

THE 1ST PROFICIANCY TESTING - 2006 ISSUED THE 14 MARCH 2007 SALMONELLA AND CAMPYLOBACTER

Community Reference Laboratory – Antimicrobial Resistance

National Food Institute

Bülowsvej 27, DK-1790 Copenhagen V, Denmark

René Hendriksen, Susanne Karlsmose, Frank Aarestrup

ISBN: 978-87-92158-49-9

Technical University of Denmark

Community Reference Laboratory – Antimicrobial Resistance. National Food Institute Bülowsvej 27, DK-1790, Copenhagen V, Denmark.

Rene Hendriksen, Susanne Karlsmose, Frank Aarestrup.

THE 1st proficiancy testing - 2006 Issued the 14 March 2007 Salmonella and Campylobacter.

1. Introduction

In this report, results of the first proficiency test trial – the External Quality Assurance System (EQAS) - regarding *Salmonella* and *Campylobacter* conducted by the National Food Institute (FOOD-DTU) appointed as community reference laboratory (CRL) by the European Union (EU) are summarised. The objective is to monitor the quality of the antimicrobial susceptibility data produced and pin point areas or laboratories, which need guidance or assistance to produce reliable susceptibility data. The goal is having all laboratories perform susceptibility testing within the range of either of the following: a maximum of 5 % very major / major and 5 % minor errors, or a maximum of 10 % minor errors.

2. Materials and Methods

2.1 Participants

An invitation to participate in the External Quality Assurance System (EQAS) on susceptibility testing of *Salmonella* and *Campylobacter* through the European Union community reference laboratory on antimicrobial resistance (CRL-AR) was distributed on the 13th of October, 2006 by e-mail to the 30 national reference laboratories (NRL) within the EU (App.1). This includes all EU countries but to one laboratory no contact was established (Malta) (App.2). All 30 laboratories responded. 23 of the NRLs were appointed by the individual member states. The remaining seven NRLs were not designated yet but enrolled on equal terms as the designated NRLs based on their participation in an EU funded concerned action (FAIR5-QLK2-2002-01146), ARBAO II project (Antibiotic resistance in bacteria of animal origin). Figure 1 show that 26 member states participated (29 NRLs). Three countries

Technical University of Denmark

tested only the *Salmonella* strains. One designated NRL from Belgium appointed by Luxembourg declined to participate. The Commission has been alerted about this situation.

Figure 1. Participating member states.

2.2 Strains

Eight strains of *Salmonella* and eight strains of *Campylobacter* were selected for this trial among isolates from the National Food Institute. Individual sets of the *Salmonella* strains were inoculated as agar stab cultures and the *Campylobacter* strains were lyophilised in glass vials. The susceptibility patterns for all the strains were verified by the US Food and Drug Administration (FDA) prior to distribution. Furthermore, laboratories were provided with lyophilised international reference strains for susceptibility testing; *E. coli* CCM 3954 ~ ATCC 25922 and *Campylobacter jejuni* CCM 6214 ~ ATCC 33560 purchased at the Czech Collection of Micro-organisms (CCM); The Czech Republic.

2.3 Antimicrobials

Antimicrobial susceptibility testing (AST) on the *Salmonella* and *Campylobacter* strains were performed at the National Food Institute and the obtained MIC values serve as reference for

both *Salmonella* and *Campylobacter*. The following antimicrobials were used in the trial for *Salmonella*: ampicillin / amoxicillin; amoxicillin + clavulanic acid; cefotaxime; cefotaxime + clavulanic acid; cefoxitin; cefpodoxime; ceftazidime; ceftazidime + clavulanic acid; ceftiofur; chloramphenicol; ciprofloxacin / enrofloxacin; florfenicol; gentamicin; imipenem; imipenem + EDTA; nalidixic acid; streptomycin; sulphonamides; tetracycline; trimethoprim and trimethoprim + sulphonamides (App. 3).

MIC determination was performed using Sensititre systems from Trek diagnostics Ltd with the exception of cefotaxime + clavulanic acid, cefoxitin, ceftazidime + clavulanic acid, imipenem, imipenem + EDTA and trimethoprim + sulphonamides. These exceptions were tested using E-test from AB-Biodisk. Guidelines and breakpoints were according to the Clinical and Laboratory Standards Institute (CLSI) document M07-A7 (2006) "Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically"; Approved Standard - Seventh Edition, document M100-S17 (2007) "Performance Standards for Antimicrobial Susceptibility Testing"; Seventeenth Informational Supplement and document M31-A2 (2002) "Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacterial Isolated from Animals"; Approved Standard - Second Edition. Exceptions were the following antimicrobials where different breakpoints were used: ciprofloxacin, florfenicol, gentamicin (according to www.eucast.org) and streptomycin (according to FOOD-DTU) (App.5). Twelve out of 16 reference breakpoints differ from the resistance cutoff values recommended by the European Food safety Authority (EFSA). The four antimicrobials where the breakpoints are equal to the ones suggested by EFSA are: ciprofloxacin; nalidixic acid; sulfonamides and tetracycline (App. 6).

For *Campylobacter* the following antimicrobials were included: chloramphenicol, ciprofloxacin, gentamicin, nalidixic acid, streptomycin, sulphonamides and tetracycline (App. 3). MIC determination was performed using Sensititre systems from Trek diagnostics Ltd according to guidelines and breakpoints from the Clinical and Laboratory Standards Institute (CLSI) document M45-A (2006) "Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria"; Approved Guideline with the only exception of the breakpoint used for streptomycin which was according to FOOD-DTU (App. 5). All reference breakpoints differ from the resistance cut-off values recommended by EFSA with the exception of erythromycin for *C. coli* (App. 6).

3

Technical University of Denmark

2.4 Distribution

The cultures and documents (App. 4a,b,c,d,e) downloaded on a diskette were enclosed in double pack containers (class UN 6,2) and sent the 24th of October 2006 to the selected laboratories according to the International Air Transport Association (IATA) regulations as dangerous goods UN3373. Prior to shipping each laboratory was informed about the dispatched parcels and the air way bill (AWB) number for tracking of the parcel and pick up at the airport. Import permit was necessary for shipping the parcel to Romania.

2.5 Procedure

The laboratories were instructed to follow the protocol and subculture the strains prior to performing the antimicrobial susceptibility test using the method routinely used by the laboratory e.g. MIC determination, E-test or disk diffusion tests. Furthermore, they were requested to save and maintain the ATCC reference strains for future proficiency tests according to App. 4c.

The laboratories were instructed to enter the obtained MIC values or zone-diameter in millimetres and the susceptibility categories to an electronic record sheet in the CRL-AR web based database through a secured individual login and passwords or alternatively send the record sheets from the enclosed protocol by fax to FOOD-DTU. The website was open for entry in the period from the 22nd of November 2006 to the 6th of February 2007.

The strains were categorised as resistant, intermediate or sensitive against the tested antimicrobials. Only antimicrobials used for detection of ESBL should be interpreted clinically according to recommendations from CLSI. Laboratories were instructed to use antimicrobials used in their daily routine methods for performing susceptibility testing. In addition, they should use the daily used breakpoints for categorising the susceptibility data obtained. The breakpoints used were submitted to the web based database (App. 5).

All laboratories entered either the zone diameter in millimetres or MIC value for the *E. coli* (ATCC 25922) and *C. jejuni* (ATCC 33560) reference strains. The results were individually compared to the quality control ranges according to: CLSI documents M31-A2 (2002) / M100-S17 (2007) / M45-A (2006); The Sensititre System, Trek Diagnostic; Neo-Sensitabs, Rosco; or E-tests, AB-Biodisk (App. 7).

After submitting the data the laboratories were instructed to retrieve an instant generated individual report from the secured web site evaluating the submitted results. All deviations

Technical University of Denmark

from the expected were reported along with suggestions of how to either solve or investigate the problem. Deviations are categorised as minor, major or very major. Minor deviations are defined as an intermediate result that was determined as sensitive, resistant or vice versa (i.e. I \leftrightarrow S or I \leftrightarrow R). When a sensitive strain was classified as resistant it was regarded as a major deviation (i.e. S \rightarrow R). When a resistant strain was classified as sensitive it was regarded as a very major deviation (i.e. R \rightarrow S). The questionnaire (App 4e) and the evaluation form (App 4d) enclosed with the strains were later collected and summarised (App.8, 9).

3. Results

In the description of results, we have tried to avoid defining arbitrary thresholds of quality limits. We are expressing results purely as correct, minor, major and very major deviations as described above.

3.1 Methods used by EQAS-participants.

Participating laboratories all used their routine methods for performing AST.

In the *Salmonella* trials, 14 laboratories used MIC determination included four which used Etest. Fourteen laboratories used disk diffusion whereas one laboratory used both methods in combination. The majority of laboratories (n:20) used MIC determination for the *Campylobacter* including three which used E-test (#4, #15 and #19) whereas five laboratories (#22,#26, #28, #29 and #34) used disk diffusion. The disk diffusion method and the use of Etest have not been recommended by CLSI for testing of *Campylobacter* and no interpretation guidelines or breakpoints are available.

3.2 Deviations by strain and antibiotic

Figure 2 shows the percentage minor, major and very major deviations from the expected results of AST performed by participating laboratories. For the *Salmonella* strains, 90.1 % of the AST's were interpreted correct. Of the 9.9 % of results that deviated from the expected results, 5.4 % were classified as minor, 1.4 % as major and 3.1 % as very major.

For the *Campylobacter* strains, 93.9 % of AST's were done correctly. Of the 6.1 % of results that deviated from expected results, 1.2 % was classified as minor, 2.0 % as major and 2.9 % as very major.

Technical University of Denmark

The number of AST performed and the percentage of correct results for the individual *Salmonella* and *Campylobacter* strains in the EQAS are listed in Table 1. There is a large variation between strains of the same species. For *Salmonella* strains, major difficulty was observed for strains #3 (85.3 % correct) which is multi-resistant to the following antimicrobials: ampicillin, cefotaxime, cefotaxime + clavulanic acid, cefpodoxime, ceftazidime, ceftiofur, ciprofloxacin, nalidixic acid and tetracycline and for strain #2 (79.5 % correct) resistant to ampicillin, ciprofloxacin, gentamicin, nalidixic acid, streptomycin, sulphonamides and intermediate to amoxicillin + clavulanic acid and chloramphenicol. Also for *Salmonella* strains #1 and #8 some difficulty was observed with percentages of and 89.8 % and 90.4 % corrects AST (Table 1).

For *Campylobacter*, strain #1 and strain #2 posed some problems. Strain #1 (87.9 % correct) is resistant to ciprofloxacin, nalidixic acid and tetracycline and strain #2 (90.9 %) is resistant to the same antimicrobials as strain #1 with the addition of erythromycin (Table 1).

Technical University of Denmark

Year	2006												
Species	Salmonella		Camp	oylobacter									
Strain	AST in total	% correct	AST in total	% correct									
1.1	303	89.8	132	87.9									
1.2	356	79.5	132	90.9									
1.3	368	85.3	112	98.2									
1.4	368	92.4	121	92.6									
1.5	358	93.9	137	96.4									
1.6	371	93.8	132	95.5									
1.7	344	96.5	135	92.3									
1.8	355	90.4	132	99.2									

Table 1. The number of AST performed and the percentage correct results for each strain of Salmonella and Campylobacter.

In Table 2 the percentage of correct AST per antibiotic by species is shown. Many of the antimicrobials seem to pose a common problem for many laboratories when testing *Salmonella* whereas for *Campylobacter* the problem seems more moderate. Especially, amoxicillin + clavulanic acid, cefpodoxime, chloramphenicol, ciprofloxacin, florfenicol, streptomycin and tetracycline, seem to cause problems when testing *Salmonella* (App.10) The two lowest percentages for correctly tested antimicrobials against *Salmonella* is amoxicillin + clavulanic acid with 70.0 % and streptomycin with 76.1 %. The problem seems not to be as profound when testing *Campylobacter* (App.10) where the result reflects no major problems with the exception of streptomycin (87.4 % correct).

ESBL producing organisms is an emerging problem worldwide. The laboratories were asked to detect the three ESBL producing bla_{ctx} Salmonella strains (#3, #4, and #6) according to the clinical guidelines described by CLSI which indicate that all cephalosporines should be interpreted resistant if one is interpreted resistant regardless of the value detected from the results. In Table 3 it seems that the laboratories have problem detecting the ESBL producing strain #3. There are differences in how many cephalosporins the laboratories use in the daily routine ranging between the five which are included in this proficiency test: cefotaxime, ceftazidime, ceftiofur, cefotaxime + clavulanic acid and ceftazidime + clavulanic acid. The first three are used for initial screening whereas the last two are used for confirmatory test – the double disk test. Using only cefotaxime or ceftazidime posed a problem for strain #3 where only 50 % of the laboratories found the strain to be an ESBL. The best result for strain

Technical University of Denmark

#3 was obtained when using cefotaxime, ceftazidime and ceftiofur in combination (83 %) or just ceftiofur alone (100 %). These data should of course be interpreted with care as only eight participants used the opportunity to test for ESBL. No major problems were observed for strain #4 and #6 where almost all laboratories found the strains to be ESBL producing.

Species	Salmonella	Campylobacter
Antimicrobials	% correct	% correct
Amoxicillin / Ampicillin	98.4	-
Amoxicillin + Clavulanic acid	70.0	-
Cefotaxime	93.6	-
Cefpodoxime	87.5	-
Ceftazidime	92.0	-
Ceftiofur	92.3	-
Chloramphenicol	86.1	97.0
Ciprofloxacin / Enrofloxacin	79.8	95.3
Erythromycin	-	91.9
Florphenicol	89.5	-
Gentamicin	90.9	99.4
Nalidixic acid	94.9	96.8
Streptomycin	76.1	87.4
Sulfonamides	96.4	-
Trimethoprim + Sulfonamides	96.3	-
Tetracycline	89.4	90.1
Trimethoprim	100.0	-

Table 2. Percentage correct Antimicrobial Susceptibility Test per antibiotic by species.

		Stra	in #3			Strair	n #4		Strain #6					
	ESBL	not detected	ESB	L detected	ESBL n	ot detected	ESBL	. detected	ESBL	not detected	ESBL detected			
Cephalosporines / strains	Number, n:	Percentages, %	% Number, n: Percentages,		Number, n:	Percentages, %	Number, n:	Percentages, %	Number, n:	Percentages, %	Number, n	Percentages, %		
CTX, CAZ, XNL	1	17%	5	83%	0	0%	6	100%	0	0%	6	100%		
CTX, CAZ	4	50%	4	50%	2	25%	6	75%	0	0%	8	100%		
CTX, XNL	2	33%	4	67%	0	0%	5	100%	0	0%	5	100%		
CTX	1	33%	2	67%	0	0%	4	100%	0	0%	4	100%		
XNL	0	0%	4	100%	0	0%	4	100%	0	0%	5	100%		
CTX/CI:CTX	2	33%	4	67%	1	17%	5	83%	0	0%	6	100%		
CAZ/CI:CAZ	0	0%	0	0%	2	33%	4	67%	0	0%	6	100%		

Table 3. Percentages and number of laboratories which detected correctly and incorrectly the three ESBL producing *Salmonella* strains.

3.3 Deviations by laboratory

Figure 3 shows the percentage of deviations and the severity hereof for each participating laboratory by strain. The laboratories are ranked after increasing performance as determined by the percentage minor, major and very major deviations of results. In Figure 4 the total amount of errors (minor, major and very major) in percentages are listed by number of laboratories. In addition, the same figure is showed with exclusion of minor errors in Figure 5.

Technical University of Denmark

3.3.1 Salmonella trial

None of the laboratories gained a result of 100 % correctly tested *Salmonella* strains. The percentage of errors differed a lot between laboratories with a maximum of 30 % in laboratory #29 and a minimum of 2% in laboratory #25.

Figure 3. Minor, major and very major errors in percentages of the individual participants.

The majority of the laboratories have errors ranging from 4 % to 16 % with a group of outliers of four laboratories with between 20 - 30 % errors. Only two laboratories (#25, #33) had < 4 % errors.

Figure 4. The number of laboratories listed in intervals of percentages per total errors.

Technical University of Denmark

When pin pointing the seriousness of the errors it is helpful to exclude the minor errors. Figure 5 illustrate a large group of laboratories which has errors between 0-6 % whereas six laboratories (#5, #19, #23, #27, #29, #34) are outliers with errors ranging from 8 -20 %. The acceptable amount of errors is set to either 5 % very major / major and 5 % minor errors or 10 % minor errors, which were meet by 14 laboratories. The future focus will be on the six laboratories with most errors. In the case where no obvious reason can explain the errors, the laboratories will be offered the possibility to re-test additional *Salmonella* strains.

Figure 5. The number of laboratories listed in intervals of percentages per major and very major errors.

Laboratory # 27 using MIC determination accounted for most major and very major deviations (20 %) (Figure 5). The *E. coli* ATCC 25922 was tested satisfactory (App. 11a). The laboratory mainly used breakpoints, which they do not share with the majority of the laboratories. This indicates that it might be the reason for the low score in the test (App.5).

The *E. coli* ATCC 25922 showed some errors due to small zone diameters for a wide range of the same antimicrobials for laboratory # 29 (App. 11a). Furthermore, breakpoints applied were also mainly not used by the majority of the other laboratories (App.5). This indicates that it might be useful for the laboratory to optimise the procedure for disk diffusion and maybe apply internationally used breakpoints.

There is no obvious reason for the deviations by laboratory #5 why it is recommended to go through the disk diffusion methodology to search for indications of failure (App.11a).

Technical University of Denmark

The number of antimicrobials causing the deviations for laboratory # 19 was long and accounted for 12 % deviations with no major problems testing *E. coli* ATCC 25922 (App.11a). The reason for all the deviations might lay in the used breakpoints which the laboratory for most antimicrobials does not share with others laboratories (App.5).

Laboratory #34 seems to have a major problem with the quality control strain which should be addressed in order to get reliable data for future monitoring purposes. The laboratory has larger zone diameters for a large number of antimicrobials (App.11a).

Nine percentages of deviations for laboratory #23 was caused mainly by one antimicrobial: amoxicillin + clavulanic acid which five time results in errors (App.11a). The problem testing for amoxicillin + clavulanic acid is also apparent when testing the reference strain and should be addressed before the next trial.

3.3.2 Campylobacter trial

Over-all, most laboratories performed well. Applying the same acceptable threshold as described for *Salmonella*, 15 laboratories performed within this threshold.

One laboratory (#26) had 33 % correctly tested *Campylobacter* strains. The rest of the laboratories scored between 75 % and up to 100 % correct AST's (Figure 6). Nine laboratories performed all AST's correct and three did not enter results in the database (#6, #18 and #27).

Figure 6. Minor, major and very major errors in percentages of the individual participants.

When grouping laboratories in intervals of total amount of errors in percentages (Figure 7) it is clear that six laboratories have a considerable higher number of errors (from 16 % up to 70 %) than the majority of the participating laboratories.

Technical University of Denmark

Figure 7. The number of laboratories listed in intervals of percentages per total errors.

The same six laboratories (#14, #16, #22, #26, #28 and #29) are outliers when evaluating errors caused only by major and very major errors shown in Figure 8. The six laboratories have a span of major and very major errors ranging from 12 % to 60 % while the remaining laboratories have errors ranging from 0 % to 8 % with eight laboratories having no errors at all.

Laboratory #16 has deviations in a range of antimicrobials and used MIC determination. Testing the reference strain *C. jejuni* ATCC 33560 caused no errors. The laboratory has not submitted any breakpoints and this could be the reason. The laboratory should focus on the breakpoints described in this test and apply them if possible.

MIC determination was also used by laboratory #14, which had 15% deviations (App.11b). Laboratory #22, #26, #28 and #29 all used disk diffusion.

Figure 8. The number of laboratories listed in intervals of percentages per major and very major errors.

Technical University of Denmark 3.4 Deviations by reference strains

In this section, deviations are defined as the value with which the quality control (QC) interval limits are exceeded (App.7). The exceeding values of the QC interval are listed in the tables illustrating the laboratories quality control performance when an obtained value (zone millimetre or MIC steps) exceed the lower end or the upper end of the QC interval. Table 4 shows the proportion of laboratories that obtained values outside the QC interval of reference strain E. coli ATCC 25922 using disk diffusion. Fourteen laboratories tested the reference strain using the disk diffusion method. Mistakes at up to four laboratories caused values outside the recommended QC interval for 12 of the 19 antimicrobials in the test. No mistakes were recorded for the following antimicrobials: ampicillin, amoxicillin, cefpodoxime, ciprofloxacin, streptomycin, trimethoprim and cefoxitin. For seven antimicrobials only one laboratory had obtained a value outside the QC interval. Most problems were recorded for the following antimicrobials: amoxicillin + clavulanic acid (40.0 % errors) with a maximum of 10 mm less than the end point of the QC interval and 5 mm greater; tetracycline (40.0 %) with a maximum of 4 mm above the end point of the QC interval and sulphonamides (37.5 %) with a maximum of 9 mm less than the end point of the QC interval and 5 mm greater. Also against cephalosporins problems were detected with a maximum of 6 mm greater than the upper end of QC interval for ceftazidime and 8 mm for cefotaxime.

2006	Disk Diffusion ATCC25922											
	Prop. of labs	outside	Range of obtained v	/alues in mm zones								
Antimicrobials	QC range	: (%)	Below lower QC limit	Above upper QC limit								
Ampicillin	0/9	(0.0)										
Amoxicillin	0/4	(0.0)										
Amoxicillin + Clavulanic acid	4 / 10	(40.0)	10 mm	5 mm								
Cefpodoxime	0/3	(0.0)										
Ceftiofur	275	(40.0)	1 mm									
Ceftazidime	1/8	(12.5)		6 mm								
Cefotaxime	2/11	(18.2)	1 mm	8 mm								
Chloramphenicol	1 / 13	(7.7)	1 mm									
Ciprofloxacin	0/9	(0.0)										
Florphenicol	1/6	(16.7)	5 mm									
Gentamicin	1 / 13	(7.7)		1 mm								
Nalidixic acid	1 / 13	(7.7)		5 mm								
Streptomycin	0 / 12	(0.0)										
Sulfonamides	3/8	(37.5)	9 mm	5 mm								
Tetracycline	4 / 10	(40.0)		4 mm								
Trimethoprim	0 / 10	(0.0)										
Trimethoprim + Sulfonamides	1 / 12	(8.3)		5 mm								
Cefoxitin	0/4	(0.0)										
Iminenem	1/3	(33.3)		3 mm								

Table 4. Range of obtained values for *E. coli* ATCC 25922 by disk diffusion.

Technical University of Denmark

It seems that using MIC determination towards the reference strain *E. coli* ATCC 25922 results in fewer errors. Thirteen laboratories submitted data where only problems were detected against seven antimicrobials of the nineteen. No mistakes were seen in thirteen of the antimicrobials. Most problems were seen against ciprofloxacin (30.0 %) where three out of 10 laboratories had errors ranging from a MIC step less than the recommended QC interval to two MIC steps greater. Also amoxicillin + clavulanic acid caused problems as 25 % had a MIC value less than the lower QC end point.

2006	MIC Determinations ATCC25922											
	Prop. of labs	outside	Range of obtained values in MIC steps									
Antimicrobials	QC range	: (%)	Below lower QC limit	Above upper QC limit								
Ampicillin	0/8	(0.0)										
Amoxicillin	0/4	(0.0)										
Amoxicillin + Clavulanic acid	1/4	(25.0)	4 steps									
Cefpodoxime	0/1	(0.0)										
Ceftiofur	0/6	(0.0)										
Ceftazidime	0/3	(0.0)										
Cefotaxime	1/7	(14.3)		1 step								
Chloramphenicol	0 / 12	(0.0)										
Ciprofloxacin	3/10	(30.0)	1 step	2 steps								
Florphenicol	0/9	(0.0)										
Gentamicin	1 / 12	(8.3)		2 steps								
Nalidixic acid	1/11	(9.1)		1 step								
Streptomycin	0/9	(0.0)										
Sulfonamides	0 / 10	(0.0)										
Tetracycline	0/12	(0.0)										
Trimethoprim	1 / 10	(10.0)	1 step									
Trimethoprim + Sulfonamides	0/5	(0.0)										
Cefoxitin	0/2	(0.0)										
Imipenem	0/1	(0.0)										

Table 5. Range of obtained values for the E. coli ATCC 25922 using MIC determination.

Quality control was also performed using MIC determination including three laboratories using E-test against the *C. jejuni* reference strain ATCC 33560 with participation of 18 laboratories. This seems to result in more problems but in many cases with only one MIC step less than the recommended QC interval. In Table 6 most problems were detected against erythromycin (38.5 %) where five out of 13 laboratories had an error. Also ciprofloxacin caused a high amount of errors. Four out of 14 laboratories (28.6 %) had a one MIC step less than the QC interval and a maximum of two MIC steps greater than the QC interval. The three laboratories performing AST using E-tests accounts for one error against ciprofloxacin / erythromycin and two errors for nalidixic acid.

Technical University of Denmark

No QC intervals are available for disk diffusion as the method is not recommended to use for

testing Campylobacter.

2006		MIC Determinations ATCC33560											
	Prop. of labs	outside	Range of obtained values in MIC steps										
Antimicrobials	QC range	: (%)	Below lower QC limit	Above upper QC limit									
Chloramphenicol	0/8	(0.0)											
Ciprofloxacin	4 / 14	(28.6)	1 step	2 steps									
Erythromycin	5 / 13	(38.5)	1 step	1 step									
Gentamicin	2 / 12	(16.7)	1 step										
Nalidixic acid	2/14	(14.3)	1 step										
Streptomycin	0/0	(0.0)											
Tetracycline	2/16	(12.5)	1 step										

Table 6. Range of obtained values for the C.jejuni ATCC 33560 using MIC determination.

4. Discussion

4.1 Salmonella trial

Over-all, the percentage of correct susceptibility testing of *Salmonella* was 90.1 %. Large differences in the performance of the laboratories were observed ranging from 2 % to 30 % incorrect results. There is no international standpoint for what should be considered satisfactory. Internally, the CRL uses a level of acceptance of maximum 2% major and very major errors and maximum 5% minor errors. For the EQAS the CRL have decided to use either a maximum of 5 % very major / major and 5 % minor errors or a maximum of 10 % minor errors to estimate the satisfactory level. Fifteen laboratories performed unsatisfactory according to the acceptable ranges established by the CRL. It was obvious that six of the laboratories were outliers. This indicates a clear need for harmonisation of the susceptibility testing of *Salmonella*. However, it is important to determine the factors which cause the errors. The factors could be incorrect breakpoints, demanding test strains, difficult reading of the antimicrobials or the methodology.

Amoxicillin + clavulanic acid, ciprofloxacin, streptomycin, gentamicin and tetracycline caused unsatisfactory results.

Problems associated with amoxicillin + clavulanic acid is not only due to a breakpoint phenomenon but also related to the methodology, as 40 % (MIC determination) and 25 % (disk diffusion) of the laboratories had difficulties with the quality control towards the reference strain *E. coli* ATCC 25922.

The reference breakpoint used to determine resistance against ciprofloxacin may have resulted in the many errors against this antimicrobial.

Technical University of Denmark

Streptomycin often poses a challenge in susceptibility testing, as many strains are borderliners and balance between resistance / intermediate or intermediate / sensitive.

In strain #3 some laboratories had difficulties in testing for ESBL as only 50 % have tested cefotaxime and ceftazidime in combination correct. The problem is also illustrated in table 3. Being able to detect ESBL producing strains is paramount for the public health and it should be of a high priority for the NRL's to be able to detect it.

4.2 Campylobacter trial

The amount of errors testing *Campylobacter* was less than for *Salmonella* with an over-all performance of 94% correct results. The performance of the laboratories differed from 0% up to 67% of incorrect results. Eight laboratories had no errors at all and seventeen laboratories performed satisfactory according to the acceptable ranges established by the CRL.

Six laboratories (#14, #16, # 22, #26, #28 and #29) did not perform as well as the other laboratories.

Laboratories #26, #22, #28 and #29 have all used the methodology based on disk diffusion and had 60 %, 17 %, 17 % and 13 % of incorrect susceptibility tests, respectively.

Diffusion tests are not international recommended for susceptibility testing of *Campylobacter* as there are no international breakpoints or quality control intervals available.

5. Conclusion

The goal is to have all laboratories perform susceptibility testing of *Salmonella* and *Campylobacter* with a deviation margin below 5 % very major / major and 5 % minor errors or below 10 % minor errors. This seems some time away but within reach.

The recommendation mentioned above for the specific laboratories should be followed in order to be able to submit better results in the next trial and produce reliable data. The Laboratories which did not perform satisfactory will be contacted and expected to perform a re-test of two strains. Furthermore, it is expected that they will participate in a discussion / investigation of the reasons behind the unsatisfactory performance. In addition, the CRL expect to launch training courses for selected laboratories in 2008.

Harmonising breakpoints, antimicrobials and ranges of these will be important issues to address in the future. Also, attention should be addressed to the problem of detecting ESBL

Technical University of Denmark

producing strains. In general, the laboratories seemed content about the way the trial was launched and the system (App.8), The CRL-AR will take into consideration the suggestions and issues raised by the participating laboratories.

Appendix 1.: Invitation letter.

Fra:	Rene Sjøgren Hendriksen (DFVF)
Sendt:	13. oktober 2006 14:05
Til:	Rene Sjøgren Hendriksen (DFVF)
Emne:	EU CRL AR: first task, proficiency test

Vedhæftede filer: Work plan for 2006 - CRL Antimicrobial Resistance1.doc Dear potential NRL collegues.

I am contacting you as our institute have been appointed as community reference laboratory for EU. We haven't yet been notified by EU wether you will be appointed as national reference laboratory for antimicrobial resistance in bacteria originating from either food, feed and animals or combinations. Nevertheless, we think it might be possibel that your institute will be appointed why we invite you to participate in this proficiancy testing.

According to work plan accepted by EU we have planned to launch the first proficiency test (EQAS) aimed for Salmonella and Campylobacter. We are sending eight strain of both species.

Please let me know if you want to participate, If I need somehow an import permit for shipping the strains and please let me know the full address and phone number of the person who should receive the parcel.

Attached you will find the work plan for 2006. All necessary documents for the EQAS will be enclosed in the parcel.

I dispatch the parcels if you accept in week 43. The deadline for submitting the results are 1st of Dec. 2006.

I have only in mind of sending one parcel - please indicate to whom it should be as all three institutes (LERAP, LERQAP,LERMVD) have been appointed.

- CRL Antim...

Regards,

René Sjøgren Hendriksen Laboratoriefuldmægtig.

The Danish Institute for Food and Veterinary Research. Institute of Food Safety. Dept. of Microbiology and Risk assessment. Section of Diagnostic and Antimicrobial Resistance. Bülowsvej 27. DK-1790 Copenhagen V. Denmark. Ph: 0045 72346288 Fax: 0045 72346288 Fax: 0045 72346001 e-mail:rsh@dfvf.dk

Appendix 2.: Participant list and origin of samples.

Institute	Country	A	trea of	intere	est
		Food	Feed	Vet	Public
Austrian Agency for Health and Food Safety	Austria	X			X
Institute of public Health	Belgium	X			
Universite de Liege	Belgium, (Luxembourg)	X			
National Center of Infectious and Parasitic Diseases				X	
Vetrinary Services, Bacteriology - Serology Laboratory (BSL)	X		X		
Food Microbiology Laboratory, State General Laboratory					
State Veterinary Institute Praha	Czech Republic				
National Institute of Public Health	Czech Republic				X
National food Institute	Denmark	X	X	X	
Estonian Veterinary and Food Laboratory	Estonia	X	X	X	
Finnish Food Safety Authority EVIRA	Finland	X	X	X	
AFSSA LERQAP - Pôle HQSA Unité CEB	France			X	
AFSSA Ploufragan - LERAP - Unité Mycoplasmologie-Bactériologie			X		
AFSSA Lyon - Unité Bactériologie Bovine et Sécurité des Viandes	France			X	
AFSSA Fougères LERMVD, Unité pharmacocinétique-pharmacodynamie La Haute Marche - Javené	France			X	
Federal Institute for Risk Assessment, Center of Infectiology and Pathogen Characterization	Germany	X	X	X	
Veterinary Laboratory of Chalkis	Greece	X	X	X	
National Veterinary Institute	Hungary	X		X	
Central Veterinary Research Laboratory, Department of Agriculture and Food	Ireland	X	X	X	
Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana	Italy	X	X	X	
National Diagnostic Centre of Food and Veterinary Service	Latvia				
National Veterinary Laboratory	Lithuania	X	X	X	
Food and Consumer Product Safety Authority (VWA)	Netherlands	X			
Central Institute for Animal Disease Control (CIDC-Lelystad)	Netherlands			X	
National Veterinary Research Institute	Poland	X	X	X	
Instituto Nacional de Saude (INSA)	Portugal				
National Institute of Research-Development for Microbiology and Immunology "Cantacuzino"	Romania				
State Veterinary and Food Institute (SVFI)	Slovakia	X	X	X	
National Veterinary Institute	Slovenia	X	X	X	
Laboratorio Central de Sanidad, Animal de Santa Fe	Spain				
Laboratorio Central de Sanidad, Animal de Algete	Spain				
Complutense University of Madrid	Spain	X		X	
National Veterinary Institute, SVA	Sweden			X	
The Veterinary I shoretory Agency	United Kingdom		Y	Y	

Institutes marked in italic were designated too late to participate.

Institutes marked in light gray participated but have not been appointed by the member states. The University de Liege in Belgium declined to participate – appointed by Luxembourg.

Origin of samples.

CRL EQAS strain	AMP/AMX	AUG	POD	XNL	CAZ	CTX	CHL	CIP/ENRO	ERY	FFN	GEN	NAL	STR	SMX	TET	TMP	SXT	CAZ/CL	CTX/CL	FX	ESBL gene
CRL S.1,1	>32	8/4	0,5	2	0,75	0,38	>64	0,06	-	>64	2	8	>64	>1024	>32	<=4	0,5/9,5	MIC ratio <8	MIC ratio <8	6	-
CRL S.1,2	>32	16/8 32/16	0,5	2	1	0,38	- 16	1	-	8	16	>64	64	>1024	4	<=4	0,25/4,75	MIC ratio <8	MIC ratio <8	6	-
CRL S.1,3	>32	8/4	>4	>8	0,75	8	4	0,5	-	4	<=1	>64	8	<=64	32	<=4	<=0,12/2,38	MIC ratio <8	MIC ratio =>8	4	CTX-M9
CRL S.1,4	>32	8/4	>4	>8	4	>256	>64	<=0,03	-	4	<=1	<=4	- 32	>1024	>32	>32	>4/76	MIC ratio =>8	MIC ratio =>8	6	CTX-14
CRL S.1,5	4	<=2/1	1	2	1	0,5	8	<=0,03	-	8	>32	<=4	64	>1024	<=2	<=4	<=0,12/2,38	MIC ratio <8	MIC ratio <8	16	-
CRL S.1,6	>32	8/4	>4	>8	8	>256	>64	<=0,03	-	>64	<=1	<=4	32	>1024	<=2	>32	>4/76	MIC ratio =>9	MIC ratio =>8	3	CTX-1
CRL S.1,7	>32	8/4	0,25	1	0,38	0,125	>64	<=0,03	-	64	>32	<=4	>64	>1024	>32	>32	>4/76	MIC ratio <8	MIC ratio <8	3	-
CRL S.1,8	2	<=2/1	0,25	1	0,25	0,094	8	>4	-	8	<=1	>64	- 16	>1024	>32	>32	>4/76	MIC ratio <8	MIC ratio <8	3	-
CRL C.1,1	-	-	-	-	-	-	4	>4	1	-	0,5	>64	2	-	>16	-	-	-	-	-	-
CRL C.1,2	-	-	-	-	-	-	4	>4	>32	-	0,25	>64	<=2	-	>16	-	-	-	-	-	-
CRL C.1,3	-	-	-	-	-	-	8	>4	>32	-	>16	>64	>16	-	>16	-	-	-	-	-	-
CRL C.1,4	-	-	-	-	-	-	4	>4	1	-	0,25	>64	<=2	-	>16	-	-	-	-	-	-
CRL C.1,5	-	-	-	-	-	-	4	0,125	1	-	<=0,125	4	<=2	-	>16	-	-	-	-	-	-
CRL C.1,6	-	-	-	-	-	-	<=2	0,06	<=0,5	-	0,25	4	<=2	-	<=0,25	-	-	-	-	-	-
CRL C.1,7	-	-	-	-	-	-	8	0,25	2	-	0,5	16	16	-	1	-	-	-	-	-	-
CRL C.1,8	-	-	-	-	-	-	<=2	0,06	>32	-	0,25	8	>16	-	0,5	-	-	-	-	-	-

Appendix 3; Strain collection and reference values in MIC.

AMP, ampicillin / AMX, amoxicillin, AUG, amoxicillin + clavulanic acid, CTX, cefotaxime, CTX/CL, cefotaxime + clavulanic acid, FX, cefoxitin, POD, cefpodoxime, CAZ, ceftazidime, CAZ/CL, ceftazidime + clavulanic acid, XNL, ceftiofur, CHL, chloramphenicol, CIP, ciprofloxacin / ENRO, enrofloxacin, FFN, florphenicol, GEN, gentamicin, IMI, imipenem, IME, imipenem + EDTA, NAL, nalidixic acid, STR, streptomycin, SMX, sulphonamides, TET, tetracycline, TMP, trimethoprim and SXT, trimethoprim + sulphonamides

CRL EQAS strain	AMP/AMX	AUG	POD	XNL	CAZ	CTX	CHL	CIP/ENRO	ERY	FFN	GEN	NAL	STR	SMX	TET	TMP	SXT	CAZ/CL	CTX/CL	ESBL gene	FX	IP/IPE
CRL S.1,1	R	S	S	S	S	S	R	S	S	R	S	S	R	R	R	S	S	none ESBL	none ESBL	-	none ampC	none Metallo beta lactamase
CRL S.1,2	R	I/R	S	S	S	S	Ι	R	S	S	R	R	R	R	S	S	S	none ESBL	none ESBL	-	none ampC	none Metallo beta lactamase
CRL S.1,3	R	S	R	R	R	R	S	R	S	S	S	R	S	S	R	S	S	none ESBL	ESBL	CTX-M9	none ampC	none Metallo beta lactamase
CRL S.1,4	R	S	R	R	R	R	R	S	S	S	S	S	R	R	R	R	R	ESBL	ESBL	CTX-14	none ampC	none Metallo beta lactamase
CRL S.1,5	S	S	I	S	S	S	S	S	S	S	R	S	R	R	S	S	S	none ESBL	none ESBL	-	none ampC	none Metallo beta lactamase
CRL S.1,6	R	S	R	R	R	R	R	S	S	R	S	S	R	R	S	R	R	ESBL	ESBL	CTX-1	none ampC	none Metallo beta lactamase
CRL S.1,7	R	S	S	S	S	S	R	S	S	R	R	S	R	R	R	R	R	none ESBL	none ESBL	-	none ampC	none Metallo beta lactamase
CRL S.1,8	S	S	S	S	S	S	S	R	S	S	S	R	Ι	R	R	R	R	none ESBL	none ESBL	-	none ampC	none Metallo beta lactamase
CRL C.1,1	-	-	-	-	-	-	S	R	S	-	S	R	S	S	R	-	-	-	-	-	-	-
CRL C.1,2	-	-	-	-	-	-	S	R	R	-	S	R	S	S	R	-	-	-	-	-	-	-
CRL C.1,3	-	-	-	-	-	-	S	R	R	-	R	R	R	-	R	-	-	-	-	-	-	-
CRL C.1,4	-	-	-	-	-	-	S	R	S	-	S	R	S	-	R	-	-	-	-	-	-	-
CRL C.1,5	-	-	-	-	-	-	S	S	S	-	S	S	S	-	R	-	-	-	-	-	-	-
CRL C.1,6	-	-	-	-	-	-	S	S	S	-	S	S	S S	-	S	-	-	-	-	-	-	-
CRL C.1,7	-	-	-	-	-	-	S	S	S	-	S	S	R	-	S	-	-	-	-	-	-	-
CRL C.1,8	-	-	-	-	-	-	S	S	R	-	S	S	R	-	S	-	-	-	-	-	-	-

R: Resistance (yellow), I: Intermediate (green), S:Sensitive (colourless), Values marked in blue are sensitive but clinical interpreted as resistant due to resistance to other cephalosporines.

Appendix 4a.: Documents

Dear CRL AR EQAS 2006 participant!

Please find enclosed the bacterial strains for the CRL AR EQAS 2006 together with the following documents:

Protocol for 2006 Manual for Opening, Reviving and Maintaining of Freeze-dried Cultures Evaluation form

In the protocol you will find detailed description of how to testing the strains. In the guidelines for submitting the data you will find a description of how to enter your results into the interactive web database. For the data entry you need a username and a password. Please keep this document. Your username and password will not appear in other documents.

Your username:

Your password:

We are looking forward to this first trial of the CRL AR EQAS.

For further information, please don't hesitate to contact:

Rene Hendriksen Telephone +45 7234 6288 E-mail: rsh@dfvf.dk

- the Danish Institute for Food and Veterinary Research Bülowsvej 27, DK-1790 Copenhagen V Denmark Fax: +45 7234 6341

Appendix 4b

PROTOCOL

Susceptibility testing of Salmonella and Campylobacter

Introduction

One of the tasks as the EU Community Reference Laboratory for Antimicrobial Resistence is to organise and conduct an External Quality Assurance System (EQAS) on susceptibility testing of *Salmonella* and *Campylobacter*. The *Salmonella* and *Campylobacter* EQAS 2006 will include susceptibility testing of eight *Salmonella* and eight *Campylobacter* strains together with susceptibility testing of the reference strains ATCC 25922 *E. coli* and ATCC 33560 *Campylobacter jejuni*. All the strains you will receive are non-toxin producing human pathogens of Class II.

The reference strains included are original CERTIFIED cultures of the ATCC 25922 (CCM 3954) *E. coli* and the ATCC 33560 (CCM 6214) *Campylobacter jejuni*. Theses original certified strains are free of charge. Please take proper care of the strains. Handle and maintain them as suggested in the enclosed manual. Please use them for future internal quality control for susceptibility testing in your laboratory. The reference strains will not be included in the years to come.

Objectives

The main objective of this EQAS is to support laboratories to assess and if necessary improve the quality of susceptibility testing of pathogens originating from food and animal sources, especially *Salmonella* and *Campylobacter*. Furthermore, to assess and improve the comparability of surveillance and antimicrobial susceptibility data reported by different laboratories on *Salmonella* and *Campylobacter* and to harmonise the breakpoints used within the EU.

Outline of the EQAS 2006

Shipping, receipt and storage of strains

In October 2006 all EU appointed National Reference Laboratories would receive a parcel containing eight *Salmonella* and eight *Campylobacter* strains as well as the reference strains *E. coli* ATCC 25922 and *C. jejuni* ATCC 33560 from DFVF. All strains are non-toxin producing human pathogens Class II. There might be ESBL-producing strains among the selected material. The strains are shipped as stab cultures except for the *Campylobacter* strains, which are lyophilised. Please keep strains refrigerated. On arrival, the cultures must be subcultured and ensured proper storage conditions until testing. A suggested procedure for reconstitution of lyophilized *Campylobacter* is presented below.

Suggested procedure for reconstitution of the lyophilized Campylobacter strains:

1) Open, take out some of the material and dissolve in 1/2 ml broth. Leave it for 10 minutes. Spread 1 loop or 1 swab of the solution on blood agar. Incubate microaerophilic for 24-48 h at 37°C or 42°C.

2) Take rest of the broth (with the dissolved material) and incubate microaerophilic as mentioned above with parafilm on top. After incubation spread on blood agar and incubate microaerophilic again.

3) If you don't succeed with 1) or 2) take rest of the lyophilized material, and shake it directly onto blood agar. Add a little saline, and spread properly with a triangle or hockey stick. Incubate microaerophilic as mentioned above

Susceptibility testing

The strains should be susceptibility tested towards as many as possible of the following antimicrobials by the methods routinely used in the laboratory. *Salmonella*: Ampicillin or Amoxicillin (AMP/AMX), Amoxicillin + clavulanic acid (AUG), Cefotaxime (CTX), Ceftazidime (CAZ), Cefpodoxime (POD), Ceftiofur (XNL), Chloramphenicol (CHL), Ciprofloxacin or Enrofloxacin (CIP/ENRO), Florphenicol (FFN), Gentamicin (GEN), Nalidixic acid (NAL), Streptomycin (STR), Sulphonamide (SMX), Tetracycline (TET), Trimethoprim (TMP) and the combination of Sulphonamide and Trimethoprim (SXT).

All strains classified reduced susceptibility against CTX or CAZ (MIC >1) or resistance against XNL (MIC=>8) could be confirmed by confirmatory tests for ESBL production. The confimatory tests for ESBL (CTX, CAZ) include tests for AmpC (FOX) and metallo beta lactamase (IMI). Some of them consist of a susceptibility test with a pure antibiotic and a test with the same antibiotic combined with calvulanic acid or EDTA. If there is a 3 dilution steps difference in the two cases (E-test) or a MIC ration =>8 or an increase in zone diameter =>5mm or signs of synergy the test is confirmed ESBL positive.

For *Campylobacter*: Chloramphenicol (CHL), Ciprofloxacin or Enrofloxacin (CIP/ENRO), Erythromycin (ERY), Gentamicin (GEN), Nalidixic acid (NAL), Streptomycin (STR) and Tetracycline (TET).

You may use Amoxicillin instead of Ampicillin, and another fluoroquinolones as substitute for Ciprofloxacin.

Testing of <u>gentamicin and streptomycin</u> may be of value for monitoring. Please, do not take into account in this study, that the CLSI guidelines state that for aminoglycosides *Salmonella* should not be reported as susceptible.

No reference to an interpretation guidelines have been enclosed as we wish you to use the breakpoints routinely used to determine the susceptibility categories in your laboratories. Please fill in the breakpoints used in the designated form at the end of the protocol.

In general we use the CLSI interpretation guidelines M100-S16 and M31-A2 or in special cases breakpoints developed by Eucast (<u>www.eucast.org</u>) or based on population distribution when determined the reference data values of this EQAS. These antimicrobials are Cefpodoxime (POD) S <= 0.5; I = 1; R => 2. Streptomycin (STR) S <= 8; I = 16; R => 32. Florfenicol (FFN) S <= 8; I = 16; R => 32. Ceftiofur (XNL) S <= 2; I = 4; R => 8. Please follow the guidelines according to CLSI M100-S16 table 2A when testing cephalosporins.

Reporting of results and evaluation

Fill in your results in the enclosed test form. Please enter your results into the interactive web database http://thor.dfvf.dk/crl When you enter the results via the web, you will be guided through all steps on the screen and you will immediately be able to view and print an evaluation report of your results. Enclosed you will find a detailed description of how to enter the results into the web database. Please read the description before entering the web database. You can find your username and password in the letter following the parcel. **Please submit results by latest December the 1st 2006.**

If you do not have access to the Internet or experience difficulties entering the data, please return results by e-mail, fax or mail to DFVF. Finally, a summary report with all results will be performed and made available. Finally, a summary report with all results will be performed and made available

If you have any questions, please don't hesitate to contact me:

Rene Hendriksen Danish Institute for Food and Veterinary Research. 27 Bülowsvej, DK-1790 Copenhagen V Denmark Tel: +45 7234 6288 Fax: +45 7234 6001 E-mail: <u>RSH@DFVF.DK</u>

Description of how to enter results etc. in the interactive database

Please read these two pages before entering the web page. Before you go ahead, you need your test form by your side together with your breakpoint values.

You are able to browse forth and back by using the forward and back keys or click on the CRL logo.

1) You enter the EU CRL AR EQAS 2006 start web page (http://thor.dfvf.dk/crl) then

- Write your username and password in low cases and press enter. You can find your username and password in the letter following your parcel. Your username and password will be the same in future trials.
- Click on either "Salmonella test results" or "Campylobacter test results" depending on the extend of your results. The below description is aimed at Salmonella entry but are the exact the same as for Campylobacter entry
- Click on "Start of Data Entry Methods and Breakpoints for Salm."

2) In the next page you navigate to fields with the Tab-key and mouse

- Fill in what kind of method have been used for the susceptibility testing of Salmonella and the brand of discs, tablets, MIC trays etc.
- Fill in whether you used the NCCLS guidelines and breakpoints or not.
- Fill in the actually breakpoints used in this test to determine the susceptibility category. Remember to use the operator keys in order to show equal to, less than, less or equal to, greater than or greater or equal to

You will find one more box to fill in on this page when testing Campylobacter.

- Fill in the actual incubation condition used for susceptibility testing of *Campylobacter* – 36°C/48h or 42°C/24h.
- Click on "save and go to next page"

3) In the data entry pages for each Salmonella and Campylobacter strain, you enter

- The read value and the interpretation as R, I or S.
- Click on "save and go to next page"

If you have not used an antimicrobial, leave the field empty.

4) In the data entry page of the reference strains "*E. coli* ATCC 22925 reference strain" and "C.jejuni ATCC 33560 reference strain":

- Enter the zone diameters in mm or MIC values in μ g/ml. Remember to use the operator keys to show e.g. equal to, etc.
- click on "Save and go to next page"

5) This page is a menu, from where you can review the input pages, approve your input and finally

see and print the evaluated results:

- Go through the pages make corrections if necessary. Remember to save a page if you make any corrections. *If you save a page without changes, you will see an error screen, and you just have to click on "back" to get back to the page and "go to next page" to continue.*

- Approve your input. Be sure that you have filled in all the results before approval, as you can only approve once. The approval blocks your data entry in the EU CRL AR EQAS 2006 interactive database, but allows you to see the evaluated results.
- See the evaluated results. You can print each page. You may have to choose a smaller text size to print the whole screen on one piece of paper. In the Internet Explorer (or the Internet program you may have), you click on "view", "text size" and e.g. "smallest".

	Page 1/13
Name:	Date:
Name of laboratory:	
Name of institute:	
City:	
Country:	
E-mail:	
Fax:	

- All strains are non-toxin producing human pathogens of Class II -

Which method and accessories did you use for susceptibility testing of *Campylobacter*?

Incubation conditions:_____°C/h____Atmosphare Type of method:_____ Brand

Incubation conditions:_____°C/h Type of method:_____ Brand_____

Page 2/13

Strain	Antimicrobial		Interpretati	on
		≤ >	Zonediam (mm) or MIC-value (ug/ml)	S / I / R
Salmonella	Amoxicillin + clavulanic acid (20/10ug)	-		
CRL S. 1.1	Ampicillin / amoxicillin (10ug)			
	Cefotaxime (30ug)			
	Ceftazidime (30ug)			
	Cefpodoxime (10ug)			
	Ceftiofur (30ug)			
	Chloramphenicol (30ug)			
	Fluoroquinolone (5ug)			
	Florfenicol (30ug)			
	Gentamicin (10ug)			
	Nalidixic Acid (30ug)			
	Streptomycin (10ug)			
	Sulphonamides (250 or 300ug)			
	Tetracycline (30ug)			
	Trimethoprim (TMP) (5ug)			
	TMP + Sulphonamides (1,25/23,75 ug)			
	Antimicrobial		Interpretati	on
	Confimatory ESBL tests	5 < ,	8< MIC ratio =>8 < zone dia. mm=>5 / => 3 dilution steps	Confirmed ESBL
	Cefotaxime / Cefotaxime + clavulanic acid			
	Ceftazidime / Ceftazidime + clavulanic acid			
			Interpretati	on
			R>16 MIC	Confirmed
	Celoxium		Intorprototi	on
			R>16 MIC	Confirmed
	Iminenem			
			Interpretati	on
		5 < /	8< MIC ratio =>8 < zone dia. mm=>5 / => 3 dilution steps	Confirmed metallo beta
	Imipenem Imipenem + EDTA		·	

Page	3/	/1	3
	• •	_	~

Strain	Antimicrobial	Interpretation			
		≤ >	Zonediam (mm) or MIC-value (ug/ml)	S / I / R	
Salmonella	Amoxicillin + clavulanic acid (20/10ug)				
CRL S. 1.2	Ampicillin / amoxicillin (10ug)				
	Cefotaxime (30ug)				
	Ceftazidime (30ug)				
	Cefpodoxime (10ug)				
	Ceftiofur (30ug)				
	Chloramphenicol (30ug)				
	Fluoroquinolone (5ug)				
	Florfenicol (30ug)				
	Gentamicin (10ug)				
	Nalidixic Acid (30ug)				
	Streptomycin (10ug)				
	Sulphonamides (250 or 300ug)				
	Tetracycline (30ug)				
	Trimethoprim (TMP) (5ug)				
	TMP + Sulphonamides (1,25/23,75 ug)				
	Antimicrobial	Interpretation		on	
	Confimatory ESBL tests	5. <,	8< MIC ratio =>8 < zone dia. mm=>5 / => 3 dilution steps	Confirmed ESBL	
	Cefotaxime / Cefotaxime + clavulanic acid				
	Ceftazidime / Ceftazidime + clavulanic acid				
			Interpretati	on	
			R>16 MIC	Confirmed	
	Cefoxitin				
			Interpretati	on Confirmed	
			K-10 MIC	metallo beta	
	Imipenem				
			Interpretati	on	
		5- < ,	<pre>>> with ratio =>8 < zone dia. mm=>5 / => 3 dilution steps</pre>	Confirmed metallo beta	
	Imipenem Imipenem + EDTA				

Page 4/13

Strain	Antimicrobial		Interpretati	on
		~ ~	Zonediam (mm) or MIC-yelue (ug/ml)	S / I / R
Salmonella	Amoxicillin + clavulanic acid (20/10ug)	-		
CRL S. 1.3	Ampicillin / amoxicillin (10ug)			
	Cefotaxime (30ug)			
	Ceftazidime (30ug)			
	Cefpodoxime (10ug)			
	Ceftiofur (30ug)			
	Chloramphenicol (30ug)			
	Fluoroquinolone (5ug)			
	Florfenicol (30ug)			
	Gentamicin (10ug)			
	Nalidixic Acid (30ug)			
	Streptomycin (10ug)			
	Sulphonamides (250 or 300ug)			
	Tetracycline (30ug)			
	Trimethoprim (TMP) (5ug)			
	TMP + Sulphonamides (1,25/23,75 ug)			
	Antimicrobial		Interpretati	on
	Confimatory ESBL tests	5. <,	8< MIC ratio =>8 < zone dia. mm=>5 / => 3 dilution steps	Confirmed ESBL
	Cefotaxime / Cefotaxime + clavulanic acid			
	Ceftazidime / Ceftazidime + clavulanic acid			
			Interpretati	0n Confirmed
	Cefoxitin		K-10 MIC	Comminieu
			Interpretati	on
			R>16 MIC	Confirmed metallo beta
	Imipenem			•
			Interpretati	on C C l
		5- < /	<pre>> wite ratio =>8 < zone dia. mm=>5 / => 3 dilution steps</pre>	Confirmed metallo beta
	Imipenem Imipenem + EDTA			

Page 5/13

Strain	Antimicrobial		Interpretati	on
		≤	Zonediam (mm) or	S / I / R
Salmonella	Amoxicillin + clavulanic acid $(20/10ug)$	>	MIC-value (ug/ml)	
CRL S. 1.4	Ampicillin / amoxicillin (10ug)			
	Cefotaxime (30ug)			
	Ceftazidime (30ug)			
	Cefpodoxime (10ug)			
	Ceftiofur (30ug)			
	Chloramphenicol (30ug)			
	Fluoroquinolone (5ug)			
	Florfenicol (30ug)			
	Gentamicin (10ug)			
	Nalidixic Acid (30ug)			
	Streptomycin (10ug)			
	Sulphonamides (250 or 300ug)			
	Tetracycline (30ug)			
	Trimethoprim (TMP) (5ug)			
	TMP + Sulphonamides $(1.25/23.75 \text{ ug})$			
	Antimicrobial		Interpretati	on
	Confimatory ESBL tests	5- < /	8< MIC ratio =>8 < zone dia. mm=>5 / => 3 dilution steps	Confirmed ESBL
	Cefotaxime / Cefotaxime + clavulanic acid			
	Ceftazidime / Ceftazidime + clavulanic acid			
			Interpretati	0n Confirmed
	Cefoxitin			Commitmed
			Internretati	on
			R>16 MIC	Confirmed metallo beta
	Imipenem			•
			Interpretati	on c c l
		5- </td <td><pre>s< MIC ratio =>8 < zone dia. mm=>5 / => 3 dilution steps</pre></td> <td>Confirmed metallo beta</td>	<pre>s< MIC ratio =>8 < zone dia. mm=>5 / => 3 dilution steps</pre>	Confirmed metallo beta
	Imipenem Imipenem + EDTA			

Page 6/13

Strain	Antimicrobial	Interpretation		
			Zonediam (mm) or MIC-value (ug/ml)	S / I / R
Salmonella	Amoxicillin + clavulanic acid (20/10ug)			
CRL S. 1.5	Ampicillin / amoxicillin (10ug)			
	Cefotaxime (30ug)			
	Ceftazidime (30ug)			
	Cefpodoxime (10ug)			
	Ceftiofur (30ug)			
	Chloramphenicol (30ug)			
	Fluoroquinolone (5ug)			
	Florfenicol (30ug)			
	Gentamicin (10ug)			
	Nalidixic Acid (30ug)			
	Streptomycin (10ug)			
	Sulphonamides (250 or 300ug)			
	Tetracycline (30ug)			
	Trimethoprim (TMP) (5ug)			
	TMP + Sulphonamides (1,25/23,75 ug)			
	Antimicrobial		Interpretati	on
	Confimatory ESBL tests	5 [.] < ,	8< MIC ratio =>8 < zone dia. mm=>5 / => 3 dilution steps	Confirmed ESBL
	Cefotaxime / Cefotaxime + clavulanic acid			
	Ceftazidime / Ceftazidime + clavulanic acid			
			Interpretati	On
	Cefoxitin		K>10 MIC	Confirmed
			Interpretati	on
			R>16 MIC	Confirmed metallo beta
	Imipenem			•
			Interpretati	on c c l
		5 <	<pre>>> with ratio =>8 < zone dia. mm=>5 / => 3 dilution steps</pre>	Confirmed metallo beta
	Imipenem Imipenem + EDTA			

Page 7/13

Strain	Antimicrobial		Interpretati	on
			Zonediam (mm) or MIC-value (ug/ml)	S / I / R
Salmonella	Amoxicillin + clavulanic acid (20/10ug)			
CRL S. 1.6	Ampicillin / amoxicillin (10ug)			
	Cefotaxime (30ug)			
	Ceftazidime (30ug)			
	Cefpodoxime (10ug)			
	Ceftiofur (30ug)			
	Chloramphenicol (30ug)			
	Fluoroquinolone (5ug)			
	Florfenicol (30ug)			
	Gentamicin (10ug)			
	Nalidixic Acid (30ug)			
	Streptomycin (10ug)			
	Sulphonamides (250 or 300ug)			
	Tetracycline (30ug)			
	Trimethoprim (TMP) (5ug)			
	TMP + Sulphonamides (1,25/23,75 ug)			
	Antimicrobial		Interpretati	on
	Confimatory ESBL tests	5 <	8< MIC ratio =>8 < zone dia. mm=>5 / => 3 dilution steps	Confirmed ESBL
	Cefotaxime / Cefotaxime + clavulanic acid			
	Ceftazidime / Ceftazidime + clavulanic acid			
			Interpretati	011 Confirmed
	Cefoxitin			Comminied
			Interpretati	on
			R>16 MIC	Confirmed metallo beta
	Imipenem			-
			Interpretati	0n
		5 <	<pre>< zone dia. mm=>5 / => 3 dilution steps</pre>	metallo beta
	Imipenem Imipenem + EDTA			

Page 8/13

Strain	Antimicrobial		Interpretation		
		≤ >	Zonediam (mm) or MIC-value (ug/ml)	S / I / R	
Salmonella	Amoxicillin + clavulanic acid (20/10ug)				
CRL S. 1.7	Ampicillin / amoxicillin (10ug)				
	Cefotaxime (30ug)				
	Ceftazidime (30ug)				
	Cefpodoxime (10ug)				
	Ceftiofur (30ug)				
	Chloramphenicol (30ug)				
	Fluoroquinolone (5ug)				
	Florfenicol (30ug)				
	Gentamicin (10ug)				
	Nalidixic Acid (30ug)				
	Streptomycin (10ug)				
	Sulphonamides (250 or 300ug)				
	Tetracycline (30ug)				
	Trimethoprim (TMP) (5ug)				
	TMP + Sulphonamides (1,25/23,75 ug)				
	Antimicrobial		Interpretati	on	
	Confimatory ESBL tests	5. <,	8< MIC ratio =>8 < zone dia. mm=>5 / => 3 dilution steps	Confirmed ESBL	
	Cefotaxime / Cefotaxime + clavulanic acid				
	Ceftazidime / Ceftazidime + clavulanic acid		.		
			Interpretati	011 Confirmed	
	Cefoxitin			Comminieu	
			Interpretati	on	
			R>16 MIC	Confirmed metallo beta	
	Imipenem			•	
			Interpretati	0n Confirmed	
		5- < ,	<pre>< zone dia. mm=>5 / => 3 dilution steps</pre>	metallo beta	
	Imipenem Imipenem + EDTA				

Page 9/13

Strain	Antimicrobial		Interpretati	on
		≤	Zonediam (mm) or	S / I / R
Salmonella	Amoxicillin + clavulanic acid $(20/10ug)$	>	MIC-value (ug/ml)	
CRL S. 1.8	Ampicillin / amoxicillin (10ug)			
	Cefotaxime (30ug)			
	Ceftazidime (30ug)			
	Cefpodoxime (10µg)			
	Ceftiofur (30ug)			
	Chloramphenicol (30ug)			
	Eluoroquinolone (5ug)			
	Florfenicel (20ug)			
	Contemicin (1000)			
	Nalidixic Acid (30ug)			
	Streptomycin (10ug)			
	Sulphonamides (250 or 300ug)			
	Tetracycline (30ug)			
	Trimethoprim (TMP) (5ug)			
	TMP + Sulphonamides (1,25/23,75 ug)			
	Antimicrobial		Interpretati	on
	Confimatory ESBL tests	5- < /	8< MIC ratio =>8 < zone dia. mm=>5 / => 3 dilution steps	Confirmed ESBL
	Cefotaxime / Cefotaxime + clavulanic acid			
	Ceftazidime / Ceftazidime + clavulanic acid			
			Interpretati	on Confirmed
	Cafovitin		K-10 MIC	Comminied
			Internretati	on
			R>16 MIC	Confirmed metallo beta
	Imipenem			•
			Interpretati	on C C l
		5- </td <td><pre>>> with ratio =>8 < zone dia. mm=>5 / => 3 dilution steps</pre></td> <td>Confirmed metallo beta</td>	<pre>>> with ratio =>8 < zone dia. mm=>5 / => 3 dilution steps</pre>	Confirmed metallo beta
	Imipenem Imipenem + EDTA			

Community Reference Laboratory for Antimicrobial Resistance External Quality Assurance System (EQAS) 2006

TEST FORM

Page 10/13

Susceptibility testing of E. coli referencestrain ATCC 25922

Strain	Antimicrobial	Zonediameter (mm) or MIC-value (ug/ml)
<i>E. coli</i> ATCC 25922	Amoxicillin + clavulanic acid	
	Ampicillin / amoxicillin	
	Cefotaxime	
	Ceftazidime	
	Cefpodoxime	
	Ceftiofur	
	Chloramphenicol	
	Fluoroquinolone	
	Florphenicol	
	Gentamicin	
	Nalidixic Acid	
	Streptomycin	
	Sulphonamides	
	Tetracycline	
	Trimethoprim	
	Trimethoprim + Sulphonamides	

TEST FORM

Page 11/13

Strain	Antimicrobial	Inter	pretation
		Zonediam (mm) or MIC-value (ug/ml)	S / I / R
Campylobacter	Chloramphenicol		
CRL C. 1.1	Fluoroquinolone		
	Erythromycin		
	Gentamicin		
	Nalidixic Acid		
	Streptomycin		
	Tetracycline		
Campylobacter	Chloramphenicol		
CRL C. 1.2	Fluoroquinolone		
	Erythromycin		
	Gentamicin		
	Nalidixic Acid		
	Streptomycin		
	Tetracycline		
Campylobacter	Chloramphenicol		
CRL C. 1.3	Fluoroquinolone		
	Erythromycin		
	Gentamicin		
	Nalidixic Acid		
	Streptomycin		
	Tetracycline		
Campylobacter	Chloramphenicol		
CRL C. 1.4	Fluoroquinolone		
	Erythromycin		
	Gentamicin		
	Nalidixic Acid		
	Streptomycin		
	Tetracycline		

TEST FORM

Page 12/13

Strain	Antimicrobial	Interp	retation
		Zonediam (mm) or MIC-value (ug/ml)	S/I/R
Campylobacter	Chloramphenicol		
CRL C. 1.5	Fluoroquinolone		
	Erythromycin		
	Gentamicin		
	Nalidixic Acid		
	Streptomycin		
	Tetracycline		
Campylobacter	Chloramphenicol		
CRL C. 1.6	Fluoroquinolone		
	Erythromycin		
	Gentamicin		
	Nalidixic Acid		
	Streptomycin		
	Tetracycline		
Campylobacter	Chloramphenicol		
CRL C. 1.7	Fluoroquinolone		
	Erythromycin		
	Gentamicin		
	Nalidixic Acid		
	Streptomycin		
	Tetracycline		
Campylobacter	Chloramphenicol		
CRL C. 1.8	Fluoroquinolone		
	Erythromycin		
	Gentamicin		
	Nalidixic Acid		
	Streptomycin		
	Tetracycline		

Community Reference Laboratory for Antimicrobial Resistance External Quality Assurance System (EQAS) 2006

TEST FORM

Page 13/13

Susceptibility testing of Campylobacer jejuni reference strain ATCC 33560

Strain	Antimicrobial	Zonediameter (mm) or MIC-value (ug/ml)	
		36 °C/48 hours	42 °C/24 hours
	Chloramphenicol		
C. jejuni ATCC 33560	Ciprofloxacin		
Erythromycin			
	Nalidixic Acid		
	Tetracycline		

Survey for routinely applied breakpoints for antimicrobial susceptibility testing of *Salmonella* at the NRL.

Antimicrobial	Interpretation,					
		Zonediam (mm) or MIC-value (ug/ml)				
	$<, \leq$	Sensitive	Intermediate	>,≥	Resistant	
Amoxicillin + clavulanic acid						
Ampicillin / amoxicillin						
Cefotaxime						
Ceftazidime						
Cefpodoxime						
Ceftiofur						
Chloramphenicol						
Fluoroquinolone						
Florphenicol						
Gentamicin						
Nalidixic Acid						
Streptomycin						
Sulphonamides						
Tetracycline						
Trimethoprim						
Trimethoprim + Sulphonamides						

Survey for routinely applied breakpoints for antimicrobial susceptibility testing of *Campylobacter* at the NRL.

Antimicrobial			Interpretation,				
				Zonediam (1	mm) or MIC-v	alue (ug/ml)
Inc. conditions:	_°C/	h	$<, \leq$	Sensitive	Intermediate	>,≥	Resistant
Chloramphenicol							
Ciprofloxacin							
Erythromycin							
Nalidixic Acid							
Tetracycline							

EU Community Reference Laboratory for Antimicrobial Resistance External Quality Assurance System (EQAS) 2006

Appendix 4c.: Documents

Instructions for Opening and Reviving of Freeze-dried Cultures

Manual from CCM for *E. coli* ATCC 25922 and *C.jejuni* ATCC33560 Quality Control strain

Czech Collection of Microorganisms Masaryk University Tvrdého 14 602 00 BRNO Czech Republic

Freeze-dried cultures are supplied in vacuum-sealed ampoules. Care should be taken in opening the ampoule. All instructions given below should be followed closely to ensure the safety of the person who opens the ampoule and to prevent contamination of the culture.

- 1. Check the number of the culture on the label inside the ampoule
- 2. Make a file cut on the ampoule near the middle of the plug
- 3. Disinfect the ampoule with alcohol-dampened gauze/ or alcohol-dampened cotton wool from just below the plug to the pointed end.
- 4. Apply a red-hot glass rod to the file cut to crack the glass and allow air to enter slowly into the ampoule
- 5. Remove the pointed end of the ampoule into disinfectant
- 6. Add about 0.3 ml appropriate broth to the dried suspension using a sterile Pasteur pipette and mix carefully to avoid creating aerosols. Transfer the contents to one or more suitable solid and /or liquid media.
- 7. Incubate the inoculated medium at appropriate conditions for several days
- 8. Auclave or disinfect effectively the used Pasteur pipette, the plug and all the remains of the original ampoule before discarding.

Notes: Cultures should be grown on media and under conditions as recommended in the CCM Catalogue.

Cultures may need at least one subculturing before they can be optimally used in experiments.

Unopened ampoules should be kept in a dark and cool place !

Subculture and Maintenance of Quality Control Strains

PURPOSE

Improper storage and repeated subculturing of bacteria can produce alterations in antimicrobial susceptibility test results. The Clinical and Laboratory Standards Institute (CLSI, formerly NCCLS) has published a guideline for Quality Control (QC) stock culture maintenance to ensure consistent antimicrobial susceptibility test results.

REFERENCES

- M100-S16, January 2005 (Performance Standards for Antimicrobial Susceptibility Testing)
- M07-A6, January 2003 (Methods for Dilution Antimicrobial that Grow Aerobically; Approved Standard)

DEFINITION OF TERMS

1. Reference Culture

• A reference culture is a microorganism preparation that is acquired from a culture type collection.

2. Reference Stock Culture

- A reference stock culture is a microorganism preparation that is derived from a reference culture.
- Guidelines and standards outline how reference stock cultures must be processed and stored.

3. Working Stock Cultures

- A working stock culture is growth derived from a reference stock culture.
- Guidelines and standards outline how working stock cultures must be processed and how often they can be subcultured.
- 4. Subcultures (Passages)
 - A subculture is simply the transfer of established microorganism growth on media to fresh media. The subsequent growth on the fresh media constitutes a subculture or passage.
 - Growing a reference culture or reference stock culture from its preserved status (frozen or lyophilized) is not a subculture.
 - The preserved microorganism is not in a stage of established growth until it is thawed or hydrated and grown for the first time.

IMPORTANT CONSIDERATIONS

- Do not use disc diffusion strains for MIC methods.
- Obtain QC strains from a reliable source such as ATCC.
- CLSI requires that QC be performed either on the same day or weekly (only after 30 day QC validation).

EU Community Reference Laboratory for Antimicrobial Resistance External Quality Assurance System (EQAS) 2006

- Any changes in materials or procedure must be validated with QC before implemented.
- For example: Agar and broth methods may give different QC ranges for drugs such as glycopeptides, aminoglycosides and macrolides.
- Periodically perform colony counts to check the inoculum preparation procedure.
- Ideally, test values should be in the middle of the acceptable range.
- Graphing QC data points over time can help identify changes in data helpful for troubleshooting problems

STORAGE OF REFERENCE STRAINS

1. Preparation of stock cultures:

- Use a suitable stabilizer such as 50% fecal calf serum in broth, 10-15% glycerol in tryptic soy broth, defibrinated sheep blood or skim milk to prepare multiple aliquots.
- Store at -20°C, -70°C or liquid nitrogen. (Alternatively, freeze dry.)
- Before using rejuvenated strains for QC, subculture to check for purity and viability.

2. Working cultures:

- Set up on agar slants with appropriate medium, store at 4-8°C and subculture weekly.
- Replace the working strain with a stock culture at least monthly.
- If a change in the organisms inherent susceptibility occurs, obtain a fresh stock culture or a new strain from a reference culture collection e.g. ATCC.

FREQUENCY OF TESTING

- 1. Weekly vs. daily testing: Weekly testing is possible if the lab can demonstrate satisfactory performance with daily testing as follows:
 - Documentation showing reference strain results from 30 consecutive test days were within the acceptable range.
 - For each antimicrobial/organism combination, no more than 3 out of 30 MIC values may be outside the acceptable range.
 - When the above are fulfilled, each quality control strain may be tested once a week and whenever any reagent component is changed.
- 2. **Corrective actions-** If an MIC is outside the range in weekly testing, corrective action is required as follows
 - Repeat the test if there is an obvious error e.g. wrong strain or incubation conditions used.
 - If there is no obvious error, return to daily control testing.
 - The problem is considered resolved only after the reference strain is tested for 5 consecutive days and each drug/organism result is within specification on each day.

EU Community Reference Laboratory for Antimicrobial Resistance External Quality Assurance System (EQAS) 2006

- If the problem cannot be resolved, continue daily testing until the errors are identified.
- Repeat the 30 day validation before resuming weekly testing.

Daily MIC QC Chart

from CLSI M7-A6, page 35

from CLSI M7-A6, page 36

Appendix 4d.: Documents Evaluation form

Page 1 / 2

We are committed to improve the quality and usefulness of the EQAS. Therefore, we kindly ask you to take a moment to complete the questionnaire below, so we may learn how to improve the EQAS.

QUALITY OF THE EQAS

1) Your opinion of the letters etc. you have received during the CRL AR EQAS 2006

	Very poor	Poor	Satisfact ory	Good	Very good
A The EQAS welcome letter					
B The EQAS protocol					
C The evaluation report obtained from the web database					

Give your comments, proposals etc. here:

2) Your opinion of how the EQAS 2004 was performed

	Very poor	Poor	Satisfact ory	Good	Very good
A The organisation of the EQAS					
B The information about the EQAS					
C How did it meet your expectations					

Give your comments, expectations and suggestions here:

THE INTERACTIVE WEB DATABASE

3) Did you enter your results in the interactive web database?

□ yes

□ no If not specify why:_____

4) Do you have any comments on the data you have entered?

Page 2 / 2

5)	Which problems did you meet when you entered data into the interactive web database?
6)	What is your overall impression of the interactive web database very poor poor satisfactory good very good
7)	How could the interactive web database be improved?
	THE USEFULNESS OF THE EQAS
8)	How do you consider the importance of participating the EQAS program for you?
	Irrelevantnot importantimportantvery important
Sp	ecify why:

9) What would you like to see anything changed in EQAS 2007 (procedures, species, number of strains, antimicrobials etc.):

Thank you very much for taking your time to fill in this questionnaire.

Appendix 4e.: Documents

Questionnaire

We are committed to harmonise the panel of used antimicrobials and the ranges of these. Please fill in this the antimicrobials used for routine diagnostics in you laboratory as well as the test ranges. Furthermore, we are trying to become acquainted with you and your laboratory. To make this process easier we need you to let us know how many strains you annually isolate and in what areas you have been appointed as national reference laboratory (NRL). Please send the questionnaire back by email to Rene Hendriksen (rsh@dfvf.dk).

Have your laboratory been appointed as NRL for antimicrobial resistance in:_	Animals
-	Feed
-	Food

How many Salmonella isolates do your laboratory annual isolate:

How many *Campylobacter* isolates do your laboratory annual isolate:_____

How many Salmonella isolates do your laboratory annual susceptibility test:_____

How many Campylobacter isolates do your laboratory annual susceptibility test:_____

Please list the panel of antimicrobials your laboratory on a routinely basis use along with either the disk content or the MIC-ranges (Micro-broth dilution, Agar dilution, E-tests)

Method:	Antimicrobial	Disk content	Test-range for MIC
Salmonella			

EU Community Reference Laboratory for Antimicrobial Resistance External Quality Assurance System (EQAS) 2006

Method:	Antimicrobial	Disk content	Test-range
Campylobacter			

Appendix 5; Reference breakpoints for *Salmonella / Campylobacter* and breakpoints used by the participants for both MIC determination and disk diffusion.

Antimicrobial \ Laboratories Ref value (CLSI) #1, 4, 12, 17, 26, #11, 25 #24, 35 #16, 27 #10 Sensitiv ≤8 ≤4 ≤4 ≤8 ≤8 Ampicillin / Amoxicillin Intermediate 16 16 16 Resistance ≥32 >27 51 >16 >16 >16 Antimicrobial \ Laboratories Ref value (CLSI) #10 #1 Sensitiv ≤8 ≤8 ≤8 Amoxicillin + Clavulanic acid Intermediate 16 16 16 Resistance ≥3: >16 ≥32 Antimicrobial \ Laboratories Ref value (CLSI) #11,25 #12 #4 #24 #27 #10 Sensitiv ≤8 ≤5 ≤1 ≤4 ≤1 ≤8 Cefotaxime Intermediate 16-32 2 16 Resistance ≥64 >5 ≥5 ≥2 >32 >2 ≥32 Ref value (FOOD-DTU) Antimicrobial \ Laboratories #1 Sensitiv ≤0,5 ≤5 Cefpodoxime Intermediate 1 1 Resistance ≥2 Antimicrobial \ Laboratories Ref value (CLSI) #10 #25 #27 Sensitiv <8 ≤2 ≤4 ≤1 Ceftazidime Intermediate 16 >8 >2 >32 Resistance ≥32 Antimicrobial \ Laboratories Ref value (CLSI) #1, 12, 17, 26 #11 Sensitiv ≤2 ≤2 ≤2 Intermediate Ceftiofur 4 4 Resistance ≥8 Antimicrobial \ Laboratories Ref value (CLSI) #1, 4, 12, 17, 26 #11,25 #24, 35 #10,16 Sensitiv ≤8 ≤8 ≤16 ≤8 Chloramphenicol Intermediate 16 16 16 Resistance >16 ≥32 ≥32 >16>16 Antimicrobial \ Laboratories Ref value (EUCAST) #4, 12 #26,35 #24 #1,11 #16,27 #25 #17 #10 Sensitiv <0,125 ≤0.5 ≤6 <0.125 ≤0.25 ≤1 ≤1 Ciprofloxacin / Enrofloxacin Intermediate 2 1 2 ≥0,125 ≥0.125 Resistance >2 >1 ≥4 56 >6 ≥2 >2 Antimicrobial \ Laboratories Ref value (EUCAST) #1, 12, 17, 26 #11, 25 #24, 35 #16 Sensitiv ≤8 ≤8 ≤16 ≤8 Florfenicol 16 Intermediate 16 16 Resistance ≥32 >16 >16 >16 Antimicrobial \ Laboratories Ref value (EUCAST) #4, 12, 17, 26 #16, 27 #25 #24 #11 #1 #35 #10 Sensitiv <2 ≤4 ≤2 ≤2 ≤2 ≤4 ≤4 Gentamicin Intermediate 4 8 4 4 8 >2 >4 ≥16 >2 ≥8 >8 >8 Resistance ≥8 >4 Antimicrobial \ Laboratories Ref value (CLSI) #1, 4, 12, 17, 26 #10, 11, 25 #24, 35 #16 Sensitiv ≤16 ≤16 ≤16 ≤8 Nalidixic acid Intermediate 16 ≥32 >32 >16 >16 Resistance >16 Antimicrobial \ Laboratories Ref value (FOOD-DTU) #1, 12, 17, 26 #10, 16 #11 #35 #4 Sensitiv ≤4 ≤8 ≤8 ≤8 ≤32 Streptomycin Intermediate 16 16 16 ≥32 >16 ≥16 Resistance ≥31 >16 ≥32 Antimicrobial \ Laboratories Ref value #1, 4, 12, 17, 26 #24 #11, 25 ≤256 Sensitiv ≤256 ≤256 Sulphonamides Intermediate ≥512 Resistance >512 >256 >32 Antimicrobial \ Laboratories Ref value (CLSI) #10 #4 Sensitiv ≤2/38 ≤2 ≤2 Sulphonamides + Trimethoprim Intermediate ≥4/76 ≥2 ≥4 Resistance Antimicrobial \ Laboratories Ref value (CLSI) #1,4, 12, 17, 26 #11, 25 #24, 35 #10, 16 Sensitiv <1 <4 ≤8 ≤4 Tetracvcline Intermediate 8 8 8 >8 >8 ≥16 >8 Resistance ≥16 Antimicrobial \ Laboratories Ref value (CLSI) #1,4, 12, 17, 26 #11, 25 #16, 27 #24 #10 Sensitiv ≤8 ≤8 ≤2 ≤4 ≤8 Trimethoprim Intermediate 8

>2

>8

≥16

>8

>2

MIC breakpoints for Salmonella.

Included above are breakpoints from four participants using E-test.

Resistance

≥16

MIC breakpoins for Campylobacter.

Antimicrobial \ Laboratories		Ref value (CLSI)	#24, 35	#20	#2	#25	#4	#1							
	Sensitiv	≤16	-	≤8	-	≤16	≤8	≤16							
Chloramphenicol	Intermediate	-	-	-	-	-	16	-							
Resistand		≥32	>16	>16	≥32	>16	≥32	≥32							
Antimicrobial \ Laboratories		Ref value (CLSI)	#1,4	#14, 15	#2, 21	#25, 34	#20	#17	#19	#24	#11	#35	#12	#10	
	Sensitiv	≤1	≤1	<1	-	≤1	≤1	≤2	-	-	-	-	≤1	≤1	
Ciprofloxacin / Enrofloxacin	Intermediate	2	2	1	-	-	-	-	-	-	-	-	_	2	
	Resistance	≥4	≥4	≥5	≥4	≥1	≥4	≥4	≥2	>1	≥5	>2	- - 2 >2 ≥5 >2 i34 #12 #10 # ≤4 ≤8 ≤8 ≤ - - 16 ≥4 ≥16 >16 ≥4 ≥16 >16 ≥4 ≥4 >16		
Antimicrobial \ Laboratories		Ref value (CLSI)	#2, 19	#11, 35	#15	#20	#17	#21	#24	#14	#1	#34	#12	#10	#4
	Sensitiv	≤8	-	-	<1	≤8	≤4	-	-	≤1	≤8	≤4	≤8	≤8	≤5
Erythromycin	Intermediate	16	-	-	4	-	-	-	-	-	16	-	-	16	-
	Resistance	≥32	≥8	>8	≥4	≥32	≥8	≥32	>4	>4	≥32	≥4	≥16	>16	≥8
Antimicrobial \ Laboratories		Ref value (CLSI)	#1, 17	#2, 21	#15	#20	#4	#24	#14	#11	#35	#12			
	Sensitiv	≤8	≤8	-	<2	≤2	≤4	-	≤2	-	-	≤4			
Gentamicin	Intermediate	-	-	-	4	-	8	-	4	-	-	-			
	Resistance	≥16	≥16	>16	≥4	>4	≥16	>1	>4	>4	>8	≥8	H I		
Antimicrobial \ Laboratories		Ref value (CLSI)	#4, 12, 17, 19	#11, 24, 35	#4	#20	#21	#2	#14	#1	#15				
	Sensitiv	≤32	≤16	-	≤8	≤8	-	-	≤8	≤32	<8				
Nalidixic acid	Intermediate	-	-	-	16	-	-	-	16	-	16		#12 #10 ≤1 ≤1 2 >2 ≥5 >2 #12 #10 ≤8 ≤8 ≥16 >16 ≥17 >16 ≥18 ≤8 ≥16 >16 ≥17 >16 ≥18 ≤8 ≥10 >16 ≥16 >16 2 ≤8 3 3 3 3 3 3 3 3 3 3 4 3		
	Resistance	≥64	≥32	>16	≥32	>16	≥64	≥32	>16	≥64	≥16				
Antimicrobial \ Laboratories		Ref value (FOOD-DTU)	#19, 20	#15	#2	#24	#14	#1	#35	#4					
	Sensitiv	≤8	≤4	≤4	-	-	≤8	≤8	-	≤4					
Streptomycin	Intermediate	-	-	8	-	-	16	-	-	8					
	Resistance	≥16	≥16	>8	≥16	>2	>16	≥16	>16	≥16					
Antimicrobial \ Laboratories		Ref value (CLSI)	#2, 21	#1, 4	#10, 15	#19, 20	#25	#24	#14	#11	#34	#35	#12	#17	
	Sensitiv	≤4	-	≤4	≤4	≤4	≤2	-	≤4	-	≤2	-	≤2	≤8	
Tetracycline	Intermediate	8	-	8	8		-	-	8	-	-	-	-	-	
	Resistance	≥16	≥16	≥16	>8	≥16	>2	≥5	>8	>2	≥2	>8	≥4	≥16	

Disk diffusion breakpoints for Salmonalla.

Antimicrobial \ Laboratories		#2, 5, 6, 18, 20, 22, 23, 28, 30	#14, 15	#13	#29	#19				
	Sensitiv	>17	>21	>19	>18	>20				
Ampicillin / Amovicillin	Intermediate		-21	= 10	=10	-20				
, and the second s	Resistance	<13	<14	<14	<12	16				
Antimiarchiel Laboratorica	Tresistance	#5 6 19 20 22 23 29 20	#12 14 15	#20	#10	#25				
Antimicrobian Laboratories	O an aitin	*5, 6, 16, 20, 22, 25, 28, 50	#13, 14, 15 501	#29	#13 10	#35				
Americaillin - Claurilania acid	Sensitiv	210	221	219	10	-				
Amoxiciliin + Ciavulanic acid	Desisternediate	-	-	-	-	-				
	Resistance	<u>\$13</u>	<14	S12	13	<14				
Antimicropial (Laboratories		#2, 5, 18, 20, 22, 28, 30	#13, 14, 15	#29	#19	#35				
	Sensitiv	≥23	≥21	≥22	28	-				
Cefotaxime	Intermediate	-	-	-	-	-				
	Resistance	≤14	<15	≤16	27	<5				
Antimicrobial \ Laboratories		#20, 30	#19							
	Sensitiv	≥21	19							
Cefpodoxime	Intermediate	-	18							
	Resistance	<17	17							
Antimicrobial \ Laboratories		#5, 20, 28, 30	#13, 14, 15	#19	#29	#35				
	Sensitiv	≥18	≥21	22	≥22	-				
Ceftazidime	Intermediate	-	-	4.15 #13 #29 #19 . . .21 ≥ 19 ≥ 18 ≥ 20 . . .14 <14 ≤ 12 16 . . 144 <121 ≈ 19 #35 . . . 144 ≤ 12 13 <14 144 ≤ 12 13 <14 141 ≤ 12 28 141 ≤ 12 28 15 ≤ 16 27 <5 16 27 <5 . .<						
	Resistance	≤14	≤15	14	≤16	<15				
Antimicrobial \ Laboratories		#20, 22	#14, 15	#18	#29	#19	#30			
	Sensitiv	≥21	≥21	≥23	≥22	≥21	20			
Ceftiofur	Intermediate	-	-	-	-	-	-			
	Resistance	≤17	<18	≤14	≤16	17	16			
Antimicrobial \ Laboratories		#2, 5, 6, 18, 20, 22, 23, 28	#14, 15	#19, 30	#29	#13				
	Sensitiv	≥18	≥23	18	≥19	≥23				
Chloramphenicol	Intermediate	-	-	-	-	-				
Sensity Sensity <t< th=""><th></th></t<>										
Antimicrobial \ Laboratories		#2, 5, 6, 18, 20	#13, 15	#19,30	#28,29	#14				
	Sensitiv	≥21	≥22	21	≥24	≥25				
Ciprofloxacin / Enrofloxacin	Intermediate		-	_		-				
	Resistance	≤15	<17	15	≤15	<22				
Antimicrobial \ Laboratories		#18, 20	#29	#23	#22	#14	16II16II17II1II <t< th=""><th>#30</th></t<>		#30	
Antimicrobial \ Laboratories	Sensitiv	#18, 20 ≥19	#29 ≥19	#23 ≥18	#22 ≥20	#14 ≥22	#19 19	Image Image <thimage< th=""> <thi< th=""></thi<></thimage<>		
Antimicrobial \ Laboratories	Sensitiv Intermediate	#18, 20 ≥19	#29 ≥19	#23 ≥18	#22 ≥20	#14 ≥22	#19 19			
Antimicrobial \ Laboratories	Sensitiv Intermediate Resistance	#18,20 ≥19 - ≤14	#29 ≥19 - ≤11	#23 ≥18 - ≤12	#22 ≥20 - ≤16	#14 ≥22 - <19	#19 19 - 14	#15 ≥19 - <14	#30 ≥20 - 16	
Antimicrobial \ Laboratories Florfenicol Antimicrobial \ Laboratories	Sensitiv Intermediate Resistance	#18,20 ≥19 - ≤14 #2,5,6,18,20,22,23,28,	#29 ≥19 - ≤11 #13, 14, 15	#23 ≥18 - ≤12 #19.30	#22 ≥20 ≤16 #29	#14 ≥22 - <19	#19 19 - 14	#15 ≥19 - <14	#30 ≥20 - 16	
Antimicrobial \ Laboratories Florfenicol Antimicrobial \ Laboratories	Sensitiv Intermediate Resistance Sensitiv	#18, 20 ≥19 - ≤14 #2, 5, 6, 18, 20, 22, 23, 28, ≥15	. .							
Antimicrobial \ Laboratories Florfenicol Antimicrobial \ Laboratories Gentamicin	Sensitiv Intermediate Resistance Sensitiv Intermediate	termediate . eisistance <th>#30 ≥20 - 16</th>				#30 ≥20 - 16				
Antimicrobial \ Laboratories Florfenicol Antimicrobial \ Laboratories Gentamicin	Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance	#18, 20 ≥19 - ≤14 #2, 5, 6, 18, 20, 22, 23, 28, ≥15 - <12	#29 ≥19 - ≤11 #13, 14, 15 ≥18 - <16	#23 ≥18 - ≤12 #19, 30 15 - 12	#22 ≥20 ≤16 #29 ≥16 - <11	#14 ≥22 - <19	#19 19 - 14	#15 ≥19 - <14	#30 ≥20 - 16	
Antimicrobial \ Laboratories Florfenicol Antimicrobial \ Laboratories Gentamicin Antimicrobial \ Laboratories	Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance	#18, 20 ≥19 - ≤14 #2, 5, 6, 18, 20, 22, 23, 28, ≥15 - ≤12 #2, 5, 6, 18, 20, 22, 23, 28	#29 ≥19 - ≤11 #13,14,15 ≥18 - <16 #13,14,15	#23 ≥18 - ≤12 #19, 30 15 - 12 #19, 30	#22 ≥20 - ≤16 #29 ≥16 - ≤11 #24	#14 ≥22 - <19	#19 19 - 14	#15 ≥19 <14	#30 ≥20 - 16	
Antimicrobial \ Laboratories Florfenicol Antimicrobial \ Laboratories Gentamicin Antimicrobial \ Laboratories	Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance	#18, 20 ≥19 - ≤14 #2, 5, 6, 18, 20, 22, 23, 28, ≥15 - ≤12 #2, 5, 6, 18, 20, 22, 23, 28 >19	#29 ≥19 - ≤11 #13, 14, 15 ≥18 - <16 #13, 14, 15 >20	#23 ≥18 - ≤12 #19,30 15 - 12 #19,30 19	#22 ≥20 - ≤16 #29 ≥16 - ≤11 #24 >24	#14 ≥22 - <19	#19 - 14 - 14	#15 ≥19 - <14	#30 ≥20 - 16	
Antimicrobial \ Laboratories Florfenicol Antimicrobial \ Laboratories Gentamicin Antimicrobial \ Laboratories	Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate	#18, 20 ≥19 - ≤14 #2, 5, 6, 18, 20, 22, 23, 28, ≥15 - ≤12 #2, 5, 6, 18, 20, 22, 23, 28 ≥12 #2, 5, 6, 18, 20, 22, 23, 28 ≥19	#29 ≥19 - ≤11 #13, 14, 15 ≥18 - <16 #13, 14, 15 ≥20	#23 ≥18 - ≤12 #19,30 15 - 12 #19,30 19	#22 ≥20 - ≤16 #29 ≥16 - ≤11 #24 ≥24	#14 ≥22 - <19	#19 19 - 14	#15 ≥19 - <14	#30 ≥20 - 16	
Antimicrobial \ Laboratories Florfenicol Antimicrobial \ Laboratories Gentamicin Antimicrobial \ Laboratories Nalidixic acid	Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance	#18, 20 ≥19 - ≤14 #2, 5, 6, 18, 20, 22, 23, 28, ≥15 - ≤12 #2, 5, 6, 18, 20, 22, 23, 28 ≥19 - <13	#29 ≥19 - ≤11 #13, 14, 15 ≥18 - <16 #13, 14, 15 ≥20 - -	#23 ≥18 - ≤12 #19,30 15 - 12 #19,30 19 - 13	#22 ≥20 - ≤16 #29 ≥16 - ≤11 #24 ≥24 - <15	#14 ≥22 - <19	#19 19 - 14	#15 ≥19 - <14	#30 ≥20 - 16	
Antimicrobial \ Laboratories Florfenicol Antimicrobial \ Laboratories Gentamicin Antimicrobial \ Laboratories Nalidixic acid Antimicrobial \ Laboratories	Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance	#18, 20 ≥19 - ≤14 #2, 5, 6, 18, 20, 22, 23, 28, ≥15 - ≤12 #2, 5, 6, 18, 20, 22, 23, 28 ≥19 - ≤13 #2, 6, 18, 20, 22, 23, 28	#29 ≥19 - ≤11 #13, 14, 15 ≥18 - <16 #13, 14, 15 ≥20 - <15 = #13, 15	#23 ≥18 - ≤12 #19,30 15 - 12 #19,30 19 - 13 #19,30	#22 ≥20 - ≤16 #29 ≥16 - ≤11 #24 ≥24 - ≤15 #29	#14 ≥22 - <19	#19 19 - 14	#15 ≥19 <14	#30 ≥20 - 16	
Antimicrobial \ Laboratories Florfenicol Antimicrobial \ Laboratories Gentamicin Antimicrobial \ Laboratories Nalidixic acid Antimicrobial \ Laboratories	Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance	#18, 20 ≥19 - ≤14 #2, 5, 6, 18, 20, 22, 23, 28, ≥15 - ≤12 #2, 5, 6, 18, 20, 22, 23, 28 ≥19 - ≤13 #2, 6, 18, 20, 22, 23, 28	#29 ≥19 - ≤11 #13, 14, 15 ≥18 - <16 #13, 14, 15 ≥20 - <15 #13, 15 >15	#23 ≥18 - ≤12 #19, 30 15 - 12 #19, 30 19 - 13 #19, 30 15	#22 ≥20 - ≤16 #29 ≥16 - ≤11 #24 ≥24 - ≤15 #29 >16	#14 ≥22 - <19	#19 19 - 14 14	#15 ≥19 - <14	#30 ≥20 - 16	
Antimicrobial \ Laboratories Florfenicol Antimicrobial \ Laboratories Gentamicin Antimicrobial \ Laboratories Nalidixic acid Antimicrobial \ Laboratories Streptomycin	Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv	#18, 20 ≥19 - ≤14 #2, 5, 6, 18, 20, 22, 23, 28, ≥15 - ≤12 #2, 5, 6, 18, 20, 22, 23, 28 ≥19 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥13 ±13 #2, 6, 18, 20, 22, 23, 28 ≥15	#29 ≥19 - ≤11 #13, 14, 15 ≥18 - <16 #13, 14, 15 ≥20 - <15 #13, 15 ≥15	#23 ≥18 - ≤12 #19, 30 15 - 12 #19, 30 19 - 13 #19, 30 15	#22 ≥20 - ≤16 #29 ≥16 - ≤11 #24 ≥24 - ≤15 #29 ≥16	#14 ≥22 - <19	#19 19 - 14 14	#15 ≥19 - <14	#30 ≥20 - 16	
Antimicrobial \ Laboratories Florfenicol Antimicrobial \ Laboratories Gentamicin Antimicrobial \ Laboratories Nalidixic acid Antimicrobial \ Laboratories Streptomycin	Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance	#18, 20 ≥19 - ≤14 #2, 5, 6, 18, 20, 22, 23, 28, ≥15 - ≤12 #2, 5, 6, 18, 20, 22, 23, 28 ≥19 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥15 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥15 - ≤11	#29 ≥19 - ≤11 #13, 14, 15 ≥18 - <16 #13, 14, 15 ≥20 - <15 #13, 15 ≥15 - <13	#23 ≥18 - ≤12 #19,30 15 - 12 #19,30 19 - 13 #19,30 15 - 13 - 11	#22 ≥20 - ≤16 #29 ≥16 - ≤11 #24 ≥24 - ≤15 #29 ≥16 - <11	#14 ≥22 - <19	#19 19 - 14 14	#15 ≥19 - <14	#30 ≥20 - 16	
Antimicrobial \ Laboratories Florfenicol Antimicrobial \ Laboratories Gentamicin Antimicrobial \ Laboratories Nalidixic acid Antimicrobial \ Laboratories Streptomycin Antimicrobial \ Laboratories	Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance	#18, 20 ≥19 - ≤14 #2, 5, 6, 18, 20, 22, 23, 28, ≥15 - ≤12 #2, 5, 6, 18, 20, 22, 23, 28 ≥19 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥15 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥15 - ≤11 #2, 6, 18, 20, 22, 23, 28	#29 ≥19 - ≤11 #13, 14, 15 ≥18 - <16 #13, 14, 15 ≥20 - <15 #13, 15 ≥15 - <13 #13, 14, 15	#23 ≥18 - ≤12 #19, 30 15 - 12 #19, 30 19 - 13 #19, 30 15 - 11 #19, 30	#22 ≥20 - ≤16 #29 ≥16 - ≤11 #24 ≥24 - ≤15 #29 ≥16 - ≤11 #29	#14 ≥22 - <19	#19 19 - 14 14	#15 ≥19 - <14	#30 ≥20 - 16	
Antimicrobial \ Laboratories Florfenicol Antimicrobial \ Laboratories Gentamicin Antimicrobial \ Laboratories Nalidixic acid Antimicrobial \ Laboratories Streptomycin Antimicrobial \ Laboratories	Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance	#18, 20 ≥19 - ≤14 #2, 5, 6, 18, 20, 22, 23, 28, ≥15 - ≤12 #2, 5, 6, 18, 20, 22, 23, 28 ≥19 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥15 - ≤11 #2, 6, 18, 20, 22, 23, 28	#29 ≥19 - ≤11 #13, 14, 15 ≥18 - <16 #13, 14, 15 ≥20 - <15 #13, 15 ≥15 - <13 #13, 14, 15 >17	#23 ≥18 - ≤12 #19, 30 15 - 12 #19, 30 19 - 13 #19, 30 15 - 11 #19, 30 17	#22 ≥20 - ≤16 #29 ≥16 - ≤11 #24 ≥24 - ≤15 #29 ≥16 - ≤11 #29 ≥18	#14 ≥22 - <19 	#19 19 - 14 14	#15 ≥19 - <14	#30 ≥20 - 16	
Antimicrobial \ Laboratories Florfenicol Antimicrobial \ Laboratories Gentamicin Antimicrobial \ Laboratories Nalidixic acid Antimicrobial \ Laboratories Streptomycin Antimicrobial \ Laboratories Sulabonamidoc	Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv	#18, 20 ≥19 - ≤14 #2, 5, 6, 18, 20, 22, 23, 28, ≥15 - ≤12 #2, 5, 6, 18, 20, 22, 23, 28 ≥19 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥15 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥15 - ≤11 #2, 6, 18, 20, 22, 23, 28 ≥17	#29 ≥19 - ≤11 #13, 14, 15 ≥18 - <16 #13, 14, 15 ≥20 - <15 #13, 15 ≥15 - <13 #13, 14, 15 ≥17	<pre>#23 ≥18 - ≤12 #19,30 15 - 12 #19,30 19 - 13 #19,30 15 - 11 #19,30 17</pre>	#22 ≥20 - ≤16 - ≤11 #29 ≥24 - ≤15 #29 ≥16 - ≤11 #29 ≥18	#14 ≥22 - <19 - - - #35 -	#19 19 - 14 14	#15 ≥19 - <14	#30 ≥20 - 16	
Antimicrobial \ Laboratories Florfenicol Antimicrobial \ Laboratories Gentamicin Antimicrobial \ Laboratories Nalidixic acid Antimicrobial \ Laboratories Streptomycin Antimicrobial \ Laboratories Sulphonamides	Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance	<pre>#18, 20 ≥19 - ≤14 #2, 5, 6, 18, 20, 22, 23, 28, ≥15 - ≤12 #2, 5, 6, 18, 20, 22, 23, 28 ≥19 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥15 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥15 - ≤11 #2, 6, 18, 20, 22, 23, 28 ≥17 - </pre>	#29 ≥19 - ≤11 #13, 14, 15 ≥18 - <16 #13, 14, 15 ≥20 - <15 #13, 15 ≥15 - <13 #13, 14, 15 ≥17 - <12	<pre>#23 ≥18 - ≤12 #19,30 15 - 12 #19,30 19 - 13 #19,30 15 - 11 #19,30 17 - 12</pre>	#22 ≥20 - ≤16 - ≤11 #29 ≥16 - ≤15 #29 ≥16 - ≤11 #29 ≥18 -	#14 ≥22 - <19 - - - - - - - - - - - -	#19 19 - 14 14	#15 ≥19 - <14	#30 ≥20 - 16	
Antimicrobial \ Laboratories Florfenicol Antimicrobial \ Laboratories Gentamicin Antimicrobial \ Laboratories Nalidixic acid Antimicrobial \ Laboratories Streptomycin Antimicrobial \ Laboratories Sulphonamides Antimicrobial \ Laboratories	Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance	<pre>#18, 20 ≥19 - ≤14 #2, 5, 6, 18, 20, 22, 23, 28, ≥15 - ≤12 #2, 5, 6, 18, 20, 22, 23, 28 ≥19 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥15 - ≤11 #2, 6, 18, 20, 22, 23, 28 ≥17 - ≤12 #5, 6, 20, 22, 28</pre>	#29 ≥19 - ≤11 #13, 14, 15 ≥18 - <16 #13, 14, 15 ≥20 - <15 #13, 14, 15 ≥15 - <13 #13, 14, 15 ≥17 - <12	#23 ≥18 - ≤12 #19,30 15 - 12 #19,30 15 - 13 #19,30 15 - 11 #19,30 17 - 12 #19,30	#22 ≥20 - ≤16 #29 ≥16 - ≤11 #24 ≥24 - ≤15 #29 ≥16 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29	#14 ≥22 - <19 - - - - - - - - - 313	#19 19 - 14 - 14	#15 ≥19 <14	#30 ≥20 - 16	
Antimicrobial \ Laboratories Florfenicol Antimicrobial \ Laboratories Gentamicin Antimicrobial \ Laboratories Nalidixic acid Antimicrobial \ Laboratories Streptomycin Antimicrobial \ Laboratories Sulphonamides Antimicrobial \ Laboratories	Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance	#18, 20 ≥19 - ≤14 #2, 5, 6, 18, 20, 22, 23, 28, ≥15 - ≤12 #2, 5, 6, 18, 20, 22, 23, 28 ≥19 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥15 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥15 - ≤11 #2, 6, 18, 20, 22, 23, 28 ≥17 - ≤12 #5, 6, 20, 22, 28	#29 ≥19 - ≤11 #13, 14, 15 ≥18 - <16 #13, 14, 15 ≥20 - <15 #13, 14, 15 ≥15 - <13 #13, 14, 15 ≥17 - <12 #13, 14 >46	#23 ≥18 - ≤12 #19,30 15 - 12 #19,30 15 - 13 #19,30 15 - 11 #19,30 17 - 12 #19,30 15	#22 ≥20 - ≤16 #29 ≥16 - ≤11 #24 ≥24 - ≤15 #29 ≥16 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥17	#14 ≥22 <19 #35 - <13 #18 >16	#19 19 - 14 - 14	#15 ≥19 <14	#30 ≥20 - 16	
Antimicrobial \ Laboratories Florfenicol Antimicrobial \ Laboratories Gentamicin Antimicrobial \ Laboratories Nalidixic acid Antimicrobial \ Laboratories Streptomycin Antimicrobial \ Laboratories Sulphonamides Antimicrobial \ Laboratories Sulphonamides	Sensitiv Intermediate Resistance	#18, 20 ≥19 - ≤14 #2, 5, 6, 18, 20, 22, 23, 28, ≥15 - ≤12 #2, 5, 6, 18, 20, 22, 23, 28 ≥19 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥15 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥15 - ≤11 #2, 6, 18, 20, 22, 23, 28 ≥17 - ≤11 #2, 6, 18, 20, 22, 23, 28 ≥17 - ≤11 #2, 6, 18, 20, 22, 23, 28 ≥17 - ≤12 #3 €12 #5, 6, 20, 22, 28 ≥16	#29 ≥19 - ≤11 #13, 14, 15 ≥18 - <16 #13, 14, 15 ≥20 - <15 #13, 15 ≥15 - <13 #13, 14, 15 ≥17 - <12 #13, 14, 15 ≥17 - <12 #13, 14 ≥16	#23 ≥18 - ≤12 #19,30 15 - 12 #19,30 15 - 13 #19,30 15 - 11 #19,30 17 - 12 #19,30 16	#22 ≥20 - ≤16 #29 ≥16 - ≤11 #24 ≥24 - ≤15 #29 ≥16 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥16 - ≤11 #24 ≥24 - ≤15 #29 ≥16 - ≤11 #24 ≥24 - ≤15 #29 ≥16 - ≤11 #24 ≥16 - ≤11 #24 ≥16 - ≤11 #24 ≥16 - ≤11 #24 ≥16 - ≤15 #29 ≥16 - ≤17 #29 ≥16 - ≤17 #29 ≥16 - ≤17 #29 ≥16 - ≤17 #29 ≥16 - ≤17 #29 ≥16 - ≤17 #29 ≥16 - ≤17 #29 ≥16 - ≤17 #29 ≥18 - ≤17 #29 ≥18 - ≤17 #29 ≥18 - ≤17 #29 ≥18 - ≤17 #29 ≥18 - ≤17 #29 ≥18 - ≤17 #29 ≥18 - ≤17 #29 ≥18 - ≤17 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #23 ≥17	#14 ≥22 - <19 - - - - <13 #18 ≥16	#19 19 - 14	#15 ≥19 - <14	#30 ≥20	
Antimicrobial \ Laboratories Florfenicol Antimicrobial \ Laboratories Gentamicin Antimicrobial \ Laboratories Nalidixic acid Antimicrobial \ Laboratories Streptomycin Antimicrobial \ Laboratories Sulphonamides Sulphonamides + Trimethoprim	Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance	#18, 20 ≥19 - ≤14 #2, 5, 6, 18, 20, 22, 23, 28, ≥15 - ≤12 #2, 5, 6, 18, 20, 22, 23, 28 ≥19 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥15 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥15 - ≤11 #2, 6, 18, 20, 22, 23, 28 ≥17 - ≤12 #5, 6, 20, 22, 28 ≥16 - ≤10	<pre>#29 ≥19 - ≤11 #13, 14, 15 ≥18 - <16 #13, 14, 15 ≥20 - <15 #13, 14, 15 ≥15 - <15 #13, 15 ≥15 - <13 #13, 14, 15 ≥17 - <12 #13, 14 ≥16 - <10</pre>	#23 ≥18 - ≤12 #19,30 15 - 12 #19,30 15 - 13 #19,30 15 - 11 #19,30 17 - 12 #19,30 17 - 12 #19,30	#22 ≥20 - ≤16 #29 ≥16 - ≤11 #24 ≥24 - ≤15 #29 ≥16 - ≤15 #29 ≥16 - ≤11 #24 ≥17 ≤17 - ≤10 ≤10 = = = = = = = = = = = = =	#14 ≥22 - <19 - - - <13 #18 ≥16 - -	#19 19 - 14	#15 ≥19 - <14	#30 ≥20 - 16	
Antimicrobial \ Laboratories Florfenicol Antimicrobial \ Laboratories Gentamicin Antimicrobial \ Laboratories Nalidixic acid Antimicrobial \ Laboratories Streptomycin Antimicrobial \ Laboratories Sulphonamides Sulphonamides + Trimethoprim Antimicrobial \ Laboratories	Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance	#18, 20 ≥19 - ≤14 #2, 5, 6, 18, 20, 22, 23, 28, ≥15 - ≤12 #2, 5, 6, 18, 20, 22, 23, 28 ≥19 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥15 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥15 - ≤11 #2, 6, 18, 20, 22, 23, 28 ≥17 - ≤11 #2, 6, 18, 20, 22, 23, 28 ≥17 - ≤12 #5, 6, 20, 22, 28 ≥16 - ≤10 #0	#29 ≥19 - ≤11 #13, 14, 15 ≥18 - <16 #13, 14, 15 ≥20 - <15 #13, 14, 15 ≥15 - <13 #13, 14, 15 ≥17 - <12 #13, 14, 15 ≥17 - <12 #13, 14, 15 ≥17 - <12 #13, 14, 15 ≥17 - <12 #13, 14, 15 ≥17 - <13 #13, 14, 15 ≥15 - <13 #13, 14, 15 ≥15 - <13 #13, 14, 15 ≥15 - <13 #13, 14, 15 ≥15 - <13 #13, 14, 15 ≥17 - <13 #13, 14, 15 ≥17 - <13 #13, 14, 15 ≥17 - <13 #13, 14, 15 ≥17 - <13 #13, 14, 15 ≥17 - <13 #13, 14, 15 ≥17 - <13 #13, 14, 15 ≥17 - <12 #13, 14, 15 ≥17 - <12 #13, 14, 15 = <13 #13, 14, 15 = <14 - <15 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - <17 - - <17 - - - - - - - - - - - - -	#23 ≥18 - ≤12 #19,30 15 - 12 #19,30 15 - 13 #19,30 15 - 11 #19,30 17 - 12 #19,30 17 - 12 #19,30 17 - 12 #19,30	#22 ≥20 - ≤16 #29 ≥16 - ≤11 #24 ≥24 - ≤15 #29 ≥16 - ≤15 #29 ≥16 - ≤11 #24 ≥15 #29 ≥16 - ≤17 #29 ≥16 - ≤11 #24 ≥24 - ≤15 #29 ≥16 - ≤17 #29 ≥16 - ≤11 #24 ≥17 #24 ≥17 #29 ≥18 - ≤15 #29 ≥18 - ≤15 #29 ≥18 - ≤15 #29 ≥18 - ≤15 #29 ≥18 - ≤15 #29 ≥18 - ≤17 #29 ≥18 - ≤17 #29 ≥18 - ≤17 #29 ≥18 - ≤17 #29 ≥18 - ≤17 #29 ≥18 - ≤17 #29 ≥18 - ≤17 #29 ≥18 - ≤17 #29 ≥18 - ≤17 #29 ≥18 - ≤17 #29 ≥18 - ≤17 #29 ≥18 - ≤17 #29 ≥18 - ≤17 #29 ≥18 - ≤17 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 #21 	#14 ≥22 - <19 - - - <13 #18 ≥16 - _ ≤10	#19 19 - 14 - - - - - ≤9	#15 ≥19 - <14	#30 ≥20	
Antimicrobial \ Laboratories Florfenicol Antimicrobial \ Laboratories Gentamicin Antimicrobial \ Laboratories Nalidixic acid Antimicrobial \ Laboratories Streptomycin Antimicrobial \ Laboratories Sulphonamides Sulphonamides + Trimethoprim Antimicrobial \ Laboratories	Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance	#18, 20 ≥19 - ≤14 #2, 5, 6, 18, 20, 22, 23, 28, ≥15 - ≤12 #2, 5, 6, 18, 20, 22, 23, 28 ≥19 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥15 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥15 - ≤11 #2, 6, 18, 20, 22, 23, 28 ≥17 - ≤12 #5, 6, 20, 22, 28 ≥16 - ≤12 #5, 6, 20, 22, 28 ≥16 - ≤10 #2, 5, 18, 20, 22, 23, 28	<pre>#29 ≥19</pre>	<pre>#23 ≥18 - ≤12 #19,30 15 - 12 #19,30 19 - 13 #19,30 15 - 11 #19,30 17 - 12 #19,30 17 - 12 #19,30 16 - 10 #10,30</pre>	#22 ≥20 - ≤16 #29 ≥16 - ≤11 #24 ≥24 - ≤15 #29 ≥16 - ≤15 #29 ≥16 - ≤11 #24 24 - ≤15 #29 ≥16 - ≤11 #24 ≥24 - ≤15 #29 ≥16 - ≤11 #24 ≥15 #29 ≥16 - ≤11 #24 ≥15 #29 ≥16 - ≤11 #24 ≥15 #29 ≥16 - ≤11 #24 ≥15 #29 ≥16 - ≤11 #24 ≥15 #29 ≥16 - ≤11 #29 ≥17 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤10 #29 ≥17 *11 #29 ≥18 - ≤10 #29 ≥17 - ≤10 #29 ≥17 - ≤10 #29 ≥17 - ≤10 #29 ≥17 - ≤10 #29 ≥17 - ≤10 #29 ≥17 - ≤10 #29 ≥20	#14 ≥22 - <19 - - - <13 #18 ≥16 - ≤10	#19 19 - 14 - - - - - ≤9	#15 ≥19 - <14	#30 ≥20 16	
Antimicrobial \ Laboratories Florfenicol Antimicrobial \ Laboratories Gentamicin Antimicrobial \ Laboratories Nalidixic acid Antimicrobial \ Laboratories Streptomycin Antimicrobial \ Laboratories Sulphonamides Sulphonamides + Trimethoprim Antimicrobial \ Laboratories Tatagage	Sensitiv Intermediate Resistance Sensitiv	#18, 20 ≥19 - ≤14 #2, 5, 6, 18, 20, 22, 23, 28, ≥15 - ≤12 #2, 5, 6, 18, 20, 22, 23, 28 ≥19 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥15 - ≤11 #2, 6, 18, 20, 22, 23, 28 ≥17 - ≤12 #5, 6, 20, 22, 28 ≥16 - ≤12 #5, 6, 20, 22, 28 ≥16 - ≤12 #5, 6, 20, 22, 28 ≥16 - ≤10 #2, 5, 18, 20, 22, 23, 28 ≥19	#29 ≥19 ≤11 #13, 14, 15 ≥18 - <16 #13, 14, 15 ≥20 - <15 #13, 15 ≥15 - <13 #13, 14, 15 ≥17 - <13 #13, 14, 15 ≥17 - <12 #13, 14, 15 ≥16 - <12 #13, 14, 15 ≥16 - <12 #13, 14, 15 ≥16 - <10 #13, 14, 15 ≥19	<pre>#23 ≥18 - ≤12 #19,30 15 - 12 #19,30 19 - 13 #19,30 15 - 11 #19,30 17 - 12 #19,30 17 - 12 #19,30 16 - 10 #19,30 19</pre>	#22 ≥20 - ≤16 #29 ≥16 - ≤11 #24 ≥24 - ≤15 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #24 ≥17 - ≤10 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #24 ≥17 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - *11 #29 ≥18 - ≤11 #29 ≥17 *11 #29 ≥18 - *11 #29 ≥17 - *11 #29 ≥18 - *11 #29 ≥17 *11 #29 ≥18 - *11 #29 ≥17 *11 #29 ≥17 *11 #29 ≥17 *11 #29 ≥17 *11 #29 ≥17 *11 #29 ≥17 *11 *21 *11 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *21 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *31 *3	#14 ≥22 - <19 - - - <13 #18 ≥16 - ≤10	#19 19 - 14	#15 ≥19 - <14	#30 ≥20	
Antimicrobial \ Laboratories Florfenicol Antimicrobial \ Laboratories Gentamicin Antimicrobial \ Laboratories Nalidixic acid Antimicrobial \ Laboratories Streptomycin Antimicrobial \ Laboratories Sulphonamides Antimicrobial \ Laboratories Sulphonamides + Trimethoprim Antimicrobial \ Laboratories Tetracycline	Resistance <17					#30 ≥20 - 16				
Antimicrobial \ Laboratories Florfenicol Antimicrobial \ Laboratories Gentamicin Antimicrobial \ Laboratories Nalidixic acid Antimicrobial \ Laboratories Streptomycin Antimicrobial \ Laboratories Sulphonamides Antimicrobial \ Laboratories Sulphonamides + Trimethoprim Antimicrobial \ Laboratories Tetracycline	Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv	#18, 20 ≥19 ≤14 #2, 5, 6, 18, 20, 22, 23, 28, ≥15 - ≤12 #2, 5, 6, 18, 20, 22, 23, 28 ≥19 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥15 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥15 - ≤11 #2, 6, 18, 20, 22, 23, 28 ≥17 - ≤11 #2, 6, 18, 20, 22, 23, 28 ≥17 - ≤11 #2, 6, 18, 20, 22, 23, 28 ≥17 - ≤11 #2, 5, 18, 20, 22, 23, 28 ≥16 - ≤10 #2, 5, 18, 20, 22, 23, 28 ≥19 - ≤10 #2, 5, 18, 20, 22, 23, 28 ≥19 - ≤14	<pre>#29 ≥19 - ≤11 #13,14,15 ≥18 - <16 #13,14,15 ≥20 - <15 #13,15 ≥15 *13,15 ≥15 *13,14,15 ≥17 - <12 #13,14,15 ≥16 - <10 #13,14,15 ≥19 - <17 <10 #13,14,15 ≥19 - <17 <10</pre>	<pre>#23 ≥18 - 11 #19,30 15 - 12 #19,30 19 - 13 #19,30 15 - 11 #19,30 15 - 11 #19,30 15 - 11 #19,30 16 - 10 #19,30 19 - 14 #19,30</pre>	#22 ≥20 - ≤16 #29 ≥16 - ≤11 #24 ≥24 - ≤15 #29 ≥16 - ≤15 #29 ≥16 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥17 - ≤10 #29 ≥18 - ≤11 #29 ≥17 - ≤10 #29 ≥18 - ≤20 - ≤11 #29 ≥17 - ≤10 #29 ≥18 - ≤20 - ≤11 #29 ≥17 - ≤10 #29 ≥17 - ≤10 #29 ≥17 - ≤10 #29 ≥17 - ≤10 #29 ≥17 - ≤10 #29 ≥17 - ≤10 #29 ≥17 - ≤20 #29 ≥20 *	<pre>#14 ≥22 - <<19 </pre>	<pre>#19 19 - 14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</pre>	#15 ≥19 - <14	#30 ≥20	
Antimicrobial \ Laboratories Florfenicol Antimicrobial \ Laboratories Gentamicin Antimicrobial \ Laboratories Nalidixic acid Antimicrobial \ Laboratories Streptomycin Antimicrobial \ Laboratories Sulphonamides Sulphonamides + Trimethoprim Antimicrobial \ Laboratories Tetracycline Antimicrobial \ Laboratories	Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance	#18, 20 ≥19 ≤14 #2, 5, 6, 18, 20, 22, 23, 28, ≥15 - ≤12 #2, 5, 6, 18, 20, 22, 23, 28 ≥19 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥15 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥15 - ≤11 #2, 6, 18, 20, 22, 23, 28 ≥17 - ≤12 #5, 6, 20, 22, 23, 28 ≥16 - ≤10 #2, 5, 18, 20, 22, 23, 28 ≥19 - ≤10 #2, 5, 18, 20, 22, 23, 28 ≥19 - ≤10 #2, 5, 18, 20, 22, 23, 28	<pre>#29 ≥19 - ≤11 #13, 14, 15 ≥18 - <16 #13, 14, 15 ≥20 - <15 #13, 15 ≥15 #13, 15 ≥15 . <13 #13, 14, 15 ≥17 - <12 #13, 14, 15 ≥16 - <10 #13, 14, 15 ≥19 - <17 <10 #13, 14, 15 ≥19 - <17 </pre>	<pre>#23 ≥18 - 11 #19,30 15 - 12 #19,30 19 - 13 #19,30 15 - 11 #19,30 15 - 11 #19,30 15 - 11 #19,30 16 - 10 #19,30 16 - 10 #19,30 19 - 14 #19,30</pre>	#22 ≥20 - ≤16 #29 ≥16 - ≤11 #24 ≥24 - ≤15 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥16 - ≤11 #29 ≥17 - ≤11 #29 ≥18 - ≤11 #29 ≥17 - ≤11 #29 ≥18 - ≤11 #29 ≥17 - ≤11 #29 ≥17 - ≤11 #29 ≥18 - ≤11 #29 ≥17 - ≤11 #29 ≥17 - ≤11 #29 ≥17 - ≤11 #29 ≥17 - ≤11 #29 ≥17 - ≤11 #29 ≥17 - ≤11 #29 ≥17 - ≤11 #29 ≥20 - ≤11 #29 ≥20 - ≤11 #29 ≥20 - ≤13 #29 ≥20 - ≤13 #29 ≥20 - ≤13 #29 ≥20 - ≤13 #29 ≥20 - ≤13 #29 ≥20 - ≤13 #29 ≥20 - ≤13 #29 ≥20 - ≤13 #29 = - ≤13 #29 = - ≤13 #29 = - ≤17 - <th><pre>#14 ≥22 - </pre> *19 *19 *10 *35 *10 *35</th> <th><pre>#19 19 - 14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</pre></th> <th>#15 ≥19 - <14</th> <th>#30 ≥20 16</th>	<pre>#14 ≥22 - </pre> *19 *19 *10 *35 *10 *35	<pre>#19 19 - 14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</pre>	#15 ≥19 - <14	#30 ≥20 16	
Antimicrobial \ Laboratories Florfenicol Antimicrobial \ Laboratories Gentamicin Antimicrobial \ Laboratories Nalidixic acid Antimicrobial \ Laboratories Streptomycin Antimicrobial \ Laboratories Sulphonamides Antimicrobial \ Laboratories Sulphonamides + Trimethoprim Antimicrobial \ Laboratories Tetracycline	Sensitiv Intermediate Resistance	#18, 20 ≥19 - ≤14 #2, 5, 6, 18, 20, 22, 23, 28, ≥15 - ≤12 #2, 5, 6, 18, 20, 22, 23, 28 ≥19 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥15 - ≤11 #2, 6, 18, 20, 22, 23, 28 ≥17 - ≤11 #2, 6, 18, 20, 22, 23, 28 ≥17 - ≤12 #5, 6, 20, 22, 23, 28 ≥16 - ≤10 #2, 5, 18, 20, 22, 23, 28 ≥19 - ≤14 #2, 6, 18, 20, 22, 23, 28 ≥16	<pre>#29 ≥19 - ≤11 #13,14,15 ≥18 - <16 #13,14,15 ≥20 - <15 #13,15 ≥15 #13,15 ≥15 . <13 #13,14,15 ≥17 <12 #13,14 ≥16 - <10 #13,14,15 ≥19 - <17 <#13,14,15 ≥19 - <17 </pre>	#23 ≥18 - ≤12 #19,30 15 - 12 #19,30 19 - 13 #19,30 15 - 11 #19,30 15 - 11 #19,30 17 - 12 #19,30 16 - 10 #19,30 19 - 14 #19,30 16	#22 ≥20 - ≤16 #29 ≥16 - ≤11 #24 ≥24 - ≤15 #29 ≥16 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥17 ≤10 #29 ≥20 - ≤13 #29 ≥10 - ≤11 #24 ≥17 = 2 2 2 2 2 2 2 2 2 2 2 2 2	<pre>#14 ≥22 - </pre> *19 *35 - *13 #18 ≥10 *10 *35 - *35 -	#19 19 - 14	#15 ≥19 - <(14)	#30 ≥20 16	
Antimicrobial \ Laboratories Florfenicol Antimicrobial \ Laboratories Gentamicin Antimicrobial \ Laboratories Nalidixic acid Antimicrobial \ Laboratories Streptomycin Antimicrobial \ Laboratories Sulphonamides Antimicrobial \ Laboratories Sulphonamides + Trimethoprim Antimicrobial \ Laboratories Tetracycline Antimicrobial \ Laboratories Trimethoprim	Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance Sensitiv Intermediate Resistance	#18, 20 ≥19 - ≤14 #2, 5, 6, 18, 20, 22, 23, 28, ≥15 - ≤12 #2, 5, 6, 18, 20, 22, 23, 28 ≥19 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥15 - ≤13 #2, 6, 18, 20, 22, 23, 28 ≥15 - ≤11 #2, 6, 18, 20, 22, 23, 28 ≥17 - ≤12 #5, 6, 20, 22, 23, 28 ≥16 - ≤10 #2, 5, 18, 20, 22, 23, 28 ≥19 - ≤14 #2, 6, 18, 20, 22, 23, 28 ≥19 - ≤14	<pre>#29 ≥19 ≤11 #13,14,15 ≥18 - <16 #13,14,15 ≥20 - <15 #13,14,15 ≥15 - <13 #13,14,15 ≥17 - <12 #13,14,15 ≥16 - <10 #13,14,15 ≥19 - <17 #13,14,15 ≥19 - <17 #13,14,15 ≥19 - </pre>	<pre>#23 ≥18</pre>	#22 ≥20 - ≤16 #29 ≥16 - ≤11 #24 ≥24 - ≤15 #29 ≥16 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥17 - ≤10 #29 ≥10 #29 ≥17 - ≤10 #29 ≥17 - ≤10 #29 ≥17 - ≤10 #29 ≥17 - ≤11 #29 ≥17 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥18 - ≤11 #29 ≥17 - ≤11 #29 ≥17 - ≤17 #29 ≥18 - ≤17 #21 #23 ≥17 #29 ≥20 - ≤10 #29 ≥17 #29 ≥17 #21 #23 ≥20 - ≤10 #29 ≥20 - ≤10 #29 ≥17 #29 ≥17 #21 #29 ≥17 #21 #29 ≥17 #29 ≥17 #21 #29 ≥17 #29 ≥17 #29 ≥17 #29 ≥20 - 5 1 #29 ≥20 - 5 1 #29 ≥20 - 5 1 * 2 1 * 2 1 * 2 1 * 2 1 * 2 1 * 2 1 * 2 1 * 2 1 * 2 1 * * 2 1 * * 1 * * * * * * * *	<pre>#14 ≥22 <19 </pre> #35 <13 #18 ≥10 - #35	<pre>#19 19 - 14 - 14</pre>	#15 ≥19 -	#30 ≥20 - 16	

Disk diffusion breakpoints for *campylobacter*.

Antimicrobial \ Laboratories		#22	#29	#23	#26	#28	
	Sensitiv	≥20	≥19	≥18	>17	≥23	
Chloramphenicol	Intermediate	-					
	Resistance	≤20	≤11	≤12	<13	<19	
Antimicrobial \ Laboratories		#22	#29	#23	#26	#28	#30
	Sensitiv	≥20	≥24	≥21	>20	≥25	27
Ciprofloxacin / Enrofloxacin	Intermediate	-	-	-	-	-	-
	Resistance	≤20	≤15	≤15	<16	<22	16
Antimicrobial \ Laboratories		#22	#29	#23	#26	#28	#30
	Sensitiv	≥20	≥23	≥23	>22	≥22	>20
Erythromycin	Intermediate	-	-		-	-	-
	Resistance	≤20	≤16	≤13	<14	<17	20
Antimicrobial \ Laboratories		#22	#29	#26			
	Sensitiv	≥20	≥15	>14			
Gentamicin	Intermediate	-	-	-			
	Resistance	≤20	≤12	<13			
Antimicrobial \ Laboratories		#22	#29	#23	#28	#30	
	Sensitiv	≥20	≥24	≥19	≥20	>6	
Nalidixic acid	Intermediate	-	-		-	-	
	Resistance	≤20	≤15	≤13	<15	6	
Antimicrobial \ Laboratories		#22	#29				
	Sensitiv	≥20	≥15				
Streptomycin	Intermediate	-	-				
	Resistance	≤20	≤12				
Antimicrobial \ Laboratories		#22	#29	#23	#26	#28	#30
	Sensitiv	≥20	≥20	≥19	>18	≥19	>29
Tetracycline	Intermediate	-	-		-	-	-
	Resistance	≤20	≤13	≤14	<15	<17	17

	Antimicrobial	Cut-off value (mg/L) R>	Concentration range to be tested (mg/L)
Salmonella	Cefotaxime	0.5	0.06 – 8
Samonena	Nalidixic acid	16	2 – 256
	Ciprofloxacin	0.06	0.008 – 8
	Ampicillin	4	0.5 – 64
	Tetracycline	8	0.5 – 64
	Chloramphenicol	16	2 – 256
	Gentamicin	2	0.25 – 32
	Streptomycin*	32	2 – 256
	Trimethoprim	2	0.25 – 32
	Sulphonamides**	256	8 – 1024
Campylobactor	Erythromycin	4	0.5 – 64
jejuni	Ciprofloxacin	1	0.06 – 8
	Tetracycline	2	0.125 – 16
	Streptomycin	2	0.5 – 32
	Gentamicin	1	0.125 –16
Campylobactor	Erythromycin	16	0.5 – 64
coli	Ciprofloxacin	1	0.06 – 8
	Tetracycline	2	0.125 – 16
	Streptomycin	4	0.5 – 32
	Gentamicin	2	0.125 –16

Appendix 6; Recommended breakpoints for Salmonella / Campylobacter by EFSA.

			E.coli ATCC 25922	2
	MIC	E-test	DD (disc content)	Rosco-tabs (disc content)
AMP	2-8	2-8	16-22 (10ug)	22-27 (33ug)
AMX	None	None	None	21-26
AUG	2/1-8/4	2/1-8/4	18-24 (20/10ug)	22-27
POD	0,25-1	0,25-1	23-28 (10ug)	None
XNL	0,25-1	None	26-31 (30ug)	None
CAZ	0,06-0,5	0,06-0,5	25-32 (30ug)	27-33
СТХ	0,03-0,12	0,03-0,12	29-35 (30ug)	30-36
CHL	2-8	None	21-27 (30ug)	24-32 (60ug)
CIP/ENRO	0,004-0,015	None	30-40 (5ug)	30-40 (10ug)
FFN	2-8	None	22-28 (30ug)	None
GEN	0,25-1	None	19-26 (10ug)	25-31 (40ug)
NAL	1-4	1,4	22-28 (30ug)	27-33
STR	4-16	2-8	None	None
SMX	8-32	32-128	15-23 (250/300ug)	18-25
TET	0,5-2	0,5-2	18-25 (30ug)	26-32 (80ug)
TMP	0,5-2	0,5-2	21-28 (5ug)	22-29
SXT	<=0,5/9,5	0,064-0,25	23-29 (1,25/23,75ug)	30-38
FOX	2-8	None	23-29 (30ug)	29-35
IP	0,06-0,25	0,06-0,25	26-32 (10ug)	29-34

Appendix 7.: Used quality control ranges for *E.coli* ATCC 25922

Ranges in red are according to CLSI. Ranges in blue are according to Sensititre. Ranges in green are according to Rosco. Ranges in pink are according to E-test.

Used quality control ranges for Campylobacter jejuni ATCC 33560

	C.jejuni A	TCC 33560
	MIC 36°C/48h	MIC 42°C/24h
CHL	1-8	1-4
CIP/ENRO	0,06-0,25	0,03-0,12
ERY	0,5-2	0,25-2
GEN	0,5-2	0,25-2
NAL	4-16	4-16
STR	None	None
TET	0,25-2	0,25-1

Ranges in red are according to CLSI. Draft ranges in blue are according to CLSI.

Appendix 8.: The summarised evaluation form.

Evaluation of the CRL EQAS 2006

The number of participating laboratories in the EQAS 2006 was 29. Subsequent to submitting their results, the participants were asked to fill in an evaluation form as a means of improving the quality and usefulness of the EQAS. In the following, the information obtained through the 24 completed evaluation forms is collected and commented. As this is the first EQAS within the NRL network we find it useful to comment directly on some of the feedback from the participants. Please find comments from the CRL in *italic* in the following.

Please note that initially the evaluation form was not specific as regards the year since some questions stated that an evaluation was wanted on the 2004 EQAS. This, unfortunately, caused some confusion among the participants but as to the conclusions it is not a matter of importance.

Quality of the EQAS

1) Your opinion of the letters etc. you have received during the CRL-AR EQAS 2006:

Opinion Percentage (number of laboratories)	Very poor	Poor	Satis- factory	Good	Very good
A) The EQAS welcome letter	-	-	8% (2)	50% (12)	42% (10)
B) The EQAS protocol	-	-	8% (2)	54% (13)	38% (9)
C) The evaluation report obtained	-	-	22% (5)	43% (10)	35% (8)
from the web database					

Comments and proposals from participants:

Five evaluation forms had comments to the information from the CRL and the database:

One laboratory suggests more flexibility in submitting results since their country's NRL's for different bacteria are located in different departments of their institute. As this was not possible this year the contact person's name was included as a responsible for the analysis. Another laboratory states that it would be useful to enter both kinds of data, MICs as well as zone diameter values, if both methods have been used. *The database gives us unique possibilities to collect data in our proficiency tests, and the web is an important tool for us. The programmer naturally focuses on the functionality for the users, but we must admit that it also to some extent sets some limits as to possibilities. One problem that the database cannot handle is MICs mixed with inhibition zones. Overall, it is important to keep in mind that the focus is on the <u>interpretations</u> of the results, not specifically on the breakpoints or the method used. The reason why we ask for the raw data (MICs or inhibition zones) is to give us a possibility to look into errors that might have occurred.*

Regarding the methods one laboratory mentions that they found it more useful to report details about it (like inoculum concentration) that simply state if CLSI guidelines are followed, and equally to let each lab inform about the breakpoints employed would be valuable. *Retrospectively we also find that the questions directly on specific guidelines were not useful for this purpose. But again, the important thing is not the raw data that you build your interpretation on, but the interpretation itself.*

Another laboratory adds the suggestion that the zone diameter interpretive standards and equivalent MIC breakpoints for the strains examined were included. *The purpose of the EQAS is to evaluate the routines that the NRL's have considering susceptibility tests. This means that all laboratories should follow their routine procedures when performing the susceptibility tests on the strains that we send you, i.e. all participants should use their own methods, their own media as well as their own routines for interpreting results.*

Furthermore, considering breakpoints the protocol is described as being somewhat confusing; the list on the web for control *E. coli* zones is different from the list in the protocol, and the lists of antimicrobials in the protocol were not in same order as the lists on the website. *The protocol and the database will in following EQAS's be harmonised concerning the order of antimicrobials*.

Finally, there is a suggestion to let both the protocol and the website warn more clearly not to approve results until entering data is finished. *Has been taken note of*.

Opinion Percentage (number of laboratories)	Very poor	Poor	Satis- factory	Good	Very good
A) The organisation of the EQAS	-	-	10% (2)	40% (8)	50% (10)
B) The information about the EQAS	-	-	20% (4)	50% (10)	30% (6)
C) How did it meet your expectations	-	-	10% (2)	70% (13)	20% (5)

2) Your opinion of how the EQAS 2006 was performed

Comments and expectations and suggestions from participants:

One laboratory states that it would be more convenient to receive *Campylobacter* swab cultures and not lyophilised material, another describes problems with recovering the *Campylobacter* strains as pure cultures, and suggests that they be carefully checked before sending. It is emphasized, though, that new *Campylobacter* strains could be received when necessary. *The* Campylobacter *we will use in future EQAS's will also be lyophilised. The reason is that* Campylobacter *as swab cultures are not very good survivers. This becomes a problem when we sometimes experience a time delay in the customs when sending the strains. Thus, as means of securing that the participant receive a* Campylobacter *that can be recovered, we need to lyophilise the material. We are aware of problems in this EQAS with recovering a pure culture, and as a consequence we will in following EQAS's be using a commercial supplier to perform the freeze-drying.*

From one laboratory it was evaluated that the time between the reception of the strains and the final date to return the results was short. Moreover, the sending of the strains corresponded to their school holidays. *Please note that lyophilised microorganisms and microorganisms on agar sticks keep for months in a refrigerator. Also, if there is a problem in submitting results before the deadline, you are very welcome to inform us and we will find a solution to what may be the problem.*

The interactive web database

3) Did you enter your results in the interactive web database?

Of the 29 laboratories, 22 submitted results through the web database. Two of the laboratories that have evaluated the EQAS did not succeed to enter their data (one lab had a firewall that prevented access), and thus sent the data by email.

4) Do you have any comments on the data you have entered?

5) Which problems did you meet when you entered data into the interactive web database?

Most participants had no problems submitting data through the interactive web, however one laboratory had a firewall that prevented access to the database. Some laboratories had problems logging on the database due to problems with the link mentioned in the information from the CRL. *The link was mentioned twice in the protocol, and we regret to say that one of these unfortunately was not correct.*

One laboratory mentions difficulties in understanding whether the direct reading or the interpretative reading should be submitted considering the *Salmonella* results. *We prefer to receive both the direct reading and the interpretation to be able to look into errors that might have occurred.*

Also, for *Salmonella*, the protocol instructs participants to test as many of the antibiotics listed as possible without reference to disc concentration, however, disc concentrations were already assigned on the test form. Some participants routinely use disc concentrations that differ from those outlined in the test form for certain antibiotics, which led to difficulties deciding whether to submit the results for these antibiotics. *We have become aware that this is a problem, thus in the future the disc concentrations will not be specified*.

Two laboratories experienced following: One got an error for entering both diameter and MIC for an antibiotic, and the other had problems saving data when typing '0.25' which the database read as '25'. Using a database for submitting results has some limitations in that the database is programmed to accept certain values. These experiences show examples of some of the database's limits. For future EQAS's we encourage you to fill in your results in the database even though there seems to be a problem. Then, send us an email with commentary on your submitted data and we will look into the data and solve the problem a.s.a.p.

One laboratory did not 'approve' their results after entering the data, resulting in not receiving their evaluation report on the results straightaway. After contacting the CRL the problem was solved very quickly.

One laboratory mentions that results for inhibition zones for Imipinem could not be entered in the website. *We will be evaluating the database before launching a new EQAS, and especially the registration of ESBL-production will be taken into consideration.*

A few laboratories experienced that they had minor errors in their classification of the bacteria due to different breakpoints used at their laboratory compared to the database. *Differing breakpoints is an issue that needs a lot of focus, and it will be a subject for discussion at the workshop in May 2007.*

6) What is your overall impression of the interactive web database

Opinion	Very poor	Poor	Satisfactory	Good	Very good
Percentage (number of laboratories)	-	4% (1)	13% (3)	39% (9)	44% (10)

Specify why:

Several laboratories compliment the database in that it is easy to submit data. The fact that an evaluation report is available immediately after approval of the data is also emphasized as positive. One laboratory emphasizes, however, that it is necessary to be able to enter different disc concentrations. *In future EQAS's disc concentrations will be omitted when submitting the results in the database*.

7) How could the interactive web database be improved?

The EQAS questionnaire and the evaluation form should be connected to the database; i.e. also enter these pieces of information on the Web. *Will be taken into consideration*.

Also, finding a way to avoid deviations caused by the use of different breakpoints would improve the database. When entering results, the participant is asked if other breakpoints than CLSI were used, but when submitting, the result will be evaluated by CLSI breakpoints without regard to the answer that these were not used. *The NRL's routine methods are evaluated through this EQAS, including the breakpoints that are routinely used in the NRL's. Actually, the breakpoints that the CRL use do not follow CLSI or another specific guideline. Through many years of experience we have obtained a list of breakpoints that we regard as the best standard for interpreting results from susceptibility tests. Thus, we regret to say that the question on CLSI guidelines was actually not useful for this purpose.* It is suggested that, when evaluating the results, it should be taken into account the quantitative differences from the expected result (for instance, number of dilutions above or below, millimetres of difference). The quantitative differences are to some extent taken into account when evaluating the results. Thus, any deviation is always categorised either as 'minor',' major' or 'very major'. When results are places outside a normal distribution they will be evaluated specifically as to what may be the cause of the deviation. This will typically include evaluation of the method, the media and the breakpoints.

One laboratory suggests that we do some more analysis on the raw data. Equally, it is mentioned that it would be useful to be informed about how the expected value was obtained (number of repetitions, same or different days, or labs, etc.). *Analysis on the raw data is presented in the EQAS report as well as relevant information on how the expected values have been obtained*.

Additionally, it would be useful to be able to go back one page or get to the main menu when you enter the data. *This actually is possible. We will make sure to describe more explicitly how to navigate in the database.*

The entering of results from the phantom effect with ESBL-testing needs improving. It is suggested to have a list to choose from when entering data, e.g. "ESBL" or "not ESBL", and "AmpC" or "not AmpC". A specific evaluation of this result should be added in the evaluation report. Also, it is suggested that the participants inform about the method used for the ESBL-screening. *The comments have been taken into account, and the registration of ESBL production will be evaluated. Please note the passage on ESBL in the EQAS report.*

The usefulness of the EQAS

8) How do you consider the importance of participating the EQAS program for you?

Opinion	Irrelevant	Not important	Important	Very important
Percentage (number of laboratories)	-	-	17% (4)	83% (20)

Specify why:

Several laboratories emphasize that proficiency tests are vital as part of the ongoing process of keeping both the methods and the testing at a high quality level with reliable and reproducible results, thus checking the skills of the laboratory and indicating needs for improvement or development of testing methods. The independency of the CRL as well as the network that is built up through these activities are also mentioned as positive outputs of the EQAS.

It is stated that the discussions around the results help all laboratories improve their performance, and to obtain a rewarding discussion it is essential to have comparable data which, for example, are

provided through this proficiency test. Also, it is pointed out that validation of newly established methods is made possible through the EQAS's.

Additionally, many laboratories mention that they have an accreditation which makes it necessary for them to take part in a proficiency test.

9) What would you like to see changed in EQAS 2007 (procedures, species, number of strains, antimicrobials etc.):

<u>Method</u>: One laboratory asks for a clearer and more explicit protocol, especially considering that many participants do not have English as their native language. *We will work with adjustment of the protocol in order to make it clearer and more explicit.*

Another laboratory suggests that the CRL send the same disks and media for all NRL's as means of having a better possibility to find inaccuracies of the laboratory's susceptibility test. *Since the primary focus is to evaluate the method and media that the NRL's routinely use, this suggestion will be an option in cases where a laboratory seems to experience problems in obtaining the expected results.*

Also, differences in methodology or media or discs used have a big influence on the results obtained, and work has shown that for some antimicrobials there are technical difficulties associated with producing a result which is consistent across different labs. One laboratory mentions that they would like to see this acknowledged in the appraisal e.g. for streptomycin and amoxicillin/clavulanate. *This issue is evaluated in the report*.

Furthermore, it is suggested that the CRL try to pinpoint specific problems and generate some more pieces of technical advice for the NRL's. *This is one of the CRL's tasks and any specific suggestions for issues that the CRL should comment on are welcome.*

<u>Antimicrobials</u>: One laboratory prefers not to include drugs that are not part of the standard documents in the panels proposed. The reason is that it is not possible to perform quality controls or set breakpoints in their routine activity (Agar Diffusion Methods). Another laboratory states that it is taken for granted that the selection of antimicrobials etc. is aligned with the guidelines developed by EFSA. *The EFSA panel is used as standard, but the CRL find it important to include additional drugs as means of achieving information on their effect on bacteria, and as means of being better equipped to determine the best breakpoints.*

<u>Breakpoints</u>: There is some confusion as to which breakpoints should be used in order to obtain the expected values and to interpret the results correctly. It is suggested, that when available, the recommendations of the VETCAST Committee be used. Also, it is suggested that the zone diameter interpretive standards and equivalent MIC breakpoints for the strains examined be included in the protocol, and that it is explained in the protocol how these expected values are obtained. An example is that for certain antibiotics one concentration higher or lower changes the category (e.g.

chloramphenicol and florfenicol). For the EQAS the participants should use the breakpoints that they routinely use. As to which breakpoint that are more correct we will have a session on the workshop in May in which this issue will be discussed. Additionally, please find comments on this in the report.

Considering additional antimicrobials, one laboratory inquires about precise MIC values (e.g. CIP >4 does not express an exact MIC value). *Will be taken into consideration*.

<u>Microorganisms</u>: Several laboratories suggest including enterococci, staphylococci and *E. coli*. One laboratory proposes to reduce *Campylobacter* and *Salmonella* isolates and to a maximum of 4-5 isolates, whereas another laboratory would like some more *Campylobacter*.

One laboratory suggests including animal pathogens (non-zoonotic bacteria), and also the following are suggested: *Salmonella, Pasteurella, Mannheimia, Actinobacillus, Campylobacter coli* and *Campylobacter jejuni*, Coagulase positive Staphylococci and Coagulase negative Staphylococci, *Enterococcus faecalis, Enterococcus faecium, Streptococci* (e.g. *S. equi, S. suis* and others relevant for animal health). Specific trials for emerging resistances (e.g. ESBLs, MEC-A gene cluster) would be welcome.

There will be an EQAS on enterococci, staphylococci and E. coli in May/June, and the Salmonella/Campylobacter EQAS will be repeated in autumn. As for non-zoonotic bacteria, these are not relevant in this context. The other suggestions will be taken into consideration.

One laboratory suggests a standard for reading sulfonamides (quantifying 20% rest growth), and in that connection proposes more strains with values between 32 and 512 µg/ml. *The CLSI standard covers the problem considering bacteriostatic antimicrobials. Specific questions or enquiries for advice are welcome.*

<u>Performance</u>: Consistency in results between labs will depend on the MIC of the chosen strain, because a strain with an MIC near the breakpoint for an antimicrobial which is difficult to test consistently for some technical reason, will throw up a lot of discrepancies between labs. When such a strain has been included, this would need to be mentioned, because labs would not be expected to perform well with that type of strain/antimicrobial combination. In that case, the results reflect on the fact that the strain is "difficult" and less the performance of the labs when testing the majority of strains they will encounter. *Interpretation of borderline isolates may be difficult. Please find comments on this in the report. The performance that the CRL expect from the NRL's will of course depend on the type of strain/antimicrobial combination.*

Additional comments from the CRL

It has been a pleasure to see that so many laboratories find that this EQAS to a large extent has added positively to their work with antimicrobial susceptibility testing. With the results summed up

in an overall report for all the participating laboratories, it is possible to compare the laboratories' performances. We are aware, that the method by which the NRL's perform susceptibility tests differ, and through a questionnaire in March '07 we will gather some more information on the NRL's and their way of working with antimicrobial resistance. The results from the questionnaire will be presented at the workshop in May '07 and will be used as background for the CRL's continuing work.

It is very useful for us to have had all these comments. Thank you very much for taking your time to write them down. In general, we welcome any comments or enquiries that you may have. You are welcome to write us an email and we will make an effort to get back to you a.s.a.p. with an answer or some relevant advice.

Appendix 9.: The summarised questionnaire.

Antimicrobials and ranges used in the daily routine by the participants for susceptibility testing of *Salmonella* using MIC determination.

Antimicrobial \ Laboratories	#1	#2	#4	#10	#11	#12	#16	#17	#24	#25	#26	#27	#29	#33
Amoxicillin									0,5-64			2-4096		
Amoxicillin + Clavulanic acid	2/1-32/16	2/1-32/16						2/1-32/16				2-4096		
Ampicillin	1-32	1-32	0.016-256	0,25-32	0.25 - 32	0,25-32	1-512	1-32		0,5-64	1-32		0.5-64	0.25 - 32
Ampicillin + Sulbactam													0.5-64	
Apramycin	4-32	4-64					1-32				4-64			
Cefoxitin												0,5-256		
Cefotaxime				0,25-32	0.06 - 2	0,06-2			0,12-16	0,12-16		0,016-512	0.25-32	0.06 - 2
Cefpodoxime	0,125-4													
Ceftazidime										0,12-64		0,016-256	0.25-32	
Ceftiofur	0,5-8	0,5-8				0,12-16		0,5-8			0,5-8	0,5-256		0,12-16
Ceftriaxone			0.002-32											
Cefuroxime											1-32			
Cephalothin	4-32	2-64									2-64		0.12-16	
Chloramphenicol	2-64	2-64	0.016-256	0,25-32	1 - 128	1-128	2-512	2-64	4-128	2-128	2-64	2-256	0.25-32	1 - 128
Ciprofloxacin	0,03-4	0,03-4	0.002-32	0,032-4	0.008 - 1	0,008-1	0,008-8	0,03-4	0,06-8	0,06-16		0,125-64	0.06-4	0.008 - 1
Colistin	4-16	4-64						4-64			4-32			
Enrofloxacin											0,016-2	0,125-64		
Florfenicol	2-64	2-64			4-32	4-32	2-32	2-64	2-128	1-128	2-64	2-32		4-32
Gentamicin	1-32	1-32			0.5 – 64	0,5-64	0,25-32	1-32	0,25-32	0,25-32	1-32	0,5-256	0.25-32	0.5 – 64
Imipenem									0,12-16					
Kanamycin					2-16	2-16		4-64						2-16
Nalidixic acid	4-64	8-128	0.016-256		1 - 128	1-128	1-256	4-128	2-128	2-128	8-128	2-256		1 - 128
Neomycin	2-32	2-32					0,5-64	2-32	1-128	1-128	2-32			
Oxolinic acid													0.5-64	
Spectinomycin	16-256	4-128						2-128			4-128			
Streptomycin	4-64	4-64	0.016-1024		2 - 256	2-256	2-512	4-64			4-64	2-256	0.25-32	2 - 256
Sulphonamides (sulfamethoxazol)	64-1024	64-1024	0.016-1024		16-2048	16-2048		32-512	8-1024	8-1024	64-1024			16-2048
Sulphonamides / trimethroprim			0.002-32	1-128				19/1-152/8					0.5-64	
Tetracycline	2-32	2-32	0.016-256		0.5 - 64	0,5-64	0,5-256	2-32	0,5-64	0,5-64	2-32	1-256	0.25-32	0.5 - 64
Trimethoprim	4-32	4-32	0.002-32		0 25 - 32	0.25-32	0.125-64	4-32	0.5-64	0.5-64	4-32	0.125-64		0 25 - 32

Available ranges of recommended antimicrobials by EFSA are marked in white.

Participants using the recommended ranges are marked in gray.

Antimicrobial \ Laboratories	#1	#2	#4	#10	#12	#15	#16	#17	#19	#21	#24	#25	#27	#33
Amoxicillin										0,12-128	0,25-32	0,25-32		
Amoxicillin+Clav acid		1/0,5-128/64												
Ampicillin		1-128	0.016-256		0,5-64	0,016-256		0,125-256	0,016-256				2-256	0.5-64
Cefaclor														
Cefoperazone														
Ceftazidim								0,06-128						
Cephalexin														
Chloramphenicol	2-32	2-32								1-32	2-128	2-128		
Ciprofloxacin	0,03-4	0,06-32	0.002-32	0,125-16		0,002-32		0,03-64		0,06-128	0,12-16	0,12-16		
Clindamycin									0,016-256					
Colistin		4-64												
Doxycycline											0,12-16			
Enrofloxacin					<=0,03-4		0.25-16		0,002-32	0,12-128			0,125-64	0.03-4
Erythromycin	0,5-32	0,25-128	0.016-256	0,5-32	0,12-16	0,016-256	0.25-32	0,25-256	0,016-256		0,5-64	0,5-64	0,25-256	0.12-16
Gentamicin	0,125-16	0,25-64	0.016-256		0,25-8	0,016-256	0.125-16	0,125-256		0,12-128	0,25-32	0,25-32	0,5-256	0.25-8
Imipenem														
lincomycin														
Metronidazole										0,5-128	0,5-64	0,5-64		
Nalidix acid	2-64	2-128	0.016-256		1-128	0,016-256	1-64	0,25-256	0,016-256	0,12-128	1-128	1-128	2-256	1-128
Neomycin		1-64									0,5-64	0,5-64		
Oxytetracycline														0.25-32
Penicillin														
Spiramycin														
Streptomycin	2-16	1-64									1-128	1-128		
Sulphonamides (sulfamethoxazol)											8-512	8-512		
Sulphonamides / trimethroprim											0,25-32	0,25-32		
Tetracycline	0,25-16	0,25-128	0.016-256	0,25-32	0,25-32	0,016-256	0.25-16	0,125-256	0,016-256	0,12-128		0,5-64	1-256	
Trimethoprim		0,5-64												

Antimicrobials and ranges used in the daily routine by the participants for susceptibility testing of *Campylobacter* using MIC determination.

Available ranges of recommended antimicrobials by EFSA are marked in white.

Participants using the recommended ranges are marked in gray.

Antimicrobial \ Laboratories	#2	#5	#6	#12	#15	#18	#19	#20	#21	#22	#23	#28	#29	#30	#34
Amikacin					30			30							30
Amoxicillin				10	25							10	10	10	
Amoxicillin + Clavulanic acid		20/10	30		20/10	20/10	30	20/10		30		20/10	30	20/10	30
Ampicillin	10	10	10			10	10	10	10	10	10	10		10	10
Apramycin					15		15	15							15
Aztreonam					30										
Carbenicillin		100													
Cefoperazone								75							
Cefotaxime	30	30	30	30	30	30	30		30	30		30		30	30
Cefoxitin		30			30										
Cefquinome					10								30		
Ceftazidime		30			30		30					30			30
Ceftiofur					30		30			30 µg					
Ceftriaxon														30	
Cefuroxime		30			30			30							
Cephalexin													30		
Cephalothin					30	30	30								
Chloramphenicol	30	30	30	30	30	30	30	30	30	30	30	30		30	10
Ciprofloxacin	5	5	5			5		5	5	5	5	5		5	1
Colistin					50			25			10				
Crfepime					30										
Doxycycline													30		
Enrofloxacin			5	5	5		5				5		5	5	
Florfenicol					30	30	30						30	30	
Furazolidone								15							15
Gentamicin	10	10	10		15	10	10	10	10	10	10	10	10	10	10
Imipememe					10										
Kanamycin	30				30	30		30	30	30	30	30	30	30	
Nalidixic acid	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
Neomycin							30			30	30				10
Netilmicin					30										
Nitrofurantoin	300														
Orfloxacin					5										
Oxytetracycline													30		
Piperacillin					75										
Piperacillin + Tazobactam					75/10										
Spectinomycin													100	100	
Streptomycin	10		10		10	10	10	10	10	10	10	10	10		25
Sulphonamide	300		300	300	200	300		300	250		300	300	300	250-300	300
Sulphonamides+ Trimethroprim		1.25/23.75	1.25/23.75			25	25	1.25/23.75		25	1.25/23.75		25	1.25/23.75	25
Tetracycline	30	30	30	30	30	20	20	30	30	20	20	30	20	20	10
Ticarcillin	- 30			1.30	75	- 50	1.50	- 30	1.50	- 30	- 30	- 50	- 30		
Ticarcillin + Clavulanic acid					75/10										
					10										
Trimothoprim	5		5	5	5	5			5		5	5	5	5	
			1 0	1.0		0			10		1 0	0	0	9	

Antimicrobials and ranges used in the daily routine by the participants for susceptibility testing of Salmonella using disk diffusion.

Antimicrobials and ranges used in the daily routine by the participants for susceptibility testing of *Campylobacter* using disk diffusion.

Antimicrobial \ Laboratories	#22	#26	#28	#29	#34
Amoxicillin				10	
Amoxicillin+Clavulanic acid		30		20/10	
Ampicillin	10	10			32
Cefuroxime		30			
Cephalexin				30	
Cephalothin			- 30		
Chloramphenicol	30	30	- 30		8
Ciprofloxacin	5	5	5		1
Doxycycline		30		30	
Enrofloxacin	5			5	
Erythromycin	15	15	15	15	4
Furazolidone					8
Gentamicin	10	10	10	10	
Kanamycin	30				16
Nalidix acid	30		- 30	30	16
Streptomycin	10		10		
Tetracycline	30	30	30	30	8,128
Trimethoprim					2

Appendix 10

Batch Antib	Strain	Correct	% R	% I	% S
11 Amoxi-/Ampicil. AMX/AMP	CRL S.1,1	R	97	0	3
	CRL S.1,2	R	100	0	0
	CRL S.1,3	R	97	0	3
	CRL S.1,4	R	100	0	0
	CRL S.1,5	S	3	3	93
	CRL S.1,6	R	100	0	0
	CRL S.1,7	R	100	0	0
	CRL S.1,8	S	0	0	100
Amoxicillin cl., AUG	CRL S.1,1	S	15	30	55
	CRL S.1,2	I	50	45	5
	CRL S.1,3	S	10	15	75
	CRL S.1,4	S	10	20	70
	CRL S.1,5	S	0	0	100
	CRL S.1,6	S	20	40	40
	CRL S.1,7	S	10	15	75
	CRL S.1,8	S	0	0	100
Cefotaxime, CTX	CRL S.1,1	S	0	0	100
	CRL S.1,2	S	4	0	96
	CRL S.1,3	R	65	26	9
	CRL S.1,4	R	96	4	0
	CRL S.1,5	S	4	0	96
	CRL S.1,6	R	96	0	4
	CRL S.1,7	S	0	0	100
	CRL S.1,8	S	0	0	100

CRL S.1,1	S	0	0	100
CRL S.1,2	S	0	25	75
CRL S.1,3	R	100	0	0
CRL S.1,4	R	100	0	0
CRL S.1,5	I	0	25	75
CRL S.1,6	R	100	0	0
CRL S.1,7	S	0	0	100
CRL S.1,8	S	0	0	100
CRL S.1,1	S	0	0	100
CRL S.1,2	S	0	7	93
CRL S.1,3	R	64	0	36
CRL S.1,4	R	93	0	7
CRL S.1,5	S	7	0	93
CRL S.1,6	R	93	0	7
CRL S.1,7	S	0	0	100
CRL S.1,8	S	0	0	100
CRL S.1,1	S	0	6	94
CRL S.1,2	S	6	13	81
CRL S.1,3	R	81	13	6
CRL S.1,4	R	100	0	0
CRL S.1,5	S	0	13	88
CRL S.1,6	R	94	0	6
CRL S.1,7	S	0	0	100
CRL S.1,8	S	0	0	100
CRL S.1,1	R	79	0	21
CRL S.1,2	I	0	39	61
CRL S.1,3	S	0	4	96
	CRL S.1,1 CRL S.1,2 CRL S.1,3 CRL S.1,4 CRL S.1,6 CRL S.1,6 CRL S.1,7 CRL S.1,7 CRL S.1,2 CRL S.1,2 CRL S.1,3 CRL S.1,3 CRL S.1,4 CRL S.1,6 CRL S.1,7 CRL S.1,2 CRL S.1,2 CRL S.1,3 CRL S.1,3 CRL S.1,4 CRL S.1,2 CRL S.1,3	CRL S.1,1 S CRL S.1,2 S CRL S.1,3 R CRL S.1,4 R CRL S.1,5 I CRL S.1,6 R CRL S.1,7 S CRL S.1,8 S CRL S.1,1 S CRL S.1,2 S CRL S.1,3 R CRL S.1,4 R CRL S.1,5 S CRL S.1,4 R CRL S.1,5 S CRL S.1,6 R CRL S.1,7 S CRL S.1,8 S CRL S.1,1 S CRL S.1,3 R CRL S.1,4 R CRL S.1,7 S CRL S.1,8 S CRL S.1,1 S CRL S.1,3 R CRL S.1,4 R CRL S.1,5 S CRL S.1,6 R CRL S.1,7 S CRL S.1,8 S CRL S.1,1 R CRL S.1,2 I CRL S.1,3 S CR	CRL S.1,1 S 0 CRL S.1,2 S 0 CRL S.1,3 R 100 CRL S.1,4 R 100 CRL S.1,5 I 0 CRL S.1,6 R 100 CRL S.1,6 R 100 CRL S.1,7 S 0 CRL S.1,8 S 0 CRL S.1,1 S 0 CRL S.1,2 S 0 CRL S.1,3 R 64 CRL S.1,4 R 93 CRL S.1,5 S 7 CRL S.1,6 R 93 CRL S.1,6 R 93 CRL S.1,7 S 0 CRL S.1,8 S 0 CRL S.1,1 S 0 CRL S.1,2 S 6 CRL S.1,4 R 100 CRL S.1,5 S 0 CRL S.1,6 R 94 CRL S.1,7 S 0 CRL S.1,8 S 0 CRL S.1,8 S 0	CRL S.1,1 S 0 0 CRL S.1,2 S 0 25 CRL S.1,3 R 100 0 CRL S.1,4 R 100 0 CRL S.1,5 I 0 25 CRL S.1,6 R 100 0 CRL S.1,7 S 0 0 CRL S.1,8 S 0 0 CRL S.1,7 S 0 0 CRL S.1,8 S 0 0 CRL S.1,1 S 0 0 CRL S.1,2 S 0 7 CRL S.1,3 R 64 0 CRL S.1,4 R 93 0 CRL S.1,5 S 7 0 CRL S.1,6 R 93 0 CRL S.1,7 S 0 0 CRL S.1,8 S 0 0 CRL S.1,1 S 0 13 CRL S.1,2 S 0 13 CRL S.1,5 S 0 0 CRL S.1

	CRL S.1,4	R	100	0	0
	CRL S.1,5	S	0	7	93
	CRL S.1,6	R	100	0	0
	CRL S.1,7	R	100	0	0
	CRL S.1,8	S	0	18	82
Cipro-/enrofloxacin, CIP/ENRO	CRL S.1,1	S	4	0	96
	CRL S.1,2	R	25	21	54
	CRL S.1,3	R	21	13	67
	CRL S.1,4	S	4	0	96
	CRL S.1,5	S	0	0	100
	CRL S.1,6	S	0	0	100
	CRL S.1,7	S	0	0	100
	CRL S.1,8	R	100	0	0
Florphenicol, FFN	CRL S.1,1	R	84	5	11
	CRL S.1,2	S	5	42	53
	CRL S.1,3	S	5	0	95
	CRL S.1,4	S	6	0	94
	CRL S.1,5	S	0	0	100
	CRL S.1,6	R	100	0	0
	CRL S.1,7	R	95	0	5
	CRL S.1,8	S	0	5	95
Gentamicin, GEN	CRL S.1,1	S	4	0	96
	CRL S.1,2	R	57	25	18
	CRL S.1,3	S	0	4	96
	CRL S.1,4	S	4	0	96
	CRL S.1,5	R	100	0	0
	CRL S.1,6	S	4	0	96
	CRL S.1,7	R	86	7	7
---------------------	-----------	---	-----	----	-----
	CRL S.1,8	S	0	0	100
Nalidixic acid, NAL	CRL S.1,1	S	7	14	79
	CRL S.1,2	R	100	0	0
	CRL S.1,3	R	96	4	0
	CRL S.1,4	S	0	4	96
	CRL S.1,5	S	0	4	96
	CRL S.1,6	S	0	4	96
	CRL S.1,7	S	0	4	96
	CRL S.1,8	R	100	0	0
Streptomycin, STR	CRL S.1,1	R	100	0	0
	CRL S.1,2	R	96	0	4
	CRL S.1,3	S	13	25	63
	CRL S.1,4	R	50	29	21
	CRL S.1,5	R	96	0	4
	CRL S.1,6	R	75	21	4
	CRL S.1,7	R	100	0	0
	CRL S.1,8	I	42	29	29
Sulfonamides, SMX	CRL S.1,1	R	100	0	0
	CRL S.1,2	R	100	0	0
	CRL S.1,3	S	4	0	96
	CRL S.1,4	R	96	0	4
	CRL S.1,5	R	100	0	0
	CRL S.1,6	R	100	0	0
	CRL S.1,7	R	100	0	0
	CRL S.1,8	R	79	0	21
TMP+SMX, SXT	CRL S.1,1	S	0	15	85

		CRL S.1,2	S	0	0	100
		CRL S.1,3	S	0	0	100
		CRL S.1,4	R	100	0	0
		CRL S.1,5	S	0	0	100
		CRL S.1,6	R	95	0	5
		CRL S.1,7	R	100	0	0
		CRL S.1,8	R	90	0	10
	Tetracycline, TET	CRL S.1,1	R	100	0	0
		CRL S.1,2	S	19	15	67
		CRL S.1,3	R	100	0	0
		CRL S.1,4	R	85	0	15
		CRL S.1,5	S	4	19	78
		CRL S.1,6	S	4	0	96
		CRL S.1,7	R	100	0	0
		CRL S.1,8	R	89	0	11
	Trimethoprim, TMP	CRL S.1,1	S	0	0	100
		CRL S.1,2	S	0	0	100
		CRL S.1,3	S	0	0	100
		CRL S.1,4	R	100	0	0
		CRL S.1,5	S	0	0	100
		CRL S.1,6	R	100	0	0
		CRL S.1,7	R	100	0	0
		CRL S.1,8	R	100	0	0
ļ						

Batch Antib	Strain	Correct	% R	%	% S
12 Chloramp henicol, CHL	CRL C.1,1	S	0	8	92
	CRL C.1,2	S	0	0	100
	CRL C.1,3	S	0	0	100
	CRL C.1,4	S	0	0	100
	CRL C.1,5	S	0	0	100
	CRL C.1,6	S	8	0	92
	CRL C.1,7	S	8	0	92
	CRL C.1,8	S	0	0	100
Cipro/enro floxacin, CIP/ENR O	CRL C.1,1	R	86	0	14
	CRL C.1,2	R	86	0	14
	CRL C.1,3	R	100	0	0
	CRL C.1,4	R	90	0	10
	CRL C.1,5	S	0	0	100
	CRL C.1,6	S	0	0	100
	CRL C.1,7	S	0	0	100
	CRL C.1,8	S	0	0	100
Erythromy cin, ERY	CRL C.1,1	S	22	4	74
	CRL C.1,2	R	96	0	4
	CRL C.1,3	R	100	0	0
	CRL C.1,4	S	0	0	100
	CRL C.1,5	S	4	4	92
	CRL C.1,6	S	4	4	91
	CRL C.1,7	S	0	9	91
	CRL C.1,8	R	91	0	9

Gentamici n. GEN	CRL C.1,1	S	5	0	95
	CRL C.1,2	S	0	0	100
	CRL C.1,3	R	100	0	0
	CRL C.1,4	S	0	0	100
	CRL C.1,5	S	0	0	100
	CRL C.1,6	S	0	0	100
	CRL C.1,7	S	0	0	100
	CRL C.1,8	S	0	0	100
Nalidixic acid. NAL	CRL C.1,1	R	100	0	0
	CRL C.1,2	R	95	0	5
	CRL C.1,3	R	100	0	0
	CRL C.1,4	R	84	5	11
	CRL C.1,5	S	0	0	100
	CRL C.1,6	S	0	0	100
	CRL C.1,7	S	5	0	95
	CRL C.1,8	S	0	0	100
Streptomy cin, STR	CRL C.1,1	S	15	0	85
	CRL C.1,2	S	17	8	75
	CRL C.1,3	R	92	0	8
	CRL C.1,4	S	9	0	91
	CRL C.1,5	S	0	0	100
	CRL C.1,6	S	8	8	85
	CRL C.1,7	R	71	7	21
	CRL C.1,8	R	100	0	0
Tetracycli	CRL C.1,1	R	87	0	13
	CRL C.1,2	R	83	0	17
	CRL C.1,3	R	95	5	0

CRL C.1,4	R	86	0	14
CRL C.1,5	R	88	4	8
CRL C.1,6	S	9	0	91
CRL C.1,7	S	9	0	91
CRL C.1,8	S	0	0	100

Appendix 11a: Deviations - Salmonella

	User	Method	Strain	Antibiotic	Obtained	Expected	Importance
-	#1	1. Strains	CRL S.1,1	Chloramphenicol, CHL	S	R	Very major
				Florphenicol, FFN	S	R	Very major
			CRL S.1,2	Cefpodoxime, POD	Ι	S	Minor
				Florphenicol, FFN	Ι	S	Minor
			CRL S.1,4	Tetracycline, TET	S	R	Very major
			CRL S.1,8	Tetracycline, TET	S	R	Very major

_							
	User	Method	Strain	Antibiotic	Obtained	Expected	Importance
	#2	1. Strains	CRL S.1,2	Chloramphenicol, CHL	S	Ι	Minor
				Gentamicin, GEN	Ι	R	Minor
				Tetracycline, TET	Ι	S	Minor
			CRL S.1,3	Cefotaxime, CTX	Ι	R	Minor
			CRL S.1,4	Streptomycin, STR	Ι	R	Minor
			CRL S.1,6	Streptomycin, STR	Ι	R	Minor
			CRL S.1,8	Streptomycin, STR	S	Ι	Minor

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
 #4	1. Strains	CRL S.1,2	Chloramphenicol, CHL	S	Ι	Minor
			Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
			Gentamicin, GEN	Ι	R	Minor
		CRL S.1,3	Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
		CRL S.1,4	Streptomycin, STR	Ι	R	Minor
		CRL S.1,7	Gentamicin, GEN	Ι	R	Minor
	2. Refstr.	ATCC 25922	Amoxicillin cl., AUG	0.094	2-8	

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#5	1. Strains	CRL S.1,1	Chloramphenicol, CHL	S	R	Very major
			Nalidixic acid, NAL	Ι	S	Minor
		CRL S.1,2	Chloramphenicol, CHL	S	Ι	Minor
			Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
			Gentamicin, GEN	Ι	R	Minor
		CRL S.1,3	Cefotaxime, CTX	S	R	Very major
			Ceftazidime, CAZ	S	R	Very major
			Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
			CTX/CL:CTX incr. in zone dia.		ESBL	Very major
		CRL S.1,4	Cefotaxime, CTX	Ι	R	Minor
			Ceftazidime, CAZ	S	R	Very major
			CTX/CL:CTX incr. in zone dia.		ESBL	Very major
			CAZ/CL:CAZ incr. in zone dia.		ESBL	Very major
		CRL S.1,7	Gentamicin, GEN	Ι	R	Minor
		CRL S.1,8	Tetracycline, TET	S	R	Very major
	2. Refstr.	ATCC 25922	Tetracycline, TET	26	18-25	

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#6	1. Strains	CRL S.1,1	Amoxicillin cl., AUG	Ι	S	Minor
			Chloramphenicol, CHL	S	R	Very major
		CRL S.1,2	Chloramphenicol, CHL	S	Ι	Minor
			Gentamicin, GEN	S	R	Very major
			Tetracycline, TET	R	S	Major
		CRL S.1,3	Cefotaxime, CTX	Ι	R	Minor
			Ceftazidime, CAZ	S	R	Very major
			Nalidixic acid, NAL	Ι	R	Minor
			Streptomycin, STR	Ι	S	Minor
		CRL S.1,5	Tetracycline, TET	Ι	S	Minor
		CRL S.1,6	Amoxicillin cl., AUG	Ι	S	Minor
		CRL S.1,8	Streptomycin, STR	R	Ι	Minor
			Sulfonamides, SMX	S	R	Very major

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#10	1. Strains	CRL S.1,2	Ceftazidime, CAZ	Ι	S	Minor
			Chloramphenicol, CHL	S	Ι	Minor
			Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
			Tetracycline, TET	Ι	S	Minor
		CRL S.1,3	Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
		CRL S.1,4	Streptomycin, STR	Ι	R	Minor
		CRL S.1,6	Amoxicillin cl., AUG	Ι	S	Minor
			Streptomycin, STR	Ι	R	Minor
		CRL S.1,8	Streptomycin, STR	S	Ι	Minor

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#11	1. Strains	CRL S.1,2	Ceftiofur, XNL	R	S	Major
			Chloramphenicol, CHL	S	Ι	Minor
		CRL S.1,3	Streptomycin, STR	R	S	Major
		CRL S.1,4	Streptomycin, STR	S	R	Very major
		CRL S.1,8	Streptomycin, STR	S	Ι	Minor
	2. Refstr.	ATCC 25922	Cipro/enroflox., CIP/ENRO	0.06	,004-,015	
			Nalidixic acid, NAL	8	1-4	

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#12	1. Strains	CRL S.1,2	Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
			Florphenicol, FFN	Ι	S	Minor
		CRL S.1,3	Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
			Streptomycin, STR	Ι	S	Minor
		CRL S.1,4	Sulfonamides, SMX	S	R	Very major
		CRL S.1,8	Streptomycin, STR	R	Ι	Minor
			Sulfonamides, SMX	S	R	Very major
	2. Refstr.	ATCC 25922	Cipro/enroflox., CIP/ENRO	0.03	,004-,015	

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#13	1. Strains	CRL S.1,1	Amoxicillin cl., AUG	Ι	S	Minor
			Amoxi-/Ampicil. AMX/AMP	S	R	Very major
			Nalidixic acid, NAL	Ι	S	Minor
		CRL S.1,2	Tetracycline, TET	R	S	Major
		CRL S.1,3	Amoxi-/Ampicil. AMX/AMP	S	R	Very major
			Cefotaxime, CTX	Ι	R	Minor
			Ceftazidime, CAZ	S	R	Very major
			Cipro- /enrofloxacin, CIP/ENRO	Ι	R	Minor
			Gentamicin, GEN	Ι	S	Minor
			Streptomycin, STR	Ι	S	Minor
		CRL S.1,5	Chloramphenicol, CHL	Ι	S	Minor
			Tetracycline, TET	Ι	S	Minor
		CRL S.1,6	Amoxicillin cl., AUG	Ι	S	Minor
		CRL S.1,8	Chloramphenicol, CHL	Ι	S	Minor
			Streptomycin, STR	R	Ι	Minor
	2. Refstr.	ATCC 25922	Amoxicillin cl., AUG	25	18-24	
			Sulphonamides, SMX	26	15-23	
			Tetracycline, TET	26	18-25	
			Imipenem, IMI	35	26-32	

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#14	1. Strains	CRL S.1,2	Cipro- /enrofloxacin, CIP/ENRO	Ι	R	Minor
			Florphenicol, FFN	Ι	S	Minor
			Gentamicin, GEN	Ι	R	Minor
		CRL S.1,3	Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
		CRL S.1,4	Tetracycline, TET	S	R	Very major
	2. Refstr.	ATCC 25922	Amoxicillin cl., AUG	26	18-24	
			Tetracycline, TET	27	18-25	

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#15	1. Strains	CRL S.1,1	Nalidixic acid, NAL	Ι	S	Minor
		CRL S.1,2	Cipro- /enrofloxacin, CIP/ENRO	Ι	R	Minor
			Gentamicin, GEN	S	R	Very major
		CRL S.1,3	Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
		CRL S.1,8	Streptomycin, STR	R	Ι	Minor
	2. Refstr.	ATCC 25922	Amoxicillin cl., AUG	27	18-24	
			Ceftiofur, XNL	37	26-31	
			Ceftazidime, CAZ	36	25-32	
			Cefotaxime, CTX	37	29-35	
			Chloramphenicol, CHL	30	21-27	
			Gentamicin, GEN	32	19-26	
			Nalidixic acid, NAL	29	22-28	
			Sulphonamides, SMX	35	15-23	
			Tetracycline, TET	28	18-25	
			Imipenem, IMI	40	26-32	

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#16	1. Strains	CRL S.1,2	Cipro- /enrofloxacin, CIP/ENRO	Ι	R	Minor
			Florphenicol, FFN	Ι	S	Minor
		CRL S.1,3	Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
		CRL S.1,5	Amoxi-/Ampicil. AMX/AMP	Ι	S	Minor
			Chloramphenicol, CHL	Ι	S	Minor
		CRL S.1,8	Chloramphenicol, CHL	Ι	S	Minor
			Streptomycin, STR	R	Ι	Minor

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#17	1. Strains	CRL S.1,2	Ceftiofur, XNL	Ι	S	Minor
			Cipro- /enrofloxacin, CIP/ENRO	Ι	R	Minor
			Florphenicol, FFN	Ι	S	Minor
			Gentamicin, GEN	Ι	R	Minor
		CRL S.1,3	Cipro- /enrofloxacin, CIP/ENRO	Ι	R	Minor
		CRL S.1,6	Amoxicillin cl., AUG	Ι	S	Minor
		CRL S.1,8	Chloramphenicol, CHL	Ι	S	Minor
			Streptomycin, STR	R	Ι	Minor

Use	r Method	Strain	Antibiotic	Obtained	Expected	Importance
#18	B 1. Strains	CRL S.1,2	Ceftiofur, XNL	Ι	S	Minor
			Chloramphenicol, CHL	S	Ι	Minor
			Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
		CRL S.1,3	Cefotaxime, CTX	Ι	R	Minor
			Ceftiofur, XNL	Ι	R	Minor
			Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
		CRL S.1,5	Ceftiofur, XNL	Ι	S	Minor
		CRL S.1,8	Streptomycin, STR	R	Ι	Minor
	2. Refstr.	ATCC 25922	Ceftiofur, XNL	22	26-31	

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#19	1. Strains	CRL S.1,1	Amoxicillin cl., AUG	Ι	S	Minor
			Chloramphenicol, CHL	S	R	Very major
			Florphenicol, FFN	Ι	R	Minor
			TMP+SMX, SXT	Ι	S	Minor
		CRL S.1,2	Cefotaxime, CTX	R	S	Major
			Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
			Florphenicol, FFN	Ι	S	Minor
			Gentamicin, GEN	S	R	Very major
			Tetracycline, TET	R	S	Major
		CRL S.1,3	Amoxicillin cl., AUG	Ι	S	Minor
			Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
			CTX/CL:CTX incr. in zone dia.		ESBL	Very major
		CRL S.1,4	Amoxicillin cl., AUG	Ι	S	Minor
			Streptomycin, STR	S	R	Very major
			Tetracycline, TET	S	R	Very major
		CRL S.1,5	Cefpodoxime, POD	S	Ι	Minor
			Tetracycline, TET	Ι	S	Minor
		CRL S.1,6	Amoxicillin cl., AUG	I	S	Minor
			Streptomycin, STR	Ι	R	Minor
		CRL S.1,7	Florphenicol, FFN	S	R	Very major
			Gentamicin, GEN	S	R	Very major
		CRL S.1,8	Streptomycin, STR	S	Ι	Minor
			Sulfonamides, SMX	S	R	Very major
			TMP+SMX, SXT	S	R	Very major

_	User	Method	Strain	Antibiotic	Obtained	Expected	Importance
	#20	1. Strains	CRL S.1,1	Amoxicillin cl., AUG	R	S	Major
				TMP+SMX, SXT	Ι	S	Minor
			CRL S.1,2	Chloramphenicol, CHL	S	Ι	Minor
				Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
_				Florphenicol, FFN	Ι	S	Minor
				Gentamicin, GEN	Ι	R	Minor
				Tetracycline, TET	Ι	S	Minor
			CRL S.1,3	Amoxicillin cl., AUG	Ι	S	Minor
				Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
			CRL S.1,4	Amoxicillin cl., AUG	Ι	S	Minor
				Streptomycin, STR	S	R	Very major
			CRL S.1,5	Cefpodoxime, POD	S	Ι	Minor
				Tetracycline, TET	Ι	S	Minor
			CRL S.1,6	Amoxicillin cl., AUG	R	S	Major
				Streptomycin, STR	Ι	R	Minor
			CRL S.1,7	Amoxicillin cl., AUG	Ι	S	Minor
			CRL S.1,8	Streptomycin, STR	S	Ι	Minor

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#21	1. Strains	CRL S.1,2	Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
		CRL S.1,3	Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
			Streptomycin, STR	R	S	Major
		CRL S.1,6	Amoxicillin cl., AUG	Ι	S	Minor
			TMP+SMX, SXT	S	R	Very major
		CRL S.1,7	Amoxicillin cl., AUG	Ι	S	Minor
		CRL S.1,8	Chloramphenicol, CHL	Ι	S	Minor
			Streptomycin, STR	R	Ι	Minor
	2. Refstr.	ATCC 25922	Gentamicin, GEN	4	,25-1	

	1		1			
User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#22	1. Strains	CRL S.1,1	Amoxicillin cl., AUG	Ι	S	Minor
		CRL S.1,2	Chloramphenicol, CHL	S	Ι	Minor
			Gentamicin, GEN	S	R	Very major
		CRL S.1,3	Cefotaxime, CTX	Ι	R	Minor
			Ceftiofur, XNL	Ι	R	Minor
		CRL S.1,4	Amoxicillin cl., AUG	Ι	S	Minor
			Streptomycin, STR	Ι	R	Minor
		CRL S.1,6	Amoxicillin cl., AUG	Ι	S	Minor
			Streptomycin, STR	Ι	R	Minor
		CRL S.1,7	Amoxicillin cl., AUG	Ι	S	Minor

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#23	1. Strains	CRL S.1,1	Amoxicillin cl., AUG	R	S	Major
		CRL S.1,2	Chloramphenicol, CHL	S	Ι	Minor
			Tetracycline, TET	R	S	Major
		CRL S.1,3	Amoxicillin cl., AUG	R	S	Major
			Streptomycin, STR	Ι	S	Minor
		CRL S.1,4	Amoxicillin cl., AUG	R	S	Major
			Cipro- /enrofloxacin, CIP/ENRO	R	S	Major
			Streptomycin, STR	Ι	R	Minor
		CRL S.1,6	Amoxicillin cl., AUG	R	S	Major
		CRL S.1,7	Amoxicillin cl., AUG	R	S	Major
	2. Refstr.	ATCC 25922	Amoxicillin cl., AUG	8	18-24	
			Ceftiofur, XNL	25	26-31	

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#24	1. Strains	CRL S.1,1	Chloramphenicol, CHL	S	R	Very major
			Cipro- /enrofloxacin, CIP/ENRO	R	S	Major
			Florphenicol, FFN	S	R	Very major
			Gentamicin, GEN	R	S	Major
			Nalidixic acid, NAL	R	S	Major
		CRL S.1,2	Chloramphenicol, CHL	S	Ι	Minor

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#25	1. Strains	CRL S.1,2	Chloramphenicol, CHL	S	Ι	Minor
		CRL S.1,4	CAZ/CL:CAZ mic ratio		ESBL	Very major

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#26	1. Strains	CRL S.1,2	Cipro- /enrofloxacin, CIP/ENRO	Ι	R	Minor
			Gentamicin, GEN	Ι	R	Minor
		CRL S.1,3	Cipro- /enrofloxacin, CIP/ENRO	Ι	R	Minor
		CRL S.1,8	Chloramphenicol, CHL	Ι	S	Minor

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#27	1. Strains	CRL S.1,1	Amoxicillin cl., AUG	R	S	Major
		CRL S.1,2	Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
		CRL S.1,3	Amoxicillin cl., AUG	Ι	S	Minor
			Cefotaxime, CTX	Ι	R	Minor
			Ceftazidime, CAZ	S	R	Very major
			Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
		CRL S.1,4	Amoxicillin cl., AUG	Ι	S	Minor
			Gentamicin, GEN	R	S	Major
		CRL S.1,5	Cefotaxime, CTX	R	S	Major
			Ceftazidime, CAZ	R	S	Major
			CTX/CL:CTX mic ratio	ESBL		Major
		CRL S.1,6	Amoxicillin cl., AUG	R	S	Major
			Gentamicin, GEN	R	S	Major
		CRL S.1,7	Amoxicillin cl., AUG	R	S	Major
	2. Refstr.	ATCC 25922	Cefotaxime, CTX	0.125	,03-,12	
			Trimethoprim, TMP	0.25	,5-2	

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#28	1. Strains	CRL S.1,1	Amoxicillin cl., AUG	Ι	S	Minor
			Chloramphenicol, CHL	S	R	Very major
		CRL S.1,2	Chloramphenicol, CHL	S	Ι	Minor
			Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
		CRL S.1,3	Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
		CRL S.1,4	Streptomycin, STR	Ι	R	Minor
			Tetracycline, TET	S	R	Very major
		CRL S.1,6	Amoxicillin cl., AUG	Ι	S	Minor
		CRL S.1,8	Tetracycline, TET	S	R	Very major

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#29	1. Strains	CRL S.1,1	Ceftiofur, XNL	Ι	S	Minor
			Nalidixic acid, NAL	R	S	Major
			TMP+SMX, SXT	Ι	S	Minor
		CRL S.1,2	Florphenicol, FFN	R	S	Major
			Tetracycline, TET	R	S	Major
		CRL S.1,3	Chloramphenicol, CHL	Ι	S	Minor
			Florphenicol, FFN	R	S	Major
			Streptomycin, STR	I	S	Minor
			Sulfonamides, SMX	R	S	Major
		CRL S.1,4	Florphenicol, FFN	R	S	Major
			Nalidixic acid, NAL	Ι	S	Minor
		CRL S.1,5	Ceftiofur, XNL	Ι	S	Minor
			Nalidixic acid, NAL	Ι	S	Minor
			Tetracycline, TET	R	S	Major
		CRL S.1,6	Cefotaxime, CTX	S	R	Very major
			Ceftazidime, CAZ	S	R	Very major
			Ceftiofur, XNL	S	R	Very major
			Nalidixic acid, NAL	Ι	S	Minor
			Tetracycline, TET	R	S	Major
		CRL S.1,7	Nalidixic acid, NAL	Ι	S	Minor
		CRL S.1,8	Florphenicol, FFN	Ι	S	Minor
			Streptomycin, STR	R	Ι	Minor
	2. Refstr.	ATCC 25922	Ceftiofur, XNL	25	26-31	
			Cefotaxime, CTX	28	29-35	
			Chloramphenicol, CHL	20	21-27	
			Florphenicol, FFN	17	22-28	
			Sulphonamides, SMX	6	15-23	

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#30	1. Strains	CRL S.1,1	Amoxicillin cl., AUG	Ι	S	Minor
			Nalidixic acid, NAL	Ι	S	Minor
		CRL S.1,2	Chloramphenicol, CHL	S	Ι	Minor
			Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
			Florphenicol, FFN	Ι	S	Minor
			Tetracycline, TET	Ι	S	Minor
		CRL S.1,3	Amoxicillin cl., AUG	R	S	Major
			Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
			Streptomycin, STR	Ι	S	Minor
		CRL S.1,4	Amoxicillin cl., AUG	R	S	Major
			Streptomycin, STR	Ι	R	Minor
		CRL S.1,5	Cefpodoxime, POD	S	Ι	Minor
			Tetracycline, TET	Ι	S	Minor
		CRL S.1,6	Amoxicillin cl., AUG	R	S	Major
		CRL S.1,8	Streptomycin, STR	R	I	Minor
			Sulfonamides, SMX	S	R	Very major
			TMP+SMX, SXT	S	R	Very major

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#33	1. Strains	CRL S.1,2	Chloramphenicol, CHL	S	Ι	Minor
		CRL S.1,4	Streptomycin, STR	S	R	Very major
		CRL S.1,8	Streptomycin, STR	S	Ι	Minor
			Sulfonamides, SMX	S	R	Very major
	2. Refstr.	ATCC 25922	Cipro/enroflox., CIP/ENRO	0.03	,004-,015	

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#34	1. Strains	CRL S.1,2	Amoxicillin cl., AUG	S	Ι	Minor
			Chloramphenicol, CHL	S	Ι	Minor
			Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
			Gentamicin, GEN	S	R	Very major
			Streptomycin, STR	S	R	Very major
		CRL S.1,3	Cefotaxime, CTX	S	R	Very major
			Ceftazidime, CAZ	S	R	Very major
			Ceftiofur, XNL	S	R	Very major
			Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
		CRL S.1,4	Streptomycin, STR	S	R	Very major
		CRL S.1,5	Streptomycin, STR	S	R	Very major
		CRL S.1,6	Streptomycin, STR	S	R	Very major
		CRL S.1,7	Gentamicin, GEN	S	R	Very major
		CRL S.1,8	Streptomycin, STR	S	Ι	Minor
	2. Refstr.	ATCC 25922	Amoxicillin cl., AUG	29	18-24	
			Ceftazidime, CAZ	38	25-32	
			Cefotaxime, CTX	43	29-35	
			Gentamicin, GEN	27	19-26	
			Nalidixic acid, NAL	33	22-28	
			Sulphonamides, SMX	28	15-23	
			Tetracycline, TET	29	18-25	
			TMP+SMX, SXT	34	23-29	

-	User	Method	Strain	Antibiotic	Obtained	Expected	Importance
	#35	1. Strains	CRL S.1,2	Chloramphenicol, CHL	S	Ι	Minor
				Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
			CRL S.1,3	Cipro- /enrofloxacin, CIP/ENRO	S	R	Very major
				Streptomycin, STR	R	S	Major
			CRL S.1,5	Amoxi-/Ampicil. AMX/AMP	R	S	Major
		2. Refstr.	ATCC 25922	Amoxicillin cl., AUG	22	2-8	
				Ceftazidime, CAZ	31	,06-,5	
				Trimethoprim, TMP	26	,5-2	
				Cefoxitin, FOX	26	2-8	
				Imipenem, IMI	31	,06-,25	

Appendix 11b: Deviations – Campylobacter

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#2	1. Strains	CRL C.1,1	Erythromycin, ERY	R	S	Major

	User	Method	Strain	Antibiotic	Obtained	Expected	Importance
-	#4	1. Strains	CRL C.1,2	Streptomycin, STR	R	S	Major
			CRL C.1,7	Streptomycin, STR	Ι	R	Minor
		2. Refstr.	ATCC 33560	Cipro/enrofloxacin, CIP/ENRO	0.032	,06-,25	
				Erythromycin, ERY	0.38	,5-2	

	User	Method	Strain	Antibiotic	Obtained	Expected	Importance
-	#5	1. Strains	CRL C.1,2	Tetracycline, TET	S	R	Very major
			CRL C.1,5	Tetracycline, TET	S	R	Very major
		2. Refstr.	ATCC 33560	Chloramphenicol, CHL	34	1-4	
				Cipro/enrofloxacin, CIP/ENRO	36	,03-,12	
				Erythromycin, ERY	28	,25-2	
				Gentamicin, GEN	24	,25-2	
				Nalidixic acid, NAL	26	4-16	
				Tetracycline, TET	38	,25-1	

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#10	1. Strains	CRL C.1,8	Erythromycin, ERY	S	R	Very major

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#12	2. Refstr.	ATCC 33560	Cipro/enrofloxacin, CIP/ENRO	0.5	,06-,25	
			Erythromycin, ERY	4	,5-2	

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#14	1. Strains	CRL C.1,1	Erythromycin, ERY	R	S	Major
			Streptomycin, STR	R	S	Major
		CRL C.1,2	Cipro/enrofloxacin, CIP/ENRO	S	R	Very major
			Erythromycin, ERY	S	R	Very major
			Nalidixic acid, NAL	S	R	Very major
			Tetracycline, TET	S	R	Very major
		CRL C.1,4	Nalidixic acid, NAL	Ι	R	Minor
		CRL C.1,7	Erythromycin, ERY	Ι	S	Minor
	2. Refstr.	ATCC 33560	Cipro/enrofloxacin, CIP/ENRO	0.25	,03-,12	
			Erythromycin, ERY	4	,25-2	
			Tetracycline, TET	2	,25-1	

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#15	2. Refstr.	ATCC 33560	Nalidixic acid, NAL	3	4-16	

1 - 1

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#16	1. Strains	CRL C.1,1	Erythromycin, ERY	R	S	Major
			Gentamicin, GEN	R	S	Major
		CRL C.1,2	Cipro/enrofloxacin, CIP/ENRO	S	R	Very major
		CRL C.1,4	Cipro/enrofloxacin, CIP/ENRO	S	R	Very major
			Tetracycline, TET	S	R	Very major
		CRL C.1,6	Tetracycline, TET	R	S	Major
		CRL C.1,7	Nalidixic acid, NAL	R	S	Major

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#17	2. Refstr.	ATCC 33560	Cipro/enrofloxacin, CIP/ENRO	1	,06-,25	
			Erythromycin, ERY	4	,5-2	

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#19	1. Strains	CRL C.1,1	Erythromycin, ERY	Ι	S	Minor
		CRL C.1,5	Erythromycin, ERY	Ι	S	Minor
		CRL C.1,7	Erythromycin, ERY	Ι	S	Minor
	2. Refstr.	ATCC 33560	Nalidixic acid, NAL	3	4-16	

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#22	1. Strains	CRL C.1,1	Tetracycline, TET	S	R	Very major
		CRL C.1,2	Streptomycin, STR	R	S	Major
			Tetracycline, TET	S	R	Very major
		CRL C.1,4	Nalidixic acid, NAL	S	R	Very major
			Streptomycin, STR	R	S	Major
			Tetracycline, TET	S	R	Very major
	2. Refstr.	ATCC 33560	Chloramphenicol, CHL	42	1-4	
			Cipro/enrofloxacin, CIP/ENRO	40	,03-,12	
			Erythromycin, ERY	33	,25-2	
			Nalidixic acid, NAL	33	4-16	
			Tetracycline, TET	39	,25-1	

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#23	1. Strains	CRL C.1,1	Tetracycline, TET	S	R	Very major
		CRL C.1,3	Tetracycline, TET	Ι	R	Minor
		CRL C.1,5	Tetracycline, TET	Ι	R	Minor

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#24	1. Strains	CRL C.1,4	Nalidixic acid, NAL	S	R	Very major
		CRL C.1,7	Streptomycin, STR	S	R	Very major
	2. Refstr.	ATCC 33560	Gentamicin, GEN	0.25	,5-2	

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#25	2. Refstr.	ATCC 33560	Erythromycin, ERY	4	,5-2	
			Gentamicin, GEN	0.25	,5-2	

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#26	1. Strains	CRL C.1,1	Chloramphenicol, CHL	Ι	S	Minor
			Cipro/enrofloxacin, CIP/ENRO	S	R	Very major
			Erythromycin, ERY	R	S	Major
		CRL C.1,2	Cipro/enrofloxacin, CIP/ENRO	S	R	Very major
			Tetracycline, TET	S	R	Very major
		CRL C.1,4	Cipro/enrofloxacin, CIP/ENRO	S	R	Very major
			Tetracycline, TET	S	R	Very major
		CRL C.1,5	Erythromycin, ERY	R	S	Major
		CRL C.1,6	Erythromycin, ERY	R	S	Major
			Tetracycline, TET	R	S	Major

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#28	1. Strains	CRL C.1,1	Cipro/enrofloxacin, CIP/ENRO	S	R	Very major
			Tetracycline, TET	S	R	Very major
		CRL C.1,5	Tetracycline, TET	S	R	Very major
		CRL C.1,7	Streptomycin, STR	S	R	Very major
			Tetracycline, TET	R	S	Major
	2. Refstr.	ATCC 33560	Chloramphenicol, CHL	44	1-8	
			Cipro/enrofloxacin, CIP/ENRO	42	,06-,25	
			Erythromycin, ERY	38	,5-2	
			Nalidixic acid, NAL	28	4-16	
			Tetracycline, TET	24	,25-2	

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#29	1. Strains	CRL C.1,1	Erythromycin, ERY	R	S	Major
			Streptomycin, STR	R	S	Major
		CRL C.1,2	Streptomycin, STR	Ι	S	Minor
		CRL C.1,3	Streptomycin, STR	S	R	Very major
		CRL C.1,6	Erythromycin, ERY	Ι	S	Minor
			Streptomycin, STR	Ι	S	Minor
	2. Refstr.	ATCC 33560	Chloramphenicol, CHL	30	1-8	
			Erythromycin, ERY	19	,5-2	
			Gentamicin, GEN	14	,5-2	
			Nalidixic acid, NAL	20	4-16	
			Tetracycline, TET	30	,25-2	

_	User	Method	Strain	Antibiotic	Obtained	Expected	Importance
	#30	1. Strains	CRL C.1,1	Cipro/enrofloxacin, CIP/ENRO	S	R	Very major
			CRL C.1,7	Streptomycin, STR	S	R	Very major
				Tetracycline, TET	R	S	Major
			CRL C.1,8	Erythromycin, ERY	S	R	Very major
		2. Refstr.	ATCC 33560	Chloramphenicol, CHL	34	1-8	
				Cipro/enrofloxacin, CIP/ENRO	26	,06-,25	
				Erythromycin, ERY	30	,5-2	
				Nalidixic acid, NAL	24	4-16	
				Tetracycline, TET	34	,25-2	

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#34	1. Strains	CRL C.1,6	Streptomycin, STR	R	S	Major

User	Method	Strain	Antibiotic	Obtained	Expected	Importance
#35	1. Strains	CRL C.1,6	Chloramphenicol, CHL	R	S	Major
		CRL C.1,7	Chloramphenicol, CHL	R	S	Major