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The pregnane X receptor (PXR) has a key role in regulating the metabolism and transport of structurally di-
verse endogenous and exogenous compounds. Activation of PXR has the potential to initiate adverse effects,
causing drug–drug interactions, and perturbing normal physiological functions. Therefore, identification of
PXR ligands would be valuable information for pharmaceutical and toxicological research. In the present
study, we developed a quantitative structure–activity relationship (QSAR) model for the identification of
PXR ligands using data based on a human PXR binding assay. A total of 631 molecules, representing a variety
of chemical structures, constituted the training set of the model. Cross-validation of the model showed a sen-
sitivity of 82%, a specificity of 85%, and a concordance of 84%. The developed model provided knowledge
about molecular descriptors that may influence the binding of molecules to PXR. The model was used to
screen a large inventory of environmental chemicals, of which 47% was found to be within domain of the
model. Approximately 35% of the chemicals within domain were predicted to be PXR ligands. The predicted
PXR ligands were found to be overrepresented among chemicals predicted to cause adverse effects, such as
genotoxicity, teratogenicity, estrogen receptor activation and androgen receptor antagonism compared to
chemicals not causing these effects. The developed model may be useful as a tool for predicting potential
PXR ligands and for providing mechanistic information of toxic effects of chemicals.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Nuclear receptors constitute a large superfamily of ligand-
dependent transcription factors that control gene expression and
play a key role in the development, homeostasis and metabolism of
living organisms. The pregnane X receptor (PXR) is a member of
this superfamily and regulates enzymes and transporters involved
in xenobiotic detoxification as well as maintaining homeostatic bal-
ance of bile acids, thyroid and steroid hormones (di Masi et al.,
2009). PXR is primarily expressed in the liver, intestine and kidney,
but its expression is also seen in lung, stomach, the blood–brain bar-
rier, placenta, bone marrow, and specific regions of the brain.

PXR is activated by a structurally diverse array of endogenous and
exogenous compounds, including steroids, bile acids, antibiotics, sta-
tins, anticancer compounds, PPAR antagonists, and environmental
receptor; EDC, endocrine dis-
ng Commercial Chemical Sub-
syl transferase; LBD, ligand
artial least squares; SCE, sister

rights reserved.
contaminants, such as pesticides and plasticizers (Chen and Nie,
2009; Kretschmer and Baldwin, 2005). Upon interaction with these li-
gands, PXR forms a heterodimer with the retinoid X receptor in the
nucleus and binds to a xenobiotic response element located in the
promoter region of the target gene, thereby regulating its transcrip-
tion. PXR target genes include genes encoding cytochrome P450
(CYP) enzymes, such as CYP3A4 and CYP2B6, conjugation enzymes,
such as UDP-glucuronosyltransferases and sulfotransferases, and
transporters, such as P-glycoprotein and multidrug resistance-
associated proteins (Tolson and Wang, 2010). Because the induced
proteins are not only involved in the metabolism and transport of en-
vironmental chemicals and drugs, but also of bile acid, thyroid, and
steroid hormones, xenobiotics may interfere with normal physiologi-
cal functions. Moreover, recent studies have provided evidence that
PXR activation is involved in lipid metabolism, glucose homeostasis,
and inflammation (Moreau et al., 2008; Zhou et al., 2009). The wide
array of biological activities of PXR agonists might be of clinical rele-
vance, and their potential in treatment of liver disorders was
reviewed recently (Fiorucci et al., 2012).

Several crystal structures of human PXR ligand binding domain
(LBD) complexed with xenobiotic ligands reveal that the PXR binding
site is unusually large and flexible (Watkins et al., 2001). It can
change its shape to accommodate molecules that vary in size from
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300 Da (such as carbamazepine and clotrimazole) to over 800 Da
(rifampicin) in molecular weight. The LBD contains both a ligand
binding pocket and a ligand-dependent AF-2 region, which binds to
transcriptional cofactors. It has been suggested that different ligands
lead to the recruitment of different coactivators and the activation
of different genes (Ngan et al., 2009). Up to 28 amino acid residues
line the binding site of PXR, although no more than 19 residues are
in contact with the ligands in any of the X-ray structures available
to date (Ngan et al., 2009). Notably, 20 of the 28 residues are hydro-
phobic, and the few polar and charged residues, spaced throughout
the hydrophobic pocket, may permit a ligand to bind in multiple ori-
entations. Human pharmacophore models have shown that PXR ago-
nists are required to fit to multiple hydrophobic features and at least
one hydrogen bond acceptor (Ekins and Erickson, 2002; Ekins et al.,
2007; Schuster and Langer, 2005). Very few PXR antagonists have
been identified. Most of the known PXR antagonists require a balance
between hydrophobic and hydrogen bonding features and are inter-
acting at the AF-2 site, while agonists are bound in the ligand binding
pocket (Ekins et al., 2007).

A considerable amount of inter-species variation has been ob-
served in the PXR LBDwith human, rabbit and rat sharing only rough-
ly 75% amino acid sequence identity (Jones et al., 2000). There are
numerous examples of differences in ligand binding of PXR. For ex-
ample, SR12813 (a bisphosphonate ester used to lower serum choles-
terol levels) is a potent activator of human and rabbit PXR but a weak
activator of rat PXR. Thus, it is difficult to extrapolate results obtained
with rodent PXR to their human counterparts. In contrast to the sig-
nificant inter-species variation, very low variation in LBD sequence
(lower than the whole genome average for human genes) is seen be-
tween human individuals (Zhang et al., 2001). This suggests limited
variation in PXR ligands between humans.

Because of its vital role in drug metabolism, it is not surprising that
PXR has been found responsible for decreased drug efficacy and in-
creased drug toxicity. The promiscuous nature of PXR ligand binding
is a contributing factor in drug–drug interactions due to its capability
of binding a variety of structurally diverse molecules that induce
CYP3A4. CYP3A4 is considered the main drug-metabolizing CYP in
human liver. It accounts for up to 40% of total CYPs in this organ
and is responsible for the metabolism of more than 60% of drugs on
the market today (di Masi et al., 2009). Bioactivation through
CYP3A4 is often suspected as an initiating event in chemical toxicity.
The induction of metabolizing enzymes and transporters by PXR has
also been regarded as one of the major mechanisms of drug resistance
(Chen and Nie, 2009). Activation of PXR may accelerate the metabo-
lism and elimination of chemotherapeutic agents, contributing to re-
sistance to chemotherapy. Given the clinical liabilities associated with
developing PXR activating compounds into drugs, it has become one
of the primary objectives for drug-discovery programs to attenuate
PXR activity (Gao et al., 2007).

Activation of PXR may also lead to disturbance of normal physio-
logical systems, such as the steroid and thyroid hormone systems. In-
appropriate activation or antagonism of the estrogen and androgen
receptors is the most extensively studied mechanisms for endocrine
disruption. However, increasing or decreasing endogenous hormone
metabolism could contribute to the detrimental effects of endocrine
disrupting chemicals (EDCs), and therefore the potential role of a
PXR-mediated mechanism has received increased attention (Kojima
et al., 2010; Tabb and Blumberg, 2006). Several EDCs are known to ac-
tivate PXR, including structurally diverse organochlorine pesticides,
polychlorinated biphenyls, plasticizers, fungicides, herbicides, and
pharmaceutical compounds, and many of these compounds have pre-
viously been associated with developmental toxicity, estrogenic, and/
or antiandrogenic effects (Kretschmer and Baldwin, 2005).

Because activation of PXR has the potential to initiate a broad
spectrum of adverse effects, identification of PXR agonists would be
important information for evaluating health risk of environmental
chemicals and drugs. Experimental determination of toxicity profiles
requires resources both in terms of cost and time. Therefore reliable
in silico alternatives such as quantitative structure–activity relation-
ship (QSAR) models are becoming important tools for rapid and
cost-effective prediction of biological activities. Such models may
have a great potential for use in the identification of large numbers
of potential PXR agonists. To date, the lack of large sets of PXR data
has restricted ligand-based computational models to a relatively
small universe of molecules (Ekins et al., 2009; Khandelwal et al.,
2008; Pan et al., 2011; Ung et al., 2007).

In this study, we developed a QSAR model for the prediction of
PXR ligands using data based on a human PXR LBD binding assay
(Shukla et al., 2009). The model was built on a training set of 631
molecules (299 positives and 332 negatives). The model was used
to screen a library of 51,680 environmental chemicals, for which
very limited toxicity testing has been performed. These include
chemicals present in our food, environment, and consumer products,
e.g. food additives, plasticizers and flame retardants. Such a screening
may give an estimate of the number of PXR ligands among environ-
mental chemicals as well as give information about the applicability
domain of the PXR model. The PXR predictions were correlated with
predictions from other QSARmodels including genotoxicity, teratoge-
nicity, estrogen receptor (ER) activation and androgen receptor (AR)
antagonism. This approach can be used to elucidate the role of PXR in
toxicity and to increase the mechanistic understanding of toxic
effects.

Materials and methods

Data set for training and validation of the model. The training set con-
sisted of experimental data for PXR binding kindly provided by
Dr. Sunita Shukla (NIH Chemical Genomics Center, National Institutes
of Health, Bethesda, Maryland). The data was obtained using a time-
resolved fluorescence resonance energy transfer (TR-FRET) assay,
whichmeasured human PXR binding. Briefly, the TR-FRET assay reports
on the ability of a test ligand to displace a fluorescein-labeled tracer
molecule from the nuclear receptor. The assay performance and the
data analysis are described in details elsewhere (Shukla et al., 2009).
The PXR binding data included compounds from the Sigma-Aldrich
LOPAC collection, Tocris/TimTec, bioactive collection, and Biomol.

The classification of active and inactive compounds was as de-
scribed by Shukla et al. (2009). All compounds defined as “high con-
fidence” actives and an equal number of randomly selected inactive
compounds were used for preparation of the training set. The data
were checked for structural replicates. In case of duplicate structures,
one of the replicates was kept if the compounds had the same activity
and both were removed if they had different activity. The data were
also searched for salts, and the structures were used in their non-
ionized form in the training set. The resulting training set consisted
of 631 molecules; 299 actives and 332 inactives.

Two data sets were used for external validation of the predictive
model. The first test set (test set 1) consisted of human PXR activation
data (n=145) determined by a reporter gene assay (Khandelwal
et al., 2008). After removing molecules also present in the training
set and two molecules known to be PXR antagonists (fluconazole
and ketonazole), the test set consisted of 120 chemicals (68 actives
and 52 inactives). The second test set (test set 2) consisted of the
remaining 3351 inactive compounds with respect to PXR binding,
which were not used in the balanced training set (Shukla et al., 2009).

Modeling methodology. The modeling system Leadscope® Predictive
Data Miner (Version 3.04-10, Leadscope, Inc., http://leadscope.com)
was used. The molecular structures in the training set were imported
into Leadscope and classified by structure into categories using a
library of approximately 27,000 structural features (Roberts et al.,
2000). The structural features are substructures such as functional

http://leadscope.com


Table 2
The mean values of molecular weight and logP of actives and inactives in the training
set. The standard deviations are listed in parentheses.

MW Log P

Inactive (n=332) 308 (163) 1.9 (2.2)
Active (n=299) 407 (124) 4.4 (1.6)

303M. Dybdahl et al. / Toxicology and Applied Pharmacology 262 (2012) 301–309
groups, heterocycles and pharmacophores. Eight molecular descrip-
tors, calculated octanol water partition coefficient (logP), hydrogen
bond acceptors, hydrogen bond donors, Lipinski score, atom count,
molecular weight, polar surface area and rotatable bonds, were calcu-
lated for each structure as well. A predictive model was developed
based on a sub-set of the structural features and the molecular de-
scriptors, using partial logistic regression (PLR). The sub-set of fea-
tures was identified with the automatic feature selection option in
Leadscope that selects the 30% best correlated features according to
a Yates χ2-test. Another model was built using the scaffold genera-
tion function in Leadscope and performances of the two models
were evaluated.

Applicability domain. The applicability domainwasdefined as described
in the following, and only predictionswithin this domainwere accepted.
Class probabilities (p) for positive predictions were used for defining the
domain, requiring p≥0.7 for actives and p≤0.3 for inactives. In addition,
Leadscope uses structural domain, which requires that a compound has
at least 30% Tanimoto structural similarity with a training set compound
and contain at least one structural feature from the model, to be consid-
ered in domain.

Screening of a large inventory of chemicals for PXR binding. The devel-
oped PXR model was used to screen a list of 51,680 chemicals from
the EINECS list (European Inventory of Existing Commercial Chemical
Substances). The EINECS list contains discrete organic chemicals, inor-
ganic compounds and other substances that were registered for use
on the European market between 1971 and 1981. As our modeling
systems can only handle discrete organic compounds, a sub-set of mol-
eculeswith a defined 2D structure, containing at least two carbon atoms
and only certain atoms (H, Li, B, C, N, O, F, Na,Mg, Si, P, S, Cl, K, Ca, Br, and
I) was selected as prediction set.

Models used for correlation with predicted PXR binders. The resulting
screening results were imported into our in-house database tool, built
on Oasis Database Manager (Nikolov et al., 2006). The in-house data-
base presently contains predictions from more than 150 QSAR models
for up to185,000 organic compounds and can be used to explore corre-
lations between different model predictions. The predicted PXR ligands
were correlated with predictions from QSAR models covering various
endpoints such as genotoxicity, teratogenicity, ER activation and AR
antagonism. Two models for in vitro genotoxicity, the Ames test and
the HGPRT mammalian cell gene mutation assay, and one model for
in vivo genotoxicity, sister chromatid exchange (SCE) were used.
More detailed information on the QSAR models e.g. endpoint descrip-
tion, training set and validation is given in the Supplemental material.
The models for the Ames test and the HGPRT assay have very high
model performances, matching the best experimental reproducibility
among in vitro genotoxicity tests. The other models generally have
high specificities, and somewhat lower sensitivities, which make the
probability of making false positive predictions lower than making
false negative predictions.

Statistical analyses. The performance of the QSARmodel was evaluated
using Cooper statistics, which describes sensitivity (ability to correctly
predict actives), specificity (ability to correctly predict inactives) and
Table 1
Performance of the developed PXR model. The predictive performance was evaluated
by 2×50% cross-validation and by external validation using test sets 1 and 2.

In domain
(%)

Sensitivity
(%)

Specificity
(%)

Concordance
(%)

Training set (n=631) – 82.3 84.6 83.5
Test set 1 (n=120) 57.5 57.9 83.9 69.6
Test set 2 (n=3351) 73.9 – 82.1 –
concordance (overall accuracy) (Cooper et al., 1979). These measures
are defined below, where TP, TN, FP and FN are true positives, true neg-
atives, false positives and false negatives, respectively.

Sensitivity ¼ TP= TP þ FNð Þ
Specif icity ¼ TN= TN þ FPð Þ
Concordance ¼ TP þ TNð Þ= TP þ TN þ FP þ FNð Þ

Matthews's correlation coefficient and chi-squared statistics were
calculated to estimate the significance of correlations between differ-
ent model predictions.

Results

Validation of the predictive PXR model

The Leadscope model without scaffold generation had the best
performance and was used for prediction of PXR binding of the
EINECS chemicals. The validation results of the predictive model are
shown in Table 1. After leaving 50% of the compounds out by random
twice for cross validation, the sensitivity was 82.3%, specificity 84.6%,
and concordance 83.5%. Validation with the external test set of 120
compounds from a previous study (Khandelwal et al., 2008) (test
set 1) revealed a specificity of 83.9% and a sensitivity of 57.9%. The
lower sensitivity most likely reflects the fact that the external test
set and the training set are from two different assay types (reporter
gene vs. binding), and that the reporter gene assay also identifies
compounds acting through other routes than direct ligand binding;
i.e. our model which identifies ligand binders will not identify all
the compounds whichmight activate PXR. The large 3351 compounds
test set containing only PXR negatives (test set 2) resulted in a spec-
ificity of 82.1%.

Model parameters

The Leadscope predictive model was built using 387 structural
features and 8 molecular descriptors. The number of partial least
squares (PLS) factors was 3. Some of the most important descriptors
in the model were logP and molecular weight. From Table 2 it can
be seen that PXR binders are in general larger molecules and have
higher logP compared to PXR non-binders.

To explore the structural features contributing to PXR activity, the
Leadscope model with scaffold generation was used. Cross validation
of the model (two times 50%) gave a sensitivity of 77.9%, a specificity
of 84.3%, and a concordance of 81.3%. Fig. 1 presents some of the most
influential features contributing to positive and negative PXR activity.
It can be seen that all positive contributing substructures are essen-
tially hydrophobic, while negatively contributing features appear to
be more polar, i.e. contain hydroxyl or other polar groups. It should
be noted that the contribution to PXR activity of a given substructure
may be influenced by the total molecular structure.

Two examples of positive PXR ligands were investigated to illus-
trate some of the substructures linked to PXR binding. The ligands
chosen were felodipine, a calcium channel blocker, and clotrimazole,
an antifungal drug. These molecules are strong PXR binders and have
been used in docking models for PXR (Xiao et al., 2011).



26/4 34/9 30/9 23/5 12/0

Scaffold 121 Scaffold 219 carboxylate, alkyl, acyc- Scaffold 182 Scaffold 243
12/0 14/1 21/5 24/7 12/1

Scaffold 227 Scaffold 222 benzene, 1,3-dialkyl- Scaffold 195 Scaffold 233
12/1 9/0 11/1 15/3 14/3

Scaffold 221 Scaffold 434 Scaffold 188 Scaffold 100 pyridine(H),3-carbonyl-

4/30 4/28 6/29 3/21 8/31

Alpha-amino acid (free
amine) 

Methane, 1-amino(NH2)-
,1-carbonyl-

Ethane, 1-amino,2-
hydroxy-

1-methane-carboxylic 
acid, 1-amino(NH2)- 

Alpha-amino acid (free
acid)

0/12 0/11 0/11 8/28 0/9

Guanidine Amino(NH2)iminomethyl Oxolane, 2-amino- 1-methane-carboxylic 
acid, 1-amino- 

Imidazole,1-alkoxymethyl-

3/16 3/16 0/8 0/8 0/7

carboxamide(NHR), alkyl,
cyc- 

benzopyran, 4-oxo- imidazole, 4-carbonyl- 1,3-diazine(H), 4-oxo- Scaffold 117

Fig. 1. The most important features in the PXR model developed in Leadscope with scaffold generation. The features are selected by occurrence and chi-square test. The ratio of
ligand/non-ligand for each feature is indicated in upper left corner. Z matches N, S or O.
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Felodipine

Felodipine and two of the structural features describing the mole-
cule are shown in Fig. 2 (scaffold numbers 47 and 434). It was seen
that the training set chemicals containing scaffold number 434 were
mainly drugs belonging to the dihydropyridine calcium channel
blockers, namely felodipine, nimodipine, nicardipine, nitrendipine,
isradipine and cilnidipine. All of the chemicals in the training set
containing this feature, nine in total, were positive when tested in
the PXR binding assay. Scaffold number 47 was present in 16 positive
and 5 negative PXR ligands.

Clotrimazole

Clotrimazole and two of the structural features describing the
molecule are shown in Fig. 3 (scaffold numbers 100 and 359). These



Fig. 2. Felodipine and two describing features.
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features illustrate the requirement of PXR agonists to fit to multiple
hydrophobic features and at least one hydrogen bond acceptor. The
imidazole moiety may form a hydrogen bond with PXR and the aro-
matic rings can interact with aromatic residues in PXR. Of the
chemicals containing scaffold number 100, 15 were positive and 3
were negative when tested in the PXR binding assay, while scaffold
number 359 was present in 7 positive and 1 negative chemicals.

Predictions and applicability domain of the EINECS chemicals

A structure set of 51,680 discrete organic chemicals from the
EINECS list was screened through the PXR model. As shown in
Table 3, 47% of the chemicals were found to be within the domain
of the model and of these 35% were predicted as PXR ligands,
corresponding to 8516 chemicals.

Comparisons with other endpoints

The QSAR predictions for PXR binding were correlated with
corresponding predictions from QSAR models covering various end-
points such as genotoxicity, teratogenicity, ER activation and AR antag-
onism for the same EINECS structure set. Comparing predicted PXR
results with predictions for other endpoints may involve double uncer-
tainty inherent in predictive models but can also be valuable due to the
opportunity to draw conclusions from predictions of large chemical li-
braries. We found statistically significant evidence about correlations
between PXR predictions and predictions of other endpoints; the mag-
nitude of correlations between themodeled biological effects is howev-
er not estimated in this work. Using QSAR predictions for different
properties for a large number of compounds, we were able to identify
adverse effects that according to our model predictions were signifi-
cantly more common among compounds that bind to PXR compared
to compounds that do not bind to PXR. This analysis was used to eluci-
date trends in the predicted data, thereby identifying possible biological
Fig. 3. Clotrimazole and tw
processes and pathways affected by PXR ligands. When performing the
comparisons, only molecules included in the common domain of the
relevant models were used, e.g. molecules with reliable model predic-
tions for both properties being correlated.

The correlations between predictions of different endpoints are
summarized in Tables 4 and 5. Matthews's correlation coefficient and
chi-squared statistics were calculated to estimate the correlation signif-
icance and are summarized in Tables 6 and 7. The values ofχ2 show that
all dependencies are statistically significant (χ2>3.841 and pb0.05).

Three genotoxicity models based on in vitro or in vivo data were
used for evaluation of a possible association with PXR binding. All
genotoxicity models correlated positively with the PXR predictions
(Matthew's correlation coefficient between 0.06 and 0.11) indicating
that genotoxic effects are more common among compounds that bind
to PXR compared to compounds that donot bind to PXR. Fig. 4 illustrates
the correlations of predicted PXR binding with predicted genotoxicity.

The correlation of predicted PXR with predicted AR antagonism
showed a marked increase in the incidence of predicted PXR positives
among AR antagonists compared to non-antagonists, supported also
by a high value of the corresponding χ2 statistics. Predicted ER activa-
tors correlated only marginally to predicted PXR positives because of
the relatively low number of predicted ER activators available in the
common domain of the models, and the rather balanced split of
predicted ER activators between the predicted PXR classes.

There was a marked increase in the percentage of predicted PXR
ligands among teratogenic compounds compared to non-teratogenic
compounds supported by the corresponding statistics. Fig. 5 shows
graphically the correlations of predicted PXR binding with predicted
endocrine disruption and teratogenicity.

It was also investigated as to what extent the predicted teratoge-
nicity might be linked to AR antagonism and ER activation (Tables 5
and 7). Both ER activation and AR antagonism correlated positively
with the predictions for teratogenicity. However, the comparison be-
tween predicted teratogenicity and AR antagonism resulted in only
o describing features.

image of Fig.�3


Table 3
Domain of the PXR model within 51,680 EINECS chemicals and prediction for PXR
binding.

In domain In domain and predicted PXR positive

EINECS chemicals n 24,524 8516
% 47 35

Table 5
Correlations of predicted AR and ER activation with predicted teratogenicity. Only pre-
dictions in domain of both the teratogenicity model and the AR antagonism or ER acti-
vation model were included.

Total
(n)

AR pos
(n)

AR pos
(%)

Total
(n)

ER pos
(n)

ER pos
(%)

Teratogenicity pos 1749 203 11.6 1099 96 8.7
Teratogenicity neg 16,050 1503 9.4 12,887 379 2.9
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2% difference in the incidence of positives, and χ2 of 9.1, so this de-
pendence can be regarded as marginal.

The correlations of PXR binding with other endpoints in the in-
house QSAR database were also performed using PXR predictions
from a QSAR model built in the SciQSAR modeling system. The
SciQSAR model was built on the same training set as the Leadscope
model. Predictions from the two modeling systems resulted in the
same trends, which support the validity of the correlation results
(data not shown).

Examples of molecules which were positive for PXR binding and
teratogenicity

Screening of the EINECS list identified 592 chemicals, which were
positive for both PXR binding and teratogenicity. Examples of the
chemical classes, which were identified by manual inspection of the
chemicals, included steroids, genotoxic agents, carcinogens, estrogen
receptor agonists, androgen receptor antagonists, tetracyclins, thy-
roid modulators, anticoagulants and retinoids.

Discussion

In the present study, we have developed a global QSAR model for
the identification of PXR ligands. The Leadscope modeling systemwas
used to construct the model, and data from an in vitro assay measur-
ing human PXR binding were used to train the model. The training set
included 631 molecules representing a variety of chemical com-
pounds (Shukla et al., 2009). The model was used to screen a large in-
ventory of environmental chemicals, and the predictions were
correlated with predictions from a number of other QSAR model
endpoints.

Model validation

The first part of this study was focused on the development and val-
idation of a QSAR model for PXR binding including identification of de-
scriptors important for binding to the receptor. Cross-validation of the
model showed that a robust model was developed (sensitivity 82%,
Table 4
Correlations of predicted PXR ligands with predicted data for endpoints for genotoxic
effects, endocrine disruption and teratogenicity. Only predictions in domain of both
the PXR model and the respective toxicity model were included.

Total (n) PXR pos (n) PXR pos (%)

Genotoxicity
Ames pos 2686 1147 43
Ames neg 15,194 5273 35
HGPRT pos 2298 980 43
HGPRT neg 7065 2292 32
SCE pos 4305 1662 39
SCE neg 6558 1846 28

Endocrine disruption
AR antagonism pos 1509 802 53
AR antagonism neg 14,098 4512 32
ER activation pos 400 166 42
ER activation neg 9464 3160 33

Reproductive toxicity
Teratogenicity pos 1127 592 53
Teratogenicity neg 10,899 3366 31
specificity 85%, and concordance 84%). The external validation set pre-
dominantly consisted of drugs, imidazole derivates similar to clotrima-
zole, steroids, molecules with different heterocyclic ring systems, as
well as many other diverse molecules (Khandelwal et al., 2008). The
PXR activity in the external test set was determined by a human cell-
based reporter gene assay. The PXR binding assay identifies PXR activa-
tion by direct binding to the ligand binding domain, whereas the cell-
based assay can identify compounds which activate either through
direct ligand binding or throughmodulation of PXR activation by signal-
ing pathways. It is important to note that comparisons between differ-
ent assay formats may produce discrepant results and need careful
interpretation. For example, active compounds from the PXR binding
assay which do not reproduce in a cell-based assay could act as antago-
nists, may not enter the cell or may be degraded in the cellular environ-
ment. On the other hand, compoundswhich are active in the cell-based
assay and negative in the binding assay may not have been able to dis-
place the tracermolecule. In a recent study, compoundswere profiled in
a PXR binding assay and a cell-based PXR assay and the concordance
rate (compounds with activity in both assays relative to compounds
with activity in either assay) was found to be 71% (Shukla et al.,
2011). The external validation of our model resulted in a sensitivity of
58%, a specificity of 84%, and a concordance of 70%. The lower sensitivity
indicates that a number of compounds identified as positives in the cell-
based PXR assay were not picked up in the binding assay. This may be
expected assuming that the cell-based assay can identify compounds
acting through other routes than direct ligand binding. In order to pro-
videmore detailed information on themechanismof PXR activation, fu-
ture studieswould benefit from comparing the results fromhuman cell-
based PXR reporter systems to the results using the PXR binding assay.
Descriptors

The large and promiscuous ligand binding pocket of PXR accepts
molecules of widely varying sizes, and is likely to be capable of bind-
ing small molecules in multiple orientations. Human PXR agonist
pharmacophore models have shown that agonists are required to fit
to multiple hydrophobic features and at least one hydrogen bond ac-
ceptor (Ekins and Erickson, 2002; Ekins et al., 2007; Schuster and
Langer, 2005). The Leadscopemodeling system enables the identifica-
tion of structural features andmolecular descriptors of importance for
PXR binding. Some of the most important descriptors in our PXR
model were molecular weight and logP. The importance of molecular
weight may indicate that there is a lower limit to the contraction of
the PXR LBD that can occur to accommodate small ligands. In a recent
Table 6
Correlation coefficients and χ2 statistics for PXR predictions compared to predictions of
other endpoints.

MCCa χ2

Ames 0.06 63.5
HGPRT 0.09 79.4
SCE 0.11 130.0
AR antagonism 0.13 271.4
ER activation 0.03 11.3
Teratogenicity 0.13 216.7

a MCC: Matthew's correlation coefficient.



Table 7
Correlation coefficients and χ2 statistics for teratogenicity predictions compared to
predictions of AR antagonism and ER activation.

MCCa χ2

AR antagonism 0.02 9.1
ER activation 0.09 103.6

a MCC: Matthew's correlation coefficient.

Fig. 5. The percentage of predicted PXR ligands among compounds predicted to be pos-
itive or negative in models for teratogenicity, AR antagonism and ER activation. The
percentages of predicted PXR ligands are indicated on the bars.
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study, compounds with molecular weights less than 300 Da appeared
to be too small to be able to interact with PXR (Xiao et al., 2011). Be-
sides, the three-dimensional shapes of the compounds also appeared
to be rather crucial for fitting into the PXR LBD. Several larger mole-
cules with molecular weights greater than 300 (e.g., dexamethazone,
doxorubicin, sulfazalazine and pioglitazone) were also shown to be
incapable of interacting with PXR, probably because the molecular
shapes of these compounds are linear and/or elongated in one dimen-
sion, resulting in mismatch with the PXR LBD. Leadscope also identi-
fied structural features that contributed positively or negatively to
PXR binding. It appeared that all positive contributing substructures
are essentially hydrophobic, while negatively contributing features
possess hydroxyl or other substitutions which are likely not optimally
placed to facilitate interactions with hydrogen bonding features in
PXR. This is in agreement with other studies, which have used dock-
ing or ligand-based modeling to study the structure–activity relation-
ship for PXR activators (Ekins et al., 2009; Gao et al., 2007). Two
molecules from the training set, felodipine and clotrimazole, were
used to illustrate the features in the model. Results from a recent
docking study showed that both clotrimazole and felodipine formed
mostly hydrophobic interactions with PXR, and the imidazole moiety
of clotrimazole and the nitrogen atom in the pyridine core of
felodipine formed hydrogen bonds with PXR (Xiao et al., 2011). The
great interest in avoiding PXR activation in drug development has
led to suggestions such as introducing polar groups to the end of an
activator, adding larger more rigid groups as well as removing central
H-bond acceptors (Gao et al., 2007; Zimmermann et al., 2010).
Screening of a large inventory of chemicals for PXR binding

We found that 35% of the EINECS chemicals in domain of the model
were predicted to be PXR ligands. To our knowledge, this is the first
study which examines a large set of environmental chemicals in a
QSAR screening to identify PXR ligands. It was recently reported that
11% of more than 2800 clinically utilized drugs had human PXR activity
Fig. 4. The percentage of predicted PXR ligands among compounds predicted to be pos-
itive or negative in models for genotoxicity. Two models for in vitro genotoxicity, the
Ames test and the HGPRT mammalian cell gene mutation assay, and one model for in
vivo genotoxicity, sister chromatid exchange (SCE) were used. The percentages of
predicted PXR ligands are indicated on the bars.
using a reporter gene assay and 7%were positive in a PXR binding assay
(Shukla et al., 2011). In another recent study, human PXR activity of 200
pesticides (e.g. organochlorines, diphenyl ethers, organophosphorus,
pyrethroids, and carbamates) was characterized using a reporter gene
assay (Kojima et al., 2011). Of the 200 pesticides tested, 106 activated
PXR, and the PXR activators included representatives from all groups
studied. Together, these findings indicate that a large number of
chemicals and drugs possess human PXR activity.
Correlations with other endpoints

The aim of the second part of this studywas to investigate the role of
PXR in toxicity and to elucidate potential mechanisms andmodes of ac-
tion underlying toxic effects. Given the role of PXR as amaster regulator
of themetabolism of steroids, bile acids and xenobiotics, PXR activators
could potentially perturb many different pathways of key biological
functions. A large set of environmental chemicals was used for explor-
ing the correlations of PXR with various other endpoints.

Toxic effects of xenobiotics are often ascribed to the chemical re-
activity of metabolites generated through biotransformation, leading
to covalent binding to DNA, proteins, and lipids (Walsh and Miwa,
2011). The CYP enzyme system is considered to be one of the most
important groups of enzymes involved in biotransformation, one im-
portant example being CYP3A4. Many xenobiotics are metabolized by
more than one CYP enzyme, and CYP3A4 may represent only one
pathway. When chemicals are metabolized by CYP3A4, a main target
gene of PXR, they may undergo deactivation or be activated into po-
tentially reactive metabolites, which may damage DNA and lead to
mutations. In the present study, three different models for gen-
otoxicity were used to evaluate the correlations between PXR binding
and genotoxicity. We found a significant higher percentage of
predicted PXR ligands among chemicals predicted to be genotoxic
compared to non-genotoxic chemicals, indicating that genotoxic ef-
fects are more common among compounds that bind to PXR com-
pared to compounds that do not bind to PXR.

Modulation of steroid metabolism through PXR has been
suggested as a mechanism for endocrine disruption. We found an
overrepresentation of predicted PXR ligands among predicted AR an-
tagonists compared to AR non-antagonists and also among predicted
ER activators compared to ER non-activators. These findings suggest
that some estrogenic as well as anti-androgenic mechanisms may
be mediated through PXR. There are a number of routes through
which chemicals can alter steroid receptor activity without directly
binding to steroid receptors, e.g. activation into endocrine disrupting

image of Fig.�4
image of Fig.�5
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metabolites or metabolic deactivation. For example, methoxychlor
and benzophenone are not estrogenic, but they are rapidly converted
to metabolites with estrogenic activity. It has been shown that me-
thoxychlor and benzophenone can activate PXR and induce some of
the enzymes responsible for producing the metabolites that display
estrogenic activity (Mikamo et al., 2003). Another example is sulfona-
tion, which plays an important role in steroid hormone deactivation,
because sulfonated hormones often fail to bind to and activate their
cognate receptors and therefore lose their hormonal activities. Re-
cently, a novel PXR-mediated and metabolism-based mechanism to
reduce androgen activity was reported (Zhang et al., 2010). The
study showed that activation of PXR lowered androgen activity by in-
ducing the expression of CYP3As and sulfotransferase 2A1, which are
enzymes important for the metabolic deactivation of androgens.

An interesting observation in this study was the significant corre-
lation of PXR binding with teratogenic risk. There was an overrepre-
sentation of predicted PXR ligands among the compounds with
predicted teratogenic effects compared to non-teratogenic com-
pounds. By inspection of the compounds predicted positive for both
teratogenicity and PXR binding, there were several chemical groups
known to be responsible for teratogenicity, such as steroids, geno-
toxic and carcinogenic chemicals. Human teratogenicity is a complex
endpoint with many mechanisms of action (van Gelder et al., 2010).
Because PXR is a key regulator of many metabolic enzymes and trans-
porters, activation of PXR may lead to perturbations of many different
pathways. Thus, PXR could potentially be an important factor in many
different teratogenic mechanisms. The impact of AR antagonism and
ER activation on teratogenic risk was also evaluated. Compared to
PXR binding, these mechanisms seem to explain only a small fraction
of the teratogenic effect of the EINECS chemicals. It was recently
reported that disruption of steroid hormone homeostasis as a result
of PXR activation contributed to the reproductive toxicity of triazole an-
tifungals (Goetz andDix, 2009). Perturbation of other hormone systems
through PXR, such as the thyroid hormone system, may be critical dur-
ing development. Thus, up-regulation of UDP-glucuronosyltransferase
via activation of PXR leads to increased elimination of thyroid hormones
and hypothyroxinemia, which is known to cause impaired brain devel-
opment in humans (Miller et al., 2009).
Conclusions

A global QSAR model for human PXR binding was developed. To
our knowledge, this is the most comprehensive QSAR model for PXR
activity developed so far. The model was used to screen 51,680 envi-
ronmental chemicals, and approximately 35% of the chemicals within
domain of the model were predicted to be PXR ligands.

The predicted PXR ligands were found to be overrepresented
among compounds predicted to cause adverse effects, such as gen-
otoxicity, teratogenicity, estrogen receptor activation and androgen
receptor antagonism compared to compounds not causing these ef-
fects. The obtained correlations were biologically plausible supporting
the validity of using a QSAR based approach for the study of biological
associations.

The large number of predicted PXR ligands may show dose-additive
effects and cause adverse effects evenwhen each chemical is present at
a low concentration. The developed model may become a valuable tool
for screening large numbers of chemicals for PXR binding and for pro-
viding mechanistic information of toxic effects of chemicals.
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