

The 21st EURL-AR Proficiency Test *Salmonella, Campylobacter* and genotypic characterisation 2016

Susanne Karlsmose Lina M. Cavaco Rene S. Hendriksen Valeria Bortolaia

DTU Food National Food Institute

The 21st EURL-AR Proficiency Test *Salmonella*, *Campylobacter* and genotypic characterisation 2016

1. edition, August 2017 Copyright: National Food Institute, Technical University of Denmark Photo: Mikkel Adsbøl ISBN: 978-87-93565-07-4

The report is available at www.food.dtu.dk

National Food Institute Technical University of Denmark Kemitorvet Building 202 DK-2800 Kgs Lyngby

Index

1.	Introduction		1
2.	Materials and Meth	ods	5
	2.1 Participants in I	EQAS 2016	5
	2.2 Strains	θ	3
	2.3 Antimicrobials .	θ	3
	2.4 Distribution		7
	2.5 Procedure		7
3.	Results		9
	3.1 Data omitted fro	om the report	Э
	3.2 Methods		9
	3.3 Deviations, ove	rall	9
	3.4 Deviations by la	aboratory11	I
	3.5 Deviations by re	eference strains11	1
	3.6 Genotypic char	acterisation13	3
4.	Discussion		1
	4.1 Salmonella trial		1
	4.2 Campylobacter	trial15	5
	4.3 Genotypic char	acterisation15	5
5.	Conclusions		3
6.	References	16	3
	Appendix 1	Pre-notification	
	Appendix 2	Participant list	
	Appendix 3a	Reference values (MIC) – Salmonella	
	Appendix 3b	Reference values (MIC) – Campylobacter	
	Appendix 4a	Welcome letter	
	Appendix 4b	Protocol, text	
	Appendix 4c	Protocol, test forms	
	Appendix 4d	Instructions for opening and reviving lyophilised cultures	
	Appendix 4e	Subculture and maintenance of Quality Control strains	
	Appendix 5	Quality Control ranges for ATCC reference strains	
	Appendix 6a	Reference strain results – E. coli ATCC 25922	
	Appendix 6b	Reference strain results – C. jejuni ATCC 33560	
	Appendix 7a	Expected and obtained results – Salmonella	
	Appendix 7b	Expected and obtained results – Campylobacter	
	Appendix 8a	Deviations, Salmonella	
	Appendix 8b	Deviations, Campylobacter	
	Appendix 9	Genotypic characterisation (optional)	

1. Introduction

This report describes and summarises results from the twenty-first proficiency test trial conducted by the National Food Institute (DTU Food) as the EU Reference Laboratory for Antimicrobial Resistance (EURL-AR). This proficiency test focuses on antimicrobial susceptibility testing (AST) of Salmonella and Campylobacter and is the tenth External Quality Assurance System (EQAS) conducted for these microorganisms (the first was EQAS 2006). In addition, the proficiency test includes categorization of the relevant Salmonella strains as presumptive AmpC-, ESBL-, or carbapenemase producing organisms, and identification of the Campylobacter species as either C. jejuni or C. coli.

In addition, for the eighth time, an optional element was included, consisting of genotypic characterization of antimicrobial resistance genes by PCR and/or sequencing. This optional component included characterization of genes related to production of AmpC, ESBL- and carbapenemases in the *Salmonella* test strains.

This EQAS aims to: i) monitor the quality of AST results produced by National Reference Laboratories (NRL-AR), ii) identify laboratories which may need assistance to improve their performance in AST, and iii) determine possible topics for further research or collaboration.

In reading this report, the following important considerations should be taken into account:

1) Expected results were generated by performing Minimum Inhibitory Concentration (MIC) determinations for all test strains in two different occasions at the Technical University of Denmark, National Food Institute (DTU Food). These results were then verified by the United States Food and Drug Administration (FDA), Centre for Veterinary Medicine. Finally, a fourth MIC determination was performed at DTU Food after preparation of the agar stab culture for shipment to participants to confirm that the vials contained the correct strains with the expected MIC values.

2) Evaluation is based on interpretations of AST values determined by the participants. This is in agreement with the method used by Member States (MS) to report AST data to the European Food Safety Authority (EFSA), and complies with the main objective of this EQAS, i.e. to evaluate and improve the comparability of surveillance data on antimicrobial susceptibility of *Salmonella* and *Campylobacter* reported to EFSA by different laboratories, as stated in the protocol.

3) The EURL-AR network agreed on setting the accepted deviation level for laboratory performance on AST to 5%. For the optional genotypic characterisation, no specific acceptance level has been set.

Evaluation of a result as "deviating from the expected interpretation" should be carefully analyzed in а self-evaluation procedure performed by the participant including also considerations related to any corrective actions introduced in the laboratory. Note, that since methods used for MIC determination have limitations, it is not considered a mistake to obtain a one-fold dilution difference in the MIC of a specific antimicrobial when testing the same strains. If, however, the expected MIC is close to the breakpoint value for categorizing the strain as susceptible or resistant, a one-fold dilution difference - which is acceptable - may result in two different interpretations, i.e. the same strain can be categorized as susceptible and resistant. This result will be evaluated as correct in one case but incorrect when the evaluation is based on interpretation of MIC values. This report is based on evaluation of AST interpretations, therefore some participants may find their results classified as incorrect even though the actual MIC they reported is only a one-fold dilution away from the expected

MIC. In these cases, the participants should be confident about the good quality of their performance of AST by MIC. In the organization of the EQAS, we try to avoid these situations by choosing test strains with MIC values distant from the cut offs for resistance, which is not feasible for all strains and always all antimicrobials. Therefore. the EURL-AR network unanimously established in 2008 that if there are less than 75% correct results for a specific strain/antimicrobial combination, the reasons for this situation must be further examined and, on selected occasions explained in details case by case, these results may subsequently be omitted from the evaluation report.

This report is approved in its final version by a

2. Materials and Methods

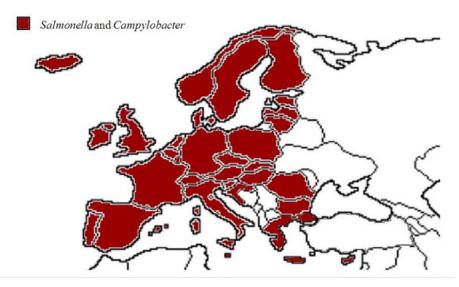
DTU Food National Food Institute

technical advisory group composed by competent representatives from all NRL-ARs. This group meets annually at the EURL-AR workshop.

All conclusions presented in this report are publically available. Participating laboratories are identified by codes and each code is known only by the corresponding laboratory. The full list of laboratory codes is confidential and known only by relevant representatives of the EURL-AR and the EU Commission.

The EURL-AR is accredited by DANAK as provider of proficiency testing (accreditation no. 516); working with zoonotic pathogens and indicator organisms as bacterial isolates (identification, serotyping and antimicrobial susceptibility testing).

2.1 Participants in EQAS 2016


A pre-notification (App. 1) to announce the EURL-AR EQAS on AST of Salmonella and Campylobacter was distributed on the 1st July 2016 by e-mail to the 43 laboratories in the EURL-AR-network including all EU countries and Iceland, Norway, Serbia, Switzerland and Turkey. All EU MS as well as Iceland, Norway, and Switzerland represented were as participants for both Salmonella and Campylobacter. In addition to the AST of Salmonella and Campylobacter, an optional genotypic characterization by PCR/sequencing of antimicrobial resistance genes of the AmpC-, ESBLand carbapenemase-producing Salmonella test strains was offered.

Appendix 2 shows that 29 of the 33 participating NRLs were appointed by the individual Member States' Competent Authority. Five additional laboratories were included; one from each of the following countries: Iceland, the Netherlands, Norway, Spain, and Switzerland. These were invited to take part in

the EQAS 2016 on the basis of their participation in previous EQAS iterations and/or affiliation to the EU network. These laboratories were charged a fee for their participation in the EQAS, whereas the NRLs from EU Member States participated free of charge.

Figure 1 illustrates that of the 31 participating countries, all tested both Salmonella and Campylobacter. Eleven laboratories participated in the optional genotypic **ESC**-producing characterisation of the Salmonella test strains (not illustrated in Figure 1; see Appendix 2).

The results from the NRLs designated by the MS are presented and evaluated in this report in addition to national reference laboratories in affiliated non-MS. In total, results from 31 countries consisting of 31 laboratories and submitting Salmonella results 31 laboratories submitting Campylobacter results. Results from the two laboratories not designated by the MS but enrolled in the EQAS are not further presented or evaluated in this report.

Figure 1: Participating countries that performed antimicrobial susceptibility testing of *Salmonella* and *Campylobacter* in 2016.

2.2 Strains

Eight Salmonella strains and eight Campylobacter strains were selected for this trial among isolates from the strain collection at DTU Food on the basis of antimicrobial resistance profiles and MIC values. For quality assurance purposes, one strain per bacterial species has been included in all EQAS iterations performed to date, representing an internal control.

Prior to distribution of the strains, AST was performed on the Salmonella and Campylobacter strains at DTU Food and verified by the US Food and Drua Administration (FDA). When MIC-values were not in agreement but varied +/- one dilutionstep, the value obtained by DTU Food was selected as the reference value. The obtained MIC values served as reference for the test strains (App. 3a and 3b). Results from the following antimicrobials were not verified by FDA: cefepime, cefotaxime, cefotaxime/clavulanic ceftazidime, acid, ceftazidime/clavulanic acid, colistin, ertapenem, imipenem, temocillin, tigecycline and

trimethoprim for *Salmonella* and furthermore, streptomycin for *Campylobacter*.

Reference strains *Escherichia coli* CCM 3954 (ATCC 25922) and *Campylobacter jejuni* CCM 6214 (ATCC 33560) were provided to new participating laboratories with instructions to store and maintain them for quality assurance purposes and future EQAS trials.

2.3 Antimicrobials

The antimicrobials tested in this EQAS are listed in the protocol (App. 4b).

The antimicrobials tested correspond to the panel of antimicrobials listed in Decision 2013/652/EU.

Guidelines for performing AST were set according to the Clinical and Laboratory Standards Institute (CLSI) document; M7-A10 (2015) "Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard - Tenth Edition"; M100S, 26th ed. (2016) "Performance Standards for Antimicrobial Susceptibility Testing" (CLSI Supplement M100S) and

document VET01-A4 (2013) "Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacterial Isolated From Animals" (Approved Standard – Fourth Edition).

MIC results were interpreted by using the interpretative criteria listed in Decision 2013/652/EU. Where values were not available, the list of interpretative criteria was supplemented with CLSI-interpretative criteria as or tentative values as described and indicated in the protocol (App. 4). No interpretative criteria were available to determine the interpretation of MIC-values from testing of cefepime. Results of ESC detection tests were interpreted according to the most recent EFSA recommendations, also included as an appendix in the EQAS protocol (Appendix 4).

The selection of antimicrobials used in the trial for Salmonella were: ampicillin (AMP), azithromycin (AZI), cefepime (FEP), cefotaxime (FOT), cefotaxime/clavulanic acid (FOT/Cl), cefoxitin (FOX), ceftazidime (TAZ), (TAZ/CI), ceftazidime/clavulanic acid chloramphenicol (CHL), ciprofloxacin (CIP), colistin (COL), ertapenem (ERT), gentamicin (GEN), imipenem (IMI), meropenem (MER), nalidixic acid (NAL), sulfonamides (sulfamethoxazole) (SMX), tetracycline (TET), tigecycline (TGC), temocillin (TRM) and trimethoprim (TMP).

Minimum Inhibitory Concentration (MIC) determination of the *Salmonella* test strains was performed using the Sensititre system from Trek Diagnostic Systems Ltd, UK. For ESC confirmatory test, the analysis included MIC determination by microbroth dilution.

For *Campylobacter* the following antimicrobials were included: ciprofloxacin (CIP), erythromycin (ERY), gentamicin (GEN), nalidixic acid (NAL), streptomycin (STR), and tetracycline (TET). MIC determination for the *Campylobacter* testing, was performed using the Sensititre systems from Trek Diagnostic Systems Ltd, UK, DTU Food National Food Institute

according to guidelines from the CLSI document M45-A2 (2010)"Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria" (Approved Guideline - Second Edition) and VET01-S2 (2013) "Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacterial Isolated From Animals" (Second Informational Supplement). Participants of the Campylobacter EQAS were additionally requested to identify the species of the Campylobacter spp. as either C. jejuni or C. coli.

2.4 Distribution

On the 18th October 2016, bacterial strains in agar stab cultures (*Salmonella* spp.) or charcoal swabs in transport media (Stuarts) (*Campylobacter* spp.) together with a welcome letter (App. 4a) were dispatched in double pack containers (class UN 6.2) to the participating laboratories. The shipment (UN3373, biological substances category B) was sent according to International Air Transport Association (IATA) regulations.

2.5 Procedure

Protocols and all relevant information were uploaded on the EURL-AR website (<u>http://www.eurl-ar.eu</u>), thereby EQAS participants could access necessary information at any time.

Participants were instructed to subculture charcoal swabs immediately, store the agar stabs at 4°C (dark) and the freeze-dried strains cool and dark until performance of AST. Information related to the handling of the test strains and reference strains (App. 4b, c, d, e) was made available. Participants receiving an ATCC reference strain were requested to save and maintain this strain for future proficiency tests.

The participants were instructed to apply the interpretative criteria listed in the protocol (App. 4). Instructions for interpretation of AST results

allowed for categorization of results as resistant or susceptible. Categorisations as 'intermediate' were not accepted.

The EURL-AR is aware that there are two different types of interpretative criteria of results, clinical breakpoints and epidemiological cut-off values. The terms 'susceptible', 'intermediate' and 'resistant' should be reserved for classifications made in relation to the therapeutic application of antimicrobial agents. When reporting data using epidemiological cutoff values, bacteria should be reported as 'wildtype' or 'non-wild-type' (Schwarz et al., 2010). Due to the different methods of AST used by the participants and also to simplify the interpretation of results, throughout this report, we will still maintain the terms susceptible and resistant, even in cases where we are referring to wild-type and non-wild-type strains.

As regards the method for performing the antimicrobial susceptibility testing, the protocol referred to Decision 2013/652/EU and instructed participants to perform a dilution method, i.e. microbroth dilution or agar dilution.

A mandatory part of the proficiency test was to detect ESC-producing strains and interpret results according to the most recent EFSA recommendations as described in the protocol.

Results from QC reference strains would consist of MIC values for the reference strains *E. coli* (ATCC 25922) and *C. jejuni* (ATCC 33560). The results were evaluated towards the quality control ranges according to the relevant guidelines; i.e. the CLSI documents VET01-S2 (2013) or M100S, 26th ed. (2016) (App. 5).

For the optional genotypic characterisation of the ESC-producing *Salmonella* test strains, participating laboratories were requested to report the genes conferring resistance to extended-spectrum beta lactam antimicrobials. The organizers, however, decided to include

none-ESC TEM-genes resulting in bla_{TEM-1} registered as an expected gene, also. The genes listed in the table in the protocol (App. 4b) were included in the test. Identification of additional genes not listed in the protocol was not evaluated by the database. The results were evaluated based on the actual genes and variants identified.

The participating laboratories were encouraged to use their own laboratory's method(s) for the genotypic characterisation. The expected results for this component of the EQAS were obtained by whole-genome-sequencing and subsequent analysis using the ResFinder 2.1 platform available at http://cge.cbs.dtu.dk/services/ResFinder/. The positive identification of genes was not verified elsewhere.

All participating laboratories were invited to enter the obtained results into an electronic record sheet at the EURL-AR web-based database through a secured individual login and password. The record sheet contained space for reporting the results obtained for the QC reference strains.

In addition, participants were encouraged to complete an evaluation form available at the EURL-AR database with the aim to improve future EQAS trials.

The database was finally closed and evaluations were made available to participants on the 20th December 2016. After this date, the participants were invited to login to retrieve an individual, database-generated report which contained an evaluation of the submitted results including possible deviations from the expected interpretations. Deviations in the interpretation as resistant or susceptible were categorised as 'incorrect', as were also deviations concerning confirmation of an isolate as extended spectrum beta-lactamase-(ESBL-), ampCor carbapenemase-producer.

3. Results

The participants were asked to report results, i.e. MIC values and the categorisation as resistant or susceptible. Only the categorisation was evaluated, whereas the MIC values were used as supplementary information.

3.1 Data omitted from the report

As mentioned in the introduction, the EURL-AR network established that data should be examined and possibly omitted from the general analysis if there are less than 75% correct results based on strain/antimicrobial combination (see Appendix 7a and 7b for an overview of correct/incorrect results). In the present EQAS this occurred in three cases which have been examined and consequently omitted from the analysis; 1) S11.5/cefoxitin (expected interpretation was 'susceptible', however, 29% (9 laboratories) found the strain resistant to cefoxitin. All but two of the deviating interpretations were based on MIC values two steps from the expected; 2) S11.7/ceftazidime interpretation (expected was 'resistant'. however, 45% (based on both panel 1 and panel 2) found the strain susceptible to ceftazidime. All of the deviating interpretations were based on MIC values one step from the expected; 3) C11.4/streptomycin (expected interpretation was 'susceptible', however, 90% of participants found the strain 'resistant' to streptomycin. The reported MIC-values varied from 4 and up to >16 (ECOFF is 4). Follow-up has been initiated to investigate the reason for this difference in obtained MIC-values.

3.2 Methods

The agar dilution method and MIC determination were evaluated together as they are both quantitative methods giving results corresponding to the MIC of the bacterial strain tested.

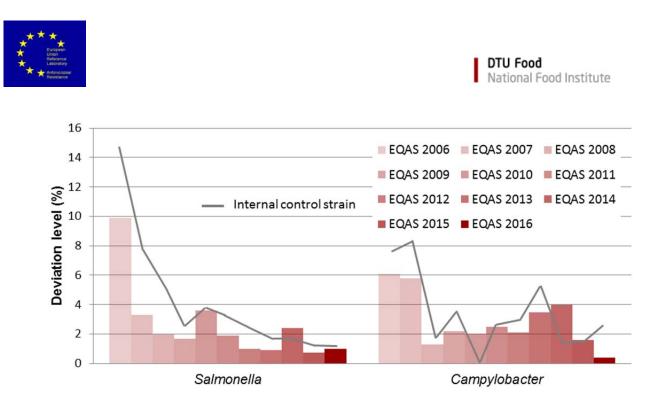
In the Salmonella as well as the Campylobacter

trial, 30 laboratories performed microbroth dilution and one performed agar dilution.

With the aim to conclude on the strain's presumptive ESBL, AmpC or carbapenemase phenotype, two panels of antimicrobials were included in the testing of the *Salmonella* strains. The test strains found resistant to cefotaxime, ceftazidime or meropenem on the first panel were additionally tested on the second panel according to the protocol indications.

3.3 Deviations, overall

The list of deviations is presented in Appendix 8a and 8b. Figure 2 shows the total percentage of deviations from the expected results of AST performed by participating laboratories. The internal control strains mainly followed the trend in deviation level of the different EQAS trials (Figure 2), only, for 2016 the *Campylobacter* internal control strain appears to have a high deviation level. The deviation levels in 2016 are acceptable for both the *Salmonella* and the *Campylobacter* trials.


3.3.1 Salmonella trial

For the Salmonella strains, 98.9% of the AST's were interpreted correctly. The number of AST's performed and the percentage of correct results for the individual strains in the EQAS, are listed in Table 1. Variations of obtained correct results ranged from 97.5-99.8% between the Salmonella strains. Table 2 illustrates the percentage of correct AST per antimicrobial by bacterial species. The level of correct AST was at 95.2% (tigecycline) or above, for all the Salmonella test strains.

ESC-producing Salmonella test strains

Confirmation of beta-lactamase production is a mandatory component of this EQAS.

According to the protocol, which was based on the EFSA recommendations, the confirmatory

Figure 2: A comparison between the EURL-AR EQAS's since 2006, showing the total percentage of deviations for antimicrobial susceptibility testing performed by participating laboratories.

test for ESC-production requires use of both cefotaxime (FOT) and ceftazidime (TAZ) alone and in combination with a β -lactamase inhibitor. The MIC value for either antimicrobial agent (FOT or TAZ) tested in combination with clavulanic acid should be compared to the corresponding MIC when tested alone. Synergy is indicated if a three dilution steps difference is observed between the two MIC values (i.e. if the FOT:CTX/CI or TAZ:TAZ/CI ratio ≥8) (CLSI M100S Table 2A; Enterobacteriaceae). Participants were instructed to test strains presenting resistance to cefotaxime (FOT), ceftazidime (TAZ or meropenem (MERO) on the second panel of antimicrobials.

The classification of the phenotypic results was based on the most recent EFSA recommendations indicating as indicated in the protocol (Appendix 4).

In this EQAS, all laboratories uploaded results for the strains exhibiting resistance to the cephalosporins tested.

The strains S-11.1 was a carbapenemase producer and the strains S-11.2, S-11.3, S-11.5, S-11.7 and S-11.8 were ESBL-producers.

In total, the categorization as ESBL-, AmpC- or carbapenemase-producer was correct in almost all cases; i.e. out of 248 reported results, one was incorrect. Laboratory #19 indicated in the comments that by accident panel 2 was not performed, i.e. no phenotypic results supported the deviating categorization of the ESBL-producer S-11.2 as an 'ESBL + AmpC'.

3.3.2 Campylobacter trial

For the *Campylobacter* strains, 99.6% of AST's were correctly tested. Table 1 presents that the variation in the obtained correct results ranged from 97.3-100% and Table 2 illustrates that the percentage of correct AST per antimicrobial were all above 99.2%.

The participants were requested to identify the *Campylobacter* species. All 31 laboratories delivered in total 248 results of which all were in accordance with the expected.

 Table 1. The number of AST performed and the percentage of correct results for each strain of Salmonella (panel 1 and panel 2) and Campylobacter.

EQAS	5 2016 – Salmoi	nella	EQAS 20	016 – Campylok	oacter	
Test strain	AST in total	% correct	Test strain	AST in total	% correct	
S-11.1	639	97.5	C-11.1 (<i>C. jejuni</i>)	186	100.0	
S-11.2	634	99.8	C-11.2 (<i>C. coli</i>)	186	100.0	
S-11.3	640	98.9	C-11.3 (<i>C. jejuni</i>)	186	100.0	
S-11.4	428	98.8	C-11.4 (<i>C. coli</i>)	155	100.0	
S-11.5	609	98.5	C-11.5 (<i>C. jejuni</i>)	186	97.3	
S-11.6	428	99.8	C-11.6 (<i>C. coli</i>)	186	99.5	
S-11.7	577	99.7	C-11.7 (<i>C. coli</i>)	186	100.0	
S-11.8	641	99.2	C-11.8 (<i>C. jejuni</i>)	186	100.0	

Table 2: Percentage of correct antimicrobial susceptibility tests per antimicrobial by microorganism.

Antimicrobial	Salmonella	Campylobacter
Ampicillin	100.0	-
Azithromycin	100.0	-
Cefotaxime	100.0	-
Cefoxitin	96.8	-
Ceftazidime	96.2	-
Chloramphenicol	99.6	-
Ciprofloxacin	100.0	99.2
Colistin	99.6	-
Ertapenem	98.9	-
Erythromycin	-	100.0
Gentamicin	99.6	99.6
Imipenem	96.7	-
Meropenem	100.0	-
Nalidixic acid	100.0	99.6
Streptomycin	-	99.5
Sulphonamides	98.8	-
Temocillin	100.0	-
Tetracycline	100.0	99.6
Tigecycline	95.2	-
Trimethoprim	99.6	-

3.4 Deviations by laboratory

Figure 3 and 4 illustrate the percentage of deviations for each participating laboratory. The laboratories are ranked according to their performance determined by the percentage of deviating results in the antimicrobial susceptibility tests.

3.4.1 Salmonella trial

All 31 participating laboratories obtained a result below the acceptance limit at 5% deviations for the *Salmonella* strains. The maximum percentage of deviations was at 4.6%, presenting a very good result across the EURL-AR network.

3.4.2 Campylobacter trial

In the *Campylobacter* trial, most laboratories performed very well. Applying the 5% acceptance threshold, 30 of 31 participating laboratories performed acceptably, with 28 laboratories having no deviations (Figure 4).

One laboratory presented a deviation level above the 5% acceptance level (#36). This laboratory was, however not regarded as an outlier.

3.5 Deviations by reference strains

In the following section, deviations are defined as results of antimicrobial susceptibility tests on the reference strain that are outside the quality control (QC) acceptance intervals (App. 5).

Obtained values from the participants' testing of the QC strains are listed in Appendix 6a and 6b, and in Table 4 and 5. For the *Salmonella* and *Campylobacter* trial, 31 and 29 laboratories, respectively, uploaded data from QC-testing on the relevant reference strain.

Table 3: Overview of ESBL-, AmpC- and carbapenemase-producing *Salmonella* test strains and proportion of laboratories that obtained the expected result; number and percentages of laboratories which correctly detected and confirmed the ESBL-, AmpC- and carbapenemase-producing *Salmonella* strains.

Fields shaded in grey with numbers in *italics* indicate an unexpected result.

	Strain code	S-11.1	S-11.2	S-11.3	S-11.5	S-11.7	S-11.8
ESC-	genes harboured in the train	<i>Ыа</i> _{ТЕМ-1} Ыа _{ОХА-48}	bla _{SHV-2}	<i>Ыа</i> _{ТЕМ-1В} <i>Ыа</i> _{СТХ-М-9}	<i>Ыа</i> _{СТХ-М-65}	bla _{CTX-M-8}	<i>bla</i> _{СТХ-М-15} <i>bla</i> _{ОХА-1/ОХА-30}
,	AmpC- and carbapenemase- ing strain – expected results	carba- penemase	ESBL	ESBL	ESBL	ESBL	ESBL
	Confirmed ESBL-producer	-	30/31 (97%)	31/31 (100%)	31/31 (100%)	31/31 (100%)	31/31 (100%)
ults	Confirmed ESBL + AmpC- producer	-	1/31 (3%)	-	-	-	-
resi	Confirmed AmpC-producer	-	-	-	-	-	-
ined	Confirmed carbapenemase- producer	31/31 (100%)	-	-	-	-	-
Obtair	Confirmed unusual phenotype	-	-	-	-	-	-
	Not ESBL-, AmpC- or carbapenemase-producing	-	-	-	-	-	-

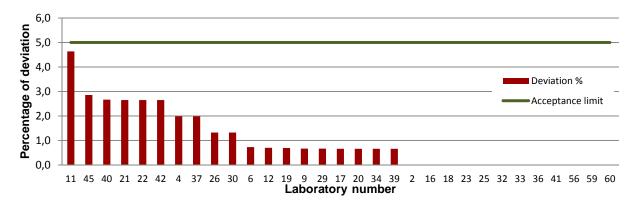
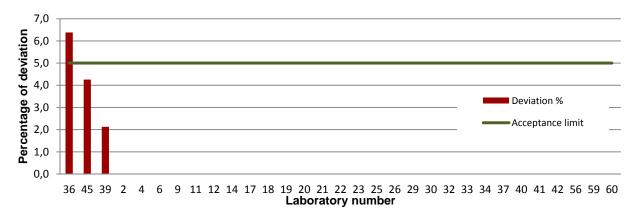
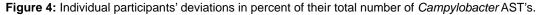




Figure 3: Individual participants' deviations in percent of their total number of Salmonella AST's.

Table 4 Obtained values for AST of *E. coli* ATCC 25922. AMP; ampicillin, FEP; cefepime FOT; cefotaxime, FOX; cefoxitin, TAZ; ceftazidime, CHL; chloramphenicol, CIP; ciprofloxacin, COL; colistin, ERT: ertapenem, GEN; gentamicin, IMI; imipenem, MER; meropenem, NAL; nalidixic acid, SMX; sulphonamides, TET; tetracycline, TGC; tigecycline, TMP; trimethoprim.

MIC de	termination E	E. coli ATCC 25	5922
	Proportion	Obtained val steps (mi	
Antimicrobial	outside QC range	Below lower QC limit	Above upper QC limit
Panel 1, AMP	1/31 (3%)	-	1 step
Panel 1, FOT	1/31 (3%)	-	1 step
Panel 1, TAZ	0/31 (0%)	-	-
Panel 1, CHL	0/31 (0%)	-	-
Panel 1, CIP	0/31 (0%)	-	-
Panel 1, COL	0/31 (0%)	-	-
Panel 1, GEN	1/31 (3%)	1 step	-
Panel 1, MER	0/31 (0%)	-	-
Panel 1, NAL	0/31 (0%)	-	-
Panel 1, SMX	2/30 (7%)	-	1 step
Panel 1, TET	0/31 (0%)	-	-
Panel 1, TGC	1/31 (3%)	-	1 step
Panel 1, TMP	3/31 (10%)	1 step	-
Panel 2, FEP	0/29 (0%)	-	-
Panel 2, FOT	1/28 (4%)	-	1 step
Panel 2, FOX	0/29 (0%)	-	-
Panel 2, TAZ	0/29 (0%)	-	-
Panel 2, ERT	0/29 (0%)	-	-
Panel 2, IMI	0/29 (0%)	-	-
Panel 2, MER	0/29 (0%)	-	-

Table 5 Obtained values for AST of *C. jejuni* ATCC 33560. CIP; ciprofloxacin, ERY; erythromycin, GEN; gentamicin, NAL; nalidixic acid, TET; tetracycline.

MIC de	termination	C. jejuni ATCO	33560					
Antimicrobial	Proportion outside QC	Obtained values in MIC steps (min/max)						
Antimicrobiai	range	Below lower QC limit	Above upper QC limit					
CIP	1/29 (3%)	-	1 step					
ERY	0/29 (0%)	-	-					
GEN	2/25 (8%)	2 steps	-					
NAL	1/28 (4%)	1 step	-					
TET	2/28 (7%)	-	1 step					

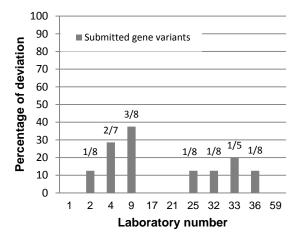

Appendix 6a presents the results for the reference strain *E. coli* ATCC 25922. Eight laboratories produced in all ten values outside the QC-limit. Table 4 illustrates the obtained results which are fully presented in Appendix 6a.

Table 5 presents the proportion of the laboratories submitting AST-results for the *C. jejuni* reference strain ATCC 33560 with results below or above the QC interval. Six deviations were seen from five different laboratories.

3.6 Genotypic characterisation

For the optional genotypic characterisation of the ESC-producing *Salmonella* test strains, 11 laboratories participated. In Appendix 9, information is collected on detected genes, genes which were tested but not detected, primers used, and references for the method used. Three laboratories performed whole genome sequencing of the ESC-producing *Salmonella* whereas the remaining eight laboratories indicated the use of various types of conventional PCR to identify the relevant genes.

Table 6 indicate the obtained results, both on gene and variant level. Moreover, Figure 5 indicates that ten discordant results related to

Figure 5: Individual participants' deviations in percent of their total number of results from the detected genes. In addition, laboratory #4 tested but did not detect *bla*_{OXA-48} for strain S-11.1.

the gene variants were submitted by seven different laboratories. These were related to

variants of the bla_{SHV} and the $bla_{\text{CTX-M}}$ -genes.

Table 6: Results from the participation of nine laboratories in the optional genotypic characterisation component of the EQAS

Strain code	Expected gene	Proportion of correct results (gene level)	Proportion of correct results (variant level)	Unexpected genes/variants identified
S-11.1	<i>Ыа</i> _{ТЕМ-1/1В}	8/8 (100%)	7/7 (100%)	- bla _{OXA-48} tested but not detected
5-11.1	bla _{OXA-48}	10/11 (91%)	10/11 (91%)	
S-11.2	<i>bla</i> _{SHV-2/2a}	11/11 (100%)	7/10 (70%)	bla _{SHV-12}
0.44.2	<i>Ыа</i> тем-1/1В	9/9 (100%)	8/8 (100%)	
S-11.3	<i>bla</i> CTX-M-9	11/11 (100%)	11/11 (100%)	_
S-11.5	<i>Ыа</i> стх-м-65	11/11 (100%)	6/10 (60%)	bla _{CTX-M-9}
5-11.5	DIACTX-M-65	11/11 (10076)	0/10 (00 %)	<i>bla</i> _{CTX-M-14}
S-11.7	Ыа _{СТХ-М-8}	10/10 (100%)	10/10 (100%)	
S-11.8	bla _{CTX-M-3}	10/10 (100%)	7/10 (70%)	bla _{CTX-M-1}
5-11.8	bla _{OXA-1} or bla _{OXA-30}	6/6 (100%)	6/6 (100%)	<i>bla</i> стх-м-15

4. Discussion

In 2016, the number of EQAS participants was the same as in 2015, allowing the comparison between the two EQAS periods.

As also specified in the EU regulation 2013/652/EU, all participants in the present EQAS performed AST by dilution methods, primarily as microbroth determination.

This 2016 proficiency test is the third possibility of testing *Salmonella* and *Campylobacter* strains with the panels designed to follow the requirements of Decision 2013/652/EU. This allows for the possibility that the experience obtained since the introduction of the legislation and the focus it has created on AST in the laboratories has had an impact on the generally satisfactory results obtained at the present EQAS.

4.1 Salmonella trial

Overall, the percentage of correct antimicrobial susceptibility test results of *Salmonella* was 98.9%. All (n=31) participants obtained satisfactory results according to the level of acceptance (<5% deviation). When comparing

between the antimicrobials, the testing of tigecycline appeared to cause most problems (95.2% correct results).

As indicated in Figure 2, the overall quality of the results in the 2016-EQAS would appear to be at the same high level as in 2015, also, the measure when comparing results obtained from testing the internal control strain indicates a steady and very good quality of results.

As indicated by Figure 3, all laboratories exhibited very good results with deviation levels below 5%. Follow-up has therefore not been necessary based on these results, and none of the laboratories were defined as outliers.

For the *E. coli* reference strain, the obtained results were in general in agreement with the CLSI recommendations. Within the submitted results, trimethoprim appeared to have most results outside the QC-range, and for cefepime one result was two steps above the QC-range.

Follow up on previous EQAS results is not relevant as no laboratories had deviation levels for the AST results above the acceptance limit

in EQAS 2015.

ESC-producing Salmonella test strains

The detection of ESC-producing microorganisms remains to be important and is a mandatory part of this EQAS.

Of the six *Salmonella* test strains relevant for this component of the EQAS (S-11.1, S-11.2, S-11.3, S-11.5, S-11.7, and S-11.8), five were ESBL-phenotypes and one was a carbapenemase phenotype. The testing and interpretation of results for these strains appeared not to cause difficulties for any of the participating laboratories.

Of the 31 laboratories which tested Salmonella, one laboratory (#19) submitted one incorrect AmpC-, ESBL-, carbapenemase categorization (App. 8a). This deviation was not based on phenotypic test results as the laboratory indicated in the comments that by accident testing using panel 2 was not performed.

Even if no acceptance limit has been defined for this component of the EQAS, the overall result that 99.6% of the obtained results were as expected, is satisfactory.

4.2 Campylobacter trial

For the *Campylobacter* component of this year's EQAS, 31 laboratories submitted results leading to an overall percentage of correct AST results at 99.6%. The performance varied from no deviations up to 6.4% deviations, with 30 laboratories performing satisfactorily according to the established acceptance range.

It appears that there has been a decrease in the level of deviations for the overall AST result, however, deviations were observed in the results obtained from testing the internal control strain.

One laboratory (#36) obtained deviation levels above 5%. For this laboratory, however, the values obtained for the QC-strain did not indicate methodical issues to be the reason for the obtained deviations. The EURL-AR has been in contact with this laboratory to identify the possible cause of this unsatisfactory performance and to improve the quality of results. The high deviation level was caused by three deviations on the same strain. This had been tested four times and for four of the antimicrobials, MIC-values indicating both susceptible and resistant were obtained. Investigations are ongoing to identify the issue that might have caused this.

All participating laboratories except two (#23 and #34) uploaded data from tests performed on the *C. jejuni* reference strain and the proportion of results within the QC intervals was 95.7%. Five of the six values outside the QC intervals were one step below or above the QC-limits, and one was two dilution steps above the QC-limits. The laboratories obtaining these values should follow-up on these high/low values, and it is suggested that these values are monitored over time to ensure that the tests render a reliable result for the particular antimicrobial.

Laboratory #36 which was regarded as an outlier for the 2015 *Campylobacter* EQAS with deviation levels at 21.3% increased their performance in the 2016-iteration and due to three deviation on the same strain, they obtained a deviation level at 6.4%.

4.3 Genotypic characterisation

The focus on genotypic characterization of microorganisms is increasing in the EU and worldwide. In EU, communication has been ongoing to improve laboratory detection and confirmation of ESBL- and AmpC-producing *Enterobacteriaceae*.

Furthermore, the agenda now is focusing at the implementation of detection of carbapenemase resistant organisms and the importance of determining the identity of the genes responsible for the carbapenemase production by molecular methods.

The optional genotypic characterisation offered

as a supplementary part of this EQAS should therefore be seen as an important possibility for the NRL-AR's to introduce this method in the laboratory and thereby be at the forefront when the method proposals are adopted. This year, eleven laboratories participated in this optional EQAS component and even though no

5. Conclusions

The goal of the EURL-AR EQAS is to have all participating NRLs performing antimicrobial susceptibility testing of *Salmonella* and *Campylobacter* with a deviation level below 5%. Again this year, this goal was reached for *Salmonella* and seems within reach for *Campylobacter*.

Compared to the EQAS 2015, the performance of the NRL's in 2016 appears to be at the same high level for *Salmonella* AST's (98.9% in 2016 and 99.3% in 2015) (Figure 2). Regarding *Campylobacter* AST's, the performance of the NRL's also appear to have improved from 2015 to 2016, with a change in deviation level from 1.6% (2015) to 0.4% (2016). For the *Campylobacter* AST, one laboratory (#36) will continue to follow-up and perform re-testing internally to troubleshoot and identify the issue that caused the deviations. The test covering the identification of the phenotype of *Salmonella* test strains producing beta-lactamases of the ESBL-, AmpC, and carbapenemase-type rendered good results (99.5% correct categorizations). This is a priority area within the EURL-AR activities, and it is encouraging to see acceptable results in identifying and categorizing these strains.

Eleven NRLs participated in the EQAS component consisting of genotypic testing of ESBL-, AmpC- and carbapenemase-producing *Enterobacteriaceae* presenting satisfactory results.

Finally, the EURL-AR is open to suggestions to improve future EQAS trials and invites the entire network to contribute with ideas for training courses and specific focus areas to expand the network's knowledge in antimicrobial resistance.

6. References

European Commission, 2013/652/EU: Commission Implementing Decision of 12 November 2013 on the monitoring and reporting of antimicrobial resistance in zoonotic and commensal bacteria. **Schwarz** S, Silley P, Simjee S, Woodford N, van DE, Johnson AP & Gaastra W. (2010) Editorial: assessing the antimicrobial susceptibility of bacteria obtained from animals. J Antimicrob Chemother 65: 601-604.

acceptance limit has been defined, the 94% correct results (N=167) appears to be a satisfactory result. As for the unexpected genes/variants identified (see Table 6), the indicated *bla*-genes belong to the same CTX-M-group as the expected variant.

EURL-AR EQAS pre-notification

EQAS 2016 FOR SALMONELLA, CAMPYLOBACTER AND OPTIONAL GENOTYPIC CHARACTERISATION

The EURL-AR announces the launch of another EQAS, thus providing the opportunity for proficiency testing which is considered an essential tool for the generation of reliable laboratory results of consistently good quality.

This EQAS consists of antimicrobial susceptibility testing of eight *Salmonella* isolates and eight *Campylobacter* isolates. Additionally, quality control (QC) strains *E. coli* ATCC 25922 (CCM 3954) and *C. jejuni* ATCC 33560 (CCM 6214) will be distributed to new participants.

This EQAS is specifically for NRL's on antimicrobial resistance. Laboratories designated to be NRL-AR do not need to sign up to participate but are automatically regarded as participants. Should there be changes in relation to your level of participation in previous years, please contact the EQAS-Coordinator. The EURL-AR will be able to cover the expenses for one parcel per EU Member State. Therefore, countries with more than one laboratory registered on the EURL-AR contact-list will be contacted directly to confirm which laboratory will be included for participation free of charge.

The invitation to participate in the proficiency test is extended to additional participants from official NRLs and participants from laboratories which are involved in the network but are not designated NRLs (cost for participation will be 100 EURO).

TO AVOID DELAY IN SHIPPING THE ISOLATES TO YOUR LABORATORY

The content of the parcel is "UN3373, Biological Substance Category B": Eight *Salmonella* strains, eight *Campylobacter* and for new participants also the QC strains mentioned above. Please provide the EQAS coordinator with documents or other information that can simplify customs procedures (e.g. specific text that should be written on the proforma invoice). To avoid delays, we kindly ask you to send this information already at this stage.

TIMELINE FOR RESULTS TO BE RETURNED TO THE NATIONAL FOOD INSTITUTE

<u>Shipment of isolates and protocol</u>: The isolates will be shipped in October 2016. The protocol for this proficiency test will be available for download from the website (www.eurl-ar.eu).

<u>Submission of results</u>: Results must be submitted to the National Food Institute **no later than December 9th 2016** via the password-protected website.

DTU Food National Food Institute

Upon reaching the deadline, each participating laboratory is kindly asked to enter the passwordprotected website once again to download an automatically generated evaluation report.

<u>EQAS report</u>: A report summarising and comparing results from all participants will be issued. In the report, laboratories will be presented coded, which ensures full anonymity. The EURL-AR and the EU Commission, only, will have access to un-coded results. The report will be publicly available.

<u>Next EQAS</u>: The next EURL-AR EQAS that we will send out to the EURL-AR network focuses at antimicrobial susceptibility testing of *E. coli*, enterococci and staphylococci and is expected to be sent to participating laboratories in June 2017.

Please contact me if you have comments or questions regarding the EQAS

Sincerely,

Susanne Karlsmose Pedersen (suska@food.dtu.dk)

EQAS-Coordinator

Participant list

Salmonella	Campylobacter	Genotypic characterisation	Institute	Country
Х	Х	х	Austrian Agency for Health and Food Safety	Austria
Х	х	х	Institute of Public Health	Belgium
Х	х	-	National Diagnostic and Research Veterinary Institute	Bulgaria
Х	х	-	Croatian Veterinary Institut	Croatia
Х	х	-	Veterinary Services	Cyprus
Х	х	х	State Veterinary Institute Praha	Czech Republic
Х*	-	х	DTU National Food Institute	Denmark
Х	х	-	Danish Veterinary and Food Administration, DVFA	Denmark
Х	х	-	Estonian Veterinary and Food Laboratory	Estonia
Х	х	-	Finnish Food Safety Authority EVIRA	Finland
Х	-	-	Agence nationale de sécurité sanitaire ANSES - Fougères LERMVD	France
-	х	-	Agence nationale de sécurité sanitaire ANSES - Ploufragan - LERAP	France
Х	х	х	Federal Institute for Risk Assessment	Germany
Х	х	-	Veterinary Laboratory of Chalkis	Greece
Х	х	-	Central Agricultural Office Veterinary Diagnostic Directorate	Hungary
Х	x	-	University of Iceland	Iceland
Х	х	-	Central Veterinary Research Laboratory	Ireland
Х	х	х	Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana	Italy
Х	х	-	Institute of Food Safety, Animal Health and Enviroment "BIOR"	Latvia
Х	х	-	National Food and Veterinary Risk Assessment Institute	Lithuania
Х	х	х	Laboratoire national de Santé	Luxembourg
Х	х	-	Public Health Laboratory	Malta
Х	х	х	Central Veterinary Institute of Wageningen UR	Netherlands
Х*	X*	-	Food and Consumer Product Safety Authority (VWA)	Netherlands
Х	x	x	Veterinærinstituttet	Norway
Х	х	-	National Veterinary Research Institute	Poland
Х	х	-	Laboratorio National de Investigacáo Veterinaria	Portugal
Х	х	-	Institute for Hygiene and Veterinary Public Health	Romania
Х*	X*	-	Institute for Diagnosis and Animal Health	Romania
Х	х	-	State Veterinary and Food Institute (SVFI)	Slovakia
Х	Х	-	National Veterinary Institute	Slovenia
Х*	-	-	Centro Nacional de Alimentación (AECOSAN)	Spain
Х	Х	Х	Laboratorio Central de Sanidad, Animal de Algete	Spain
Х*	Х*	-	VISAVET Health Surveillance Center, Complutense University	Spain
Х	Х	Х	National Veterinary Institute, SVA	Sweden
х	х	-	Vetsuisse Faculty Bern, Institute of Veterinary Bacteriology	Switzerland
X*	X*	-	Public Health England	United Kingdom
Х	х	-	Animal Plant Health Agency	United Kingdom

Designated NRL-AR by the compentent authority of the member state Non-NRL-AR enrolled by the EURL-AR Not a Member State of the EU

* Submitted results were not included in the current report (allows for one dataset per country, only)

	Ampicilliı AMP	า	Azithrom AZI	iycin	Cefepime FEP	Cefotaxir FOT		Cefotaxime/clav F/C	F:F/C ratio	Cefoxitin FOX		Ceftazidi TAZ	me	Ceftazidime/clav T/C	T:T/C ratio	Chloram CHL	phenicol	Ciproflox CIP		Colistin COL		Ertapene	m
EURL S-11.1	>64	RESIST	64	RESIST	4	4	RESIST	4/4	<8	8	SUSC	2	SUSC	1/4	<8	4	SUSC	>8	RESIST	<= 1	SUSC	2	RESIST
EURL S-11.2	>64	RESIST	8	SUSC	2	8	RESIST	0.06/4	>=8	4	SUSC	8	RESIST	0.25/4	>=8	>128	RESIST	0.03	SUSC	2	SUSC	0.015	SUSC
EURL S-11.3	>64	RESIST	8	SUSC	2	8	RESIST	0.06/4	>=8	4	SUSC	1	SUSC	0.25/4	<8	8	SUSC	0.25	RESIST	<= 1	SUSC	0.015	SUSC
EURL S-11.4	>64	RESIST	8	SUSC		<=0.25	SUSC			2	SUSC	1	SUSC			4	SUSC	0.06	SUSC	16	RESIST		
EURL S-11.5	>64	RESIST	16	SUSC	4	>64	RESIST	0.25/4	>=8	8	SUSC	8	RESIST	0.5/4	>=8	>128	RESIST	0.5	RESIST	<= 1	SUSC	0.015	SUSC
EURL S-11.6	<= 1	SUSC	8	SUSC		<=0.25	SUSC			2	SUSC	<0.5	SUSC			8	SUSC	0.03	SUSC	<= 1	SUSC		
EURL S-11.7	>64	RESIST	8	SUSC	>32	>64	RESIST	0.12/4	>=8	8	SUSC	4	RESIST	0.5/4	>=8	4	SUSC	0.03	SUSC	<= 1	SUSC	0.015	SUSC
EURL S-11.8	>64	RESIST	64	RESIST	32	>64	RESIST	0.25/4	>=8	4	SUSC	16	RESIST	0.25/4	>=8	>128	RESIST	1	RESIST	<= 1	SUSC	0.03	SUSC

Reference values (MIC-value and interpretation) - Salmonella

	Gentamicin GEN		IMIPENE IMI		MEROPE MER		Nalidixic : NAL		Sulfamethoxazole SMX		TEMOCII TRM		Tetracycl TETRA		TIGECYCLINE TGC		Trimetho TMP		ESBL-category	Relevant genes
EURL S-11.1	32	RESIST	4	RESIST	2	RESIST	>128	RESIST	>1024	RESIST	>128	RESIST	>64	RESIST	1	SUSC	>32	RESIST	carbapenemase-producing	OXA-48 TEM-1
EURL S-11.2	<= 0.25	SUSC	0.25	SUSC	<= 0.03	SUSC	2	SUSC	32	SUSC	8	SUSC	<= 2	SUSC	0.5	SUSC	<= 0.25	SUSC	ESBL-producing	SHV-2
EURL S-11.3	<= 0.25	SUSC	0.12	SUSC	<= 0.03	SUSC	>128	RESIST	32	SUSC	4	SUSC	64	RESIST	0.5	SUSC	<= 0.25	SUSC	ESBL-producing	CTX M-9 TEM-1B
EURL S-11.4	<= 0.25	SUSC			0.06	SUSC	8	SUSC	>1024	RESIST			>64	RESIST	2	RESIST	>32	RESIST		
EURL S-11.5	8	RESIST	0.12	SUSC	<= 0.03	SUSC	>128	RESIST	>1024	RESIST	16	SUSC	>64	RESIST	2	RESIST	>32	RESIST	ESBL-producing	CTX M-65
EURL S-11.6	<= 0.25	SUSC			<= 0.03	SUSC	4	SUSC	32	SUSC			<= 2	SUSC	0.5	SUSC	<= 0.25	SUSC		
EURL S-11.7	0.5	SUSC	0.25	SUSC	0.06	SUSC	2	SUSC	>1024	RESIST	8	SUSC	>64	RESIST	1	SUSC	0.5	SUSC	ESBL-producing	CTX M-8
EURL S-11.8	32	RESIST	0.25	SUSC	0.06	SUSC	>128	RESIST	>1024	RESIST	16	SUSC	>64	RESIST	1	SUSC	>32	RESIST	ESBL-producing	CTX M-3 + OXA-1

Reference values (MIC-value and interpretation) - Campylobacter

Species		Ciprofloxac CIP	in	Erythromyc ERY	cin	Gentamicin GEN	l	Nalidixic ao NAL	cid	Streptomyo STR	cin	Tetracycline TET	
C. jejuni	EURL C-11.1	<= 0.12	SUSC	<= 1	SUSC	0.25	SUSC	4	SUSC	1	SUSC	1	SUSC
C. coli	C. coli EURL C-11.2		RESIST	>128	RESIST	0.5	SUSC	64	RESIST	2	SUSC	>64	RESIST
C. jejuni	EURL C-11.3	8	RESIST	<= 1	SUSC	0.5	SUSC	>64	RESIST	2	SUSC	64	RESIST
C. coli	EURL C-11.4	8	RESIST	<= 1	SUSC	1	SUSC	>64	RESIST	2	SUSC	16	RESIST
C. jejuni	EURL C-11.5	4	RESIST	<= 1	SUSC	<= 0.12	SUSC	64	RESIST	0.5	SUSC	32	RESIST
C. coli	EURL C-11.6	0.25	SUSC	<= 1	SUSC	1	SUSC	8	SUSC	>16	RESIST	1	SUSC
C. coli	EURL C-11.7	>16	RESIST	2	SUSC	1	SUSC	>64	RESIST	4	SUSC	>64	RESIST
<i>C. jejuni</i> EURL C-11.8		<= 0.12	SUSC	<= 1	SUSC	0.25	SUSC	8	SUSC	1	SUSC	64	RESIST

Resistant

Appendix 4a, page 1 of 1

G00-06-001/01.12.2014 **EURL-AR External Quality Assurance System 2016** - Salmonella, Campylobacter and optional genotypic characterisation

Id: «Lab_no_» «Name» «Institute__» «Country»

Kgs. Lyngby, October 2016

Dear «Name»,

Please find enclosed the bacterial strains for the EURL-AR EQAS 2016. Upon arrival to your laboratory, the strains should be stored dark and at 4°C for stabs, and dark and cool for lyophilized strains. Charcoal swabs must be subcultured straight away.

On the EURL-AR-website (<u>www.eurl-ar.eu</u>) the following documents relevant for the EURL-AR EQAS are available:

- Protocol for Salmonella and Campylobacter including test forms
- Instructions for Opening and Reviving Lyophilised Cultures
- Subculture and Maintenance of Quality Control Strains

We ask you to examine the eight *Salmonella* and the eight *Campylobacter* strains that we send to you by performing antimicrobial susceptibility testing. The ESBL-producing *Salmonella* strains should be characterised genotypically (optional) according to the description in the protocol. In the protocol you can find detailed description of the procedures to follow. Additionally, you can find a description of the procedure to enter your results into the interactive web database. For accessing the database, you need this username and password.

Your username: «Username»

Your password: «Password»

Please keep this document Your username and password will not appear in other documents

Results should be submitted to the database no later than **December 9th 2016**.

Please acknowledge receipt of this parcel immediately upon arrival (to <u>suska@food.dtu.dk</u>). Do not hesitate to contact us for further information.

Yours sincerely,

Susanne Karlsmose Pedersen **EQAS-Coordinator**

Technical University of Denmark, National Food Institute, Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby, Denmark Ph: +45 3588 6601, e-mail: suska@food.dtu.dk

DTU Food National Food Institute

PROTOCOL

For antimicrobial susceptibility testing of *Salmonella, Campylobacter* and optional genotypic characterisation of AmpC-, ESBL- and carbapenemase-producing test strains

1	INTRODUCTION	.1
2	OBJECTIVES	.2
3	OUTLINE OF THE SALM/CAMP EQAS 2016	.2
3.1	Shipping, receipt and storage of strains2	
3.2	QC reference strains2	
3.4	Antimicrobial susceptibility testing	
3.5	Optional genotypic characterisation5	
4	REPORTING OF RESULTS AND EVALUATION	.5
5	HOW TO ENTER RESULTS IN THE INTERACTIVE DATABASE	.6
APP	ENDIX	. 8

1 INTRODUCTION

The organisation and implementation of an External Quality Assurance System (EQAS) on antimicrobial susceptibility testing (AST) of *Salmonella* and *Campylobacter* is among the tasks of the EU Reference Laboratory for Antimicrobial Resistance (EURL-AR). The *Salmonella/Campylobacter* EQAS 2016 will include AST of eight *Salmonella* and *Campylobacter* strains and AST of reference strains *E. coli* ATCC 25922 (CCM 3954) and *C. jejuni* ATCC 33560 (CCM 6214).

The above-mentioned reference strains are included in the parcel only for new participants of the EQAS who did not receive them previously. The reference strains are original CERTIFIED cultures provided free of charge, and should be used for future internal quality control for antimicrobial susceptibility testing in your laboratory. The reference strains will not be included in the years to come. Therefore, please take proper care of these strains. Handle and maintain them as suggested in

DTU Food National Food Institute

the manual 'Subculture and Maintenance of QC Strains' available on the EURL-AR website (see <u>www.eurl-ar.eu</u>).

Various aspects of the proficiency test scheme may from time to time be subcontracted. When subcontracting occurs it is placed with a competent subcontractor and the National Food Institute is responsible to the scheme participants for the subcontractor's work.

2 OBJECTIVES

This EQAS aims to support laboratories to assess and, if necessary, to improve the quality of results obtained by AST of pathogens of food- and animal-origin, with special regard to *Salmonella* and *Campylobacter*. Further objectives are to evaluate and improve the comparability of surveillance data on antimicrobial susceptibility of *Salmonella* and *Campylobacter* reported to EFSA by different laboratories.

3 OUTLINE OF THE SALM/CAMP EQAS 2016

3.1 Shipping, receipt and storage of strains

In October 2016, the National Reference Laboratories for Antimicrobial Resistance (NRL-AR) will receive a parcel containing eight *Salmonella* and *Campylobacter* strains from the National Food Institute. This parcel will also contain reference strains, but only for participants who did not receive them previously. All strains belong to UN3373, Biological substance, category B. Extended spectrum beta-lactamase (ESBL)-producing strains as well as carbapenemase producing strains are included in the selected material and are part of the optional EQAS-item, consisting of characterization of genes conferring ESBL- or carbapenemase production.

The reference strains are shipped lyophilised, the *Campylobacter* test strains are shipped as a charcoal swabs and the *Salmonella* test strains are stab cultures. On arrival, the stab cultures and the charcoal swabs must be subcultured, and all cultures should be adequately stored until testing. A suggested procedure for reconstitution of the lyophilised reference strains is presented below.

3.2 QC reference strains

For a suggested procedure for reconstitution of the lyophilised, please refer to the document 'Instructions for opening and reviving lyophilised cultures' on the EURL-AR-website (see <u>www.eurl-ar.eu</u>).

Note that, for the testing of the *E. coli* ATCC25922 reference strain, the two compounds, sulfamethoxazole and sulfisoxazole, are regarded as comparable, i.e. the obtained MIC-value from the testing of sulfamethoxazole will be evaluated against the acceptance range listed in CLSI M100 for sulfisoxazole.

DTU Food National Food Institute

3.4 Antimicrobial susceptibility testing

The strains should be tested for susceptibility to the antimicrobials listed in Tables 1, 2 and 3, using the method implemented in your laboratory for performing monitoring for EFSA and applying the interpretative criteria listed below.

Participants should perform minimum inhibitory concentration (MIC) determination using the methods stated in the EC regulation EC 652/2013. For interpretation of the results, use the cut-off values listed in Tables 1, 2 and 3 (except where indicated) represent the current epidemiological cut-off values developed by EUCAST (www.eucast.org), and allow categorisation of bacterial isolates into two categories; resistant or susceptible. A categorisation as intermediate is not accepted.

As the current regulation and recommendations focus on MIC testing only, results obtained by disk diffusion cannot be submitted.

3.4.1 Salmonella

The interpretative criteria that should be applied for categorizing the *Salmonella* test strain as resistant or susceptible are those listed in Tables 1 and 2.

Antimicrobial	MIC (µg/mL) (R>)
Ampicillin (AMP)	8
Azithromycin (AZI)	16*
Cefotaxime (FOT)	0.5
Ceftazidime (TAZ)	2
Chloramphenicol (CHL)	16
Ciprofloxacin (CIP)	0.06
Colistin (COL)	2
Gentamicin (GEN)	2
Meropenem (MERO)	0.125
Nalidixic acid (NAL)	16
Sulfonamides (SMX)	256**

Table 1: Antimicrobials recommended for AST of *Salmonella* spp. and interpretative criteria according to table 1 in EC regulation 652/2013

Trimethoprim (TMP) * Tentative value

Tetracycline (TET)

Tigecycline (TGC)

** CLSI M100 Table 2A

*** Data from EUCAST is available for *S*. Enteritidis, *S*. Typhimurium, *S*. Typhi and *S*. Paratyphi (for the purpose of this proficiency test, the ECOFF at 1 is applied)

<u>8</u> 1***

2

DTU Food

National Food Institute

Table 2: Antimicrobials recommended for additional AST of *Salmonella* spp. resistant to cefotaxime, ceftazidime or meropenem and interpretative criteria according to table 4 in EC regulation 652/2013

Antimicrobial	MIC (µg/mL) (R>)		
Cefepime, FEP	Not available*		
Cefotaxime, FOT	0.5		
Cefotaxime + clavulanic acid (F/C)	Not applicable		
Cefoxitin, FOX	8		
Ceftazidime, TAZ	2		
Ceftazidime+ clavulanic acid (T/C)	Not applicable		
Ertapenem, ETP	0.06		
Imipenem, IMI	1		
Meropenem, MERO	0.125		
Temocillin, TRM	32**		

* Participants are requested to upload the MIC value obtained without selecting an interpretation

** Tentative value

Plasmid-mediated quinolone resistance

When performing antimicrobial susceptibility testing of the *Salmonella* test strains, the interpretative criteria listed in Table 1 for results obtained by MIC-determination should allow detection of plasmid-mediated quinolone resistant test strains.

Beta-lactam- and carbapenem resistance

Confirmatory tests for ESBL production are mandatory on all strains resistant to cefotaxime (FOT), ceftazidime (TAZ) and/or meropenem and should be performed by testing the second panel of antimicrobials (Table 2 in this document corresponding to Table 4 in Commission Implementing Decision 2013/652/EU).

Confirmatory test for AmpC-, ESBL- and carbapenemase production requires use of both cefotaxime (FOT) and ceftazidime (TAZ) alone and in combination with a β -lactamase inhibitor (clavulanic acid). Synergy is defined either as i) a \geq 3 twofold concentration decrease in an MIC for either antimicrobial agent tested in combination with clavulanic acid vs. the MIC of the agent when tested alone (MIC FOT : FOT/Cl or TAZ : TAZ/Cl ratio \geq 8) (CLSI M100 Table 3A, Tests for ESBLs). The presence of synergy indicates ESBL production.

Confirmatory test for carbapenemase production requires the testing of meropenem (MERO).

Detection of AmpC-type beta-lactamases can be performed by testing the bacterium for susceptibility to cefoxitin (FOX). Resistance to FOX could indicate the presence of an AmpC-type beta-lactamase.

The classification of the phenotypic results should be based on the most recent EFSA recommendations (EURL-AR Workshop 2016, <u>http://www.crl-ar.eu/data/images/ws_april-2016/f11_efsa_criteria.pdf</u> and in the appendix to this protocol).

DTU Food

National Food Institute

3.4.2 Campylobacter

For AST of *Campylobacter*, MIC methods should be applied, i.e. broth or agar dilution methods using incubation at 36-37°C for 48 hours or 42°C for 24 hours.

Table 3: Antimicrobials recommended for AST of Campylobacter jejuni and C. coli and	
interpretative criteria according to table 1 in EC regulation 652/2013	

Antimicrobial	C. jejuni	C. coli	
Antimicropiai	MIC (µg/mL) (R>)	MIC (µg/mL) (R>)	
Ciprofloxacin (CIP)	0.5	0.5	
Erythromycin (ERY)	4	8	
Gentamicin (GEN)	2	2	
Nalidixic acid (NAL)	16	16	
Streptomycin (STR)	4	4	
Tetracycline (TET)	1	2	

Identification of Campylobacter species

Species identification of the *Campylobacter* test strains must be performed by the NRLs using inhouse methods or adopting the protocol available on the EURL-AR website under: <u>http://eurl-ar.eu/233-protocols.htm</u>.

3.5 Optional genotypic characterisation

For the optional genotypic characterisation of the AmpC-, ESBL- or carbepenemase producing *Salmonella* test strains, the requested results are the genes conferring AmpC-, ESBL- or carbepenemase -production harboured in the test strains. The genes included in the test are the following: ACC, ACT, CARB, CMY, CTX-M, DHA, FOX, GES, IMP, KPC, MOX, NDM, OXA, PER, SCO, SHV, TEM, VEB, and VIM. The database lists the relevant variants of the genes.

When uploading the results in the database, the identified genes will be evaluated against the expected results. The results will be evaluated on the detected gene (ACC-, ACT-, CARB-, etc.) as well as the variant identified.

The method used for the genotypic characterisation should be your laboratory's routine method. The expected results listed in the database are those obtained by the EURL-AR.

4 REPORTING OF RESULTS AND EVALUATION

Test forms are available for recording your results before you enter them into the interactive web database.

We recommend reading carefully the description reported in paragraph 5 before entering your results in the web database. **Results must be submitted no later than December 9th 2016.** <u>After</u>

DTU Food National Food Institute

the deadline when all participants have uploaded results, you will be able to login to the database once again, and to view and print an automatically generated report evaluating your results. Results in agreement with the expected interpretation are categorised as 'correct', while results deviating from the expected interpretation are categorised as 'incorrect'.

If you experience difficulties in entering your results, please contact us directly.

All results will be summarized in a report which will be publicly available. The data in the report will be presented with laboratory codes. A laboratory code is known to the individual laboratory, whereas the complete list of laboratories and their codes is confidential and known only to the EURL-AR and the EU Commission. All conclusions will be public.

If you have questions, please do not hesitate to contact the EQAS Coordinator:

Susanne Karlsmose Pedersen National Food Institute, Technical University of Denmark Søltofts Plads, Building 221, DK-2800 Lyngby Denmark Tel: +45 3588 6601 Fax: +45 3588 6341 E-mail: <u>suska@food.dtu.dk</u>

5 HOW TO ENTER RESULTS IN THE INTERACTIVE DATABASE

Please read carefully this paragraph before entering the web page.

Remember that you need by your side the completed test forms.

Enter the EURL-AR EQAS start web page (http://eurl-ar.food.dtu.dk), write your username and password (lower-case) and press enter. Your username and password are indicated in the letter following your strains. Do not hesitate to contact us if you experience problems with the login.

You can browse back and forth by using the Home or back keys, but please remember to save your inputs before.

Click on either "Salmonella test results" or "Campylobacter test results" for input of test results.

Click on "Start of Data Entry - Methods"

In the next page, you navigate among fields with the Tab-key and the mouse.

Complete the fields related to the method used for antimicrobial susceptibility testing and the brand of MIC trays, etc.

When submitting *Campylobacter* results, fill in the incubation conditions applied for susceptibility testing of *Campylobacter* – $36^{\circ}C/48h$ or $42^{\circ}C/24h$.

DTU Food National Food Institute

Click on "save and go to next page"

In the data entry pages, you enter the species (for *Campylobacter* only), the obtained MIC-value and the interpretation (R, resistant or S, susceptible) for each *Salmonella* and *Campylobacter* strain.

For Salmonella, remember to also report the results for the ESBL detection tests.

If you did not test for susceptibility to a given antimicrobial, please leave the field empty.

Click on "save and go to next page"

When uploading data on the reference strains, please enter MIC values in μ g/ml. Remember to use the operator keys to show symbols like "equal to", etc.

Click on "save".

Review the input pages by browsing through them and make corrections if necessary. Remember to save a page if you make corrections. If you press home a page without saving changes, you will see an error screen. In this case, click on "save" to save your results, browse back to the page and then continue.

Please complete the evaluation form.

Before approving your input, please be sure that you have filled in all the relevant fields as **YOU** CAN ONLY APPROVE ONCE! The approval blocks your data entry in the interactive database.

If you have performed the optional genotypic characterisation:

Click on "Gene test" and follow the description in the database for upload of the results of the optional genotypic characterization. Approve your input. Be sure that you have filled in all the results before approval. The approval blocks your data entry in the interactive database, but allows you to see the submitted results.

Appendix 4b, page 8 of 8

EU Reference Laboratory for Antimicrobial Resistance External Quality Assurance System (EQAS) 2016

DTU Food National Food Institute

APPENDIX

Criteria for interpretation of Salmonella, panel 2 results

efsa CRITERIA ESBL-Phenotype AmpC-Phenotype - FOT or TAZ > 1 mg/L AND - FOT or TAZ > 1 mg/L AND - MERO \leq 0.12 mg/L AND - MERO \leq 0.12 mg/L AND - FOX \leq 8 mg/L AND - FOX > 8 mg/L AND - No SYN FOT/CLV nor TAZ/CLV -SYN FOT/CLV and/or TAZ/CLV -(Not excluded presence of ESBLs) ESBL + AmpC-Carbapenemase-Susceptible Phenotype Phenotype -FOT or TAZ > 1 mg/L AND MEROM > 0.12 mg/LFOT-TAZ-FOX-MEM -MERO $\leq 0.12 \text{ mg/L}$ AND Needs confirmation ≤ ECOFF (Not excluded presence of - FOX >8 mg/L AND - SYN FOT/CLV and/or TAZ/CLV ESBLs or AmpC) Other phenotypes 1) If FOT or TAZ > 1 mg/ml AND 3) If FOT and/or TAZ \leq 1 mg/L - MEM \leq 0.12 mg/L AND - MERO ≤ 0.12 mg/L - FOX \leq 8 mg/L AND - FOX > 8 mg/L. - NO SYN FOT/CLV nor TAZ/CLV -*cAmpCs could be included here - Not excluded CPs (consult EURL) 4) If MERO \leq 0.12 mg/L BUT 2) If FOT and/or TAZ \leq 1 mg/L AND > ECOFF AND - ETP > ECOFF AND/OR - MERO ≤ 0.12 mg/L - IMI > ECOFF - FOX $\leq 8 \text{ mg/L}$ - Not excluded CPs, needs confirmation (consult EURL) 5) Any other combinations not described in previous boxes (contact EURL)

Please refer to the full presentation at <u>http://www.crl-ar.eu/data/images/ws_april-2016/f11_efsa_criteria.pdf</u>

Technical University of Denmark

DTU Food National Food Institute

Appendix 4c, page 1 of 8

Salmonella, Campylobacter and genetic characterisation

TEST FORMS

ame:	
ame of laboratory:	
ame of institute:	
ity:	
ountry:	
-mail:	
ax:	

Comments:

DTU Food National Food Institute

Appendix 4c, page 2 of 8

TEST FORM

Does your laboratory have an accreditation for performing *Salmonella* AST?

Which method did you use for antimicrobial susceptibility testing of Salmonella in this EQAS:

Broth microdilution Agar dilution

Brand of microbroth plates/agar: Incubation conditions: °C/

How many Salmonella isolates does your laboratory annually isolate:

How many *Salmonella* isolates does your laboratory annually test for antimicrobial susceptibility by a MIC method:

h

Which method was followed for the preparation of the inoculum (please describe)

- Which standard was followed (TREK, CLSI...)
- Which solvent was used for the preparation of the 0.5 McFarland solution (water, saline)
- Please describe in detail how you prepared the dilution of the inoculum (including the volume in final MH-dilution and intended dilution level; e.g. diluted 1:1000 by adding 10µl of 0.5 McFarland solution in 10ml MH broth, for an expected inoculum of 1*10⁵ CFU/ml)

Comments or additional information:

DTU Food National Food Institute

Appendix 4c, page 3 of 8

TEST FORM

Does your laboratory	have an accreditation f	or Campylobacter	AST? Yes	No

Incubation conditions: 36-37°C / 48h 42°C / 24h

Method used for antimicrobial susceptibility testing of *Campylobacter* in this EQAS:

Brand of microbroth plates/agar:

How many *Campylobacter* isolates does your laboratory annually isolate:

How many Campylobacter isolates does your laboratory annually susceptibility test:

Which method was followed for the preparation of the inoculum (please describe)

- Which standard was followed (TREK, CLSI...)
- Which solvent was used for the preparation of the 0.5 McFarland solution (water, saline)
- Please describe in detail how you prepared the dilution of the inoculum (including the volume in final MH-dilution and intended dilution level; e.g. diluted 1:1000 by adding 10μl of 0.5 McFarland solution in 10ml MH broth, for an expected inoculum of 1*10⁵ CFU/ml)

Comments or additional information:

DTU Food

National Food Institute

Appendix 4c, page 4 of 8

TEST FORM

Strain	Antimicrobial	Results and interpretation		
		\leq / >	MIC-value (µg/ml)	S / R
Salmonella	Ampicillin, AMP			
EURL S. 11.X	Azithromycin, AZI			
	Cefotaxime, FOT			
	Ceftazidime, TAZ			
	Chloramphenicol, CHL			
	Ciprofloxacin CIP			
	Colistin, COL			
	Gentamicin, GEN			
	Meropenem, MERO			
	Nalidixic acid, NAL			
	Sulfamethoxazole, SMX			
	Tetracycline, TET			
	Tigecycline, TGC			
	Trimethoprim, TMP			

All strains resistant to cefotaxime (FOT), ceftazidime (TAZ) or meropenem (MERO) must be included for testing in the second panel as part of confirmatory tests for ESBL-, AmpC or carbapenemase production. See further description in the protocol section '3.3.1 *Salmonella*'.

Strain	Antimicrobial	Results and interpretation		
		\leq / >	MIC-value (µg/ml)	S / R
Salmonella	Cefepime, FEP			
EURL S. 11. X	Cefotaxime, FOT			
	Cefotaxime + clavulanic acid (F/C)			
	Cefoxitin, FOX			
	Ceftazidime, TAZ			
	Ceftazidime+ clavulanic acid (T/C)			
	Ertapenem, ETP			
	Imipenem, IMI			
	Meropenem, MERO			
	Temocillin, TRM			

Interpretation of PANEL 2 results:

Presumptive ESBL	Presumptive AmpC	Other phenotype
Presumptive ESBL+ AmpC	Presumptive Carbapenemase	Susceptible

Comments (include optional genotype or other results):

DTU Food National Food Institute

Appendix 4c, page 5 of 8

TEST FORM

Antimicrobial susceptibility testing of reference strain E. coli ATCC 25922

	Antimicrobial	MIC-value (µg/ml)
1 st panel	Ampicillin, AMP	
	Azithromycin, AZI	
	Cefotaxime, FOT	
	Ceftazidime, TAZ	
	Chloramphenicol, CHL	
	Ciprofloxacin, CIP	
	Colistin, COL	
	Gentamicin, GEN	
	Meropenem, MERO	
	Nalidixic acid, NAL	
	Sulfamethoxazole, SMX*	
	Tetracycline, TET	
	Tigecycline, TGC	
	Trimethoprim, TMP	
2 nd panel	Cefepime, FEP	
	Cefotaxime, FOT	
	Cefotaxime + clavulanic acid (F/C)	
	Cefoxitin, FOX	
	Ceftazidime, TAZ	
	Ceftazidime+ clavulanic acid (T/C)	
	Ertapenem, ETP	
	Imipenem, IMI	
	Meropenem, MERO	
	Temocillin, TRM	

* for the testing of the *E. coli* ATCC25922 reference strain, sulfamethoxazole and sulfisoxazole, are regarded as comparable, i.e. the obtained MIC-value from the testing of sulfamethoxazole will be evaluated against the acceptance range listed in CLSI M100 for sulfisoxazole (CLSI M100, Table 3).

National Food Institute

Appendix 4c, page 6 of 8

TEST FORM

Strain	Antimicrobial	Interpretation	Interpretation		
		MIC-value (µg/ml)	S / R		
Campylobacter	Ciprofloxacin				
EURL C-11. X	Erythromycin				
🗌 C. jejuni	Gentamicin				
C. coli	Nalidixic acid				
	Streptomycin				
	Tetracycline				
Campylobacter	Ciprofloxacin				
EURL C-11.X	Erythromycin				
🗌 C. jejuni	Gentamicin				
C. coli	Nalidixic acid				
	Streptomycin				
	Tetracycline				
<i>Campylobacter</i>	Ciprofloxacin				
EURL C-11.X	Erythromycin				
🗌 C. jejuni	Gentamicin				
C. coli	Nalidixic acid				
	Streptomycin				
	Tetracycline				
<i>Campylobacter</i>	Ciprofloxacin				
EURL C-11.X	Erythromycin				
🗌 C. jejuni	Gentamicin				
C. coli	Nalidixic acid				
	Streptomycin				
	Tetracycline				

DTU Food National Food Institute

Appendix 4c, page 7 of 8

TEST FORM

Susceptibility testing of Campylobacter jejuni reference strain ATCC 33560

Strain	Antimicrobial	MIC-value (µg/ml) 36 °C/48 hours	42 °C/24 hours
			12 0/21 110415
	Ciprofloxacin		
C. jejuni ATCC 33560	Erythromycin		
	Nalidixic acid		
	Tetracycline		

For Agar dilution:

Susceptibility testing of *Campylobacter jejuni* reference strain ATCC 33560

Strain	Antimicrobial	MIC-value (µg/ml)
	Ciprofloxacin	
C. jejuni ATCC 33560	Erythromycin	
	Gentamicin	
	Nalidixic acid	
	Tetracycline	

DTU Food National Food Institute

Appendix 4c, page 8 of 8

TEST FORM – genotypic characterisation

Genotypic characterisation of the test strains

Strain code:	Method used: If PCR-methods, additional information should be given below
Gene:	Published method , reference:
Gene.	In-house method
Found	Primer used $5' \rightarrow 3'$:
Tested, not found	Primer used $3' \rightarrow 5'$:
	Published method , reference:
Gene:	In-house method
Found	Primer used 5' \rightarrow 3':
Tested, not found	Primer used $3' \rightarrow 5'$:
	Published method , reference:
Gene:	In-house method
Found	Primer used $5' \rightarrow 3'$:
Tested, not found	Primer used $3' \rightarrow 5'$:
	Published method , reference:
Gene:	In-house method
Found	Primer used $5' \rightarrow 3'$:
Tested, not found	Primer used $3' \rightarrow 5'$:
0	Published method , reference:
Gene:	In-house method
Found	Primer used $5' \rightarrow 3'$:
Tested, not found	Primer used $3' \rightarrow 5'$:

Comments:

INSTRUCTIONS FOR OPENING AND REVIVING LYOPHILISED CULTURES

Instructions adjusted from Czech Collection of Microorganisms (CCM) document 'Instructions for Opening and Reviving of Freeze-Dried Bacteria and Fungi' available on http://www.sci.muni.cz.

Lyophilised cultures are supplied in vacuum-sealed ampoules. Care should be taken in opening the ampoule. All instructions given below should be followed closely to ensure the safety of the person who opens the ampoule and to prevent contamination of the culture.

- a. Check the number of the culture on the label inside the ampoule
- b. Make a file cut on the ampoule near the middle of the plug (see Figure 1)
- c. Disinfect the ampoule with alcohol-dampened gauze or alcohol-dampened cotton wool from just below the plug to the pointed end
- d. Apply a red-hot glass rod to the file cut to crack the glass and allow air to enter slowly into the ampoule
- e. Remove the pointed end of the ampoule into disinfectant
- f. Add about 0.3 ml appropriate broth to the dried suspension using a sterile Pasteur pipette and mix carefully to avoid creating aerosols. Transfer the contents to one or more suitable solid and /or liquid media
- g. Incubate the inoculated medium at appropriate conditions for several days
- h. Autoclave or disinfect effectively the used Pasteur pipette, the plug and all the remains of the original ampoule before discarding

Notes:

- Cultures should be grown on media and under conditions as recommended in the CCM catalogue (see http://www.sci.muni.cz)
- Cultures may need at least one subculturing before they can be optimally used in experiments
- Unopened ampoules should be kept in a dark and cool place!

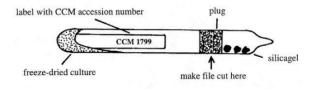


Figure 1: from CCM document 'Instructions for Opening and Reviving of Freeze-Dried Bacteria and Fungi' available on http://www.sci.muni.cz DTU Food National Food Institute

SUBCULTURE AND MAINTENANCE OF QUALITY CONTROL STRAINS

1.1 Purpose

Improper storage and repeated subculturing of bacteria can produce alterations in antimicrobial susceptibility test results. The Clinical and Laboratory Standards Institute (CLSI, formerly NCCLS) has published a guideline for Quality Control (QC) stock culture maintenance to ensure consistent antimicrobial susceptibility test results.

1.2 References

M100-S24, January 2014 (Performance Standards for Antimicrobial Susceptibility Testing)

M7-A9, January 2012 (Methods for Dilution Antimicrobial Susceptibility Test for Bacteria That Grow Aerobically; Approved Standard)

1.3 Definition of Terms

<u>Reference Culture</u>: A reference culture is a microorganism preparation that is acquired from a culture type collection.

<u>Reference Stock Culture</u>: A reference stock culture is a microorganism preparation that is derived from a reference culture. Guidelines and standards outline how reference stock cultures must be processed and stored.

<u>Working Stock Cultures</u>: A working stock culture is growth derived from a reference stock culture. Guidelines and standards outline how working stock cultures must be processed and how often they can be subcultured.

<u>Subcultures (Passages)</u>: A subculture is simply the transfer of established microorganism growth on media to fresh media. The subsequent growth on the fresh media constitutes a subculture or passage. Growing a reference culture or reference stock culture from its preserved status (frozen or lyophilized) is not a subculture. The preserved microorganism is not in a stage of established growth until it is thawed or hydrated and grown for the first time

1.4 Important Considerations

- Do not use disc diffusion strains for MIC determination.
- Obtain QC strains from a reliable source such as ATCC
- CLSI requires that QC be performed either on the same day or weekly (only after 30 day QC validation)
- Any changes in materials or procedure must be validated with QC before implemented
- For example: Agar and broth methods may give different QC ranges for drugs such as glycopeptides, aminoglycosides and macrolides
- Periodically perform colony counts to check the inoculum preparation procedure

DTU Food

National Food Institute

- Ideally, test values should be in the middle of the acceptable range
- Graphing QC data points over time can help identify changes in data helpful for troubleshooting problems

1.5 Storage of Reference Strains

Preparation of stock cultures

- Use a suitable stabilizer such as 50% fetal calf serum in broth, 10-15% glycerol in tryptic soy broth, defibrinated sheep blood or skim milk to prepare multiple aliquots.
- Store at -20°C, -70°C or liquid nitrogen. (Alternatively, freeze dry.)
- Before using rejuvenated strains for QC, subculture to check for purity and viability.

Working cultures

- Set up on agar slants with appropriate medium, store at 4-8°C and subculture weekly.
- Replace the working strain with a stock culture at least monthly.
- If a change in the organisms inherent susceptibility occurs, obtain a fresh stock culture or a new strain from a reference culture collection e.g. ATCC.

1.6 Frequency of Testing

Weekly vs. daily testing

Weekly testing is possible if the lab can demonstrate satisfactory performance with daily testing as follows:

- Documentation showing reference strain results from 30 consecutive test days were within the acceptable range.
- For each antimicrobial/organism combination, no more than 3 out of 30 MIC values may be outside the acceptable range.

When the above are fulfilled, each quality control strain may be tested once a week and whenever any reagent component is changed.

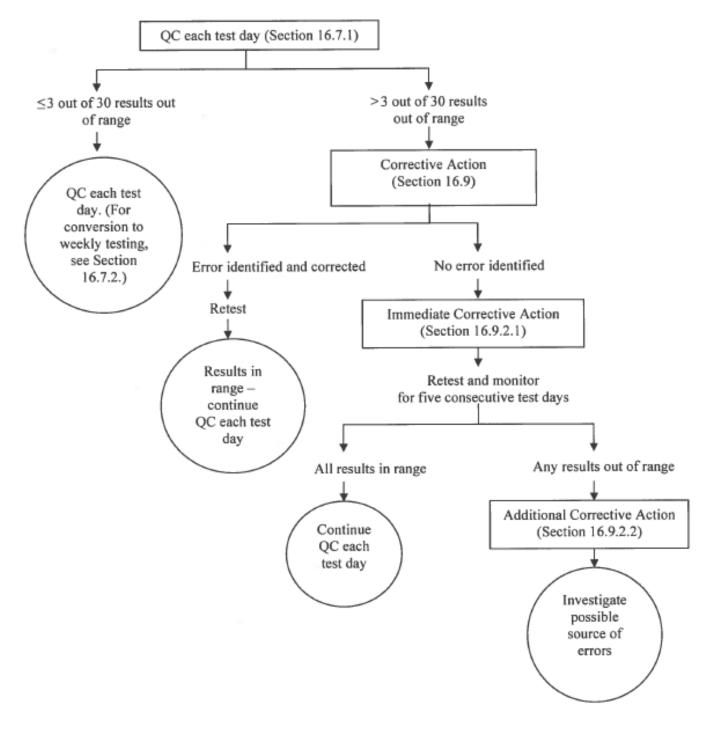
Corrective Actions

If an MIC is outside the range in weekly testing, corrective action is required as follows:

- Repeat the test if there is an obvious error e.g. wrong strain or incubation conditions used
- If there is no obvious error, return to daily control testing

The problem is considered resolved only after the reference strain is tested for 5 consecutive days and each drug/organism result is within specification on each day.

If the problem cannot be resolved, continue daily testing until the errors are identified.

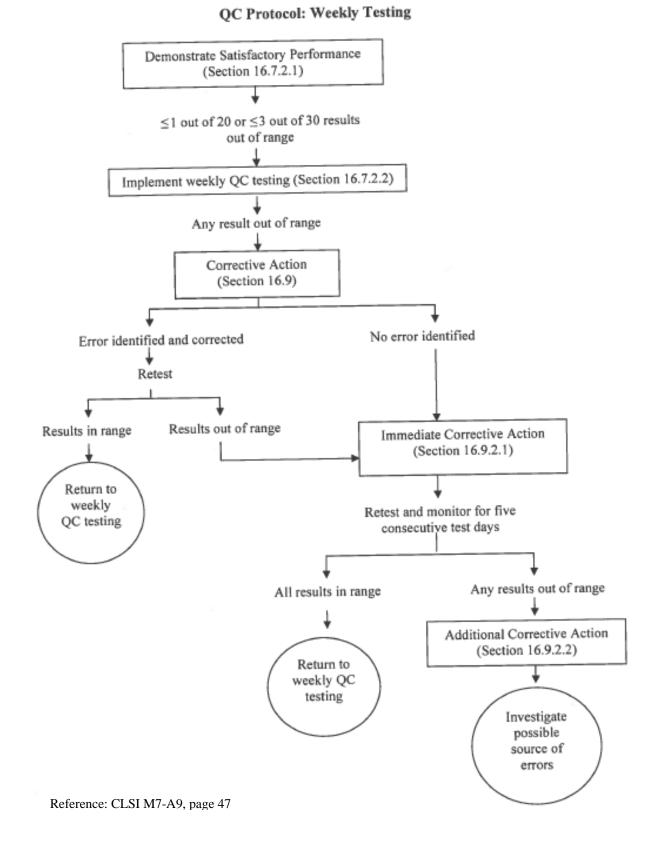

Repeat the 30 days validation before resuming weekly testing.

DTU Food National Food Institute

DAILY MIC QC CHART

Appendix A. Quality Control Protocol Flow Charts

Reference: CLSI M7-A9, page 46



DTU Food

National Food Institute

Appendix A. (Continued)

★ ★ ★ European Union Reference Laboratory ★ Antimicrobial Resistance

Quality Control ranges for ATCC reference strains

E. coli ATCC 25922	
Antimicrobial	MIC
Ampicillin, AMP	2-8
Azithromycin, AZI	none
Cefepime, FEP	0.015-0.12
Cefotaxime, FOT	0.03-0.12
Cefotaxime + clavulanic acid, F/C	none
Cefoxitin, FOX	2-8
Ceftazidime, TAZ	0.06-0.5
Ceftazidime + clavulanic acid, T/C	none
Chloramphenicol, CHL	2-8
Ciprofloxacin, CIP	0.004-0.016
Colistin, COL	0.25-2
Ertapenem, ETP	0.004-0.016
Gentamicin, GEN	0.25-1
Imipenem, IMI	0.06-0.25
Meropenem, MERO	0.008-0.06
Nalidixic acid, NAL	1-4
Sulfamethoxazole, SMX	8-32
Temocillin, TRM	none
Tetracycline, TET	0.5-2
Tigecycline, TGC	0.03-0.25
Trimethoprim, TMP	0.5-2

MIC ranges (μ g/mL) are according to CLSI M100 26th edition (range for ciprofloxacin and ertapenem extended to include 0.016).

Campylobacter jejuni A	Campylobacter jejuni ATCC 33560										
Antimicrobial	Microbroth (36-37°C/48h)	Microbroth (42°C/24h)	Agar dilution (36-37°C/48h)	Agar dilution (42°C/24h)							
Ciprofloxacin, CIP	0.06-0.25	0.03-0.12	0.12-1	0.06-0.5							
Erythromycin, ERY	0.5-2	0.25-2	1-8	1-4							
Gentamicin, GEN	0.5-2	0.25-2	0.5-2	0.5-4							
Nalidixic acid, NAL	4-16	4-16	None	None							
Tetracycline, TET	0.25-2	0.25-1	None	None							

MIC ranges (µg/mL) are according to CLSI (VET01-S2)

Test results from the reference strain E. coli ATCC 25922

Lab no.	Panel	Antimicrobial	Operator	Value	Low limit	High limit	Mark	Method	Temperature	Time
2	1	Ampicillin	=	4	2	8	1	MIC	35±1°C	18-24
2	1	Cefotaxime	<=	0.25	0.03	0.12	1	MIC	35±1°C	18-24
2	1	Ceftazidime	<=	0.5	0.06	0.5	1	MIC	35±1°C	18-24
2	1	Chloramphenicol	<=	8	2	8	1	MIC	35±1°C	18-24
2	1	Ciprofloxacin Colistin	<=	0.015	0.004	0.016 2	1	MIC	35±1°C 35±1°C	18-24 18-24
2	1	Gentamicin	<= <=	0.5	0.25	1	1	MIC	35±1°C	18-24
2	1	Meropenem	<=	0.03	0.008	0.06	1	MIC	35±1°C	18-24
2	1	Nalidixic acid	<=	4	1	4	1	MIC	35±1°C	18-24
2	1	Sulfamethoxazole	=	32	8	32	1	MIC	35±1°C	18-24
2	1	Tetracycline	<=	2	0.5	2	1	MIC	35±1°C	18-24
2	1	Tigecycline	<=	0.25	0.03	0.25	1	MIC	35±1°C	18-24
2	1	Trimethoprim Cefepime	= <=	1 0.06	0.5 0.015	2 0.12	1	MIC MIC	35±1°C 35±1°C	18-24 18-24
2	2	Cefotaxime	<= <=	0.00	0.015	0.12	1	MIC	35±1°C	18-24
2	2	Cefoxitin	=	8	2	8	1	MIC	35±1°C	18-24
2	2	Ceftazidime	<=	0.25	0.06	0.5	1	MIC	35±1°C	18-24
2	2	Ertapenem	<=	0.015	0.004	0.016	1	MIC	35±1°C	18-24
2	2	Imipenem	=	0.25	0.06	0.25	1	MIC	35±1°C	18-24
2	2	Meropenem	<=	0.03	0.008	0.06	1	MIC	35±1°C	18-24
4	1	Ampicillin Cefotaxime	=	<u>4</u> 0.25	2 0.03	8 0.12	1	MIC	37°C 37°C	24h 24h
4	1	Ceftazidime	<= <=	0.25	0.03	0.12	1	MIC	37°C 37°C	24n 24h
4	1	Chloramphenicol	<=	8	2	8	1	MIC	37°C	2411 24h
4	1	Ciprofloxacin	<=	0.015	0.004	0.016	1	MIC	37°C	24h
4	1	Colistin	<=	1	0.25	2	1	MIC	37°C	24h
4	1	Gentamicin	<=	0.5	0.25	1	1	MIC	37°C	24h
4	1	Meropenem	<=	0.03	0.008	0.06	1	MIC	37°C	24h
4	1	Nalidixic acid	<=	4 64	1 8	4 32	1 0	MIC	37°C 37°C	24h 24h
4	1	Sulfamethoxazole Tetracycline	= <=	2	0.5	32	U 1	MIC	37°C 37°C	24n 24h
4	1	Tigecycline	<=	0.25	0.03	0.25	1	MIC	37°C	24h
4	1	Trimethoprim	=	0.5	0.5	2	1	MIC	37°C	24h
4	2	Cefepime	<=	0.06	0.015	0.12	1	MIC	37°C	24h
4	2	Cefotaxime	<=	0.25	0.03	0.12	1	MIC	37°C	24h
4	2	Cefoxitin	=	4	2	8	1	MIC	37°C	24h
4	2	Ceftazidime Ertapenem	<= <=	0.25 0.015	0.06	0.5 0.016	1 1	MIC MIC	37°C 37°C	24h 24h
4	2	Imipenem	<=	0.015	0.004	0.010	1	MIC	37°C	2411 24h
4	2	Meropenem	<=	0.03	0.008	0.06	1	MIC	37°C	24h
6	1	Ampicillin	=	8	2	8	1	MIC	35	20
6	1	Cefotaxime	<=	0.25	0.03	0.12	1	MIC	35	20
6	1	Ceftazidime	<=	0.5	0.06	0.5	1	MIC	35	20
6 6	1	Chloramphenicol Ciprofloxacin	<= <=	8 0.015	2 0.004	8 0.016	1	MIC	35 35	20 20
6	1	Colistin	<=	1	0.004	2	1	MIC	35	20
6	1	Gentamicin	=	1	0.25	1	1	MIC	35	20
6	1	Meropenem	<=	0.03	0.008	0.06	1	MIC	35	20
6	1	Nalidixic acid	<=	4	1	4	1	MIC	35	20
6	1	Sulfamethoxazole	=	32	8	32	1	MIC	35	20
6	1	Tetracycline	<=	2	0.5	2	1	MIC	35	20
6 6	1	Tigecycline Trimethoprim	<=	0.25 1	0.03	0.25 2	1	MIC MIC	35 35	20 20
6	2	Cefepime	- <=	0.06	0.015	0.12	1	MIC	35	20
6	2	Cefotaxime	<=	0.25	0.03	0.12	1	MIC	35	20
6	2	Cefoxitin	=	4	2	8	1	MIC	35	20
6	2	Ceftazidime	<=	0.25	0.06	0.5	1	MIC	35	20
6	2	Ertapenem	<=	0.015	0.004	0.016	1	MIC	35	20
6 6	2	Imipenem Moroponem	<=	0.12	0.06	0.25	1	MIC MIC	35 35	20
9	2	Meropenem Ampicillin	<=	0.03	0.008	0.06 8	1	MIC	35	20 20
9	1	Ceftazidime	<=	0.5	0.06	0.5	1	MIC	35+-2	20
9	1	Chloramphenicol	<=	8	2	8	1	MIC	35+-2	20
9	1	Ciprofloxacin	<=	0.015	0.004	0.016	1	MIC	35+-2	20
9	1	Colistin	<=	1	0.25	2	1	MIC	35+-2	20
9	1	Gentamicin	<=	0.5	0.25	1	1	MIC	35+-2	20
9 9	1	Meropenem Nalidixic acid	<= <=	0.03 4	0.008	0.06 4	1 1	MIC MIC	35+-2 35+-2	20 20
9	1	Sulfamethoxazole	<=	16	8	32	1	MIC	35+-2	20
9	1	Tetracycline	<=	2	0.5	2	1	MIC	35+-2	20
9	1	Tigecycline	<=	0.25	0.03	0.25	1	MIC	35+-2	20
9	1	Trimethoprim	=	1	0.5	2	1	MIC	35+-2	20
9	2	Cefepime	=	0.06	0.015	0.12	1	MIC	35+-2	20
9 9	2	Cefotaxime Cefovitin	<=	0.25	0.03	0.12	1	MIC	35+-2	20
9	2	Cefoxitin Ceftazidime	= <=	4 0.25	2 0.06	8 0.5	1	MIC	35+-2 35+-2	20 20
3	2	Genaziuline	< <u>-</u>	0.20	0.00	0.5		NIC	337-2	20

Lab no.	Panel	Antimicrobial	Operator	Value	Low limit	High limit	Mark	Method	Temperature	Time
9	2	Ertapenem	<=	0.015	0.004	0.016	1	MIC	35+-2	20
9	2	Imipenem	<=	0.12	0.06	0.25	1	MIC	35+-2	20
9		Meropenem	<=	0.03	0.008	0.06	1	MIC	35+-2	20
11		Ampicillin	=	1	2	8	0	MIC	37	24
11 11	1	Cefotaxime Ceftazidime	<= <=	0.25	0.03	0.12	1	MIC	37 37	24 24
11	1	Cenazidime	<=	8	2	8	1	MIC	37	24
11	1	Ciprofloxacin	<=	0.015	0.004	0.016	1	MIC	37	24
11	1	Colistin	<=	1	0.25	2	1	MIC	37	24
11	1	Gentamicin	<=	0.5	0.25	1	1	MIC	37	24
11	1	Meropenem	<=	0.03	0.008	0.06	1	MIC	37	24
11	1	Nalidixic acid	<=	4	1	4	1	MIC	37	24
11	1	Sulfamethoxazole	<=	8	8	32	1	MIC	37	24
11	1	Tetracycline	<=	2	0.5	2	1	MIC	37	24
11	1	Tigecycline	<=	0.25	0.03	0.25	1	MIC	37	24
11 11	1	Trimethoprim Cefepime	= <=	0.5	0.5 0.015	2 0.12	1	MIC MIC	37 37	24 24
11	2	Cefotaxime	<=	0.00	0.013	0.12	1	MIC	37	24
11	2	Cefoxitin	=	4	2	8	1	MIC	37	24
11	2	Ceftazidime	<=	0.25	0.06	0.5	1	MIC	37	24
11	2	Ertapenem	<=	0.015	0.004	0.016	1	MIC	37	24
11	2	Imipenem	<=	0.12	0.06	0.25	1	MIC	37	24
11	2	Meropenem	<=	0.03	0.008	0.06	1	MIC	37	24
12	1	Ampicillin	=	4	2	8	1	MIC	35	18-20
12	1	Cefotaxime	<=	0.25	0.03	0.12	1	MIC	35	18-20
12 12	1	Ceftazidime Chloramphenicol	<=	0.5	0.06	0.5 8	1 1	MIC MIC	35 35	18-20 18-20
12	1	Chioramphenicol	<= <=	<u>8</u> 0.015	0.004	8 0.016	1	MIC	35 35	18-20
12	1	Colistin	<=	1	0.004	2	1	MIC	35	18-20
12	1	Gentamicin	=	1	0.25	1	1	MIC	35	18-20
12	1	Meropenem	<=	0.03	0.008	0.06	1	MIC	35	18-20
12	1	Nalidixic acid	<=	4	1	4	1	MIC	35	18-20
12	1	Sulfamethoxazole	=	16	8	32	1	MIC	35	18-20
12	1	Tetracycline	<=	2	0.5	2	1	MIC	35	18-20
12	1	Tigecycline	<=	0.25	0.03	0.25	1	MIC	35	18-20
12	1	Trimethoprim	=	0.5	0.5	2	1	MIC	35	18-20
12 12	2	Cefepime Cefotaxime	<=	0.06	0.015	0.12	1 1	MIC MIC	35 35	18-20 18-20
12	2	Cefoxitin	<=	4	2	8	1	MIC	35	18-20
12	2	Ceftazidime	- <=	0.25	0.06	0.5	1	MIC	35	18-20
12	2	Ertapenem	<=	0.015	0.004	0.016	1	MIC	35	18-20
12	2	Imipenem	<=	0.12	0.06	0.25	1	MIC	35	18-20
12	2	Meropenem	<=	0.03	0.008	0.06	1	MIC	35	18-20
16	1	Ampicillin	=	4	2	8	1	MIC	35	18-24
16	1	Cefotaxime	<=	0.25	0.03	0.12	1	MIC	35	18-24
16	1	Ceftazidime	<=	0.5	0.06	0.5	1	MIC	35	18-24
16	1	Chloramphenicol	<=	8	2	8	1	MIC	35	18-24
16 16	1	Ciprofloxacin Colistin	<= <=	0.015 1	0.004 0.25	0.016 2	1 1	MIC MIC	35 35	18-24 18-24
16	1	Gentamicin	<=	0.5	0.25	1	1	MIC	35	18-24
16		Meropenem	<=	0.03	0.008	0.06	1	MIC	35	18-24
16		Nalidixic acid	<=	4	1	4	1	MIC	35	18-24
16	1	Sulfamethoxazole	=	32	8	32	1	MIC	35	18-24
16	1	Tetracycline	<=	2	0.5	2	1	MIC	35	18-24
16	1	Tigecycline	<=	0.25	0.03	0.25	1	MIC	35	18-24
16	1	Trimethoprim	=	1	0.5	2	1	MIC	35	18-24
16 16	2	Cefepime Cefotaxime	<=	0.06	0.015	0.12	1 1	MIC MIC	35 35	18-24 18-24
16	2	Cefoxitin	<=	<u> </u>	0.03	8	1	MIC	35 35	18-24
16	2	Ceftazidime	= <=	0.25	0.06	0.5	1	MIC	35	18-24
16	2	Ertapenem	<=	0.25	0.004	0.016	1	MIC	35	18-24
16	2	Imipenem	<=	0.12	0.06	0.25	1	MIC	35	18-24
16	2	Meropenem	<=	0.03	0.008	0.06	1	MIC	35	18-24
17		Ampicillin	=	8	2	8	1	MIC	37	20
17		Cefotaxime	<=	0.25	0.03	0.12	1	MIC	37	20
17		Ceftazidime	<=	0.5	0.06	0.5	1	MIC	37	20
17	1	Chloramphenicol	<=	8	2	8	1	MIC	37	20
17		Ciprofloxacin	<=	0.015	0.004	0.016	1	MIC	37	20
17 17	1	Colistin Gentamicin	<= <=	1 0.5	0.25 0.25	2	1 1	MIC MIC	37 37	20 20
17	1	Meropenem	<=	0.03	0.25	0.06	1	MIC	37	20
17		Nalidixic acid	<=	4	1	4	1	MIC	37	20
17		Sulfamethoxazole	=	16	8	32	1	MIC	37	20
17	1	Tetracycline	<=	2	0.5	2	1	MIC	37	20
17	1	Tigecycline	<=	0.25	0.03	0.25	1	MIC	37	20
17	1	Trimethoprim	=	0.5	0.5	2	1	MIC	37	20
17 17	2	Cefepime	<=	0.06	0.015	0.12	1	MIC	37	20
	2	Cefotaxime	<=	0.25	0.03	0.12	1	MIC	37	20

Lab no.	Panel	Antimicrobial	Operator	Value	Low limit	High limit	Mark	Method	Temperature	Time
17	2	Cefoxitin	=	4	2	8	1	MIC	37	20
17 17	2	Ceftazidime	<=	0.25	0.06	0.5	1	MIC	37	20 20
17	2	Ertapenem Imipenem	<= <=	0.015	0.004	0.016	1	MIC	37 37	20
17	2	Meropenem	<=	0.03	0.008	0.25	1	MIC	37	20
18	1	Ampicillin	=	2	2	8	1	MIC	37	18
18	1	Cefotaxime	<=	0.25	0.03	0.12	1	MIC	37	18
18	1	Ceftazidime	<=	0.5	0.06	0.5	1	MIC	37	18
18	1	Chloramphenicol	<=	8	2	8	1	MIC	37	18
18	1	Ciprofloxacin	<=	0.015	0.004	0.016	1	MIC	37	18
18	1	Colistin	<=	1	0.25	2	1	MIC	37	18
18 18	1	Gentamicin	<=	0.5	0.25	1 0.06	1	MIC	37 37	18 18
18	1	Meropenem Nalidixic acid	<= <=	0.03	0.008 1	0.06 4	1	MIC	37	18
18	1	Sulfamethoxazole	<=	16	8	32	1	MIC	37	18
18	1	Tetracycline	<=	2	0.5	2	1	MIC	37	18
18	1	Tigecycline	<=	0.25	0.03	0.25	1	MIC	37	18
18	1	Trimethoprim	=	1	0.5	2	1	MIC	37	18
18	2	Cefepime	<=	0.06	0.015	0.12	1	MIC	37	18
18	2	Cefotaxime	<=	0.25	0.03	0.12	1	MIC	37	18
18	2	Cefoxitin	=	2	2	8	1	MIC	37	18
18	2	Ceftazidime	<=	0.25	0.06	0.5	1	MIC	37	18
18	2	Ertapenem	<=	0.015	0.004	0.016	1	MIC	37	18
18 18	2	Imipenem Meropenem	<= <=	0.12	0.06	0.25	1	MIC	37 37	18 18
18	2	Ampicillin	<=	4	2	0.06	1	MIC	37	18
19	1	Cefotaxime	= <=	0.25	0.03	0.12	1	MIC	35	18
19	1	Ceftazidime	=	0.5	0.06	0.12	1	MIC	35	18
19	1	Chloramphenicol	<=	8	2	8	1	MIC	35	18
19	1	Ciprofloxacin	<=	0.015	0.004	0.016	1	MIC	35	18
19	1	Colistin	<=	1	0.25	2	1	MIC	35	18
19	1	Gentamicin	<=	0.5	0.25	1	1	MIC	35	18
19	1	Meropenem	<=	0.03	0.008	0.06	1	MIC	35	18
19	1	Nalidixic acid	<=	4	1	4	1	MIC	35	18
19 19	1	Sulfamethoxazole Tetracycline	= <=	<u>16</u> 2	8 0.5	32 2	1 1	MIC MIC	35 35	18 18
19	1	Tigecycline	<=	0.25	0.03	0.25	1	MIC	35	18
19	1	Trimethoprim	<=	0.25	0.00	2	1	MIC	35	18
19	2	Cefepime	=	0.12	0.015	0.12	1	MIC	35	18
19	2	Cefotaxime	<=	0.25	0.03	0.12	1	MIC	35	18
19	2	Cefoxitin	=	4	2	8	1	MIC	35	18
19	2	Ceftazidime	<=	0.25	0.06	0.5	1	MIC	35	18
19	2	Ertapenem	<=	0.015	0.004	0.016	1	MIC	35	18
19	2	Imipenem	=	0.25	0.06	0.25	1	MIC	35	18
19 20	2	Meropenem Ampicillin	<=	0.03	0.008	0.06 8	1	MIC	35 37C +/-1h	18 20 +/- 2 h
20	1	Cefotaxime	= <=	0.25	2 0.03	0.12	1	MIC	37C +/-1h	20 +/- 2 h
20	1	Ceftazidime	<=	0.25	0.06	0.12	1	MIC	37C +/-1h	20 +/- 2 h
20	1	Chloramphenicol	<=	8	2	8	1	MIC	37C +/-1h	20 +/- 2 h
20	1	Ciprofloxacin	<=	0.015	0.004	0.016	1	MIC	37C +/-1h	20 +/- 2 h
20	1	Colistin	<=	1	0.25	2	1	MIC	37C +/-1h	20 +/- 2 h
20	1	Gentamicin	<=	0.5	0.25	1	1	MIC	37C +/-1h	20 +/- 2 h
20	1	Meropenem	<=	0.03	0.008	0.06	1	MIC	37C +/-1h	20 +/- 2 h
20	1	Nalidixic acid	<=	4	1	4	1	MIC	37C +/-1h	20 +/- 2 h
20	1	Sulfamethoxazole	=	16 2	8	32 2	1	MIC	37C +/-1h	20 +/- 2 h
20 20	1	Tetracycline Tigecycline	<= <=	0.25	0.5 0.03	0.25	1	MIC	37C +/-1h 37C +/-1h	20 +/- 2 h 20 +/- 2 h
20	1	Trimethoprim	<=	0.25	0.03	0.25	1	MIC	37C +/-1h 37C +/-1h	20 +/- 2 h 20 +/- 2 h
20	2	Cefepime	- <=	0.06	0.015	0.12	1	MIC	37C +/-1h	20 +/- 2 h
20	2	Cefotaxime	<=	0.00	0.03	0.12	1	MIC	37C +/-1h	20 +/- 2 h
20	2	Cefoxitin	=	4	2	8	1	MIC	37C +/-1h	20 +/- 2 h
20	2	Ceftazidime	<=	0.25	0.06	0.5	1	MIC	37C +/-1h	20 +/- 2 h
20	2	Ertapenem	<=	0.015	0.004	0.016	1	MIC	37C +/-1h	20 +/- 2 h
20	2	Imipenem	<=	0.12	0.06	0.25	1	MIC	37C +/-1h	20 +/- 2 h
20	2	Meropenem	<=	0.03	0.008	0.06	1	MIC	37C +/-1h	20 +/- 2 h
21	1	Ampicillin	=	2	2	8	1	MIC	35	20h
21 21	1	Cefotaxime Ceftazidime	=	0.25 0.5	0.03	0.12 0.5	0 1	MIC	35 35	20h 20h
21	1	Centazidime	=	0.5 8	2	0.5	1	MIC	35	20h
21	1	Ciprofloxacin	=	0.015	0.004	0.016	1	MIC	35	2011 20h
21	1	Colistin	=	1	0.25	2	1	MIC	35	20h
21	1	Gentamicin	=	0.5	0.25	1	1	MIC	35	20h
21	1	Meropenem	=	0.03	0.008	0.06	1	MIC	35	20h
21	1	Nalidixic acid	=	4	1	4	1	MIC	35	20h
21	1	Sulfamethoxazole	=	8	8	32	1	MIC	35	20h
21	1	Tetracycline	=	2	0.5	2	1	MIC	35	20h
21 21	1	Tigecycline Trimethoprim	=	0.25	0.03	0.25	1	MIC MIC	35 35	20h
21		Trimethoprim	=	0.5	0.5	2		IVIIC	30	20h

00	Panel	Antimicrobial	Operator	Value	Low limit	High limit	Mark	Method	Temperature	Time
22	1	Ampicillin	=	2	2	8	1	MIC	36	20
22	1	Cefotaxime	<=	0.25	0.03	0.12	1	MIC	36	20
22	1	Ceftazidime	<=	0.5	0.06	0.5	1	MIC	36	20
22 22	1	Chloramphenicol Ciprofloxacin	<= <=	<u>8</u> 0.015	2 0.004	8 0.016	1	MIC	36 36	20 20
22	1	Colistin	<= <=	1	0.004	2	1	MIC	36	20
22	1	Gentamicin	=	1	0.25	1	1	MIC	36	20
22	1	Meropenem	<=	0.03	0.008	0.06	1	MIC	36	20
22	1	Nalidixic acid	<=	4	1	4	1	MIC	36	20
22	1	Tetracycline	<=	2	0.5	2	1	MIC	36	20
22	1	Tigecycline	<=	0.25	0.03	0.25	1	MIC	36	20
22	1	Trimethoprim	=	0.5	0.5	2	1	MIC	36	20
22	2	Cefepime	<=	0.06	0.015	0.12	1	MIC	36	20
22	2	Cefotaxime	<=	0.25	0.03	0.12	1	MIC	36	20
22 22	2	Cefoxitin Ceftazidime	= <=	2 0.25	2 0.06	8 0.5	1	MIC	36 36	20 20
22	2	Ertapenem	<=	0.23	0.004	0.016	1	MIC	36	20
22	2	Imipenem	<=	0.12	0.06	0.25	1	MIC	36	20
22	2	Meropenem	<=	0.03	0.008	0.06	1	MIC	36	20
23	1	Ampicillin	=	4	2	8	1	-	-	-
23	1	Cefotaxime	<=	0.25	0.03	0.12	1	-	-	-
23	1	Ceftazidime	<=	0.5	0.06	0.5	1	-	-	-
23	1	Chloramphenicol	<=	8	2	8	1	-	-	-
23	1	Ciprofloxacin	<=	0.015	0.004	0.016	1	-	-	-
23	1	Colistin	<=	<u>1</u> 1	0.25	2	1	-	-	-
23 23	1	Gentamicin Meropenem	=	<u> </u>	0.25	1 0.06	1 1	-	-	-
23	1	Nalidixic acid	<= <=	4	0.008	0.06 4	1	-	-	-
23	1	Sulfamethoxazole	=	16	8	32	1	-	-	-
23	1	Tetracycline	<=	2	0.5	2	1	-	-	-
23	1	Tigecycline	<=	0.25	0.03	0.25	1	-	-	-
23	1	Trimethoprim	=	0.5	0.5	2	1	-	-	-
23	2	Cefepime	<=	0.06	0.015	0.12	1	-	-	-
23	2	Cefotaxime	<=	0.25	0.03	0.12	1	-	-	-
23	2	Cefoxitin	=	2	2	8	1	-	-	-
23	2	Ceftazidime	<=	0.25	0.06	0.5	1	-	-	-
23 23	2	Ertapenem Imipenem	<=	0.015	0.004 0.06	0.016 0.25	1 1	-	-	-
23	2	Meropenem	<= <=	0.12	0.008	0.25	1	-	-	-
25	1	Ampicillin	=	4	2	8	1	MIC	35	16 - 20
25	1	Cefotaxime	<=	0.25	0.03	0.12	1	MIC	35	16 - 20
25	1	Ceftazidime	<=	0.5	0.06	0.5	1	MIC	35	16 - 20
25	1	Chloramphenicol	<=	8	2	8	1	MIC	35	16 - 20
25	1	Ciprofloxacin	<=	0.015	0.004	0.016	1	MIC	35	16 - 20
25	1	Colistin	<=	1	0.25	2	1	MIC	35	16 - 20
25	1	Gentamicin	<=	0.5	0.25	1	1	MIC	35	16 - 20
25	1					0.06				
25		Meropenem	<=	0.03				MIC	35	16 - 20
		Nalidixic acid	<=	4	1	4	1	MIC	35	16 - 20
25 25	1	Nalidixic acid Sulfamethoxazole	<= <=	4 8	1 8	4 32	1	MIC MIC	35 35	16 - 20 16 - 20
25		Nalidixic acid Sulfamethoxazole Tetracycline	<= <= <=	4 8 2	1 8 0.5	4 32 2	1	MIC MIC MIC	35 35 35	16 - 20 16 - 20 16 - 20
	1 1	Nalidixic acid Sulfamethoxazole Tetracycline Tigecycline Trimethoprim	<= <=	4 8	1 8	4 32	1 1 1	MIC MIC	35 35	16 - 20 16 - 20
25 25 25 25	1 1 1 1 2	Nalidixic acid Sulfamethoxazole Tetracycline Tigecycline	<= <= <= <=	4 8 2 0.25 0.5 0.06	1 8 0.5 0.03 0.5 0.015	4 32 2 0.25	1 1 1	MIC MIC MIC MIC	35 35 35 35 35 35 35	16 - 20 16 - 20 16 - 20 16 - 20
25 25 25 25 25 25	1 1 1 2 2	Nalidixic acid Sulfamethoxazole Tetracycline Tigecycline Trimethoprim Cefepime Cefotaxime	<= <= <= <= =	4 8 2 0.25 0.5 0.06 0.25	1 8 0.5 0.03 0.5 0.015 0.03	4 32 2 0.25 2 0.12 0.12	1 1 1 1 1 1 1 1	MIC MIC MIC MIC MIC MIC MIC	35 35 35 35 35 35 35 35 35	16 - 20 16 - 20
25 25 25 25 25 25 25	1 1 1 2 2 2	Nalidixic acid Sulfamethoxazole Tetracycline Tigecycline Trimethoprim Cefepime Cefotaxime Cefotaxime	<= <= <= = <= <= = =	4 8 2 0.25 0.5 0.06 0.25 4	1 8 0.5 0.03 0.5 0.015 0.03 2	4 32 2 0.25 2 0.12 0.12 8	1 1 1 1 1 1 1 1	MIC MIC MIC MIC MIC MIC MIC	35 35 35 35 35 35 35 35 35	16 - 20 16 - 20
25 25 25 25 25 25 25 25	1 1 1 2 2 2 2 2	Nalidixic acid Sulfamethoxazole Tetracycline Tigecycline Trimethoprim Cefepime Cefotaxime Cefotaxime Cefotazidime	<= <= <= <= <= = <= = <=	4 8 2 0.25 0.5 0.06 0.25 4 0.25	1 8 0.5 0.03 0.5 0.015 0.03 2 0.06	4 32 2 0.25 2 0.12 0.12 8 0.5	1 1 1 1 1 1 1 1 1 1	MIC MIC MIC MIC MIC MIC MIC MIC	35 35 35 35 35 35 35 35 35 35 35	16 - 20 16 - 20
25 25 25 25 25 25 25 25 25 25	1 1 1 2 2 2 2 2 2	Nalidixic acid Sulfamethoxazole Tetracycline Tigecycline Trimethoprim Cefepime Cefotaxime Cefotaxime Cefotazidime Ertapenem	<= <= <= <= <= = <= <= <= <=	4 8 0.25 0.5 0.06 0.25 4 0.25 0.015	1 8 0.5 0.03 0.5 0.015 0.03 2 0.06 0.004	4 32 2 0.25 2 0.12 0.12 8 0.5 0.016	1 1 1 1 1 1 1 1 1 1 1 1	MIC MIC MIC MIC MIC MIC MIC MIC MIC	35 35 35 35 35 35 35 35 35 35 35 35 35	$\begin{array}{c} 16 & -20\\ 16 & -20\\ 16 & -20\\ 16 & -20\\ 16 & -20\\ 16 & -20\\ 16 & -20\\ 16 & -20\\ 16 & -20\\ 16 & -20\\ 16 & -20\\ 16 & -20\\ \end{array}$
25 25 25 25 25 25 25 25 25 25 25 25	1 1 1 2 2 2 2 2 2 2 2	Nalidixic acid Sulfamethoxazole Tetracycline Tigecycline Trimethoprim Cefepime Cefotaxime Cefoxitin Ceftazidime Ertapenem Imipenem	<= <= <= <= <= <= <= <= <= <= <= <=	4 8 0.25 0.5 0.06 0.25 4 0.25 0.015 0.12	1 8 0.5 0.03 0.5 0.015 0.03 2 0.06 0.004 0.06	4 32 2 0.25 2 0.12 0.12 8 0.5 0.016 0.25	1 1 1 1 1 1 1 1 1 1 1 1 1	MIC MIC MIC MIC MIC MIC MIC MIC MIC MIC	35 35 35 35 35 35 35 35 35 35 35 35 35 3	$\begin{array}{c} 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \end{array}$
25 25 25 25 25 25 25 25 25 25 25 25 25	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	Nalidixic acid Sulfamethoxazole Tetracycline Tigecycline Trimethoprim Cefepime Cefotaxime Cefoxitin Ceftazidime Ertapenem Imipenem Meropenem	<pre><=</pre>	4 8 0.25 0.5 0.06 0.25 4 0.25 0.015 0.12 0.03	1 8 0.5 0.03 0.5 0.015 0.03 2 0.06 0.004 0.06 0.008	4 32 0.25 2 0.12 0.12 0.12 8 0.5 0.016 0.25 0.06	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MIC MIC MIC MIC MIC MIC MIC MIC MIC MIC	35 35 35 35 35 35 35 35 35 35 35 35 35 3	$\begin{array}{c} 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \end{array}$
25 25 25 25 25 25 25 25 25 25 25 25 25 2	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1	Nalidixic acid Sulfamethoxazole Tetracycline Trigecycline Trimethoprim Cefepime Cefotaxime Cefotaxime Cefotazidime Ertapenem Imipenem Meropenem Ampicillin	<pre><=</pre>	4 8 2 0.25 0.5 0.06 0.25 4 0.25 0.015 0.12 0.03 4	1 8 0.5 0.03 0.5 0.015 0.03 2 0.06 0.004 0.006 0.008 2	4 32 0.25 2 0.12 0.12 8 0.5 0.016 0.25 0.06 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MIC MIC MIC MIC MIC MIC MIC MIC MIC MIC	35 35 35 35 35 35 35 35 35 35 35 35 35 3	$\begin{array}{r} 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 18 \end{array}$
25 25 25 25 25 25 25 25 25 25 25 25 26 26	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	Nalidixic acid Sulfamethoxazole Tetracycline Trigecycline Trimethoprim Cefepime Cefotaxime Cefotaxime Cefotazidime Ertapenem Imipenem Meropenem Ampicillin Cefotaxime		4 8 2 0.25 0.5 0.06 0.25 4 0.25 0.015 0.12 0.03 4 0.25	1 8 0.5 0.03 0.5 0.015 0.03 2 0.06 0.004 0.06 0.008 2 0.03	4 32 2 0.25 2 0.12 0.12 0.12 8 0.5 0.016 0.25 0.06 8 0.12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MIC MIC MIC MIC MIC MIC MIC MIC MIC MIC	35 35 35 35 35 35 35 35 35 35 35 35 35 3	$\begin{array}{r} 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 18 \\ 18 \end{array}$
25 25 25 25 25 25 25 25 25 25 25 25 25 2	1 1 2 2 2 2 2 2 2 2 2 2 2 1 1	Nalidixic acid Sulfamethoxazole Tetracycline Trigecycline Trimethoprim Cefepime Cefotaxime Cefotaxime Cefotazidime Ertapenem Imipenem Meropenem Ampicillin	<pre><=</pre>	4 8 2 0.25 0.5 0.06 0.25 4 0.25 0.015 0.12 0.03 4	1 8 0.5 0.03 0.5 0.015 0.03 2 0.06 0.004 0.006 0.008 2	4 32 0.25 2 0.12 0.12 8 0.5 0.016 0.25 0.06 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1	MIC MIC MIC MIC MIC MIC MIC MIC MIC MIC	35 35 35 35 35 35 35 35 35 35 35 35 35 3	$\begin{array}{r} 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 18 \end{array}$
25 25 25 25 25 25 25 25 25 25 25 25 25 2	1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 1	Nalidixic acid Sulfamethoxazole Tetracycline Tigecycline Trimethoprim Cefepime Cefotaxime Cefotaxime Cefotazidime Ertapenem Imipenem Meropenem Ampicillin Cefotaxime Cefotaxime		4 8 2 0.25 0.5 0.06 0.25 4 0.25 0.015 0.12 0.03 4 0.25 0.5	1 8 0.5 0.03 0.5 0.015 0.03 2 0.06 0.004 0.006 0.008 2 0.03 0.06	4 32 2 0.25 2 0.12 0.12 0.12 8 0.5 0.016 0.25 0.06 8 0.12 0.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MIC MIC MIC MIC MIC MIC MIC MIC MIC MIC	35 35 35 35 35 35 35 35 35 35 35 35 35 3	$\begin{array}{r} 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 18 \\ 18 \\ 18 \\ 18 \end{array}$
25 25 25 25 25 25 25 25 25 25 25 25 26 26 26 26 26 26 26 26	1 1 2 2 2 2 2 2 2 2 2 1 1 1 1	Nalidixic acid Sulfamethoxazole Tetracycline Trigecycline Trimethoprim Cefepime Cefotaxime Cefotaxime Ceftazidime Ertapenem Imipenem Meropenem Ampicillin Cefotaxime Ceftazidime Chloramphenicol Ciprofloxacin Colistin		4 8 2 0.25 0.5 0.06 0.25 4 0.25 0.015 0.12 0.03 4 0.25 0.5 8 0.015 1	1 8 0.5 0.03 0.5 0.015 0.03 2 0.06 0.004 0.008 2 0.03 0.06 2 0.03 0.06 2 0.004 0.25	4 32 2 0.25 2 0.12 0.12 8 0.5 0.016 0.25 0.06 8 0.12 0.5 8 0.016 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MIC MIC MIC MIC MIC MIC MIC MIC MIC MIC	35 35 35 35 35 35 35 35 35 35 35 35 35 3	$\begin{array}{r} 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 1$
25 25 25 25 25 25 25 25 25 25 25 25 25 2	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Nalidixic acid Sulfamethoxazole Tetracycline Tigecycline Trimethoprim Cefopime Cefotaxime Cefotaxime Cefazidime Ertapenem Imipenem Meropenem Ampicillin Ceftazidime Ceftazidime Chloramphenicol Ciprofloxacin Colistin Gentamicin		4 8 2 0.25 0.5 0.06 0.25 4 0.25 0.12 0.03 4 0.25 0.5 8 0.015 1 1	1 8 0.5 0.03 0.5 0.015 0.03 2 0.06 0.004 0.06 0.008 2 0.03 0.06 2 0.03 0.06 2 0.004 0.25 0.25	4 32 2 0.25 2 0.12 0.12 8 0.5 0.016 0.25 0.06 8 0.12 0.5 8 0.016 2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MIC MIC MIC MIC MIC MIC MIC MIC MIC MIC	35 35 35 35 35 35 35 35 35 35 35 35 35 3	$\begin{array}{r} 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 1$
25 25 25 25 25 25 25 25 25 25 25 25 25 2	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Nalidixic acid Sulfamethoxazole Tetracycline Tigecycline Trimethoprim Cefepime Cefotaxime Cefotaxime Ceftazidime Ertapenem Imipenem Meropenem Ampicillin Cefotaxime Ceftazidime Chloramphenicol Ciprofloxacin Colistin Gentamicin Meropenem		4 8 2 0.25 0.5 0.06 0.25 4 0.25 0.15 0.12 0.03 4 0.25 0.5 8 0.015 1 1 0.03	1 8 0.5 0.03 0.5 0.015 0.03 2 0.06 0.004 0.06 0.008 2 0.03 0.06 2 0.03 0.06 2 0.004 0.25 0.25 0.008	4 32 2 0.25 2 0.12 0.12 8 0.5 0.016 0.25 0.06 8 0.12 0.5 8 0.016 2 1 0.06	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MIC MIC MIC MIC MIC MIC MIC MIC MIC MIC	35 35 35 35 35 35 35 35 35 35 35 35 35 3	$\begin{array}{r} 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 1$
25 25 25 25 25 25 25 25 25 25 25 25 25 2	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Nalidixic acid Sulfamethoxazole Tetracycline Tigecycline Trimethoprim Cefepime Cefotaxime Cefotaxime Ceftazidime Ertapenem Imipenem Meropenem Ampicillin Cefotaxime Cefotazidime Chloramphenicol Ciprofloxacin Colistin Gentamicin Meropenem Nalidixic acid		4 8 2 0.25 0.5 0.06 0.25 4 0.25 0.15 0.12 0.03 4 0.25 0.5 8 0.015 1 1 0.03 4	1 8 0.5 0.03 0.5 0.015 0.03 2 0.06 0.004 0.06 0.008 2 0.008 2 0.006 2 0.004 0.25 0.008 1	4 32 2 0.25 2 0.12 0.12 8 0.5 0.016 0.25 0.06 8 0.12 0.5 8 0.016 2 1 0.06 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MIC MIC MIC MIC MIC MIC MIC MIC MIC MIC	35 35 35 35 35 35 35 35 35 35 35 35 35 3	$\begin{array}{r} 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 1$
25 25 25 25 25 25 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Nalidixic acid Sulfamethoxazole Tetracycline Tigecycline Trimethoprim Cefepime Cefotaxime Cefotaxime Ceftazidime Ertapenem Imipenem Meropenem Ampicillin Cefotaxime Ceftazidime Chloramphenicol Ciprofloxacin Colistin Gentamicin Meropenem Nalidixic acid Sulfamethoxazole		4 8 2 0.25 0.06 0.25 4 0.25 0.015 0.12 0.03 4 0.25 0.5 8 0.015 1 1 0.03 4 16	1 8 0.5 0.03 0.5 0.015 0.03 2 0.06 0.004 0.06 0.008 2 0.008 2 0.008 2 0.006 2 0.004 0.25 0.25 0.008 1 8	4 32 2 0.25 2 0.12 0.12 0.12 8 0.5 0.016 0.25 0.06 8 0.12 0.5 8 0.016 2 1 0.06 4 32	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MIC MIC MIC MIC MIC MIC MIC MIC MIC MIC	35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 37	$\begin{array}{r} 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 1$
25 25 25 25 25 25 25 25 25 25 25 25 25 2	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	Nalidixic acid Sulfamethoxazole Tetracycline Tigecycline Trimethoprim Cefepime Cefotaxime Cefotaxime Ceftazidime Ertapenem Imipenem Meropenem Ampicillin Cefotaxime Ceftazidime Chloramphenicol Ciprofloxacin Colistin Gentamicin Meropenem Nalidixic acid Sulfamethoxazole		4 8 2 0.25 0.5 0.06 0.25 4 0.25 0.015 0.12 0.03 4 0.25 0.5 8 0.015 1 1 0.03 4 16 2	1 8 0.5 0.03 0.5 0.015 0.03 2 0.06 0.004 0.06 0.008 2 0.008 2 0.008 2 0.006 2 0.006 2 0.006 1 8 0.25 0.25 0.008	4 32 2 0.25 2 0.12 0.12 0.12 8 0.5 0.016 0.25 0.06 8 0.12 0.5 8 0.016 2 1 0.06 4 32 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MIC MIC MIC MIC MIC MIC MIC MIC MIC MIC	35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 37 37 37 <t< td=""><td>$\begin{array}{r} 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 1$</td></t<>	$\begin{array}{r} 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 1$
25 25 25 25 25 25 25 25 25 25 25 25 25 2	1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Nalidixic acid Sulfamethoxazole Tetracycline Trigecycline Trimethoprim Cefepime Cefotaxime Cefotaxime Ceftazidime Ertapenem Meropenem Ampicillin Cefotaxime Cefotaxime Ceftazidime Chloramphenicol Ciprofloxacin Colistin Gentamicin Meropenem Nalidixic acid Sulfamethoxazole Tetracycline		4 8 2 0.25 0.5 0.06 0.25 4 0.25 0.015 0.12 0.03 4 0.25 0.5 8 0.015 1 1 0.03 4 1 0.03 4 1 0.03 4 0.25 0.5 1 1 0.03 4 0.25 0.5 0.12 0.05 0.12 0.03 1 1 0.03 1 0.25 0.5 0.12 0.03 1 0.25 0.12 0.03 1 0.25 0.03 1 0.25 0.03 1 0.25 0.03 1 0.25 0.03 1 0.25 0.03 1 0.25 0.03 1 0.25 0.03 1 0.25 0.03 1 0.25 0.03 1 0.25 0.03 1 0.25 0.03 1 0.25 0.03 1 0.25 0.03 1 0.03 1 0.03 1 0.03 0.25 0.015 0.05 0.5 0.5 0.5 0.5 0.5 0.5 0	1 8 0.5 0.03 0.5 0.015 0.03 2 0.06 0.004 0.06 0.008 2 0.008 2 0.003 0.06 2 0.004 0.25 0.25 0.008 1 8 0.5 0.03	4 32 2 0.25 2 0.12 0.12 0.12 8 0.5 0.016 0.25 0.06 8 0.12 0.5 8 0.016 2 1 0.06 4 32 2 0.25	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MIC MIC MIC MIC MIC MIC MIC MIC MIC MIC	35 35 35 35 35 35 35 35 35 35 35 35 35 35 37	$\begin{array}{r} 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 1$
25 25 25 25 25 25 25 25 25 25 25 25 25 2	1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1	Nalidixic acid Sulfamethoxazole Tetracycline Trigecycline Trimethoprim Cefepime Cefotaxime Cefotaxime Cefotazidime Ertapenem Imipenem Meropenem Ampicillin Cefotaxime Cefotaxime Cefotaxime Chloramphenicol Ciprofloxacin Colistin Gentamicin Meropenem Nalidixic acid Sulfamethoxazole Tetracycline Trigecycline		4 8 2 0.25 0.5 0.06 0.25 4 0.25 0.015 0.12 0.03 4 0.25 0.5 8 0.015 1 1 0.03 4 0.25 0.5 8 0.015 1 1 0.03 4 0.25 0.5 8 0.015 0.5 8 0.015 0.5 8 0.015 0.5 8 0.015 0.5 8 0.015 0.5 8 0.015 0.5 0.5 0.5 0.5 0.12 0.03 4 0.25 0.5 0.5 0.5 0.12 0.03 4 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	1 8 0.5 0.03 0.5 0.015 0.03 2 0.06 0.004 0.06 0.008 2 0.03 0.06 2 0.03 0.06 2 0.004 0.25 0.25 0.008 1 8 0.5 0.03 0.5 0.03 0.5 0.03 0.5 0.03 0.5 0.04 0.06 0.004 0.06 0.004 0.06 0.004 0.06 0.004 0.06 0.004 0.06 0.004 0.06 0.004 0.06 0.003 0.5 0.005 0.004 0.006 0.004 0.006 0.004 0.006 0.004 0.006 0.004 0.005 0.003 0.005 0.005 0.005 0.004 0.006 0.004 0.006 0.006 0.008 2 0.006 0.004 0.05 0.005 0.005 0.008 0.006 0.008 0.006 0.008 0.006 0.008 0.005 0	4 32 2 0.25 2 0.12 0.12 0.12 8 0.5 0.016 0.25 0.06 8 0.12 0.5 8 0.016 2 1 0.06 4 32 2 0.25 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MIC MIC MIC MIC MIC MIC MIC MIC MIC MIC	35 35 35 35 35 35 35 35 35 35 35 35 35 35 37	$\begin{array}{r} 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 1$
25 25 25 25 25 25 25 25 25 25 25 25 25 2	1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Nalidixic acid Sulfamethoxazole Tetracycline Tigecycline Trimethoprim Cefepime Cefotaxime Cefotaxime Cefotaxime Cefotaxime Cefotaxime Cefotaxime Ceftazidime Ertapenem Meropenem Ampicillin Cefotaxime Ceftazidime Chloramphenicol Ciprofloxacin Colistin Gentamicin Meropenem Nalidixic acid Sulfamethoxazole Tetracycline Tigecycline Trimethoprim Cefepime		4 8 2 0.25 0.5 0.06 0.25 4 0.25 0.015 0.12 0.03 4 0.25 0.5 8 0.015 1 1 0.03 4 1 0.03 4 1 0.03 4 0.25 0.5 1 1 0.03 4 0.25 0.5 0.12 0.05 0.12 0.03 1 1 0.03 1 0.25 0.5 0.12 0.03 1 0.25 0.12 0.03 1 0.25 0.03 1 0.25 0.03 1 0.25 0.03 1 0.25 0.03 1 0.25 0.03 1 0.25 0.03 1 0.25 0.03 1 0.25 0.03 1 0.25 0.03 1 0.25 0.03 1 0.25 0.03 1 0.25 0.03 1 0.25 0.03 1 0.03 1 0.03 1 0.03 0.25 0.015 0.05 0.5 0.5 0.5 0.5 0.5 0.5 0	1 8 0.5 0.03 0.5 0.015 0.03 2 0.06 0.004 0.06 0.008 2 0.008 2 0.003 0.06 2 0.004 0.25 0.25 0.008 1 8 0.5 0.03	4 32 2 0.25 2 0.12 0.12 0.12 8 0.5 0.016 0.25 0.06 8 0.12 0.5 8 0.016 2 1 0.06 4 32 2 0.25	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MIC MIC MIC MIC MIC MIC MIC MIC MIC MIC	35 35 35 35 35 35 35 35 35 35 35 35 35 35 37	$\begin{array}{r} 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 1$
25 25 25 25 25 25 25 25 25 25 25 25 25 2	1 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2	Nalidixic acid Sulfamethoxazole Tetracycline Trigecycline Trimethoprim Cefepime Cefotaxime Cefotaxime Cefotazidime Ertapenem Imipenem Meropenem Ampicillin Cefotaxime Cefotaxime Cefotaxime Chloramphenicol Ciprofloxacin Colistin Gentamicin Meropenem Nalidixic acid Sulfamethoxazole Tetracycline Trigecycline		4 8 2 0.25 0.5 0.06 0.25 4 0.25 0.015 0.12 0.03 4 0.25 0.5 8 0.015 1 1 0.03 4 0.25 0.5 8 0.015 1 1 0.03 4 0.25 0.5 8 0.015 0.5 8 0.015 0.5 8 0.015 0.5 8 0.015 0.5 8 0.015 0.5 0.5 0.5 0.00 0.25 0.12 0.03 4 0.25 0.03 4 0.25 0.03 4 0.25 0.03 4 0.25 0.03 4 0.25 0.03 4 0.25 0.03 4 0.25 0.03 4 0.25 0.5 8 0.015 0.5 8 0.015 0.5 8 0.015 0.5 8 0.015 0.5 8 0.015 0.5 8 0.015 0.5 8 0.015 0.5 8 0.03 4 0.03 4 0.03 0.5 8 0.015 0.5 8 0.015 0.5 8 0.03 0.5 8 0.03 0.5 8 0.03 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1 8 0.5 0.03 0.5 0.015 0.03 2 0.06 0.004 0.06 0.008 2 0.03 0.06 2 0.03 0.06 2 0.03 0.06 2 0.004 0.25 0.25 0.008 1 8 0.5 0.03 0.5 0.03 0.5 0.03 0.5 0.004 0.06 0.004 0.06 0.004 0.06 0.004 0.06 0.004 0.06 0.004 0.06 0.004 0.06 0.004 0.06 0.004 0.06 0.004 0.06 0.004 0.06 0.004 0.06 0.004 0.06 0.004 0.06 0.004 0.06 0.005 0.003 0.05 0.003 0.06 0.004 0.06 0.004 0.06 0.004 0.06 0.004 0.05 0.003 0.06 0.004 0.06 0.004 0.05 0.004 0.05 0.004 0.05 0.004 0.05 0.004 0.05 0.004 0.05 0.004 0.05 0.004 0.05 0.004 0.05 0.004 0.05 0.004 0.05 0.004 0.05 0.004 0.05 0.004 0.05 0.05 0.005 0.015 0.05 0.015 0.05 0.015 0.05 0.015 0.05 0.015 0.05 0.015 0.05 0.015 0.05 0.015 0.05 0	4 32 2 0.25 2 0.12 0.12 0.12 8 0.5 0.016 0.25 0.06 8 0.12 0.5 8 0.016 2 1 0.06 4 32 2 0.25 2 0.12 0.12 0.12 0.12 0.5 0.016 0.25 0.06 0.5 0.06 0.5 0.016 0.25 0.06 0.5 0.016 0.25 0.06 0.5 0.016 0.25 0.06 0.5 0.016 0.25 0.06 0.5 0.016 0.25 0.06 0.5 0.016 0.25 0.06 0.5 0.016 0.25 0.06 0.5 0.016 0.25 0.06 0.5 0.016 0.25 0.016 0.25 0.06 0.5 0.016 0.25 0.016 0.25 0.06 0.5 0.016 0.25 0.06 0.5 0.016 0.25 0.06 0.5 0.016 0.25 0.006 0.25 0.025 0.025 0.025 0.012	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MIC MIC MIC MIC MIC MIC MIC MIC MIC MIC	35 35 35 35 35 35 35 35 35 35 35 35 35 35 37	$\begin{array}{r} 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 1$
25 25 25 25 25 25 25 25 25 25 25 25 25 2	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	Nalidixic acid Sulfamethoxazole Tetracycline Tigecycline Trimethoprim Cefepime Cefoxitin Ceftazidime Ertapenem Imipenem Meropenem Ampicillin Ceftazidime Chloramphenicol Ciprofloxacin Colistin Gentamicin Meropenem Nalidixic acid Sulfamethoxazole Tetracycline Tigecycline Colistin Gentamicin Meropenem Nalidixic acid Sulfamethoxazole Tetracycline Trimethoprim Cefotaxime Cefotaxime Cefotaxime Cefotaxime Cefotaxime		4 8 2 0.25 0.5 0.06 0.25 4 0.25 0.12 0.03 4 0.25 0.5 8 0.015 1 1 0.03 4 1 0.03 4 1 0.03 4 0.25 0.5 8 0.015 0.5 8 0.003 4 0.03 4 0.03 4 0.03 4 0.03 8 0.003 4 0.03 8 0.003 4 0.5 8 0.003 4 0.03 8 0.003 4 0.5 8 0.05 8 0.5 0.5 8 0.5 0.5 8 0.5 0.5 8 0.5 0.5 0.5 8 0.5 0.5 8 0.5 0.5 8 0.5 0.5 0.5 8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1 8 0.5 0.015 0.03 2 0.06 0.004 0.06 0.004 0.06 0.008 2 0.003 0.06 2 0.004 0.25 0.25 0.008 1 8 0.5 0.03 0.5 0.015	4 32 2 0.25 2 0.12 0.12 8 0.5 0.016 0.25 0.06 8 0.12 0.5 8 0.016 2 1 0.06 4 32 2 0.25 2 0.12 0.12 8 0.5 0.016 0.25 0.016 0.25 0.06 8 0.5 0.016 0.25 0.06 8 0.5 0.016 0.25 0.06 8 0.5 0.016 0.25 0.06 8 0.5 0.016 0.25 0.016 0.25 0.06 8 0.5 0.016 0.25 0.06 8 0.5 0.016 0.25 0.06 8 0.5 0.016 0.5 0.016 0.5 0.016 0.25 0.06 8 0.012 0.5 0.06 8 0.016 0.25 0.016 0.5 0.016 0.25 0.06 8 0.016 0.5 0.016 0.5 0.016 0.5 8 0.016 0.5 0.016 0.5 8 0.016 0.5 8 0.016 0.5 8 0.016 0.25 0.016 0.5 8 0.016 0.25 0.016 0.5 8 0.016 0.25 0.016 0.5 8 0.016 2 0.025 0.06 8 0.016 2 0.025 0.06 8 0.016 0.25 0.06 8 0.016 2 0.25 2 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.5 8 0.5 0.12 0.12 0.12 0.5 8 0.5 0.12 0.12 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MIC MIC MIC MIC MIC MIC MIC MIC MIC MIC	35 35 35 35 35 35 35 35 35 35 35 35 35 35 37	$\begin{array}{r} 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 1$
25 25 25 25 25 25 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	Nalidixic acid Sulfamethoxazole Tetracycline Tigecycline Trimethoprim Cefepime Cefotaxime Cefotaxime Cefazidime Ertapenem Imipenem Meropenem Ampicillin Cefotaxime Ceftazidime Chloramphenicol Ciprofloxacin Colistin Gentamicin Meropenem Nalidixic acid Sulfamethoxazole Tetracycline Trimethoprim Cefotaxime Cefotaxime Cefotaxime		4 8 2 0.25 0.5 0.06 0.25 4 0.25 0.12 0.03 4 0.25 0.5 8 0.015 1 1 0.03 4 0.25 0.5 8 0.015 1 1 0.03 4 0.25 0.5 8 0.015 0.5 8 0.03 4 0.03 4 0.03 4 0.03 8 0.03 4 0.03 8 0.03 4 0.03 8 0.05 8 0.05 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 0.5 8 0.5 8 0.5 0.5 8 0.5 0.5 8 0.5 0.5 8 0.5 8 0.5 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1 8 0.5 0.03 0.5 0.015 0.03 2 0.06 0.004 0.06 0.008 2 0.03 0.06 2 0.03 0.06 2 0.004 0.25 0.25 0.008 1 8 0.5 0.03 0.5 0.03 0.5 0.03 0.5 0.03 0.5 0.03 0.5 0.03 0.5 0.03 0.5 0.03 0.5 0.03 0.5 0.03 0.05 0.03 0.06 0.004 0.006 0.008 0.006 0.008 0.008 0.006 0.008 0.008 0.008 0.006 0.008 0.008 0.006 0.008 0.008 0.005 0.008 0.006 0.008 0.008 0.006 0.008 0.006 0.008 0.006 0.008 0.006 0.008 0.006 0.008 0.006 0.008 0.006 0.008 0.006 0.008 0.006 0.008 0.006 0.008 0.005 0.003 0.005 0.003 0.005 0.003 0.05 0.003 0.05 0.003 0.05 0.003 0.05 0.003 0.05 0.003 0.03 0.05 0.003 0.03 0.05 0.033 0.03 0.03 0.03 0.05 0.033 0.03 0.	4 32 2 0.25 2 0.12 0.12 8 0.5 0.016 0.25 0.06 8 0.12 0.5 8 0.016 2 1 0.06 4 32 2 0.25 2 0.12 8 0.5 0.016 0.25 0.016 0.25 0.016 0.25 0.006 8 0.5 0.016 0.25 0.016 0.25 0.006 8 0.5 0.016 0.25 0.006 8 0.5 0.016 0.25 0.006 8 0.5 0.016 0.25 0.006 8 0.5 0.016 0.25 0.006 8 0.5 0.016 0.5 0.016 0.25 0.006 8 0.5 0.016 0.5 0.016 0.5 0.016 0.5 0.006 8 0.5 0.016 0.5 0.016 0.5 0.006 8 0.012 0.5 0.016 0.5 0.016 0.5 0.016 0.5 0.012 0.5 8 0.016 0.25 0.006 8 0.016 0.5 8 0.016 0.5 8 0.016 0.25 0.006 8 0.016 0.5 8 0.016 0.5 8 0.016 0.25 0.006 8 0.016 2 0.06 8 0.016 2 0.05 8 0.016 2 0.25 8 0.016 2 0.25 8 0.016 2 0.25 8 0.016 2 0.25 8 0.016 8 0.25 0.025 8 0.016 8 0.016 2 0.25 8 0.12 0.25 8 0.12 0.12 0.12 0.12 0.12 0.12 8 0.12 0.12 8 0.12 0.12 8 0.12 0.12 8 0.12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MIC MIC MIC MIC MIC MIC MIC MIC MIC MIC	35 35 35 35 35 35 35 35 35 35 35 35 35 37	$\begin{array}{r} 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 16 - 20 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 1$

Lab no.	Panel	Antimicrobial	Operator	Value	Low limit	High limit	Mark	Method	Temperature	Time
26	2	Meropenem	<=	0.03	0.008	0.06	1	MIC	37	18
29	1	Ampicillin	=	4	2	8	1	MIC	37	18-24
29	1	Cefotaxime	<=	0.25	0.03	0.12	1	MIC	37	18-24
29	1	Ceftazidime	<=	0.5	0.06	0.5	1	MIC	37	18-24
29	1	Chloramphenicol	<=	8	2	8	1	MIC	37	18-24
29 29	1	Ciprofloxacin Colistin	<=	0.015 1	0.004 0.25	0.016 2	1	MIC	37 37	18-24 18-24
29	1	Gentamicin	=	0.25	0.25	1	1	MIC	37	18-24
29	1	Meropenem	=	0.25	0.20	0.06	1	MIC	37	18-24
29	1	Nalidixic acid	- <=	4	1	4	1	MIC	37	18-24
29	1	Sulfamethoxazole	=	8	8	32	1	MIC	37	18-24
29	1	Tetracycline	=	1	0.5	2	1	MIC	37	18-24
29	1	Tigecycline	<=	0.25	0.03	0.25	1	MIC	37	18-24
29	1	Trimethoprim	=	1	0.5	2	1	MIC	37	18-24
29	2	Cefepime	=	0.12	0.015	0.12	1	MIC	37	18-24
29	2	Cefoxitin	=	2	2	8	1	MIC	37	18-24
29	2	Ceftazidime	<=	0.5	0.06	0.5	1	MIC	37	18-24
29	2	Ertapenem	<=	0.15	0.004	0.016	1	MIC	37	18-24
29	2	Imipenem	=	0.25	0.06	0.25	1	MIC	37	18-24
29	2	Meropenem	=	0.06	0.008	0.06	1	MIC	37	18-24
30	1	Ampicillin	=	4	2	8	1	MIC	35	20
30	1	Cefotaxime	<=	0.25	0.03	0.12	1	MIC	35	20
30	1	Ceftazidime	<=	0.5	0.06	0.5	1	MIC	35	20
30	1	Chloramphenicol	<=	8	2	8	1	MIC	35	20
30	1	Ciprofloxacin	<=	0.015	0.004	0.016	1	MIC	35	20
30 30	1	Colistin	<=	<u> </u>	0.25	2	1	MIC	35 35	20 20
30	1	Gentamicin Meropenem	<=	0.5	0.25	0.06	1	MIC	35	20
<u> </u>	1	Meropenem Nalidixic acid	<= <=	<u>0.03</u> 4	0.008	0.06	1	MIC	35	20
30	1	Sulfamethoxazole	<=	8	8	32	1	MIC	35	20
30	1	Tetracycline	<=	2	0.5	2	1	MIC	35	20
30	1	Tigecycline	<=	0.25	0.03	0.25	1	MIC	35	20
30	1	Trimethoprim	<=	0.25	0.5	2	0	MIC	35	20
30	2	Cefepime	<=	0.06	0.015	0.12	1	MIC	35	20
30	2	Cefotaxime	<=	0.25	0.03	0.12	1	MIC	35	20
30	2	Cefoxitin	=	2	2	8	1	MIC	35	20
30	2	Ceftazidime	<=	0.25	0.06	0.5	1	MIC	35	20
30	2	Ertapenem	<=	0.015	0.004	0.016	1	MIC	35	20
30	2	Imipenem	<=	0.12	0.06	0.25	1	MIC	35	20
30	2	Meropenem	<=	0.03	0.008	0.06	1	MIC	35	20
32	1	Ampicillin	=	4	2	8	1	MIC	37+-1	-
32	1	Cefotaxime	<=	0.25	0.03	0.12	1	MIC	37+-1	-
32	1	Ceftazidime	<=	0.5	0.06	0.5	1	MIC	37+-1	-
32	1	Chloramphenicol	<=	8	2	8	1	MIC	37+-1	-
32	1	Ciprofloxacin	<=	0.015	0.004	0.016	1	MIC	37+-1	-
32	1	Colistin	<=	1	0.25	2	1	MIC	37+-1	-
32	1	Gentamicin	<=	0.5	0.25	1	1	MIC	37+-1	-
32		Meropenem	<=	0.03	0.008	0.06	1	MIC	37+-1	-
32	1	Nalidixic acid	<=	4	1	4	1	MIC	37+-1	-
32 32	1	Sulfamethoxazole Tetracycline	= <=	16 2	8 0.5	32 2	1	MIC	37+-1 37+-1	-
32	1	Tigecycline	<= <=	0.25	0.03	0.25	1	MIC	37+-1	-
32	1	Trimethoprim	<=	0.25	0.03	2	1	MIC	37+-1	-
32	2	Cefepime	- <=	0.06	0.015	0.12	1	MIC	37+-1	
32	2	Cefotaxime	<=	0.00	0.013	0.12	1	MIC	37+-1	-
32	2	Cefoxitin	=	4	2	8	1	MIC	37+-1	-
32	2	Ceftazidime	<=	0.25	0.06	0.5	1	MIC	37+-1	-
32	2	Ertapenem	<=	0.015	0.004	0.016	1	MIC	37+-1	-
32	2	Imipenem	<=	0.12	0.06	0.25	1	MIC	37+-1	-
32	2	Meropenem	<=	0.03	0.008	0.06	1	MIC	37+-1	-
33	1	Ampicillin	=	4	2	8	1	MIC	35	18
33	1	Cefotaxime	<=	0.25	0.03	0.12	1	MIC	35	18
33	1	Ceftazidime	<=	0.5	0.06	0.5	1	MIC	35	18
33	1	Chloramphenicol	<=	8	2	8	1	MIC	35	18
33	1	Ciprofloxacin	<=	0.015	0.004	0.016	1	MIC	35	18
33	1	Colistin	<=	1	0.25	2	1	MIC	35	18
33	1	Gentamicin	<=	0.5	0.25	1	1	MIC	35	18
33		Meropenem	<=	0.03	0.008	0.06	1	MIC	35	18
33		Nalidixic acid	<=	4	1	4	1	MIC	35	18
33	1	Sulfamethoxazole	=	32	8	32	1	MIC	35	18
33 33	1	Tetracycline Tigecycline	<=	2 0.25	0.5	2 0.25	1	MIC MIC	35 35	18
33	1	Trimethoprim	<=	0.25	0.03	0.25	1	MIC	35	18 18
33		Cefepime	= <=	0.5	0.5	0.12	1	MIC	35 35	18
	2		<=	0.00	0.015					
33	2			0.25	0.03	0.12	1	MIC	35	18
33 33	2	Cefotaxime	<=	0.25 4	0.03	0.12	1	MIC	35 35	18 18
33			<= = <=	0.25 4 0.25	0.03 2 0.06	0.12 8 0.5	1 1 1	MIC MIC MIC	35 35 35	18 18 18

Lab no.	Panel	Antimicrobial	Operator	Value	Low limit	High limit	Mark	Method	Temperature	Time
33	2	Imipenem	=	0.25	0.06	0.25	1	MIC	35	18
33	2	Meropenem	<=	0.03	0.008	0.06	1	MIC	35	18
34 34	1	Ampicillin Cefotaxime	= <=	4 0.25	2 0.03	<u>8</u> 0.12	1	-	-	-
34	1	Ceftazidime	<=	0.25	0.05	0.12	1	-	-	-
34	1	Chloramphenicol	<=	8	2	8	1	-	-	-
34	1	Ciprofloxacin	<=	0.015	0.004	0.016	1	-	-	-
34	1	Colistin	<=	1	0.25	2	1	-	-	-
34	1	Gentamicin	<=	0.5	0.25	1	1	-	-	-
34	1	Meropenem	<=	0.03	0.008	0.06	1	-	-	-
34	1	Nalidixic acid	<=	4	1	4	1	-	-	-
34 34	1	Sulfamethoxazole Tetracycline	<= <=	8	<u>8</u> 0.5	32 2	1	-	-	-
34	1	Tigecycline	<=	0.25	0.03	0.25	1	-	-	-
34	1	Trimethoprim	=	0.5	0.00	2	1	-	-	-
34	2	Cefepime	<=	0.06	0.015	0.12	1	-	-	-
34	2	Cefotaxime	<=	0.25	0.03	0.12	1	-	-	-
34	2	Cefoxitin	=	2	2	8	1	-	-	-
34	2	Ceftazidime	<=	0.25	0.06	0.5	1	-	-	-
34	2	Ertapenem	<=	0.015	0.004	0.016	1	-	-	-
34 34	2	Imipenem	<=	0.12	0.06	0.25	1 1	-	-	-
34	2	Meropenem Ampicillin	<=	0.03	0.008	0.06 8	1	- MIC	- 35	- 18-24
36	1	Cefotaxime	= <=	0.25	0.03	0.12	1	MIC	35	18-24
36	1	Ceftazidime	<=	0.5	0.06	0.12	1	MIC	35	18-24
36	1	Chloramphenicol	<=	8	2	8	1	MIC	35	18-24
36	1	Ciprofloxacin	<=	0.015	0.004	0.016	1	MIC	35	18-24
36	1	Colistin	<=	1	0.25	2	1	MIC	35	18-24
36	1	Gentamicin	<=	0.5	0.25	1	1	MIC	35	18-24
36	1	Meropenem	<=	0.03	0.008	0.06	1	MIC	35	18-24
36 36	1	Nalidixic acid Sulfamethoxazole	<=	4 8	1 8	4 32	1	MIC	35 35	18-24 18-24
36	1	Tetracycline	<= <=	2	0.5	2	1	MIC	35	18-24
36	1	Tigecycline	<=	0.25	0.03	0.25	1	MIC	35	18-24
36	1	Trimethoprim	=	0.5	0.5	2	1	MIC	35	18-24
36	2	Cefepime	<=	0.06	0.015	0.12	1	MIC	35	18-24
36	2	Cefotaxime	<=	0.25	0.03	0.12	1	MIC	35	18-24
36	2	Cefoxitin	=	4	2	8	1	MIC	35	18-24
36	2	Ceftazidime	<=	0.25	0.06	0.5	1	MIC	35	18-24
36 36	2	Ertapenem Imipenem	<= <=	0.015	0.004	0.016 0.25	1	MIC MIC	35 35	18-24 18-24
36	2	Meropenem	<=	0.12	0.08	0.25	1	MIC	35	18-24
37	1	Ampicillin	=	8	2	8	1	AGA	37°C	18-24 hrs
37	1	Cefotaxime	<=	0.25	0.03	0.12	1	AGA	37°C	18-24 hrs
37	1	Ceftazidime	<=	0.5	0.06	0.5	1	AGA	37ºC	18-24 hrs
37	1	Chloramphenicol	<=	8	2	8	1	AGA	37⁰C	18-24 hrs
37	1	Ciprofloxacin	<=	0.015	0.004	0.016	1	AGA	37ºC	18-24 hrs
37	1	Colistin	<=	1	0.25	2	1	AGA	37°C	18-24 hrs
37	1	Gentamicin	<=	0.5	0.25	1	1	AGA	37ºC	18-24 hrs
37 37	1	Meropenem Nalidixic acid	<= <=	0.03	0.008 1	0.06 4	1	AGA AGA	37°C 37°C	18-24 hrs 18-24 hrs
37	1	Sulfamethoxazole	<=	16	8	32	1	AGA	37°C 37°C	18-24 hrs
37	1	Tetracycline	- <=	2	0.5	2	1	AGA	37°C	18-24 hrs
37	1	Tigecycline	<=	0.25	0.03	0.25	1	AGA	37°C	18-24 hrs
37	1	Trimethoprim	=	0.5	0.5	2	1	AGA	37ºC	18-24 hrs
37	2	Cefepime	=	0.015	0.015	0.12	1	AGA	37°C	18-24 hrs
37	2	Cefotaxime	<=	0.25	0.03	0.12	1	AGA	37ºC	18-24 hrs
37	2	Cefoxitin	=	4	2	8 0.5	1	AGA	37°C 37°C	18-24 hrs
37 37	2	Ceftazidime Ertapenem	<= <=	0.5 0.015	0.06	0.5	1 1	AGA AGA	37°C 37°C	18-24 hrs 18-24 hrs
37	2	Imipenem	<=	0.015	0.004	0.016	1	AGA	37°C 37°C	18-24 hrs 18-24 hrs
37	2	Meropenem	<=	0.03	0.008	0.25	1	AGA	37°C	18-24 hrs
39	1	Ampicillin	=	4	2	8	1	MIC	37	24
39	1	Cefotaxime	=	0.06	0.03	0.12	1	MIC	37	24
39	1	Ceftazidime	=	0.5	0.06	0.5	1	MIC	37	24
39	1	Chloramphenicol	=	4	2	8	1	MIC	37	24
39	1	Ciprofloxacin	=	0.016	0.004	0.016	1	MIC	37	24
39 39	1	Colistin	=	0.5 0.5	0.25 0.25	2	1 1	MIC MIC	37 37	24 24
39	1	Gentamicin Meropenem	= <=	0.5	0.25	0.06	1	MIC	37	24 24
39	1	Nalidixic acid	=	2	1	4	1	MIC	37	24
39	1	Sulfamethoxazole	=	16	8	32	1	MIC	37	24
39	1	Tetracycline	<=	1	0.5	2	1	MIC	37	24
39	1	Tigecycline	<=	0.25	0.03	0.25	1	MIC	37	24
39	1	Trimethoprim	=	1	0.5	2	1	MIC	37	24
39	2	Cefepime	<=	0.06	0.015	0.12	1	MIC	37	24
39	2	Cefotaxime Cefovitin	<=	0.25	0.03	0.12	1	MIC	37	24
39	2	Cefoxitin	=	4	2	8	1	MIC	37	24

Lab no.	Panel	Antimicrobial	Operator	Value	Low limit	High limit	Mark	Method	Temperature	Time
39	2	Ceftazidime	<=	0.25	0.06	0.5	1	MIC	37	24
39	2	Ertapenem	<=	0.015	0.004	0.016	1	MIC	37	24
39	2	Imipenem	<=	0.12	0.06	0.25	1	MIC	37	24
39	2	Meropenem	<=	0.03	0.008	0.06	1	MIC	37	24
40 40	1	Ampicillin Cefotaxime	=	2 0.12	2 0.03	8 0.12	1	MIC	37 37	18 18
40	1	Ceftazidime	=	0.12	0.03	0.12	1	MIC	37	18
40	1	Chloramphenicol	=	8	2	8	1	MIC	37	18
40	1	Ciprofloxacin	=	0.015	0.004	0.016	1	MIC	37	18
40	1	Colistin	=	1	0.25	2	1	MIC	37	18
40	1	Gentamicin	=	0.5	0.25	1	1	MIC	37	18
40	1	Meropenem	=	0.03	0.008	0.06	1	MIC	37	18
40	1	Nalidixic acid	=	4	1	4	1	MIC	37	18
40	1	Sulfamethoxazole	=	16	8	32	1	MIC	37	18
40	1	Tetracycline	=	2	0.5	2	1	MIC	37	18
40 40	1	Tigecycline Trimethoprim	=	0.25	0.03	0.25 2	1 0	MIC MIC	37 37	18 18
40	2	Cefepime	=	0.25	0.015	0.12	1	MIC	37	18
40	2	Cefotaxime	=	0.00	0.013	0.12	0	MIC	37	18
40	2	Cefoxitin	=	2	2	8	1	MIC	37	18
40	2	Ceftazidime	=	0.5	0.06	0.5	1	MIC	37	18
40	2	Ertapenem	=	0.015	0.004	0.016	1	MIC	37	18
40	2	Imipenem	=	0.12	0.06	0.25	1	MIC	37	18
40	2	Meropenem	=	0.03	0.008	0.06	1	MIC	37	18
41	1	Ampicillin	=	4	2	8	1	MIC	37	24
41	1	Cefotaxime	<=	0.25	0.03	0.12	1	MIC	37	24
41	1	Ceftazidime	<=	0.5	0.06	0.5 8	1	MIC MIC	37 37	24 24
41	1	Chloramphenicol Ciprofloxacin	<= <=	<u>8</u> 0.015	0.004	<u> </u>	1	MIC	37	24 24
41	1	Colistin	=	2	0.004	2	1	MIC	37	24
41	1	Gentamicin	=	1	0.25	1	1	MIC	37	24
41	1	Meropenem	=	0.06	0.008	0.06	1	MIC	37	24
41	1	Nalidixic acid	<=	4	1	4	1	MIC	37	24
41	1	Sulfamethoxazole	=	16	8	32	1	MIC	37	24
41	1	Tetracycline	<=	2	0.5	2	1	MIC	37	24
41	1	Tigecycline	<=	0.25	0.03	0.25	1	MIC	37	24
41	1	Trimethoprim	=	0.5	0.5	2	1	MIC	37	24
41	2	Cefepime Cefotaxime	<= <=	0.06	0.015	0.12	1 1	MIC	37 37	24 24
41	2	Cefoxitin	=	2	2	8	1	MIC	37	24
41	2	Ceftazidime	<=	0.5	0.06	0.5	1	MIC	37	24
41	2	Ertapenem	<=	0.015	0.004	0.016	1	MIC	37	24
41	2	Imipenem	<=	0.12	0.06	0.25	1	MIC	37	24
41	2	Meropenem	<=	0.06	0.008	0.06	1	MIC	37	24
42	1	Ampicillin	=	8	2	8	1	MIC	37°C	24 h
42	1	Cefotaxime	<=	0.25	0.03	0.12	1	MIC	37°C	24 h
42	1	Ceftazidime	<=	0.5	0.06	0.5	1	MIC	37°C	24 h
42	1	Chloramphenicol	<=	<u>8</u> 0.015	2	8	1	MIC MIC	37°C 37°C	24 h 24 h
42	1	Ciprofloxacin Colistin	<= <=	1	0.004	0.016 2	1	MIC	37°C	24 fi 24 h
42	1	Gentamicin	<=	0.5	0.25	1	1	MIC	37°C	24 h
42	1	Meropenem	<=	0.03	0.008	0.06	1	MIC	37°C	24 h
42	1	Nalidixic acid	<=	4	1	4	1	MIC	37°C	24 h
42	1	Sulfamethoxazole	=	32	8	32	1	MIC	37°C	24 h
42	1	Tetracycline	<=	2	0.5	2	1	MIC	37°C	24 h
42	1	Tigecycline	<=	0.25	0.03	0.25	1	MIC	37°C	24 h
42	1	Trimethoprim	=	1	0.5	2	1	MIC	37°C	24 h
42 42	2	Cefepime	<=	0.06	0.015	0.12	1 1	MIC MIC	37°C 37°C	24 h 24 h
42	2	Cefotaxime Cefoxitin	<= =	<u>0.25</u> 4	0.03	0.12	1	MIC	37°C 37°C	24 h 24 h
42	2	Ceftazidime	= <=	0.25	0.06	0.5	1	MIC	37°C	24 fi 24 h
42	2	Ertapenem	<=	0.015	0.004	0.016	1	MIC	37°C	24 h
42	2	Imipenem	<=	0.12	0.06	0.25	1	MIC	37°C	24 h
42	2	Meropenem	<=	0.03	0.008	0.06	1	MIC	37°C	24 h
45	1	Ampicillin	=	4	2	8	1	MIC	36	20
45	1	Cefotaxime	<=	0.25	0.03	0.12	1	MIC	36	20
45	1	Ceftazidime	<=	0.5	0.06	0.5	1	MIC	36	20
45	1	Chloramphenicol	<=	8	2	8	1	MIC	36	20
45 45	1	Ciprofloxacin Colistin	<=	0.015 1	0.004 0.25	0.016 2	1	MIC MIC	36 36	20 20
45 45	1	Gentamicin	<= <=	0.15	0.25	2	1 0	MIC	36	20
45 45	1	Meropenem	<=	0.15	0.25	0.06	1	MIC	36	20
45	1	Nalidixic acid	<=	4	1	4	1	MIC	36	20
45		Sulfamethoxazole	=	16	8	32	1	MIC	36	20
45	1									20
	1	Tetracycline	<=	2	0.5	2	1	MIC	36	20
45		Tetracycline Tigecycline	<= =	2 0.5	0.5 0.03	2 0.25	0	MIC	36	20
45 45 45	1	Tetracycline								

Lab no.	Panel	Antimicrobial	Operator	Value	Low limit	High limit	Mark	Method	Temperature	Time
45	2	Cefotaxime	<=	0.25	0.03	0.12	1	MIC	36	20
45	2	Cefoxitin	=	4	2	8	1	MIC	36	20
45	2	Ceftazidime	<=	0.25	0.06	0.5	1	MIC	36	20
45	2	Ertapenem	<=	0.015	0.004	0.016	1	MIC	36	20
45	2	Imipenem	=	0.25	0.06	0.25	1	MIC	36	20
45	2	Meropenem	<=	0.03	0.008	0.06	1	MIC	36	20
56	1	Ampicillin	=	4	2	8	1	MIC	35	20
56	1	Cefotaxime	<=	0.25	0.03	0.12	1	MIC	35	20
56	1	Ceftazidime	<=	0.5	0.06	0.5	1	MIC	35	20
56	1	Chloramphenicol	<=	8	2	8	1	MIC	35	20
56	1	Ciprofloxacin	<=	0.015	0.004	0.016	1	MIC	35	20
56	1	Colistin	<=	1	0.25	2	1	MIC	35	20
56	1	Gentamicin	<=	0.5	0.25	1	1	MIC	35	20
56	1	Meropenem	<=	0.03	0.008	0.06	1	MIC	35	20
56	1	Nalidixic acid	<=	4	1	4	1	MIC	35	20
56	1	Sulfamethoxazole	=	32	8	32	1	MIC	35	20
56	1	Tetracycline	<=	2	0.5	2	1	MIC	35	20
56	1	Tigecycline	<=	0.25	0.03	0.25	1	MIC	35	20
56	1	Trimethoprim	=	0.5	0.5	2	1	MIC	35	20
56	2	Cefepime	<=	0.06	0.015	0.12	1	MIC	35	20
56	2	Cefotaxime	<=	0.25	0.03	0.12	1	MIC	35	20
56	2	Cefoxitin	=	4	2	8	1	MIC	35	20
56	2	Ceftazidime	<=	0.25	0.06	0.5	1	MIC	35	20
56	2	Ertapenem	<=	0.015	0.004	0.016	1	MIC	35	20
56	2	Imipenem	<=	0.12	0.06	0.25	1	MIC	35	20
56	2	Meropenem	<=	0.03	0.008	0.06	1	MIC	35	20
59	1	Ampicillin	=	4	2	8	1	MIC	35	24
59	1	Cefotaxime	<=	0.25	0.03	0.12	1	MIC	35	24
59	1	Ceftazidime	<=	0.5	0.06	0.5	1	MIC	35	24
59	1	Chloramphenicol	<=	8	2	8	1	MIC	35	24
59	1	Ciprofloxacin	<=	0.015	0.004	0.016	1	MIC	35	24
59	1	Colistin	<=	1	0.25	2	1	MIC	35	24
59	1	Gentamicin	<=	0.5	0.25	1	1	MIC	35	24
59	1	Meropenem	<=	0.03	0.008	0.06	1	MIC	35	24
59	1	Nalidixic acid	<=	4	1	4	1	MIC	35	24
59	1	Sulfamethoxazole	=	64	8	32	0	MIC	35	24
59	1	Tetracycline	<=	2	0.5	2	1	MIC	35	24
59	1	Tigecycline	<=	0.25	0.03	0.25	1	MIC	35	24
59	1	Trimethoprim	=	0.5	0.5	2	1	MIC	35	24
59	2	Cefepime	<=	0.06	0.015	0.12	1	MIC	35	24
59	2	Cefotaxime	<=	0.25	0.03	0.12	1	MIC	35	24
59	2	Cefoxitin	=	2	2	8	1	MIC	35	24
59	2	Ceftazidime	<=	0.25	0.06	0.5	1	MIC	35	24
59	2	Ertapenem	<=	0.015	0.004	0.016	1	MIC	35	24
59	2	Imipenem	<=	0.12	0.06	0.25	1	MIC	35	24
59	2	Meropenem	<=	0.03	0.008	0.06	1	MIC	35	24
60	1	Ampicillin	=	4	2	8	1	MIC	35-37	18-20
60	1	Cefotaxime	<=	0.25	0.03	0.12	1	MIC	35-37	18-20
60	1	Ceftazidime	<=	0.5	0.06	0.5	1	MIC	35-37	18-20
60	1	Chloramphenicol	<=	8	2	8	1	MIC	35-37	18-20
60	1	Ciprofloxacin	<=	0.015	0.004	0.016	1	MIC	35-37	18-20
60	1	Colistin	<=	1	0.25	2	1	MIC	35-37	18-20
60	1	Gentamicin	<=	0.5	0.25	1	1	MIC	35-37	18-20
60	1	Meropenem	<=	0.03	0.008	0.06	1	MIC	35-37 35-37	18-20
60	1	Nalidixic acid	<=	4	1 8	4 32	1	MIC		18-20
60	1	Sulfamethoxazole	<=	8			1	MIC MIC	35-37	18-20
60 60	1	Tetracycline Tigecycline	<=	2 0.25	0.5 0.03	2 0.25	1	MIC	35-37 35-37	18-20 18-20
	1	Trimethoprim	<=				0		35-37	
60		rimetrioprim	<=	0.25	0.5	2	U	MIC	<u>30-31</u>	18-20

MIC: Microbroth dilution AGA: Agar dilution

Test results from the reference strain C. jejuni ATCC 33560

l ob po	Antimicrobiol	Operator	Volue	Low limit	Ligh limit	Mork	Mothod	36-37ºC/48h	420C/24b
Lab no. 2	Antimicrobial Ciprofloxacin	Operator =	Value 0.12	Low limit 0.06	High limit 0.25	Mark MIC	Method 1	X	42ºC/24h
2	Erythromycin	=	0.12	0.00	2	MIC	1	X	
2	Gentamicin	= <=	0.5	0.5	2	MIC	0	X	
2	Nalidixic acid	=	4	4	16	MIC	1	X	
2	Tetracycline	=	1	0.25	2	MIC	1	X	
4	Ciprofloxacin	<=	0.12	0.06	0.25	MIC	1	X	
4	Erythromycin	=	2	0.5	2	MIC	1	X	
4	Gentamicin	=	0.5	0.5	2	MIC	1	X	
4	Nalidixic acid	=	8	4	16	MIC	1	X	
4	Tetracycline	=	2	0.25	2	MIC	1	X	
6	Ciprofloxacin	<=	0.12	0.03	0.125	MIC	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Х
6	Erythromycin	<=	1	0.25	2	MIC	1		X
6	Gentamicin	=	1	0.25	2	MIC	1		X
6	Nalidixic acid	=	4	4	16	MIC	1		X
6	Tetracycline	<=	0.5	0.25	1	MIC	1		X
9	Ciprofloxacin	<=	0.12	0.06	0.25	MIC	1	Х	~
9	Erythromycin	<=	1	0.5	2	MIC	1	X	
9	Gentamicin	=	1	0.5	2	MIC	1	X	
9	Nalidixic acid	=	8	4	16	MIC	1	X	
9	Tetracycline	=	1	0.25	2	MIC	1	X	
11	Ciprofloxacin	=	0.25	0.06	0.25	MIC	1	X	
11	Erythromycin	<=	1	0.5	2	MIC	1	X	
11	Gentamicin	=	1	0.5	2	MIC	1	X	
11	Nalidixic acid	=	8	4	16	MIC	1	X	
11	Tetracycline	=	1	0.25	2	MIC	1	X	
12	Ciprofloxacin	=	0.25	0.06	0.25	MIC	1	X	
12	Erythromycin	<=	1	0.5	2	MIC	1	X	
12	Gentamicin	=	1	0.5	2	MIC	1	X	
12	Nalidixic acid	=	8	4	16	MIC	1	Х	
12	Tetracycline	=	1	0.25	2	MIC	1	Х	
14	Ciprofloxacin	<=	0.125	0.03	0.125	MIC	1		Х
14	Erythromycin	<=	1	0.25	2	MIC	1		Х
14	Gentamicin	=	0.5	0.25	2	MIC	1		Х
14	Nalidixic acid	=	4	4	16	MIC	1		Х
14	Tetracycline	=	1	0.25	1	MIC	1		Х
17	Ciprofloxacin	=	0.25	0.06	0.25	MIC	1	Х	
17	Erythromycin	=	2	0.5	2	MIC	1	Х	
17	Gentamicin	=	1	0.5	2	MIC	1	Х	
17	Nalidixic acid	=	8	4	16	MIC	1	Х	
17	Tetracycline	<=	0.5	0.25	2	MIC	1	Х	
18	Ciprofloxacin	<=	0.12	0.03	0.125	MIC	1		Х
18	Erythromycin	<=	1	0.25	2	MIC	1		Х
18	Gentamicin	=	0.25	0.25	2	MIC	1		Х
18	Nalidixic acid	=	8	4	16	MIC	1		Х
18	Tetracycline	<=	0.5	0.25	1	MIC	1		Х
19	Ciprofloxacin	<=	0.12	0.03	0.125	MIC	1		Х
19	Erythromycin	<=	1	0.25	2	MIC	1		Х
19	Gentamicin	=	0.5	0.25	2	MIC	1		Х
19	Nalidixic acid	=	4	4	16	MIC	1		Х
19	Tetracycline	<=	0.5	0.25	1	MIC	1		Х
20	Ciprofloxacin	<=	0.12	0.06	0.25	MIC	1	Х	
20	Erythromycin	<=	1	0.5	2	MIC	1	Х	
20	Gentamicin	=	1	0.5	2	MIC	1	X	
20	Nalidixic acid	=	8	4	16	MIC	1	Х	
20	Tetracycline	=	4	0.25	2	MIC	0	Х	
21	Ciprofloxacin	=	0.12	0.03	0.125	MIC	1		X
				0.25	2	MIC	1		Х
21	Erythromycin	=	1						
21 21	Erythromycin Gentamicin	= =	0.25	0.25	2	MIC	1		Х
21 21 21	Erythromycin Gentamicin Nalidixic acid		0.25 4	0.25 4	2 16	MIC MIC	1		X X
21 21 21 21	Erythromycin Gentamicin Nalidixic acid Tetracycline	= = =	0.25 4 0.5	0.25 4 0.25	2 16 1	MIC MIC MIC	1 1		X X X
21 21 21 21 21 22	Erythromycin Gentamicin Nalidixic acid Tetracycline Ciprofloxacin	= =	0.25 4 0.5 0.06	0.25 4 0.25 0.03	2 16 1 0.125	MIC MIC MIC MIC	1 1 1		X X X X
21 21 21 21 22 22	Erythromycin Gentamicin Nalidixic acid Tetracycline Ciprofloxacin Erythromycin	= = = <= <=	0.25 4 0.5 0.06 1	0.25 4 0.25 0.03 0.25	2 16 1 0.125 2	MIC MIC MIC MIC MIC	1 1 1 1		X X X X X
21 21 21 22 22 22 22	Erythromycin Gentamicin Nalidixic acid Tetracycline Ciprofloxacin Erythromycin Nalidixic acid	= = <= <= =	0.25 4 0.5 0.06 1 4	0.25 4 0.25 0.03 0.25 4	2 16 1 0.125 2 16	MIC MIC MIC MIC MIC	1 1 1 1 1		X X X X X X
21 21 21 22 22 22 22 22	Erythromycin Gentamicin Nalidixic acid Tetracycline Ciprofloxacin Erythromycin Nalidixic acid Tetracycline	= = <= <= = =	0.25 4 0.5 0.06 1 4 1	0.25 4 0.25 0.03 0.25 4 0.25	2 16 1 0.125 2 16 1	MIC MIC MIC MIC MIC MIC	1 1 1 1 1 1		X X X X X
21 21 21 22 22 22 22 22 22 25	Erythromycin Gentamicin Nalidixic acid Tetracycline Ciprofloxacin Erythromycin Nalidixic acid Tetracycline Ciprofloxacin	= = <= <= = = =	0.25 4 0.5 0.06 1 4 1 0.25	0.25 4 0.25 0.03 0.25 4 0.25 0.06	2 16 1 0.125 2 16 1 0.25	MIC MIC MIC MIC MIC MIC MIC	1 1 1 1 1 1 1 1	×	X X X X X X
21 21 21 22 22 22 22 22 25 25	Erythromycin Gentamicin Nalidixic acid Tetracycline Ciprofloxacin Erythromycin Nalidixic acid Tetracycline Ciprofloxacin Erythromycin	= = <= <= = =	0.25 4 0.5 0.06 1 4 1 0.25 2	0.25 4 0.25 0.03 0.25 4 0.25 0.06 0.5	2 16 1 0.125 2 16 1 0.25 2	MIC MIC MIC MIC MIC MIC MIC MIC	1 1 1 1 1 1 1 1 1	Х	X X X X X X
21 21 21 22 22 22 22 22 25 25 25 25	Erythromycin Gentamicin Nalidixic acid Tetracycline Ciprofloxacin Erythromycin Nalidixic acid Tetracycline Ciprofloxacin Erythromycin Gentamicin	= = <= <= = = = =	0.25 4 0.5 0.06 1 4 1 0.25 2 0.25	0.25 4 0.25 0.03 0.25 4 0.25 0.06 0.5 0.5	2 16 1 0.125 2 16 1 0.25 2 2 2	MIC MIC MIC MIC MIC MIC MIC MIC MIC	1 1 1 1 1 1 1 1 0	X X	X X X X X X
21 21 21 22 22 22 22 22 25 25 25 25 25	Erythromycin Gentamicin Nalidixic acid Tetracycline Ciprofloxacin Erythromycin Nalidixic acid Tetracycline Ciprofloxacin Erythromycin Gentamicin Nalidixic acid	= = <= <= = = = = = = =	0.25 4 0.5 0.06 1 4 1 0.25 2 0.25 8	0.25 4 0.25 0.03 0.25 4 0.25 0.06 0.5 0.5 4	2 16 1 0.125 2 16 1 0.25 2 2 2 16	MIC MIC MIC MIC MIC MIC MIC MIC MIC MIC	1 1 1 1 1 1 1 0 1	X X X	X X X X X X
21 21 21 22 22 22 22 22 25 25 25 25 25 25	Erythromycin Gentamicin Nalidixic acid Tetracycline Ciprofloxacin Erythromycin Nalidixic acid Tetracycline Ciprofloxacin Erythromycin Gentamicin Nalidixic acid Tetracycline	= = <= <= = = = = = = = = =	0.25 4 0.5 0.06 1 4 1 0.25 2 0.25 8 8 2	0.25 4 0.25 0.03 0.25 4 0.25 0.06 0.5 0.5 4 0.25	2 16 1 0.125 2 16 1 0.25 2 2 2 16 2	MIC MIC MIC MIC MIC MIC MIC MIC MIC MIC	1 1 1 1 1 1 1 0 1 1 1	X X X X	X X X X X X
21 21 21 22 22 22 22 22 25 25 25 25 25	Erythromycin Gentamicin Nalidixic acid Tetracycline Ciprofloxacin Erythromycin Nalidixic acid Tetracycline Ciprofloxacin Erythromycin Gentamicin Nalidixic acid	= = <= <= = = = = = = =	0.25 4 0.5 0.06 1 4 1 0.25 2 0.25 8	0.25 4 0.25 0.03 0.25 4 0.25 0.06 0.5 0.5 4	2 16 1 0.125 2 16 1 0.25 2 2 2 16	MIC MIC MIC MIC MIC MIC MIC MIC MIC MIC	1 1 1 1 1 1 1 0 1	X X X	X X X X X X

Lahno	Antimicrobial	Operator	Value	Low limit	High limit	Mark	Method	36-37ºC/48h	120C/21h
26	Gentamicin	=	1	0.5	2	MIC	1	X	42*0/2411
26	Nalidixic acid	=	8	4	16	MIC	1	X	
26	Tetracycline	=	1	0.25	2	MIC	1	X	
29	Ciprofloxacin	=	0.25	0.06	0.25	MIC	1	Х	
29	Erythromycin	=	2	0.5	2	MIC	1	Х	
29	Gentamicin	=	1	0.5	2	MIC	1	Х	
29	Nalidixic acid	=	8	4	16	MIC	1	Х	
29	Tetracycline	=	1	0.25	2	MIC	1	Х	
30	Ciprofloxacin	<=	0.12	0.06	0.25	MIC	1	Х	
30	Erythromycin	<=	1	0.5	2	MIC	1	Х	
30	Gentamicin	=	0.5	0.5	2	MIC	1	Х	
30	Nalidixic acid	=	8	4	16	MIC	1	Х	
30	Tetracycline	<=	0.5	0.25	2	MIC	1	Х	
32	Ciprofloxacin	=	0.25	0.06	0.25	MIC	1	Х	
32	Erythromycin	<=	1	0.5	2	MIC	1	Х	
32	Gentamicin	=	1	0.5	2	MIC	1	Х	
32	Nalidixic acid	=	8	4	16	MIC	1	Х	
32	Tetracycline	=	1	0.25	2	MIC	1	Х	
33	Ciprofloxacin	=	0.25	0.06	0.25	MIC	1	Х	
33	Erythromycin	<=	1	0.5	2	MIC	1	X	
33	Gentamicin	=	0.5	0.5	2	MIC	1	Х	
33	Nalidixic acid	=	8	4	16	MIC	1	X	
33	Tetracycline	=	1	0.25	2	MIC	1	Х	N/
36	Ciprofloxacin	<=	0.12	0.03	0.125	MIC	1		X
36	Erythromycin	<=	1	0.25	2	MIC	1		X
36	Gentamicin	=	0.5	0.25	2	MIC	1		X
36	Nalidixic acid	=	4	4	16	MIC	1		X X
36	Tetracycline	<=	0.5	0.25	1	MIC	1	V	X
37 37	Ciprofloxacin Erythromycin	=	0.25	0.12	8	AGA AGA	1	X X	
37	, ,	<=	1	0.5	8	AGA	1	X	
39	Gentamicin Ciprofloxacin	=	0.12	0.03	0.125	MIC	1	^	Х
39		<=	1			MIC	1		
39	Erythromycin Gentamicin	<=	0.25	0.25	2	MIC	1		X X
39	Nalidixic acid	=	4	4	16	MIC	1		X
39	Tetracycline	= <=	4	4 0.25	10	MIC	1		X
40	Ciprofloxacin	=	0.5	0.23	0.125	MIC	1		X
40	Erythromycin	=	1	0.03	2	MIC	1		X
40	Nalidixic acid	=	4	4	16	MIC	1		X
40	Tetracycline	=	0.5	0.25	10	MIC	1		X
40	Ciprofloxacin	<=	0.12	0.23	0.125	MIC	1		X
41	Erythromycin	<=	1	0.05	2	MIC	1		X
41	Gentamicin	=	1	0.25	2	MIC	1		X
41	Nalidixic acid	=	8	4	16	MIC	1		X
41	Tetracycline	=	1	0.25	1	MIC	1		X
42	Ciprofloxacin	=	0.25	0.23	0.125	MIC	0		X
42	Erythromycin	- <=	1	0.05	2	MIC	1	Ì	X
42	Nalidixic acid	=	8	4	16	MIC	1		X
42	Tetracycline	=	2	0.25	1	MIC	0		X
45	Ciprofloxacin	<=	0.12	0.06	0.25	MIC	1	Х	
45	Erythromycin	<=	1	0.5	2	MIC	1	X	
45	Nalidixic acid	=	2	4	16	MIC	0	X	
45	Tetracycline	<=	0.5	0.25	2	MIC	1	Х	
56	Ciprofloxacin	<=	0.12	0.03	0.125	MIC	1		Х
56	Erythromycin	<=	1	0.25	2	MIC	1		Х
56	Gentamicin	=	0.5	0.25	2	MIC	1		Х
56	Nalidixic acid	=	8	4	16	MIC	1		Х
56	Tetracycline	=	1	0.25	1	MIC	1		Х
59	Ciprofloxacin	<=	0.12	0.06	0.25	MIC	1	Х	
59	Erythromycin	<=	1	0.5	2	MIC	1	Х	
59	Gentamicin	=	1	0.5	2	MIC	1	Х	
		=	8	4	16	MIC	1	Х	
59	Nalidixic acid	=					4		
59 59	Nalidixic acid Tetracycline	=	1	0.25	2	MIC	1	Х	
				0.25	2 0.25	MIC	1	Х	
59	Tetracycline	=	1		0.25 2			X X	
59 60	Tetracycline Ciprofloxacin	=	1 0.25 1 1	0.06 0.5 0.5	0.25	MIC	1 1 1	X X X	
59 60 60	Tetracycline Ciprofloxacin Erythromycin	= = <=	1 0.25 1	0.06 0.5	0.25 2	MIC MIC	1 1	X X	

MIC: Microbroth dilution

AGA: Agar dilution

No. No. Antimicrobial Strain Panel Expected % R % S incorrect correct Ampicillin AMP EURL S-11.1 Panel 1 R 100% 0% 31 0 EURL S-11.2 Panel 1 R 100% 0% 31 0 EURL S-11.3 Panel 1 R 100% 0% 31 0 EURL S-11.4 Panel 1 R 100% 0% 31 0 EURL S-11.5 Panel 1 R 100% 0% 31 0 EURL S-11.6 Panel 1 0% 100% 31 0 S EURL S-11.7 Panel 1 100% 0% 31 0 R EURL S-11.8 Panel 1 R 100% 0% 31 0 Azithromycin AZI EURL S-11.1 R 100% 0% 25 0 Panel 1 EURL S-11.2 0% 100% 25 0 Panel 1 S EURL S-11.3 0% 100% 25 0 Panel 1 S EURL S-11.4 0% 100% 25 0 Panel 1 S EURL S-11.5 0% 100% 25 0 Panel 1 S EURL S-11.6 0% 100% 25 0 Panel 1 S EURL S-11.7 25 Panel 1 S 0% 100% 0 25 EURL S-11.8 Panel 1 R 100% 0% 0 Cefotaxime FOT EURL S-11.1 Panel 1 R 100% 0% 31 0 Panel 2 EURL S-11.1 R 100% 0% 31 0 EURL S-11.2 Panel 1 R 100% 0% 31 0 EURL S-11.2 Panel 2 R 100% 0% 30 0 EURL S-11.3 Panel 1 R 100% 0% 31 0 EURL S-11.3 Panel 2 R 100% 0% 31 0 EURL S-11.4 Panel 1 0% 100% 31 0 S EURL S-11.5 Panel 1 100% 0% 31 0 R EURL S-11.5 Panel 2 100% 0% 31 0 R 0% 100% 31 0 EURL S-11.6 Panel 1 S Panel 1 100% 31 0 EURL S-11.7 R 0% 100% 31 0 EURL S-11.7 Panel 2 R 0% 100% 31 0 EURL S-11.8 Panel 1 R 0% 100% Panel 2 31 0 EURL S-11.8 R 0% Cefoxitin FOX Panel 2 87% 27 EURL S-11.1 S 13% 4 0% Panel 2 100% 30 0 EURL S-11.2 S 3% 97% 30 EURL S-11.3 Panel 2 S 1 Panel 2 71% 29% 9 22 EURL S-11.5* S 0% 31 EURL S-11.7 100% 0 Panel 2 S EURL S-11.8 0% 100% 31 0 Panel 2 S Ceftazidime TAZ 10% 90% 28 EURL S-11.1 Panel 1 S 3 EURL S-11.1 Panel 2 S 6% 94% 29 2 EURL S-11.2 Panel 1 R 100% 0% 31 0 EURL S-11.2 Panel 2 R 100% 0% 30 0 EURL S-11.3 Panel 1 S 6% 94% 29 2 EURL S-11.3 Panel 2 S 10% 90% 28 3 EURL S-11.4 Panel 1 S 0% 100% 31 0 EURL S-11.5 Panel 1 R 94% 6% 29 2 EURL S-11.5 Panel 2 R 94% 6% 29 2 EURL S-11.6 Panel 1 S 0% 100% 31 0 EURL S-11.7* Panel 1 R 43% 57% 13 17 EURL S-11.7* Panel 2 R 47% 53% 14 16 EURL S-11.8 Panel 1 R 100% 0% 31 0 EURL S-11.8 Panel 2 R 100% 0% 31 0 Chloramphenicol CHL EURL S-11.1 Panel 1 S 0% 100% 31 0 EURL S-11.2 Panel 1 R 100% 0% 31 0 EURL S-11.3 Panel 1 S 3% 97% 30 1 EURL S-11.4 Panel 1 S 0% 100% 31 0 EURL S-11.5 Panel 1 R 100% 0% 31 0 EURL S-11.6 Panel 1 S 0% 100% 31 0 EURL S-11.7 Panel 1 S 0% 100% 31 0 EURL S-11.8 Panel 1 R 100% 0% 31 0

Salmonella - expected and obtained interpretation

Antimicrobial	Strain	Panel	Expected	% R	% S	No.	No.
Ciprofloxacin CIP	EURL S-11.1	Panel 1	R	100%	0%	Correct 31	0
olpronozacin oli	EURL S-11.2	Panel 1	S	0%	100%	31	0
	EURL S-11.3	Panel 1	R	100%	0%	31	0
	EURL S-11.4	Panel 1	S	0%	100%	31	0
	EURL S-11.5	Panel 1	R	100%	0%	31	0
	EURL S-11.6	Panel 1	S	0%	100%	31	0
	EURL S-11.7	Panel 1	S	0%	100%	31	0
	EURL S-11.8	Panel 1	R	100%	0%	31	0
Colistin COL	EURL S-11.0	Panel 1	S	0%	100%	31	0
CONSULTCOL	EURL S-11.2	Panel 1	S	0%	100%	31	0
	EURL S-11.2 EURL S-11.3	Panel 1 Panel 1	S	0%	100%	31	0
							-
	EURL S-11.4	Panel 1	R	97%	3%	30	1
	EURL S-11.5	Panel 1	S	0%	100%	31	0
	EURL S-11.6	Panel 1	S	0%	100%	31	0
	EURL S-11.7	Panel 1	S	0%	100%	31	0
	EURL S-11.8	Panel 1	S	0%	100%	31	0
Ertapenem ETP	EURL S-11.1	Panel 2	R	100%	0%	31	0
	EURL S-11.2	Panel 2	S	0%	100%	30	0
	EURL S-11.3	Panel 2	S	0%	100%	31	0
	EURL S-11.5	Panel 2	S	0%	100%	31	0
	EURL S-11.7	Panel 2	S	0%	100%	31	0
	EURL S-11.8	Panel 2	S	6%	94%	29	2
Gentamicin GEN	EURL S-11.1	Panel 1	R	97%	3%	30	1
	EURL S-11.2	Panel 1	S	0%	100%	31	0
	EURL S-11.3	Panel 1	S	0%	100%	31	0
	EURL S-11.4	Panel 1	S	0%	100%	31	0
	EURL S-11.5	Panel 1	R	100%	0%	31	0
	EURL S-11.6	Panel 1	S	0%	100%	31	0
	EURL S-11.7	Panel 1	S	0%	100%	31	0
	EURL S-11.8	Panel 1	R	100%	0%	31	0
Imipenem IMI	EURL S-11.1	Panel 2	R	80%	20%	24	6
-	EURL S-11.2	Panel 2	S	0%	100%	30	0
	EURL S-11.3	Panel 2	S	0%	100%	31	0
	EURL S-11.5	Panel 2	S	0%	100%	31	0
	EURL S-11.7	Panel 2	S	0%	100%	31	0
	EURL S-11.8	Panel 2	S	0%	100%	31	0
Meropenem MER	EURL S-11.1	Panel 1	R	100%	0%	31	0
	EURL S-11.1	Panel 2	R	100%	0%	31	0
	EURL S-11.2	Panel 1	S	0%	100%	31	0
	EURL S-11.2	Panel 2	S	0%	100%	30	0
	EURL S-11.3	Panel 1	S	0%	100%	31	0
	EURL S-11.3	Panel 2	S	0%	100%	31	0
	EURL S-11.4	Panel 1	S	0%	100%	31	0
	EURL S-11.5	Panel 1	S	0%	100%	31	0
	EURL S-11.5	Panel 2	S	0%	100%	31	0
	EURL S-11.6	Panel 1	S	0%	100%	31	0
	EURL S-11.7	Panel 1	S	0%	100%	31	0
	EURL S-11.7	Panel 2	S	0%	100%	31	0
	EURL S-11.8	Panel 1	S	0%	100%	31	0
	EURL S-11.8	Panel 2	S	0%	100%	31	0
Nalidixic acid NAL	EURL S-11.0	Panel 2 Panel 1	S R	100%	0%	31	0
INALIUINIC ACIU INAL	EURL S-11.1 EURL S-11.2		S S	0%			
		Panel 1			100%	31	0
	EURL S-11.3	Panel 1	R	100%	0%	31	0
	EURL S-11.4	Panel 1	S	0%	100%	31	0
	EURL S-11.5	Panel 1	R	100%	0%	31	0
	EURL S-11.6	Panel 1	S	0%	100%	31	0
	EURL S-11.7	Panel 1	S	0%	100%	31	0
	EURL S-11.8	Panel 1	R	100%	0%	31	0

Antimicrobial	Strain	Panel	Expected	% R	% S	No. correct	No. incorrect
Sulfamethoxazole SMX	EURL S-11.1	Panel 1	R	100%	0%	31	0
	EURL S-11.2	Panel 1	S	3%	97%	30	1
	EURL S-11.3	Panel 1	S	0%	100%	31	0
	EURL S-11.4	Panel 1	R	100%	0%	31	0
	EURL S-11.5	Panel 1	R	100%	0%	31	0
	EURL S-11.6	Panel 1	S	3%	97%	30	1
	EURL S-11.7	Panel 1	R	97%	3%	29	1
	EURL S-11.8	Panel 1	R	100%	0%	31	0
Temocillin TRM	EURL S-11.1	Panel 2	R	100%	0%	26	0
	EURL S-11.2	Panel 2	S	0%	100%	26	0
	EURL S-11.3	Panel 2	S	0%	100%	26	0
	EURL S-11.5	Panel 2	S	0%	100%	26	0
	EURL S-11.7	Panel 2	S	0%	100%	26	0
	EURL S-11.8	Panel 2	S	0%	100%	26	0
Tetracycline TET	EURL S-11.1	Panel 1	R	100%	0%	31	0
	EURL S-11.2	Panel 1	S	0%	100%	31	0
	EURL S-11.3	Panel 1	R	100%	0%	31	0
	EURL S-11.4	Panel 1	R	100%	0%	31	0
	EURL S-11.5	Panel 1	R	100%	0%	31	0
	EURL S-11.6	Panel 1	S	0%	100%	31	0
	EURL S-11.7	Panel 1	R	100%	0%	31	0
	EURL S-11.8	Panel 1	R	100%	0%	31	0
Tigecycline TGC	EURL S-11.1	Panel 1	S	0%	100%	31	0
	EURL S-11.2	Panel 1	S	0%	100%	31	0
	EURL S-11.3	Panel 1	S	0%	100%	31	0
	EURL S-11.4	Panel 1	S	10%	90%	28	3
	EURL S-11.5	Panel 1	S	16%	84%	26	5
	EURL S-11.6	Panel 1	S	0%	100%	31	0
	EURL S-11.7	Panel 1	S	3%	97%	30	1
	EURL S-11.8	Panel 1	S	10%	90%	28	3
Trimethoprim TMP	EURL S-11.1	Panel 1	R	100%	0%	31	0
	EURL S-11.2	Panel 1	S	0%	100%	31	0
	EURL S-11.3	Panel 1	S	0%	100%	31	0
	EURL S-11.4	Panel 1	R	97%	3%	30	1
	EURL S-11.5	Panel 1	R	100%	0%	31	0
	EURL S-11.6	Panel 1	S	0%	100%	31	0
	EURL S-11.7	Panel 1	S	0%	100%	31	0
	EURL S-11.8	Panel 1	R	100%	0%	31	0

*Strain/antimicrobial-combination excluded from the evaluation

Campylobacter - expected and obtained interpretation

Antimicrobial	Strain	Expected	% R	% S	No.	No.
		-			correct	incorrect
Ciprofloxacin, CIP	EURL C-11.1	S	0	100	31	0
	EURL C-11.2	R	100	0	31	0
	EURL C-11.3	R	100	0	31	0
	EURL C-11.4	R	100	0	31	0
	EURL C-11.5	R	94	6	29	2
	EURL C-11.6 EURL C-11.7	S R	0	100 0	31 31	0
	EURL C-11.7		100	-		
Erythromycin, ERY	EURL C-11.8 EURL C-11.1	S S	0	100 100	31 31	0
Eryunomyon, EKT	EURL C-11.2	R	100	0	31	0
	EURL C-11.2	R S	0	100	31	0
	EURL C-11.4	S	0	100	31	0
	EURL C-11.4	S	0	100	31	0
	EURL C-11.6	S	0	100	31	0
	EURL C-11.7	S	0	100	31	0
	EURL C-11.8	S	0	100	31	0
Gentamicin, GEN	EURL C-11.1	S	0	100	31	0
Centamion, CEN	EURL C-11.2	S	0	100	31	0
	EURL C-11.3	S	0	100	31	0
	EURL C-11.4	S	0	100	31	0
	EURL C-11.5	S	0	100	31	0
	EURL C-11.6	S	3	97	30	1
	EURL C-11.7	S	0	100	31	0
	EURL C-11.8	S	0	100	31	0
Nalidixic acid, NAL	EURL C-11.1	S	0	100	31	0
	EURL C-11.2	R	100	0	31	0
	EURL C-11.3	R	100	0	31	0
	EURL C-11.4	R	100	0	31	0
	EURL C-11.5	R	97	3	30	1
	EURL C-11.6	S	0	100	31	0
	EURL C-11.7	R	100	0	31	0
	EURL C-11.8	S	0	100	31	0
Streptomycin, STR	EURL C-11.1	S	0	100	31	0
	EURL C-11.2	S	0	100	31	0
	EURL C-11.3	S	0	100	31	0
	EURL C-11.4*	S	90	10	3	28
	EURL C-11.5	S	3	97	30	1
	EURL C-11.6	R	100	0	31	0
	EURL C-11.7	S	0	100	31	0
	EURL C-11.8	S	0	100	31	0
Tetracycline, TET	EURL C-11.1	S	0	100	31	0
	EURL C-11.2	R	100	0	31	0
	EURL C-11.3	R	100	0	31	0
	EURL C-11.4	R	100	0	31	0
	EURL C-11.5	R	97	3	30	1
	EURL C-11.6	S	0	100	31	0
	EURL C-11.7	R	100	0	31	0
	EURL C-11.8	R	100	0	31	0

*Strain/antimicrobial-combination excluded from the evaluation

Deviations - Salmonella

Lab no.	Strain	Panel	Antimicrobial	Obtained MIC value	Obtained interpretation	Expected MIC-value	Expected interpretation
4	EURL S-11.1	1	Gentamicin GEN	16	S	32	R
4	EURL S-11.1	2	Imipenem IMI	1	S	4	R
4	EURL S-11.8	1	Tigecycline TGC	2	R	1	S
6	EURL S-11.4	1	Tigecycline TGC	2	R	1	S
9	EURL S-11.8	2	Ertapenem ETP	0.06	R	0.06	S
11	EURL S-11.1	1	Ceftazidime TAZ	1	R	1	S
11	EURL S-11.1	2	Ceftazidime TAZ	1	R	1	S
11	EURL S-11.3	1	Ceftazidime TAZ	1	R	1	S
11	EURL S-11.3	2	Ceftazidime TAZ	1	R	1	S
11	EURL S-11.4	1	Tigecycline TGC	2	R	1	S
11	EURL S-11.4	1	Trimethoprim TMP	> 32	S	> 32	R
11	EURL S-11.5	1	Tigecycline TGC	2	R	1	S
12	EURL S-11.3	1	Chloramphenicol CHL	<= 8	R	<= 8	S
17	EURL S-11.1	2	Cefoxitin FOX	16	R	8	S
19	EURL S-11.1	2	Imipenem IMI	1	S	4	R
19	EURL S-11.2		ESBL-categorization	Presumptive	ESBL + pAmpC	Presur	nptive ESBL
20	EURL S-11.1	2	Imipenem IMI	1	S	4	R
21	EURL S-11.1	2	Imipenem IMI	= 0.5	S	4	R
21	EURL S-11.5	1	Ceftazidime TAZ	2	S	8	R
21	EURL S-11.5	2	Ceftazidime TAZ	2	S	8	R
21	EURL S-11.7	1	Sulfamethoxazole SMX	2048	S	> 1024	R
22	EURL S-11.1	1	Ceftazidime TAZ	1	R	1	S
22	EURL S-11.1	2	Ceftazidime TAZ	1	R	1	S
22	EURL S-11.5	1	Tigecycline TGC	1	R	1	S
22	EURL S-11.8	1	Tigecycline TGC	1	R	1	S
26	EURL S-11.1	1	Ceftazidime TAZ	1	R	1	S
26	EURL S-11.1 EURL S-11.3	2	Ceftazidime TAZ	1	R	1	S
	EURL S-11.3	2					S
29 30			Cefoxitin FOX	16	R	8	
	EURL S-11.5	1	Ceftazidime TAZ	2	S S	8	R
30	EURL S-11.5	2	Ceftazidime TAZ	2		8	
34	EURL S-11.1	2	Imipenem IMI	1	S	4	R
37	EURL S-11.4	1	Tigecycline TGC	2	R	1	S
37	EURL S-11.5	1	Tigecycline TGC	2	R	1	S
37	EURL S-11.8	1	Tigecycline TGC	2	R	1	S
39	EURL S-11.4	1	Colistin COL	2	S	8	R
40	EURL S-11.1	2	Cefoxitin FOX	16	R	8	S
40	EURL S-11.3	1	Ceftazidime TAZ	4	R	1	S
40	EURL S-11.3	2	Ceftazidime TAZ	4	R	1	S
40	EURL S-11.8	2	Ertapenem ETP	0.12	R	0.06	S
42	EURL S-11.1	2	Imipenem IMI	1	S	4	R
42	EURL S-11.2	1	Sulfamethoxazole SMX	> 1024	R	64	S
42	EURL S-11.5	1	Tigecycline TGC	2	R	1	S
42	EURL S-11.6	1	Sulfamethoxazole SMX	> 1024	R	32	S
45	EURL S-11.1	2	Cefoxitin FOX	16	R	8	S
45	EURL S-11.3	2	Cefoxitin FOX	4	R	4	S
45	EURL S-11.5	1	Tigecycline TGC	4	R	1	S
45	EURL S-11.7	1	Tigecycline TGC	2	R	1	S

Deviations - Campylobacter

Lab no.	Strain	Antimicrobial	Obtained MIC value	Obtained interpretation	Expected MIC-value	Expected interpretation
36	EURL C-11.5	Ciprofloxacin CIP	= 0.25	S	4	R
36	EURL C-11.5	Streptomycin STR	8	R	= 0.5	S
36	EURL C-11.5	Tetracycline TET	<= 0.5	S	64	R
39	EURL C-11.5	Nalidixic acid NAL	16	S	64	R
45	EURL C-11.5	Ciprofloxacin CIP	2	S	4	R
45	EURL C-11.6	Gentamicin GEN	= 0.5	R	1	S

Labno	Strain	Genetype	Gene number	Not detected	Method	Reference	Primer 5 3	Primer 3 5
1	EURL-S11.1	OXA	-48		Whole genome sequenced	-	-	-
1	EURL-S11.1	TEM	-1B		-	-	-	-
1	EURL-S11.2	SHV	-2		-	-	-	-
1	EURL-S11.3	СТХ	M-9		-	-	-	-
1	EURL-S11.3	TEM	-1B		-	-	-	-
1	EURL-S11.4	TEM	-1B		-	-	-	-
1	EURL-S11.5	СТХ	M-65		-	-	-	-
1	EURL-S11.7	СТХ	M-8		-	-	-	-
1	EURL-S11.8	CTX	M-3		-	-	-	-
1	EURL-S11.8	OXA	-1		-	-	-	-
2	EURL-S11.1	OXA	-48		PCR (published)	Dallenne C. et al.: Development of a set of multiplex PCR assays for the detection of genes encoding important ß-lactamases in Enterobacteriaceae.	-	-
2	EURL-S11.2	SHV	-2		Whole genome sequenced	-	-	-
2	EURL-S11.3	CTX	M-9		Whole genome sequenced	-	-	-
2	EURL-S11.3	TEM	-1B		Whole genome sequenced	-	-	-
2	EURL-S11.5	CTX	M-65		Whole genome sequenced	-	-	-
2	EURL-S11.7	CTX	M-8		Whole genome sequenced	-	-	-
2	EURL-S11.8	СТХ	M-1		PCR (published)	Dallenne C. et al.: Development of a set of multiplex PCR assays for the detection of genes encoding important ß-lactamases in Enterobacteriaceae	-	-
2	EURL-S11.8	OXA	-1		Whole genome sequenced	-	-	-
4	EURL-S11.1	ACC	-	Х	PCR (published)	-	-	-
4	EURL-S11.1	CMY	-	Х	PCR (published)	-	-	-
4	EURL-S11.1	CTX	-	Х	PCR (published)	-	-	-
4	EURL-S11.1	IMP	-	Х	PCR (published)	-	-	-
4	EURL-S11.1	KPC	-	Х	PCR (published)	-	-	-
4	EURL-S11.1	NDM	-	Х	PCR (published)	-	-	-
4	EURL-S11.1	OXA	-48	Х	PCR (published)	-	-	-
4	EURL-S11.1	OXA	-	Х	PCR (published)	-	-	-
4	EURL-S11.1	SHV	-	Х	PCR (published)	-	-	-
4	EURL-S11.1	TEM	-1		PCR (published)	-	-	-
4	EURL-S11.1	VIM	-	Х	PCR (published)	-	-	-
4	EURL-S11.2	СТХ	-	Х	PCR (published)	-	-	-
4	EURL-S11.2	OXA	-	Х	PCR (published)	-	-	-
4	EURL-S11.2	SHV	-12		PCR (published)	-	-	-
4	EURL-S11.2	TEM	-	Х	PCR (published)	-	-	-
4	EURL-S11.3	CTX	M-9		PCR (published)	-	-	-
4	EURL-S11.3	OXA	-	Х	PCR (published)	-	-	-
4	EURL-S11.3	SHV	-	Х	PCR (published)	-	-	-
4	EURL-S11.3	TEM	-1		PCR (published)	-	-	-
4	EURL-S11.5	ACC	-	X	PCR (published)	-	-	-
4	EURL-S11.5	CMY	-	Х	PCR (published)	-	-	-
4	EURL-S11.5	CTX	M-14		PCR (published)	-	-	-
4	EURL-S11.5	SHV	-	X	PCR (published)	-	-	-
4	EURL-S11.5	TEM	-		PCR (published)	-	-	-
4	EURL-S11.5	TEM	-	Х	PCR (published)	-	-	-
4	EURL-S11.7	CTX	M-8	N/	PCR (published)	-	-	-
4	EURL-S11.7	OXA	-		PCR (published)	-	-	-
4	EURL-S11.7	SHV	-	X	PCR (published)	-	-	-
4	EURL-S11.7	TEM	-	Х	PCR (published)	-	-	-
4	EURL-S11.8	CTX	M-3		PCR (published)	-	-	-
4	EURL-S11.8	OXA	-	X	PCR (published)	-	-	-
4	EURL-S11.8	SHV	-	Х	PCR (published)	-	-	-

Labno	Strain	Genetype	Gene number	Not detected	Method	Reference	Primer 5 3	Primer 3 5
4	EURL-S11.8	TEM	-	Х	PCR (published)	-	-	-
9	EURL-S11.1	OXA	-48		PCR (published)	JAC 2010;65;490-495	-	-
9	EURL-S11.1	TEM	-1		PCR (published)	JAC 2010;65;490-495	-	-
9	EURL-S11.2	SHV	-12		PCR (published)	JAC 2010;65;490-495	-	-
9	EURL-S11.3	CTX	M-9		PCR (published)	JAC 2010;65;490-495	-	-
9	EURL-S11.3	TEM	-1		PCR (published)	JAC 2010;65;490-495	-	-
9	EURL-S11.5	СТХ	M-14		PCR (published)	JAC 2010;65;490-495	-	-
9	EURL-S11.7	CTX	M-8		PCR (published)	JAC 2010;65;490-495	-	-
9	EURL-S11.8	CTX	M-15		PCR (published)	JAC 2010;65;490-495	-	-
9	EURL-S11.8	OXA	-1		PCR (published)	JAC 2010;65;490-495	-	-
17	EURL-S11.1	OXA	-48		PCR (published)	van der Zee et al., 2014	-	
17	EURL-S11.1	TEM	-1		PCR (published)	Olesen et al. (2004) MDR, 10: 334-340	-	-
17	EURL-S11.2	SHV	-2a			MedVetNet WP9; Weill et al., (2004) J Clinical Microbiol		
					PCR (published)	42(6):2432-2437;	-	-
17	EURL-S11.3	CTX	M-9		PCR (published)	Batchelor et al 2005	-	-
17	EURL-S11.3	TEM	-1		PCR (published)	Olesen et al. (2004) MDR, 10: 334-340	-	-
17	EURL-S11.5	СТХ	M-65		PCR (published)	Batchelor et al 2005	-	-
17	EURL-S11.7	CTX	M-8		PCR (published)	Hopkins et al. (2006) Int J Antimicrob Agents, 27: 572		-
17	EURL-S11.8	CTX	M-3		PCR (published)	Carrattoli J Clin Microbiol. 2008,46:103-8		-
21	EURL-S11.1	OXA	-48		PCR (published)	Poirel, 2011	-	-
21	EURL-S11.2	SHV	-2a		PCR (published)	Melano 2006	-	-
21	EURL-S11.3	СТХ	M-9		PCR (published)	Edelstein 2003; Simarro 2000.	-	-
21	EURL-S11.5	CTX	M-65		PCR (published)	Edelstein 2003; Simarro 2000.	-	-
21	EURL-S11.8	CTX	M-3		PCR (published)	Edelstein 2003; Carattoli 2004.	-	-
25	EURL-S11.1	OXA	-48		PCR (in-house)		-	-
25	EURL-S11.1	TEM	-1B		PCR (in-house)	-	-	-
25	EURL-S11.2	SHV	-2a		PCR (in-house)	-	-	-
25	EURL-S11.3	CTX	M-9		PCR (in-house)	-	-	-
25	EURL-S11.3	TEM	-1B		PCR (in-house)	-	-	-
25	EURL-S11.5	CTX	M-65		PCR (in-house)	-	-	-
25	EURL-S11.7	CTX	M-8		PCR (in-house)	-	-	-
25	EURL-S11.8	CTX	M-1		PCR (in-house)	-	-	-
32	EURL-S11.1	ACC	-	Х	PCR (published)	(Hasman et al. 2005)	-	-
32	EURL-S11.1	ACT	-	Х	PCR (published)	Voets et al 2011	-	-
32	EURL-S11.1	CMY	-	Х	PCR (published)	A.AGE.CHEM2006.ClinMicr1999-37	-	-
32	EURL-S11.1	CTX	-	Х	PCR (published)	PediatrInfectDisJ28:814-818	-	-
32	EURL-S11.1	DHA	-	Х	PCR (published)	(Gonzalez-Sanz et al.2009)	-	-
32	EURL-S11.1	FOX	-	Х	PCR (published)	A.AGE.CHEM2006.ClinMicr1999-37	-	-
32	EURL-S11.1	IMP	-	Х	PCR (published)	L. Poirel et al 2011	-	-
32	EURL-S11.1	KPC	-	Х	PCR (published)	Dallanne et al 2010	-	-
32	EURL-S11.1	MOX	-	Х	PCR (published)	A.AGE.CHEM2006.ClinMicr1999-37	-	-
32	EURL-S11.1	NDM	-	Х	PCR (published)	L. Poirel et al 2011	-	-
32	EURL-S11.1	OXA	-48		PCR (published)	Voets et al 2011	-	-
32	EURL-S11.1	SHV	-	Х	PCR (published)	FEMSMicrobiolLett1997152:1637	-	-
32	EURL-S11.1	TEM	-1B		PCR (published)	AntimicrAgentsChemotherap2009	-	-
32	EURL-S11.1	VEB	-	Х	PCR (published)	Dallanne et al 2010	-	-
32	EURL-S11.1	VIM	-	Х	PCR (published)	Dallanne et al 2010	-	-
32	EURL-S11.2	ACC	-	Х	PCR (published)	(Hasman et al. 2005)	-	-
32	EURL-S11.2	ACT	-	Х	PCR (published)	Voets et al. 2011	-	-
32	EURL-S11.2	CMY	-	Х	PCR (published)	A.AGE.CHEM2006.ClinMicr1999-37	-	-
32	EURL-S11.2	CTX	-	Х	PCR (published)	PediatrInfectDisJ28:814-818	-	-
32	EURL-S11.2	DHA	-	Х	PCR (published)	(Gonzalez-Sanz et al.2009)	-	-
32	EURL-S11.2	FOX	-	Х	PCR (published)	A.AGE.CHEM2006.ClinMicr1999-37	-	-
32	EURL-S11.2	IMP	-	Х	PCR (published)	L. Poirel et al 2011	-	-
32	EURL-S11.2	KPC	-	Х	PCR (published)	Dallanne et al 2010	-	-
			I I		(papilonea)			

Labno	Strain	Genetype	Gene number	Not detected	Method	Reference	Primer 5 3	Primer 3 5
32	EURL-S11.2	MOX	-	Х	PCR (published)	A.AGE.CHEM2006.ClinMicr1999-37	-	-
32	EURL-S11.2	NDM	-	Х	PCR (published)	L. Poirel et al 2011	-	-
32	EURL-S11.2	OXA	-	Х	PCR (published)	J. Antimic.Chemothe(2009) 64; Voets et al. 2011	-	-
32	EURL-S11.2	SHV	-12		PCR (published)	FEMSMicrobiolLett1997152:1637	-	-
32	EURL-S11.2	TEM	-	Х	PCR (published)	AntimicrAgentsChemotherap2009	-	-
32	EURL-S11.2	VEB	-	Х	PCR (published)	Dallanne et al 2010	-	-
32	EURL-S11.2	VIM	-	Х	PCR (published)	Dallanne et al 2010	-	-
32	EURL-S11.3	ACC	-	Х	PCR (published)	(Hasman et al. 2005)	-	-
32	EURL-S11.3	ACT	-	Х	PCR (published)	Voets et al. 2011	-	-
32	EURL-S11.3	CMY	-	Х	PCR (published)	A.AGE.CHEM2006.ClinMicr1999-37	-	-
32	EURL-S11.3	CTX	M-9		PCR (published)	PediatrInfectDisJ28:814-818	-	-
32	EURL-S11.3	DHA	-	Х	PCR (published)	(Gonzalez-Sanz et al.2009)	-	-
32	EURL-S11.3	FOX	-	Х	PCR (published)	A.AGE.CHEM2006.ClinMicr1999-37	-	-
32	EURL-S11.3	IMP	-	Х	PCR (published)	L. Poirel et al 2011	-	-
32	EURL-S11.3	KPC	-	Х	PCR (published)	Dallanne et al 2010	-	-
32	EURL-S11.3	MOX	-	Х	PCR (published)	A.AGE.CHEM2006.ClinMicr1999-37	-	-
32	EURL-S11.3	NDM	-	Х	PCR (published)	L. Poirel et al 2011	-	-
32	EURL-S11.3	OXA	-	X	PCR (published)	Voets et al 2011; J. Antimic.Chemothe(2009) 64	-	-
32	EURL-S11.3	SHV	-	X	PCR (published)	FEMSMicrobioILett1997152:1637	-	-
32	EURL-S11.3	TEM	-1B		PCR (published)	AntimicrAgentsChemotherap2009	-	-
32	EURL-S11.3	VEB	-	Х	PCR (published)	Dallanne et al 2010	-	-
32	EURL-S11.3	VIM	-		PCR (published)	Dallanne et al 2010	-	-
32	EURL-S11.5	ACC	-	X	PCR (published)	(Hasman et al. 2005)	-	-
32	EURL-S11.5	ACT	-	X	PCR (published)	Voets et al. 2011	-	-
32	EURL-S11.5	CMY		X	PCR (published)	A.AGE.CHEM2006.ClinMicr1999-37	-	-
32	EURL-S11.5	CTX	-	~	PCR (published)	PediatrInfectDisJ28:814-818		_
32	EURL-S11.5	DHA	-	Х	PCR (published)	(Gonzalez-Sanz et al.2009)	-	-
32	EURL-S11.5	FOX	-	X	PCR (published)	A.AGE.CHEM2006.ClinMicr1999-37		
32	EURL-S11.5	IMP			PCR (published)	L. Poirel et al 2011		
32	EURL-S11.5	KPC		X	PCR (published)	Dallanne et al 2010		
32	EURL-S11.5	MOX		X	PCR (published)	A.AGE.CHEM2006.ClinMicr1999-37	-	-
32	EURL-S11.5	NDM		X	PCR (published)	L. Poirel et al 2011	-	-
32	EURL-S11.5	OXA	-	X	PCR (published)	J. Antimic.Chemothe(2009) 64;Voets et al. 2011 ;	-	-
32	EURL-S11.5	SHV		X	PCR (published)	FEMSMicrobiolLett1997152:1637	-	-
32	EURL-S11.5	TEM			PCR (published)	AntimicrAgentsChemotherap2009	-	-
32	EURL-S11.5	VEB	-	X	PCR (published)	Dallanne et al 2010	-	-
32	EURL-S11.5	VEB	-	X	4 <i>j</i>	Dallanne et al 2010	-	-
			-		PCR (published)		-	-
32	EURL-S11.7 EURL-S11.7	ACC ACT	-	X	PCR (published)	(Hasman et al. 2005)	-	-
32 32	EURL-S11.7 EURL-S11.7	CMY	-		PCR (published)	Voets et al. 2011 A.AGE.CHEM2006.ClinMicr1999-37	-	-
		CIMIY	- M 9	X	PCR (published)		-	-
32 32	EURL-S11.7 EURL-S11.7	DHA	M-8	v	PCR (published)	PediatrInfectDisJ28:814-818	-	-
32	EURL-S11.7 EURL-S11.7	FOX	-	X X	PCR (published)	(Gonzalez-Sanz et al.2009)	-	-
			-		PCR (published)	A.AGE.CHEM2006.ClinMicr1999-37	-	-
32	EURL-S11.7	IMP	-	X	PCR (published)	L. Poirel et al 2011	-	-
32	EURL-S11.7	KPC	-		PCR (published)	Dallanne et al 2010	-	-
32	EURL-S11.7	MOX	-		PCR (published)	A.AGE.CHEM2006.ClinMicr1999-37	-	-
32	EURL-S11.7	NDM	-	X	PCR (published)	L. Poirel et al 2011	-	-
32	EURL-S11.7	OXA	-		PCR (published)	J. Antimic.Chemothe(2009) 64;Voets et al. 2011	-	-
32	EURL-S11.7	SHV	-	X	PCR (published)	FEMSMicrobiolLett1997152:1637	-	-
32	EURL-S11.7	TEM	-		PCR (published)	AntimicrAgentsChemotherap2009	-	-
32	EURL-S11.7	VEB	-		PCR (published)	Dallanne et al 2010	-	-
32	EURL-S11.7	VIM	-		PCR (published)	Dallanne et al 2010	-	-
32	EURL-S11.8	ACC	-		PCR (published)	(Hasman et al. 2005)	-	-
32	EURL-S11.8	ACT	-	Х	PCR (published)	Voets et al. 2011	-	-
32	EURL-S11.8	CMY	-	Х	PCR (published)	A.AGE.CHEM2006.ClinMicr1999-37	-	-

Labno	Strain	Genetype	Gene number	Not detected	Method	Reference	Primer 5 3	Primer 3 5
32	EURL-S11.8	CTX	M-3		PCR (published)	PediatrInfectDisJ28:814-818	-	-
32	EURL-S11.8	DHA	-	Х	PCR (published)	(Gonzalez-Sanz et al.2009)	-	-
32	EURL-S11.8	FOX	-	Х	PCR (published)	A.AGE.CHEM2006.ClinMicr1999-37	-	-
32	EURL-S11.8	IMP	-	Х	PCR (published)	L. Poirel et al 2011	-	-
32	EURL-S11.8	KPC	-	Х	PCR (published)	Dallanne et al 2010	-	-
32	EURL-S11.8	MOX	-	Х	PCR (published)	A.AGE.CHEM2006.ClinMicr1999-37	-	-
32	EURL-S11.8	NDM	-	Х	PCR (published)	L. Poirel et al 2011	-	-
32	EURL-S11.8	OXA	-1		PCR (published)	Voets et al. 2011 J. Antimic.Chemothe(2009) 64	-	-
32	EURL-S11.8	SHV	-	Х	PCR (published)	FEMSMicrobiolLett1997152:1637	-	-
32	EURL-S11.8	TEM	-	Х	PCR (published)	AntimicrAgentsChemotherap2009	-	-
32	EURL-S11.8	VEB	-	Х	PCR (published)	Dallanne et al 2010	-	-
32	EURL-S11.8	VIM	-	Х	PCR (published)	Dallanne et al 2010	-	-
33	EURL-S11.1	ACC	-	Х		Perez-Perez, F. J. and N. D. Hanson (2002). Detection		
					PCR (published)	of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR, J Clin Microbiol 40(6): 2153-62.	AACAGCCTCAGCAGCCGGTTA	TTCGCCGCAATCATCCCTAGC
33	EURL-S11.1	ACT	-	х	PCR (published)	Perez-Perez, F. J. and N. D. Hanson (2002). Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR, J Clin Microbiol 40(6): 2153-62.	TCGGTAAAGCCGATGTTGCGG	CTTCCACTGCGGCTGCCAGTT
33	EURL-S11.1	CMY	-2	х	PCR (published)	Perez-Perez, F. J. and N. D. Hanson (2002). Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR, J Clin Microbiol 40(6): 2153-62	TGGCCAGAACTGACAGGCAAA	TTTCTCCTGAACGTGGCTGGC
33	EURL-S11.1	СТХ	M-1	X	PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum ß-lactamases. J Antimicrob Chemother 57(1): 154-5.	AAAAATCACTGCGYCAGTTC	AGCTTATTCATCGCCACGTT
33	EURL-S11.1	СТХ	M-2	х	PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum ß-lactamases. J Antimicrob Chemother 57(1): 154-5.	CGACGCTACCCCTGCT	CCAGCGTCAGATTTTTCAGG
33	EURL-S11.1	СТХ	M-26	Х	PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum ß-lactamases. J Antimicrob Chemother 57(1): 154-5.	GCACGATGACATTCGGG	AACCCACGATGTGGGTAGC
33	EURL-S11.1	СТХ	M-8	х	PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum ß-lactamases. J Antimicrob Chemother 57(1): 154-5.	TCGCGTTAAGCGGATGATGC	AACCCACGATGTGGGTAGC
33	EURL-S11.1	СТХ	M-9	X	PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum ß-lactamases. J Antimicrob Chemother 57(1): 154-5.	CAAAGAGARTGCAACGGATG	ATTGGAAAGCGTTCATCACC
33	EURL-S11.1	DHA	-	X	PCR (published)	Perez-Perez, F. J. and N. D. Hanson (2002). Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR, J Clin Microbiol 40(6): 2153-62.	AACTTTCACAGGTGTGCTGGGT	CCGTACGCATACTGGCTTTGC
33	EURL-S11.1	FOX	-	X	PCR (published)	Perez, F. J. and N. D. Hanson (2002). Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR, J Clin Microbiol 40(6): 2153-62.	AACATGGGGTATCAGGGAGATG	CAAAGCGCGTAACCGGATTGG
33	EURL-S11.1	IMP	-	X	PCR (published)	Poirel et al. (2011)"Multiplex PCR for detection of acquired carbapenemase genes", Diagnostic Microbiology & Infectious Disease, 70(1), 119-123, 2011	GGAATAGAGTGGCTTAAYTCTC	GGTTTAAYAAAACAACCACC
33	EURL-S11.1	KPC	-	Х	PCR (published)	Poirel et al.(2011)"Multiplex PCR for detection of acquired carbapenemase genes", Diagnostic Microbiology & Infectious Disease, 70(1), 119-123, 2011	CGTCTAGTTCTGCTGTCTTG	CTTGTCATCCTTGTTAGGCG

Labno	Strain	Genetype	Gene number	Not detected	Method	Reference	Primer 5 3	Primer 3 5
33	EURL-S11.1	MOX	-	x	PCR (published)	Perez-Perez, F. J. and N. D. Hanson (2002). Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR, J Clin Microbiol 40(6): 2153-62.	GCTGCTCAAGGAGCACAGGAR	CACATTGACATAGGTGTGGTGC
33	EURL-S11.1	NDM	-	х	PCR (published)	Poirel et al.(2011)"Multiplex PCR for detection of acquired carbapenemase genes", Diagnostic Microbiology & Infectious Disease, 70(1), 119-123, 2011	GGTTTGGCGATCTGGTTTTC	CGGAATGGCTCATCACGATC
33	EURL-S11.1	OXA	-48		PCR (published)	Poirel et al.(2011)"Multiplex PCR for detection of acquired carbapenemase genes", Diagnostic Microbiology & Infectious Disease, 70(1), 119-123, 2011	GCGTGGTTAAGGATGAACAC	CATCAAGTTCAACCCAACCG
33	EURL-S11.1	OXA	-1	Х	PCR (published)	Fang, H., F. Ataker, et al. (2008). J Clin Microbiol 46(2): 707-12.	ACACAATACATATCAACTTCGC	AGTGTGTTTAGAATGGTGATC
33	EURL-S11.1	SHV	-	х	PCR (published)	Fang, H., F. Ataker, et al. (2008). J Clin Microbiol 46(2): 707-12.	CTTTATCGGCCCTCACTCAA	AGGTGCTCATCATGGGAAAG
33	EURL-S11.1	TEM	-		PCR (published)	Fang, H., F. Ataker, et al. (2008). J Clin Microbiol 46(2): 707-12.	CGCCGCATACACTATTCTCAGAATGA	ACGCTCACCGGCTCCAGATTTAT
33	EURL-S11.1	VIM	-	X	PCR (published)	Poirel et al.(2011)"Multiplex PCR for detection of acquired carbapenemase genes", Diagnostic Microbiology & Infectious Disease, 70(1), 119-123, 2011	GATGGTGTTTGGTCGCATA	CGAATGCGCAGCACCAG
33	EURL-S11.2	СТХ	M-1	Х	PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum ß-lactamases. J Antimicrob Chemother 57(1): 154-5.	AAAAATCACTGCGYCAGTTC	AGCTTATTCATCGCCACGTT
33	EURL-S11.2	СТХ	M-2	х	PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum ß-lactamases. J Antimicrob Chemother 57(1): 154-5.	CGACGCTACCCCTGCT	CCAGCGTCAGATTTTTCAGG
33	EURL-S11.2	СТХ	M-26	Х	PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum ß-lactamases. J Antimicrob Chemother 57(1): 154-5.	GCACGATGACATTCGGG	AACCCACGATGTGGGTAGC
33	EURL-S11.2	СТХ	M-8	X	PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum ß-lactamases. J Antimicrob Chemother 57(1): 154-5.	TCGCGTTAAGCGGATGATGC	AACCCACGATGTGGGTAGC
33	EURL-S11.2	СТХ	M-9	X	PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum ß-lactamases. J Antimicrob Chemother 57(1): 154-5.	CAAAGAGARTGCAACGGATG	ATTGGAAAGCGTTCATCACC
33	EURL-S11.2	OXA	-1	Х	PCR (published)	Fang, H., F. Ataker, et al. (2008). J Clin Microbiol 46(2): 707-12.	ACACAATACATATCAACTTCGC	AGTGTGTTTAGAATGGTGATC
33	EURL-S11.2	SHV	-		PCR (published)	Fang, H., F. Ataker, et al. (2008). J Clin Microbiol 46(2): 707-12.	CTTTATCGGCCCTCACTCAA	AGGTGCTCATCATGGGAAAG
33	EURL-S11.2	TEM	-	Х	PCR (published)	Fang, H., F. Ataker, et al. (2008). J Clin Microbiol 46(2): 707-12.	CGCCGCATACACTATTCTCAGAATGA	ACGCTCACCGGCTCCAGATTTAT
33	EURL-S11.3	СТХ	M-1	X	PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum ß-lactamases. J Antimicrob Chemother 57(1): 154-5.	AAAAATCACTGCGYCAGTTC	AGCTTATTCATCGCCACGTT
33	EURL-S11.3	СТХ	M-2	x	PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum ß-lactamases. J Antimicrob Chemother 57(1): 154-5.	CGACGCTACCCCTGCT	CCAGCGTCAGATTTTTCAGG
33	EURL-S11.3	СТХ	M-26	X	PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum ß-lactamases. J Antimicrob Chemother 57(1): 154-5.	GCACGATGACATTCGGG	AACCCACGATGTGGGTAGC
33	EURL-S11.3	СТХ	M-8	X	PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum ß-lactamases. J Antimicrob Chemother 57(1): 154-5.	TCGCGTTAAGCGGATGATGC	AACCCACGATGTGGGTAGC

Labno	Strain	Genetype	Gene number	Not detected	Method	Reference	Primer 5 3	Primer 3 5
33	EURL-S11.3	СТХ	M-9		PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum ß-lactamases. J Antimicrob Chemother 57(1): 154-5.	CAAAGAGARTGCAACGGATG	ATTGGAAAGCGTTCATCACC
33	EURL-S11.3	OXA	-1	Х	PCR (published)	Fang, H., F. Ataker, et al. (2008). J Clin Microbiol 46(2): 707-12.	ACACAATACATATCAACTTCGC	AGTGTGTTTAGAATGGTGATC
33	EURL-S11.3	SHV	-	Х	PCR (published)	Fang, H., F. Ataker, et al. (2008). J Clin Microbiol 46(2): 707-12.	CTTTATCGGCCCTCACTCAA	AGGTGCTCATCATGGGAAAG
33	EURL-S11.3	TEM	-		PCR (published)	Fang, H., F. Ataker, et al. (2008). J Clin Microbiol 46(2): 707-12.	CGCCGCATACACTATTCTCAGAATGA	ACGCTCACCGGCTCCAGATTTAT
33	EURL-S11.5	СТХ	M-1	Х	PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum ß-lactamases. J Antimicrob Chemother 57(1): 154-5.	: AAAAATCACTGCGYCAGTTC	AGCTTATTCATCGCCACGTT
33	EURL-S11.5	СТХ	M-2	Х	PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum ß-lactamases. J Antimicrob Chemother 57(1): 154-5.	CGACGCTACCCCTGCT	CCAGCGTCAGATTTTTCAGG
33	EURL-S11.5	СТХ	M-26	Х	PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum &-lactamases. J Antimicrob Chemother 57(1): 154-5.	GCACGATGACATTCGGG	AACCCACGATGTGGGTAGC
33	EURL-S11.5	СТХ	M-8	Х	PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum ß-lactamases. J Antimicrob Chemother 57(1): 154-5.	TCGCGTTAAGCGGATGATGC	AACCCACGATGTGGGTAGC
33	EURL-S11.5	СТХ	M-9		PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum ß-lactamases. J Antimicrob Chemother 57(1): 154-5.	CAAAGAGARTGCAACGGATG	ATTGGAAAGCGTTCATCACC
33	EURL-S11.5	OXA	-1	Х	PCR (published)	Fang, H., F. Ataker, et al. (2008). J Clin Microbiol 46(2): 707-12.	ACACAATACATATCAACTTCGC	AGTGTGTTTAGAATGGTGATC
33	EURL-S11.5	SHV	-	Х	PCR (published)	Fang, H., F. Ataker, et al. (2008). J Clin Microbiol 46(2): 707-12.	: CTTTATCGGCCCTCACTCAA	AGGTGCTCATCATGGGAAAG
33	EURL-S11.5	TEM	-	х	PCR (published)	Fang, H., F. Ataker, et al. (2008). J Clin Microbiol 46(2): 707-12.	CGCCGCATACACTATTCTCAGAATGA	ACGCTCACCGGCTCCAGATTTAT
33	EURL-S11.7	СТХ	M-1	Х	PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum ß-lactamases. J Antimicrob Chemother 57(1): 154-5.	AAAAATCACTGCGYCAGTTC	AGCTTATTCATCGCCACGTT
33	EURL-S11.7	СТХ	M-2	X	PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum &-lactamases. J Antimicrob Chemother 57(1): 154-5.	CGACGCTACCCCTGCT	CCAGCGTCAGATTTTTCAGG
33	EURL-S11.7	СТХ	M-26	X	PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum &-lactamases. J Antimicrob Chemother 57(1): 154-5.	GCACGATGACATTCGGG	AACCCACGATGTGGGTAGC
33	EURL-S11.7	СТХ	M-8		PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum ß-lactamases. J Antimicrob Chemother 57(1): 154-5.	TCGCGTTAAGCGGATGATGC	AACCCACGATGTGGGTAGC
33	EURL-S11.7	СТХ	M-9	X	PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum ß-lactamases. J Antimicrob Chemother 57(1): 154-5.	CAAAGAGARTGCAACGGATG	ATTGGAAAGCGTTCATCACC
33	EURL-S11.7	OXA	-1	Х	PCR (published)	Fang, H., F. Ataker, et al. (2008). J Clin Microbiol 46(2): 707-12.	ACACAATACATATCAACTTCGC	AGTGTGTTTAGAATGGTGATC
33	EURL-S11.7	SHV	-	Х	PCR (published)	Fang, H., F. Ataker, et al. (2008). J Clin Microbiol 46(2): 707-12.	CTTTATCGGCCCTCACTCAA	AGGTGCTCATCATGGGAAAG
33	EURL-S11.7	TEM	-	Х	PCR (published)	Fang, H., F. Ataker, et al. (2008). J Clin Microbiol 46(2): 707-12.	CGCCGCATACACTATTCTCAGAATGA	ACGCTCACCGGCTCCAGATTTAT

Labno	Strain	Genetype	Gene number	Not detected	Method	Reference	Primer 5 3	Primer 3 5
33	EURL-S11.8	СТХ	M-1	X	PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum ß-lactamases. J Antimicrob Chemother 57(1): 154-5.	AAAAATCACTGCGYCAGTTC	AGCTTATTCATCGCCACGTT
33	EURL-S11.8	СТХ	M-2	Х	PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum ß-lactamases. J Antimicrob Chemother 57(1): 154-5.	CGACGCTACCCCTGCT	CCAGCGTCAGATTTTTCAGG
33	EURL-S11.8	СТХ	M-26	х	PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum ß-lactamases. J Antimicrob Chemother 57(1): 154-5.	GCACGATGACATTCGGG	AACCCACGATGTGGGTAGC
33	EURL-S11.8	СТХ	M-8	х	PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum ß-lactamases. J Antimicrob Chemother 57(1): 154-5.	TCGCGTTAAGCGGATGATGC	AACCCACGATGTGGGTAGC
33	EURL-S11.8	СТХ	M-9	х	PCR (published)	Woodford, N., E. J. Fagan, et al. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended- spectrum ß-lactamases. J Antimicrob Chemother 57(1): 154-5.	CAAAGAGARTGCAACGGATG	ATTGGAAAGCGTTCATCACC
33	EURL-S11.8	OXA	-1		PCR (published)	Fang, H., F. Ataker, et al. (2008). J Clin Microbiol 46(2): 707-12.	ACACAATACATATCAACTTCGC	AGTGTGTTTAGAATGGTGATC
33	EURL-S11.8	SHV	-	х	PCR (published)	Fang, H., F. Ataker, et al. (2008). J Clin Microbiol 46(2): 707-12.	CTTTATCGGCCCTCACTCAA	AGGTGCTCATCATGGGAAAG
33	EURL-S11.8	TEM	-	х	PCR (published)	Fang, H., F. Ataker, et al. (2008). J Clin Microbiol 46(2): 707-12.	CGCCGCATACACTATTCTCAGAATGA	ACGCTCACCGGCTCCAGATTTAT
36	EURL-S11.1	СТХ	-	Х	PCR (published)	Hasman et al. J Antimicrob Chemother. 2005 Jul:56(1):115-21.	ATGTGCAGYACCAGTAARGTKATGGC	TGGGTRAARTARGTSACCAGAAYCAGCGG
36	EURL-S11.1	IMP	-	Х	PCR (published)	M.J. Ellington . 2007. Multiplex PCR for rapid detection of genes encoding acquired metallo-ß-lactamases. J. Antimicrob. Chemother. (2007) 59 (2): 321-322.	GGAATAGAGTGGCTTAAYTCTC	CCAAACYACTASGTTATCT
36	EURL-S11.1	KPC	-	х	PCR (published)	V. Schechner et.al.2009. J Clin Microbiol. 2009 Oct;47(10):3261-5. doi: 10.1128/JCM.02368-08	ATGTCACTGTATCGCCGTCT	TTTTCAGAGCCTTACTGCCC
36	EURL-S11.1	NDM	-	х	PCR (published)	S.Mushtaq et. al. J. Antimicrob. Chemother. (2011) 66 (9): 2002-2005. doi: 10.1093/jac/dkr226	GGGCAGTCGCTTCCAACGGT	GTAGTGCTCAGTGTCGGCAT
36	EURL-S11.1	OXA	-48		PCR (published)	Laurent Poirel, et.al. 2004 ANTIMICROBIAL AAC, Jan. 2004, p. 15–22 DOI: 10.1128/AAC.48.1.15–22.2004	TTGGTGGCATCGATTATCGG	GAGCACTTCTTTTGTGATGGC
36	EURL-S11.1	SHV	-	х	PCR (published)	Briñas et al. Antimicrob Agents Chemother. 2002 Oct;46(10):3156-63.	CACTCAAGGATGTATTGTG	TTAGCGTTGCCAGTGCTCG
36	EURL-S11.1	TEM	-1B		PCR (published)	Briñas et al. Antimicrob Agents Chemother. 2002 Oct;46(10):3156-63.	TTCTTGAAGACGAAAGGGC	ACGCTCAGTGGAACGAAAAC
36	EURL-S11.1	VIM	-	Х	PCR (published)	M.J. Ellington . 2007. Multiplex PCR for rapid detection of genes encoding acquired metallo-ß-lactamases. J. Antimicrob. Chemother. (2007) 59 (2): 321-322.	GATGGTGTTTGGTCGCATA	CGAATGCGCAGCACCAG
36	EURL-S11.2	СТХ	-	Х	PCR (published)	Hasman et al. J Antimicrob Chemother. 2005 Jul;56(1):115-21.	ATGTGCAGYACCAGTAARGTKATGGC	TGGGTRAARTARGTSACCAGAAYCAGCGG
36	EURL-S11.2	SHV	-2a		PCR (published)	Briñas et al. Antimicrob Agents Chemother. 2002 Oct:46(10):3156-63.	CACTCAAGGATGTATTGTG	TTAGCGTTGCCAGTGCTCG
36	EURL-S11.2	TEM	-	Х	PCR (published)	Briñas et al. Antimicrob Agents Chemother. 2002 Oct;46(10):3156-63.	TTCTTGAAGACGAAAGGGC	ACGCTCAGTGGAACGAAAAC
36	EURL-S11.3	СТХ	M-9		PCR (published)	Hasman et al. J Antimicrob Chemother. 2005 Jul;56(1):115-21.	TTCTTGAAGACGAAAGGGC	ACGCTCAGTGGAACGAAAAC
36	EURL-S11.3	SHV	-	Х	PCR (published)	Brinas et al. Antimicrob Agents Chemother. 2002 Oct:46(10):3156-63.	ATGTGCAGYACCAGTAARGTKATGGC	TGGGTRAARTARGTSACCAGAAYCAGCGG
36	EURL-S11.3	TEM	-1B		PCR (published)	Brinas et al. Antimicrob Agents Chemother. 2002 Oct;46(10):3156-63.	CACTCAAGGATGTATTGTG	TTAGCGTTGCCAGTGCTCG
36	EURL-S11.5	СМҮ	-2	х	PCR (published)	Schmidt et al. PLoS One. 2015 Jun 26;10(6):e0131672. doi:10.1371/journal.pone.0131672.	AGACGTTTAACGGCGTGTTG	TAAGTGCAGCAGGCGGATAC
36	EURL-S11.5	СТХ	M-14		PCR (published)	Hasman et al.J Antimicrob Chemother. 2005 Jul;56(1):115-21	ATGTGCAGYACCAGTAARGTKATGGC	TGGGTRAARTARGTSACCAGAAYCAGCGG

Labno	Strain	Genetype	Gene number	Not detected	Method	Reference	Primer 5 3	Primer 3 5
36	EURL-S11.5	SHV	-	х	PCR (published)	Brinas et al. Antimicrob Agents Chemother. 2002 Oct;46(10):3156-63.	CACTCAAGGATGTATTGTG	TTAGCGTTGCCAGTGCTCG
36	EURL-S11.5	TEM	-	х	PCR (published)	Brinas et al. Antimicrob Agents Chemother. 2002 Oct;46(10):3156-63.	TTCTTGAAGACGAAAGGGC	ACGCTCAGTGGAACGAAAAC
36	EURL-S11.7	СТХ	M-8		PCR (published)	Hasman et al. J Antimicrob Chemother. 2005 Jul;56(1):115-21.	ATGTGCAGYACCAGTAARGTKATGGC	TGGGTRAARTARGTSACCAGAAYCAGCGG
36	EURL-S11.7	SHV	-	х	PCR (published)	Brinas et al. Antimicrob Agents Chemother. 2002 Oct;46(10):3156-63.	CACTCAAGGATGTATTGTG	TTAGCGTTGCCAGTGCTCG
36	EURL-S11.7	TEM	-	х	PCR (published)	Brinas et al.Antimicrob Agents Chemother. 2002 Oct;46(10):3156-63.	TTCTTGAAGACGAAAGGGC	ACGCTCAGTGGAACGAAAAC
36	EURL-S11.8	СТХ	M-3		PCR (published)	Hasman et al. J Antimicrob Chemother. 2005 Jul;56(1):115-21.	ATGTGCAGYACCAGTAARGTKATGGC	TGGGTRAARTARGTSACCAGAAYCAGCGG
36	EURL-S11.8	SHV	-	Х	PCR (published)	Brinas et al. Antimicrob Agents Chemother. 2002 Oct;46(10):3156-63.	CACTCAAGGATGTATTGTG	TTAGCGTTGCCAGTGCTCG
36	EURL-S11.8	TEM	-	х	PCR (published)	Brinas et al. Antimicrob Agents Chemother. 2002 Oct;46(10):3156-63.	TTCTTGAAGACGAAAGGGC	ACGCTCAGTGGAACGAAAAC
59	EURL-S11.1	OXA	-48		Whole genome sequenced	-	-	-
59	EURL-S11.2	SHV	-2		Whole genome sequenced	-	-	-
59	EURL-S11.3	CTX	M-9		Whole genome sequenced	-	-	-
59	EURL-S11.5	CTX	M-65		Whole genome sequenced	-	-	-
59	EURL-S11.7	CTX	M-8		Whole genome sequenced	-	-	-
59	EURL-S11.8	CTX	M-3		Whole genome sequenced	-	-	-
59	EURL-S11.8	OXA	-1		Whole genome sequenced	-	-	-

Legend: Fields shaded grey indicate that the gene was expected

Genes in bold and white font, were detected but not expected

Note: TEM-1 does not confer ESBL-production and is as such not included as an expected result. TEM-1 or TEM-1B was, however, present in S-11.1, S-11.3 and S-11.4

Genotypic characterization (optional); comments by participants

Labno	Strain	Comment
17	EURL S-11.1	TEM-1 was additionally found. It is just added as additional information, not as ESBL-gene.
17	EURL S-11.3	TEM-1 was additionally found. It is just added as additional information, not as ESBL-gene.
17	EURL S-11.5	Gene was found with a group-specific PCR. Validation of the type was done via sequencing.
21	EURL S-11.7	Isolate resistant to Cefotaxime, but no genes were found.
32	EURL S-11.1	SPM Gene tested for/not detected (L. Poirel et al 2011)
32	EURL S-11.2	SPM Gene tested for/not detected (L. Poirel et al 2011)
32	EURL S-11.3	SPM Gene tested for/not detected (L. Poirel et al 2011)
32	EURL S-11.5	SPM Gene tested for/not detected (L. Poirel et al 2011)
32	EURL S-11.7	SPM Gene tested for/not detected (L. Poirel et al 2011)
32	EURL S-11.8	SPM Gene tested for/not detected (L. Poirel et al 2011)

National Food Institute Technical University of Denmark Kemitorvet Building 202 DK-2800 Kgs. Lyngby

Tel. 35 88 70 00 Fax 35 88 70 01

www.food.dtu.dk

ISBN: 978-87-93565-07-4