.
The equation above corresponds to no correlation of tolerances and
it is the standard formula for statistical independence (Könemann
and Pieters, 1996). If the organisms most sensitive to chemical 1
are also most sensitive to compound 2 then the compounds are
completely positively correlated. In case of complete positive cor-
relation (r = 1) the effect of the mixture will depend on the most
toxic compound in the mixture, that is:

pmix ¼ p1ðd1Þ if p1ðd1Þ > p2ðd2Þ
pmix ¼ p2ðd2Þ if p1ðd1Þ < p2ðd2Þ

ð10Þ

In case of complete negative correlation (r = �1), the probability
of an adverse effect from a mixture of compounds 1 and 2 equal to
the sum of the individual responses:

pmix ¼ p1ðd1Þ þ p2ðd2Þ if pmix 6 1 ð11Þ

In this case the organisms most sensitive to compound 1 is least
sensitive to compound 2 and vice versa (ATSDR, 2004; Könemann
and Pieters, 1996; US EPA, 2000).

The last equation is the most conservative approach to describe
simple dissimilar action and US EPA has recommended it to be
used in risk assessment of mixtures of carcinogens. They use the
following equation to estimate the risk (unit-less probability that
an individual will develop cancer) for the mixture:

Risk ¼
Xn

i¼1

Riski ¼
Xn

i¼1

diBi ð12Þ

where Riski is the risk estimate for the ith compound, di is the dose
and Bi is the potency parameter for the ith carcinogen (US EPA,
1986). According to US EPA the equation is appropriate when the
risks of the individual compounds are less than 0.01 and the sum
of the individual risks is less than 0.1 (ATSDR, 2004; US EPA,
1989b, 2000).
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In the following we look at an example of a hypothetical mix-
ture of four compounds, I, II, III and IV. The compounds are present
in the mixture at concentrations providing the following doses:
1.5, 2.0, 2.5 and 3.0 mg/kg/day. The corresponding responses are
derived from the hypothetical dose–response curves in Fig. 2:
0.3, 0.16, 0.11 and 0.

The probability for an adverse effect to arise from the mixture is
calculated:

pmix ¼ 1� ð1� 0:3Þ � ð1� 0:16Þ � ð1� 0:11Þ � ð1� 0Þ ¼ 0:48

This is called the ‘‘true response” by US EPA (US EPA, 2000).
If we use the more conservative method we get an unadjusted

mixture risk (corresponding to complete negative correlation) of:

pmix ¼ 0:3þ 0:16þ 0:11þ 0 ¼ 0:57

This gives a relative error of:

ð0:57� 0:48Þ=ð0:48Þ ¼ 20%

The results from using the two different approaches give a rel-
ative error of 20%. In both cases the risk of an adverse effect arising
from the mixture is around 50%.

The response addition is based on the principle that each organ-
ism will have a certain level of susceptibility to each compound
and the threshold of susceptibility has to be exceeded in order to
perform a response. This means that the response addition method
cannot estimate a toxic effect from a mixture when the individual
compounds in the mixture do not lead to an effect. Based on this
assumption EFSA concluded that response addition will rarely if
ever be relevant for pesticide residues in food since they generally
are found at levels well below their respective toxic levels (EFSA,
2008).

3.7. Interactions

US EPA has suggested the interaction hazard index approach for
mixtures consisting of interacting compounds in order to take
antagonistic and synergistic interactions into account in the deri-
vation of a hazard index. The interaction-based hazard index uses
the weight of evidence (WOE) approach as a quantitative modifier
to the hazard index in risk assessments involving interactions of
multiple compounds (Mumtaz and Durkin, 1992; Mumtaz et al.,
1998; US EPA, 2000). It assumes that binary interactions are the
most important and information on binary interactions is used to
modify the hazard index using binary weight of evidence (BIN-
WOE). It is also assumed that compounds in a mixture act by sim-
ilar mechanisms (US EPA, 2000).

There are four important features in the interaction hazard in-
dex approach (Seed et al., 1995). Firstly, the interaction mechanism
should be well understood. Secondly, the data from other related
compounds should be consistent with the proposed mechanism.
0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6
Dose (mg/kg/day)

Response
III

III

IV

Fig. 2. Hypothetical dose–response curve for the four compounds I, II, III and IV.
Thirdly, the toxicological significance of this interaction should
be demonstrated and fourthly, the in vivo data of the interaction
should be available from long-term studies using a route of expo-
sure relevant for humans.

In the first steps of the interaction-based hazard index approach
the mechanistic understanding and the toxicological significance is
connected. This forms the basis of the risk assessment. Thereafter
the binary mixtures are grouped in three modifying categories
used to alter the rating of the risk assessment. The three modifying
categories are duration/sequence of exposure, in vivo/in vitro and
route of exposure.

This classification is used to set up a quantitative interaction
matrix by the aid of a set of default weighting factors and many
calculations. The calculations include the hazard index and interac-
tion factors for each binary mixture. The normalised site-specific
weight of evidence is calculated and used to adjust the hazard in-
dex for the uncertainty of interactions. And finally the adjusted
hazard index can be evaluated.

The dose-additive hazard index can be modified by using a
scaled BINWOE (WOEN) giving the interaction hazard index, HII:

HII ¼ HIADD UFIð ÞWOEN ð13Þ

where HIADD is the non-interactive HI based on dose addition and
UFI is the uncertainty factor for the interactions (Mumtaz and Dur-
kin, 1992; US EPA, 2000).

US EPA has pointed out some very important weaknesses of the
interaction hazard index approach (US EPA, 2000): There is no
guidance for selection of the uncertainty factors for interactions
used in the method and the steps in determining the BINWOE
are complex. The weighting factors used in the method lack sup-
port from empirical assessments of key experimental variables.
Further the interaction hazard index approach is supposed to ac-
count for (pair wise) interactions, but the method may be too sim-
ple in that the interaction information is only represented by the
uncertainty factor, which is multiplied with the entire additive
hazard index. The magnitude of the interaction is not included in
the method. The fact that a qualitative/subjective evaluation of
data is used as the basis for quantitative modelling makes this
model less applicable.

Neither the approaches for toxicologically similar compounds
nor the approach for toxicologically independent compounds
presented earlier in the text will accurately predict risks for
compounds that exhibit toxicological interactions. The interac-
tion-based hazard index approach introduced by Mumtaz and
Durkin (1992) seems to be the only method at present that take
toxicological interactions into account. However, this method is
complicated to use and it requires a great deal of data, calculations
and assumptions concerning the interactions of the compounds.
Conolly has stated that one of the greatest dangers in trying to
describe mechanisms quantitatively is the use of speculative
assumptions about the mechanisms rather than the lack of
knowledge as such (Conolly, 2001).

The method described by Mumtaz and Durkin requires an eval-
uation of data quality for mechanistic information however it does
not provide guidance on evaluating interactions data themselves.
Borgert et al. (2001) has presented five criteria to evaluate the
quality of data and interpretations in studies of chemical mixtures.
The criteria are intended to assist the risk assessor in the evalua-
tion of interactions studies for use in risk assessment of chemical
mixtures (Borgert et al., 2001). EPA has also pointed out statistical
deficiencies in handling and interpretation of data from interaction
studies (US EPA, 1988).

The quality of studies and the uncertainty in the interpretation
of studies on combined actions of compounds in mixtures is a very
important point since it makes the basis for deciding whether there
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will be no interaction or interaction between the compounds in the
mixture and that again is used for deciding which method to use in
the evaluation process.

4. Advantages and disadvantages of the methods

Eight methods for risk assessment of mixtures based on data on
single compounds are shown in Table 2. The required data, appli-
cability, assumptions, advantages and disadvantages of each meth-
od are summarised.

5. Proposed flow charts for risk assessment of mixtures of
chemicals

In 2001 ATSDR published the report ‘‘Guidance for the Prepara-
tion of an Interaction Profile” including flow charts for a step-by-
Table 2
Advantages and disadvantages of the methods. Overview of eight methods for risk assessm

Procedure Required data Applicability Assum

Hazard index (HI) Maximum acceptable
level for each
compound (e.g. RfD
or ADI). Exposure
data

Compounds having adequate
dose–response data, as well as
exposure data at low levels. HI
is also used for compounds
with similar target organ

Simple
toxico

Relative potency
factor (RPF)

Toxicity data for each
compound, dose–
response data for the
index compound.
Exposure data

Some data available—
restricted by similarity and to
specific conditions

Simple
toxico
for spe
point,
suppo
mixtur
of acti

Toxicity
equivalency
factor (TEF)

Toxicity data for each
compound, dose–
response data for the
index compound.
Exposure data

Data seldom available. A TEF
value is applied to all end
points; therefore method
restricted to mixtures of
compounds with strong
similarity—few chemical
classes will qualify

Simple
toxico
endpo

Margin of
exposure for
mixtures
(MOET)

Point of departure
(e.g. NOAEL or
BMD10). Exposure
data.

Compounds having adequate
dose–response data, as well as
exposure

Simple
toxico

Point of departure
index (PODI)

Point of departure
(e.g. NOAEL or
BMD10). Exposure
data.

Compounds having adequate
dose–response data, as well as
exposure

Simple
toxico

Cumulative risk
index (CRI)

Point of departure
(e.g. NOAEL or
BMD10) or maximum
acceptable level for
each compound (e.g.
RfD or ADI). Exposure
data

Compounds having adequate
dose–response data, as well as
exposure

Simple
toxico

Response addition Toxicity data
measured as a
fraction of
responding. Good
dose–response data.
Exposure data

Data seldom if ever available Simple
Bliss in

Interaction hazard
index (HII)

Maximum acceptable
level for each
compound, a number
of weighting factors.
Exposure data

Data seldom available:
limited data on interactions

Binary
impor
interac
propor
compo
depen
step procedure for assessing effects (including carcinogenicity)
(ATSDR, 2001). These flow charts were revised in the report ‘‘Guid-
ance Manual for the Assessment of Joint Toxic Action of Chemical
Mixtures” in 2004 (ATSDR, 2004). The flow charts are shown in
Fig. 3 and 4. The two guidelines are especially concerned with
how exposure to chemical mixtures at hazardous waste sites af-
fects public health.

The two flow charts for non-carcinogenic and carcinogenic ef-
fects, respectively, are similar. In the first steps it is considered
which information is available on the mixture:—an interaction pro-
file?—A toxicological profile?—A minimal risk level (MRL)?—Other
health guideline values? If no such information is available the sin-
gle compounds approach should be used. ATSDR recommends
using PBPK/PD models, if available, to predict the potential for
interactions or effects from the mixture. The hazard index method
is recommended to be used for screening for non-cancer hazards
ent of mixtures based on data on single compounds.

ptions Advantages Disadvantages

similar action—
logical similarity

Transparent,
understandable,
relates directly to
long-used and well-
understood measure
of acceptable risk e.g.
RfD or ADI

RfD (or ADI) is not an
appropriate point of
departure—it involves an UF
(subjective). If the UFs are not
the same for all compounds
in mixture this will affect the
result

similar action—
logical similarity, but
cific conditions (end
route, duration). It is
sed to account for
es with different mode

on

Transparent,
understandable,
relates directly to
real exposure and
toxicity data

Complicated to use. Relies on
the availability of dose–
response data for the index
compound

similar action—
logical similarity across
ints

Transparent,
understandable,
relates directly to
real exposure and
toxicity data

In some cases complicated to
use. Relies on the availability
of dose–response data for the
index compound

similar action—
logical similarity

Relates directly to
real exposure and
toxicity data—not
based on a policy
driven parameter like
ADI

No criteria for defining the
magnitude for an acceptable
MOET

similar action—
logical similarity

Relates directly to
real exposure and
toxicity data—not
based on a policy
driven parameter like
ADI

No criteria for defining the
magnitude for an acceptable
PODI

similar action—
logical similarity

Combines MOEs for
chemicals with
different UFs

RfD (or ADI) is not an
appropriate POD—it involves
an UF (subjective). Not as
transparent and
understandable as the HI.
Complex calculations

dissimilar action—
dependence

Mathematically easy Data applicability is low

interactions are most
tant. Magnitude of
tion depends on
tions of the
unds—ot dose

dent

Supposed to account
for interactions
(binary)

Complex to determine the
BINWOE. Weighting factors
are not supported by
experimental data. No
guidance for selecting UFs for
interactions and interactions
are only represented by these
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from potential additivity of the compounds in the mixture (Fig. 3).
In case of carcinogenic effects the compounds in the mixture are
summed to screen for hazards from potential additivity (Fig. 4).
The potential impact of interactions on non-cancer and cancer
health effects is evaluated by a weight of evidence method.

In 2002 a committee of the Health Council of The Netherlands
published an advisory report which included a flow chart for safety
evaluation of combined exposures using the so-called ‘‘top n” and
‘‘pseudo top n” approaches in which the most toxic compounds in
the mixture are selected and assessed for toxicity, see Fig. 5 (Feron
et al., 2004; Health Council of the Netherlands, 2002). This ap-
proach is especially suitable for the toxicological evaluation of
workplace and hazardous waste site atmospheres. The report rec-
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Are HQs ≥ 0.1 for at least 2 of the 
compounds in the mixture
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Fig. 3. Flow chart proposed by ATSDR for a step-by-step procedure for assessment of c
2004).
ommends use of Mumtaz–Durkin weight of evidence method for
prioritisation of the combined exposures according to their poten-
tial risk (Feron et al., 2004). The intention is that the flow chart
should be walked through in its entirety in order to select the best
method. In the upper part of Fig. 5 it is decided whether the data on
toxicity is available on a mixture or on single compounds, that is to
say corresponding with the upper part of the flow chart suggested
by US EPA shown in Fig. 1. The lower part of Fig. 5 is intended for
specified mixtures of compounds concentrating on pairs of com-
pounds in the mixture. The first step is to consider whether the
compounds in the mixture act by similar action or dissimilar action
and thereafter consider whether interactions occur or not. If the
compounds act by similar action without interaction the scheme
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ombined action of mixtures of non-carcinogenic chemicals. Modified from (ATSDR,
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Fig. 4. Flow chart proposed by ATSDR for a step-by-step procedure for assessment of combined action of mixtures of carcinogenic chemicals. Modified from (ATSDR, 2004).
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recommends dose addition and toxicity equivalency factor for
assessing the joint toxicity. If the compounds act by dissimilar ac-
tion without interaction, response addition should be used.

Use of a hazard index is also recommended for mixtures of com-
pounds without interactions: in the case of similar action the haz-
ard quotients are added and in the case of dissimilar action the
highest hazard quotient is chosen even though the latter is not fol-
lowing the theory stringent (Health Council of the Netherlands,
2002). In cases with similar action with interactions or dissimilar
action with interactions it is necessary to examine whether the
data available can be used for a quantitative conclusion; the Com-
mittee concluded that it is not able to give universal criteria for
this.

The flow chart in Fig. 6 is an expansion of the method proposed
by US EPA in Fig. 1: one method has been added to the single com-
pound-based methods. In the case of a mixture of compounds hav-
ing different modes of action but causing the same toxic effect it is
suggested to combine the response and dose addition methods in
what they call the cumulative relative potency factors (CRPF).
The compounds in the mixture which have the same mode of ac-
tion are put together in subclasses. Then the RPF can be used to
estimate the risk of each subclass. These subclasses are expected
to act independently of each other (that is simple dissimilar action)
and therefore the calculated RPFs can be added to give the total
mixture risk (Teuschler, 2007).
The Norwegian Scientific Committee for Food Safety has sug-
gested a step-wise case-by-case evaluation of the toxicological
data on the compounds and the exposure data, see Fig. 7 (Norwe-
gian Scientific Committee for Food Safety, 2008). They assume that
if exposure to compounds is below the individual NOAELs and they
act by similar mode of action then no more than an additive effect
is expected. If exposure to compounds is above the NOAELs, inter-
action may occur. Interactions are taken into account in the two
boxes with dotted lines in the figure.

On the left hand side in Fig. 7, it should be considered whether
the compounds act on the same target organ, whether the com-
pounds in the mixture act by the same mode of action and finally
in the refinement it should be considered whether the compounds
act by the same mechanism of action. If data are available and indi-
cate that the compounds act by the same mechanism of action the
toxicity equivalency factor method should be used, otherwise (i.e.
the compounds act by the same mode of action) the hazard index,
the margin of safety or the point of departure index method should
be used. On the right hand side it should be considered whether
the compounds in the mixture act by simple dissimilar action.

In 2002, the Danish Veterinary and Food Administration sug-
gested to use the flow chart shown in Fig. 8 for risk assessment
of pesticide mixtures found as residues in food (Reffstrup, 2002).
The risk assessment must be done on a case-by-case evaluation
in which the available chemical and toxicological data on the
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pesticides are evaluated in a weight of evidence process. Then the
hazard index with the ADI as the acceptable level in the denomina-
tor should be used. However, in cases where the weight of evi-
dence points out that the compounds in the mixture share a
common mechanism the toxicity equivalency factor should be
used instead of the hazard index. This concerns for instance the
organophosphorus pesticides, the chloroacetanilides, the dithio-
carbamates and the thiocarbamates. This is a rough and pragmatic
Mixture/specified combination o
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Fig. 5. Flow chart suggested by Health Council of The Netherlands for assessing combined
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Good quality 
data?

Whole mixture 
data?

Methods b
single com

Qualitative 
assessment

Whole mixture 
methods

Data on subject 
mixture?

Sufficiently 
similar mixture?

Toxicity values for whole mixture:
-Cancer slope factors
-RfD/C
-Fractionation of whole mixture
-Pattern recognition techniques and 
multivariate regression models 

Yes No

No Yes

Yes Yes

Fig. 6. Flow chart for assessment of combined actions of
method. In Denmark, we have used this method for evaluating
mixtures of pesticides in crops since 2002. In most cases, the haz-
ard index was used with ADI as the acceptable level. In only a few
cases the ADI were exceeded and this was often due to only one
compound in the mixture.

The Scientific Panel on Plant Protection Products and their Res-
idues (PPR Panel) has recommended the flow chart shown in Fig. 9
mentioning what they consider the most useful methods (EFSA,
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Fig. 8. Flow chart of the risk assessment approach for pesticide mixtures found in
food (Reffstrup, 2002).
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2008). Going from the top and down through the flow chart there
are an increasing level of complexity and refinement: the hazard
index, the reference point index, the relative potency factor meth-
od and physiologically based toxicokinetic modelling.

An overview of the required data and assumptions for these
eight flow charts are shown in Table 3 as well as the advantages
and disadvantages of the different strategies.

6. Defined cumulative assessment groups/common mechanism
groups for pesticides

As mentioned earlier the Food Quality Protection Act of 1996 re-
quires US EPA to take cumulative effects into account in the risk
assessment of mixtures of pesticide residues in food. On that back-
ground US EPA has up till now evaluated data on four common
mechanism groups (CMGs): organophosphates (US EPA, 2006c),
N-methyl carbamates (US EPA, 2007), triazines (US EPA, 2006d)
and chloroacetanilides (US EPA, 2006b):

� Evaluation of the group of organophosphorus pesticides was
prioritized as they are expected to be one of the classes of pes-
ticides that pose the greatest risk. In the group of organophos-
phorus compounds methamidophos was selected as the index
chemical to standardize the toxic potencies of the compounds.
US EPA used the relative potency factor method to determine
the cumulative risk. Benchmark dose estimates at a level of
10% brain acetylcholinesterase inhibition in studies on female
rats was used to determine relative potencies for the organo-
phosphorus compounds (US EPA, 2006c).

� US EPA has defined a group of chloroacetanilides consisting of
acetochlor, alachlor and butachlor based on the common mode
of action that cause nasal olfactory epithelium tumours in rats.
Due to knowledge on the capacity to induce adverse effects by
no

yes
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yes no

no
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Assign an overall hazard
for the mixture/exposures
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yes

no                    no

Fig. 7. Flow chart proposed by Norwegian Scientific Committee for Food Safet
a common mechanism of toxicity this group of pesticides was
prioritized. Alachlor was selected as the index chemical. Buta-
chlor was excluded from the risk assessment since there was
no registered use of the compound in US. The point of departure
has been calculated for each compound and the margin of expo-
sure for the cumulative exposure using relative potency factor
(US EPA, 2006b).

� Six triazines (atrazine, propazine, simazine and three of their
metabolites) have been defined as a group based on a common
mechanism causing neuroendocrine and endocrine-related
developmental, reproductive and carcinogenic effects. The com-
pounds were included in the cumulative assessment group
based on use patterns and the likelihood of exposure. The pri-
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y. Adapted from (Norwegian Scientific Committee for Food Safety, 2008).
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1b. Reference Point Index Refine CAG

2a. Define potency corrected 
dose (RPF) based on NOAEL

3. Refine RPF by PBTK-BBDR
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Fig. 9. Tiered hazard assessment proposed by EFSA. Modified from (EFSA, 2008).
BBDR = biologically based dose response modelling.
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mary exposure route for these triazines is drinking water. Prop-
azine, simazine and the three metabolites in the group are con-
sidered to be equivalent in toxicity to atrazine, per se, based on
the evaluation of endocrine-related data on the triazines dem-
onstrating either equal potency or potency less than atrazine
(US EPA, 2006d).

� The N-methyl carbamate pesticides were found to share a com-
mon mechanism of action. The ten carbamates all inhibit acetyl-
cholinesterase. In this group, oxamyl was selected as the index
chemical. Benchmark dose estimates at a level of 10% brain ace-
tylcholinesterase inhibition was used to estimate the relative
potencies for the compounds (US EPA, 2007).

EFSA has evaluated data on 25 compounds with a triazole-
ring as a cumulative assessment group. From the literature they
found that concerning acute toxicity seven of the compounds
were producing crania facial malformation via a common mecha-
nism of toxicity. Further, for chronic assessment 11 compounds
were found to cause hepatotoxicity as a common effect (EFSA,
2009).
7. Newer approaches in the risk assessment of mixtures

In the area of pharmacology, physiologically based pharmacoki-
netic/pharmacodynamic (PBPK/PD) modelling is used as a tech-
nique for prediction of the absorption, distribution, metabolism
and excretion (ADME) of a compound in humans and other species.
The development of PBPK models arose from the need to relate
doses of a chemical (pharmaceutical) to an animal or human with
the actual internal concentration at the target site.

In the area of pharmacology Teorell used physiological consid-
erations as the basis for a pharmacokinetic description (Rowland
et al., 2004). However, his work was done in the 1930s and the
computational resources necessary for solving the differential
equations were not available at that time. Therefore the equations
were replaced with simpler ones and for many years these simple
pharmacokinetic approaches continued to be in use even after the
computational resources became available.
In the area of toxicology several scientists have used the term
physiologically based toxicokinetic/toxicodynamic (PBTK/TD);
however the principles of the models are the same as for PBPK/
PD models. Several scientists, organizations and workshops have
recommended using PBTK/TD modelling as a tool in the risk
assessment of chemical mixtures. The European Food Safety
Authority (EFSA) organised a workshop on cumulative risk assess-
ment of pesticides which strongly encouraged the introduction of
PBTK/TD models in the cumulative risk assessment (EFSA, 2007).
In the EFSA opinion concerning risk assessment of pesticide mix-
tures PBTK modelling is mentioned as the most refined model
(EFSA, 2008).

Simmons (1996) mentioned that there is a clear need for the
development of PBTK/TD models for mixtures. And this develop-
ment should be performed for the same mixtures by several labo-
ratories in order to determine inter-laboratory consistency and
variability. Scientists should also focus on extrapolation across
species and development of human PBTK models for mixtures
(Simmons, 1996).

The US National Research Council has provided ‘‘guidance on
new directions in toxicity testing, incorporating new technologies
such as genomics and computational systems biology into a new
vision for toxicity testing” (Andersen and Krewski, 2009). They rec-
ommend further development and use of in vitro methods instead
of in vivo studies as well as improvement and use of computational
methods to extrapolate from in vitro to in vivo systems to predict
tissue and blood concentrations in humans after exposure to
chemicals in specific circumstances. PBTK models are a good an-
swer to this.

Teuschler pointed out the necessity to develop PBPK models for
common mixtures of concern in order to use such models routinely
in future risk assessments (Teuschler, 2007). As a helping tool for
risk assessors and PBPK modellers US EPA has published a report
describing different aspects of use and evaluation of PBPK models
in risk assessment (US EPA, 2006a). Further, some basic consider-
ations for evaluation of PBTK models intended for risk assessment
are nicely described by Chiu et al. (2007).

In a physiologically based toxicokinetic model the animal or
man is described as a set of tissue compartments which is com-
bined by mathematical descriptions of biological tissues and phys-
iological processes in the body. Thereby it is possible to
quantitatively simulate the absorption, distribution, metabolism
and excretion of chemicals.

A PBTK model can predict tissue concentrations and true toxic-
okinetic parameter values under a variety of conditions. It is useful
to predict internal dose levels for hypothetical exposure regimens
which will reduce the uncertainty in risk assessment. It is also pos-
sible to predict overload of toxicokinetic pathways and to do high-
dose to low-dose extrapolation. The models are mathematically
complex and require extensive data on disposition of the chemical
and physiological parameters-related data.

PBTK models are increasingly being used in deriving RfDs for
use in risk assessment. In the absence of adequate human data to
assess the risk for humans directly, the RfD is typically derived
from animal data. Uncertainty factors are then used to fill in
the data gaps between the species as well as the intra-species
variability. When a PBTK model is developed and tested ade-
quately, it will provide a more scientifically supportable result
than the use of uncertainty factors, will give (DeWoskin and
Thompson, 2008).

Exposure to multiple chemicals may cause alterations in the
toxicokinetics of the individual chemicals resulting in a change in
the predicted toxicity based on the summation of the effects of
the single compounds. As described earlier, toxicokinetic interac-
tions occur as a result of one compound altering the absorption,
distribution, metabolism or elimination of other compounds. They



Table 3
Overview of the required data, assumptions, advantages and disadvantages for the eight flow charts/assessment strategies shown in this paper.

Flow chart Required data Methods suggested Assumptions Advantages Disadvantages

Fig. 1. Flow chart of the
risk assessment
approach used by
US EPA (US EPA,
2000). Developed
for environmental
contaminant
mixtures

Either data on
mixture or on
single compounds

Mixture: RfD/C, cancer
slope factor, compara-
tive potency, environ-
mental transformation
Single compounds: HI,
RPF/TEF, response addi-
tion, interaction based
HI

For single compound
approaches (except
interaction based HI): no
or insignificant
interaction effects at low
dose levels. In some
cases the requirement of
similar mode of action is
relaxed to require only
same target organ

Flow chart is straight
forward. Very broad
flow chart that covers
many approaches/
situations and can
therefore be used in
many cases. Allows risk
assessment based on
whole mixtures as well
as single compounds
with a wide range of
methods suggested

Comprehensiveness makes
the flow chart complicated.
Some of the methods are
complicated and requires
many data.
In case of interaction no uni-
versal criteria for deciding
whether the data permits a
quantitative conclusion to
be drawn

Fig. 3. Flow chart
proposed by ATSDR
for assessment of
non-carcinogenic
chemicals from
hazardous waste
sites (ATSDR, 2004)

Either data on
mixture or on
single compounds

Mixture: use of interac-
tion profile (if available)
incl. MRL.
Single compounds: HI,
PBTK/PD, BIN-WOE, tar-
get organ toxicity dose
(TTD) modification of
HI (for compounds not
having same critical
effect but have overlap-
ping target organ)

The mechanism of
toxicity is well enough
known to assume which
compounds will be
additive and which will
not (McCarty and
Borgert, 2006). If two or
more compounds have
HQ P0.1 the mixture
requires more
evaluation of additivity
and interactions

Flow chart is
comprehensive and
allows use of different
approaches including
newer modelling
techniques. Depending
on the available data
and exposure level the
risk assessment can stop
after only a few steps

Criteria for judging whether
the compounds act addi-
tively or not are not defined
or validated (McCarty and
Borgert, 2006).
Comprehensiveness makes
the flow chart complicated.
Some of the methods are
complicated and requires
many data

Fig. 4. Flow chart
proposed by ATSDR
for assessment of
carcinogenic
chemicals from
hazardous waste
sites (ATSDR, 2004)

Either data on
mixture or on
single compounds

Mixture: use of interac-
tion profile (if
available).
Single compounds: can-
cer risk estimates (can-
cer slope factors times
exposure of the popula-
tion of concern)

Cancer is regarded as
same critical effect not
considering the tumour
type or location. The
mechanism of toxicity is
well enough known to
assume which
compounds will be
additive and which will
not (McCarty and
Borgert, 2006). If two or
more compounds have
estimated risk P10�6

the mixture requires
more evaluation of
additivity and
interactions

Flow chart easily
understandable
although it requires
many data. Depending
on the available data
and exposure level the
risk assessment can stop
after only a few steps

Criteria for judging whether
the compounds act addi-
tively or not are not defined
or validated (McCarty and
Borgert, 2006).
Some of the methods are
complicated and requires
many data

Fig. 5. Flow chart
suggested by Health
Council of The
Netherlands for
assessing risk from
contaminated soil,
but the Committee
recommends use in
e.g. consumption of
contaminated food
or inhalation of
polluted air (Health
Council of the
Netherlands, 2002;
Feron et al., 2004)

Either data on
mixture or on
single compounds

Mixture: recommended
exposure limits for
mixture.
Single compounds: TEQ,
exposure limits for indi-
vidual compounds.
HI (not shown in flow
chart) is also recom-
mended in the report
for similar and dissimi-
lar acting compounds
even though the latter
is not following the the-
ory stringent

Assesses the combined
effect per pair in the
mixture.
Concerning exposure
limits: harmfulness only
manifests itself above a
certain concentration

Flow chart straight
forward. Broad flow
chart that covers many
approaches/situations
and can therefore be
used in many cases.
Allows risk assessment
based on whole
mixtures as well as
single compounds

Even though flow chart is
broad it does not directly
concretize many methods
(e.g. method(s) for dissimilar
acting compounds).
The Committee concludes
that in case of interaction
there are no universal crite-
ria for deciding whether the
data permits a quantitative
conclusion to be drawn

Fig. 6. Flow chart for
assessment of
combined actions
from environmental
contaminant
mixtures (Teuschler,
2007)

Either data on
mixture or on
single compounds

Mixture: RfD/C, cancer
slope factor, fraction-
ation of whole mixture,
pattern recognition
techniques and multi-
variate regression
Single compounds: HI,
TEF, RPF, response addi-
tion, interaction based
HI, BIN-WOE, cumula-
tive relative potency
factors

Departure from
additivity is more likely
at ‘‘high” concentrations
than at ‘‘low”

Flow chart is straight
forward – even though
this is not always the
case for the answers
(Teuschler, 2007). Very
broad flow chart that
covers many
approaches/situations
and can therefore be
used in many cases.
Allows risk assessment
based on whole
mixtures as well as
single compounds with
a wide range of methods
suggested

Comprehensiveness makes
the flow chart complicated.
Some of the methods are
complicated and requires
many data.
Missing criteria to assess
whether mixtures are suffi-
ciently similar (Teuschler,
2007).
In case of interaction data for
a group of compounds with
different modes of action
there is no quantitative
method

(continued on next page)
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Table 3 (continued)

Flow chart Required data Methods suggested Assumptions Advantages Disadvantages

Fig. 7. Flow chart
proposed by
Norwegian
Scientific
Committee for Food
Safety for risk
assessment of
chemical mixtures
in food, feed and
cosmetics
(Norwegian
Scientific
Committee for Food
Safety, 2008)

Data on single
compounds

MOE, HI, MOS, PODI, TEF,
response addition

Uses the term ‘‘same
mode of action” which
does not require
knowledge about
precise molecular
mechanism, but dose
addition may be used
anyway. No more than
additive effect is
expected for compounds
at concentrations below
individual NOAELs;
above NOAEL
interactions may occur

Flow chart straight
forward. Can be used for
many types of
compounds/situations.
The first step sorts out
genotoxic and
carcinogenic chemicals

Does not suggest methods in
case of data on mixtures, if
compounds act indepen-
dently and in case of interac-
tions (but report suggests:
case-by-case basis – ideally
based on test on the mixture).
Flow chart introduces to
consider whether the com-
pounds affect the same
physiological function but
do not explain what is meant
by that and how to deal with
it

Fig. 8. Flow chart for
risk assessment of
pesticide mixtures
found as residues in
food (Reffstrup,
2002)

Data on single
compounds

HI, TEF No more than additive
effect is expected since
pesticides are present in
food at concentrations
below individual
NOAELs, and available
evidence supports the
view that significant
toxic interactions are
less likely to occur at
these levels than at
higher

Very simple to use – few
and simple steps in the
flow chart. Simplified to
cover pesticide residues
in food. Valuable as a
first step in the risk
assessment

Pragmatic. Deals only with
compounds present at low
concentrations. Not scientific
comprehensive, e.g. do not
take interactions and
dissimilar actions into
account. Do not deal with
data on whole mixtures
(however seldom available
for mixtures of pesticides)

Fig. 9. Flow chart
proposed by EFSA
for risk assessment
of pesticide
mixtures found as
residues in food
(EFSA, 2008)

Data on single
compounds

HI, reference point index
(PODI), RPF, PBTK-BBDR

No more than additive
effect (similar action) is
expected since
pesticides are present in
food at concentrations
below individual
NOAELs, and available
evidence supports the
view that significant
toxic interactions are
less likely to occur at
these levels than at
higher

Flow chart straight
forward. Simplified to
cover pesticide residues
in food

Deals only with compounds
present at low concentra-
tions. Do not take interac-
tions and dissimilar actions
into account. Do not deal
with data on whole mixtures
(however seldom available
for mixtures of pesticides)
Some of the methods are
complicated and requires
many data
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may affect the relationship between the administered dose and the
dose delivered to the target site (Krishnan et al., 1994, 2002).

The PBTK model can be used to investigate hypotheses regard-
ing mechanisms of interaction between chemicals and to define
the doses at which interactions become significant (the interaction
threshold). However, predictions of such thresholds should be val-
idated with data from experiments (Simmons, 1996). For example,
a PBTK model can make it possible to analyse the competition for
an enzyme or a transport protein. A PBTK model describing inter-
actions consists of sets of identical equations, one set for each
chemical as well as an equation that specifically accounts for the
interactions (e.g., competitive inhibition for metabolism in liver
or induction of hepatic metabolism) (ATSDR, 2001).

In the risk assessment the PBTK models could be even more
useful if the tissue dose metrics from the PBTK models are com-
bined with toxicodynamic models which would make it possible
to better characterise the dose–response relationships. The output
of a PBTK model is linked to a toxicodynamic model by mathemat-
ical description of the hypothesis of how compounds contribute in
the initiation of cellular changes leading to the toxic responses.
Such a model is sometimes called a biologically based dose–re-
sponse model (BBDR) (EFSA, 2008; US EPA, 2006a). As mentioned
earlier interactions can also take place at the toxicodynamic level
and when the PBTK models are expanded by a toxicodynamic part,
the model could make it possible to predict deviations from addi-
tivity at the toxicodynamic level.

A PBTK model for the two organophosphorus pesticides chlor-
pyrifos and parathion and their metabolites chlorpyrifos-oxon
and paraoxon, respectively, were developed by El-Masri and co-
workers in order to simulate the interaction threshold for the joint
toxicity of the two pesticides in rats (El-Masri et al., 2004). A sche-
matic overview of the model is shown in Fig. 10. At first a model for
each of the parent compounds was developed in order to estimate
the blood concentrations of their metabolites. Then the output
from these models i.e. the concentrations of metabolite in blood
was linked to a sub-model describing the kinetic of acetylcholines-
terase. The overall model describes the interactions between the
pesticides at the P450 enzymatic bio-activation site and at the ace-
tylcholinesterase binding sites. The simulations showed an interac-
tion threshold (at oral dose: 0.08 mg/kg of each compound) below
which additivity was shown. Above this threshold it was found
that antagonism by enzymatic competitive inhibition is the mode
of interaction.

The steps in developing a PBTK model for estimating tissue dose
metrics for use in chemical risk assessment is as follows (see also
Fig. 11) (Andersen, 2003; Clewell and Clewell, 2008; US EPA,
2006a):

(1) Identify toxic effects in animals (and humans) and deter-
mine the critical effects.

(2) Search the literature and organise available data in order to
determine the mode of action, metabolism, as well as phys-
iological constants for the relevant animal.

(3) Suggest relationships between response and tissue dose.
(4) Model formulation: develop a PBTK model to estimate the

tissue dose metric at various doses.



Lung

Rapidly perfused

Slowly perfused

Fat-diffusion limited

Diaphragm

Brain

Kidney

Liver

Ar
te

ria
l b

lo
od

Ve
no

us
 b

lo
od

C
hl

or
py

rif
os

C
hl

or
py

rif
os

-o
xo

n

Chlorpyrifos

Lung

Rapidly perfused

Slowly perfused

Fat-diffusion limited

Diaphragm

Brain

Kidney

Liver

Ar
te

ria
l b

lo
od

Ve
no

us
 b

lo
od

Liver

Kidney

Brain

Diaphragm

Fat-diffusion limited

Slowly perfused

Rapidly perfused

Lung

Ar
te

ria
l b

lo
od

Ve
no

us
 b

lo
od

Pa
ra

th
io

n
Pa

ra
ox

on

Parathion ParaoxonChlorpyrifos-oxon

Free AChE
AChE inhibited by chlorpyrifos

AChE inhibited by parathion

Aged AChE

Aged AChE

Rate of synthesis

Liver

Kidney

Brain

Diaphragm

Fat-diffusion limited

Slowly perfused

Rapidly perfused

Lung

Ar
te

ria
l b

lo
od

Ve
no

us
 b

lo
od

Fig. 10. Schematic overview of a PBTK model for the two pesticides chlorpyrifos and parathion and their metabolites chlorpyrifos-oxon and paraoxon, respectively. The
model consists of five sub-models, one for each parent compound and metabolite, as well as one sub-model describing the kinetic of acetylcholinesterase (AChE) linked to the
two sub-models for the metabolites. Adapted from (El-Masri et al., 2004).
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(5) Run the model.
(6) Compare output from the model-simulation with available

experimental data. If the result from the simulation deviates
from the data go to point (7) otherwise go to point (9).

(7) Refine the model.
(8) Repeat point (5) and (6).
(9) Application in risk assessment.

Before using the model in risk assessment the model should be
evaluated. The purpose of this is to assess the available toxicoki-
netic and dose–response data of the chemical-biological system
and also to depict the uncertainty associated with the parameter
values. Further, in the context of risk assessment the suitability
and the applicability of the model for regulatory purposes should
be assessed (US EPA, 2006a). Model evaluation consist of validation
and verification, that is whether the model is correctly build and
whether it is the right model, respectively (Balci, 1997; US EPA,
2006a).

When a model has been built and evaluated in for instance rats
the model is ready for extrapolation to other species including hu-
mans. The steps in developing a PBTK model for interspecies
extrapolation is as follows: (1) the model is built for the appropri-
ate species (e.g. rats), (2) the a priori predictions are compared
with experimental data and the structure and the parameters in
the model are evaluated. If necessary the parameters may be ad-
justed. (3) The species-specific or allometrically scaled physiologi-
cal parameters should be replaced by appropriate estimates for the
species of interest (e.g. humans) (US EPA, 2006a).

Haddad et al. have shown how estimates from PBTK models can
be used in the risk assessment. They used the PBTK model ap-
proach to account for interactions in occupational inhalation expo-
sure of mixtures of five volatile organic chemicals (Haddad et al.,
2001). This approach is similar to the one proposed by the same
group for calculating biological hazard index for chemical mixtures
to be used in biological monitoring of worker exposure (Haddad
et al., 1999). The interaction-based hazard index for systemic tox-
icant mixtures was calculated from target tissue dose levels in a
similar way as the hazard index in Section 3.3:
HII ¼
Xn

i¼1

TMi

TRi
ð14Þ
where TRi and TMi are estimates of tissue dose levels derived from
PBTK models. TRi is the tissue dose levels calculated (by PBTK mod-
els) based on guideline values of individual compounds in the mix-
ture (in this case they use threshold limit values; but as the
background equation just requires the ‘‘maximum acceptable level”
ADI or RfD may also be used). TMi is the estimated tissue dose levels
of each compound in the mixture during human exposure calcu-
lated in PBTK models which take interactions into account. In cases
were the compounds in the mixture act by different mechanisms or



Problem identification

Literature evaluation

Physiological 
constants

Toxic 
mechanisms

Biochemical or 
metabolic constants

Model formulation

Simulation

Comparison to 
data Validate modelExperimental 

data

Refine model

Not OK

Application in 
risk assessment

Extrapolation 
to humans

Fig. 11. Flow chart for development of a PBTK model. Modified from (Clewell and
Clewell, 2008; US EPA, 2006).

190 T.K. Reffstrup et al. / Regulatory Toxicology and Pharmacology 56 (2010) 174–192
affect different target organs, the interaction-based hazard index
should be calculated for each end point.

The same group of scientists suggested a similar approach for
mixtures of carcinogenic compounds in that they revised the fol-
lowing equation for calculation of the carcinogenic risk related to
mixture exposure (CRM):

CRM ¼
Xn

i¼1

ðE� q�i Þ ð15Þ

where q*
i is the carcinogenic potential of compound i expressed as

risk per unit dose.
Rewriting this equation gives

CRM ¼
Xn

i¼1

ðTMi � q�ttiÞ ð16Þ

where q*
tti is the tissue dose based unit risk for each carcinogenic

compound in the mixture and this level is estimated in PBTK mod-
els for the individual compounds in the mixture. TMi is defined
above.

Overall, development of PBTK models for the most common
chemical mixtures of concern to be used routinely would be of
great importance in the future risk assessment. Validation of the
models and development of principles and guidance for good mod-
elling practice (Loizou et al., 2008) as well as statistical research to
support model assumptions is needed. Teuschler has specified the
statistical research to ‘‘include testing for similar shapes of compo-
nent dose–response curves, determining whether additivity
assumptions are applicable or not for describing mixture risk,
and using algorithms to form groups of similar components or sim-
ilar mixtures” (Teuschler, 2007).

In addition, developments in the area of toxicogenomics have
also been suggested as a way of increasing our knowledge of mech-
anism of toxicity in order to better understand and improve the ap-
proaches for risk assessment of combined actions of chemicals
(Andersen and Krewski, 2009; El-Masri, 2007; Groten et al., 2001).
8. Conclusion

Of the various approaches for risk assessment of mixtures of
chemicals discussed in this paper, the whole mixture approaches
would be the ideal choice for assessment of pesticide residues in
food. However, they are normally not applicable since they require
a large number of experimental data that are rarely available. This
leaves the single compound approaches as the more realistic ones.

In the risk assessment of multiple residues in food, the individ-
ual compounds will be considered for possible candidates in one
(or more) cumulative assessment groups. When adequate data
are available a common mechanism group should be established.
The cumulative risk assessment of this group will then be per-
formed assuming simple similar action using preferably the PODI,
but in practice the HI based on the reference value i.e. ADI/RfD
would normally be sufficient. Sometimes a refinement i.e. using
the NOAEL for the relevant toxicological effect is required as the
reference value can be based on a critical toxicological effect differ-
ent from the CAG based effect.

Where more than one common mechanism group based on
simple similar actions is identified, they should be assessed sepa-
rately as indicated above. In addition, the potential for interactions
between the groups (or single compounds) have to be considered.
If interaction between the groups/compounds can be ruled out,
simple dissimilar action can be anticipated, and the effect of the
mixture should be assessed by response addition. However, it is
a common perception that at very low doses, where none of the
compounds in the mixture have any toxic effect, no adverse effect
of the mixture will be anticipated as well.

In many cases it can be predicted that evaluators will tend to
use very pragmatic approaches, such as assuming that all com-
pounds in the mixture show simple similar actions, and thus use
HI or PODI, such evaluations would be more convincing if lack of
interaction between the compounds at the actual dose level had
been demonstrated.

Therefore, a crucial point in the assessment is whether there is
interaction or no interaction between the compounds in the mix-
ture. Although interactions among chemicals at high doses are
well-known, there is currently no single simple approach to judge
upon potential interactions at the low doses that humans are ex-
posed to from pesticide residues in food. For this purpose, PBTK
models could be useful as tools to assess combined tissue doses
and to help predict potential interactions including thresholds for
such effects.

The use of PBTK modelling in the risk assessment of mixtures is
an upcoming challenge. PBTK models are complex and should of
course only be used when it is considered essential. However, they
will provide better knowledge and understanding of the effects of
mixtures on biological systems and provide improved information
on tissue dose levels and variations between species and within a
population. Moreover, scientifically supportable results in the risk
assessment of mixtures of pesticides would help the risk managers
in making more weighty decisions. If the PBTK models are ex-
panded by a toxicodynamic part, the model could be even better
and make it possible to identify deviations from additivity at the
toxicodynamic level.
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