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Preface 

The thesis is a result of a three-year PhD project carried out at the national Food Institute at the 

Technical University of Denmark in the Division of Epidemiology and Microbial Genomics. The 

project was supervised by Professor Frank Møller Aarestrup as main supervisor and Senior 

Researchers Henrik Hasman and Yvonne Agersø as co-supervisors. The project was conducted 

from June 2010 to August 2013 and a six month external research stay was included from October 

2011 to March 2012 at Department of Veterinary Medicine, University of Cambridge, UK under the 

supervision of Senior Lecturer Dr. Mark Holmes. The work was funded by the Danish Ministry of 

Food, Agriculture and Fisheries (Grant no.: 3304-FVFP-09-F-002-1) and The Technical University 

of Denmark. 

 

The thesis consists of an introduction and three manuscripts all presented in three chapters. Chapter 

1 includes a short introduction to Staphylococcus aureus and to some of the methods used for 

bacterial characterization. Studies characterizing S. aureus and especially S. aureus multilocus 

sequence type 398 (ST398) are presented. In chapter 2 the results obtained in the three manuscripts 

are summarized and discussed. Chapter 3 contains the three manuscripts (manuscript I-III).  

Manuscript I describes the generation, verification, and evaluation of a high-throughput approach 

for bacterial characterization. In manuscript II a genomic screen was performed to identify genes 

important for S. aureus ST398 survival in a porcine reservoir. Manuscript III represents the 

development of a bioinformatic tool that can be used for virulence profiling of S. aureus using 

whole genome sequence data. 
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English summary 

Staphylococcus aureus is an opportunistic pathogen that colonizes the nares and skin surfaces of 

several animal species, including man. S. aureus can cause a wide variety of infections ranging 

from superficial soft tissue and skin infections to severe and deadly systemic infections. 

Traditionally S. aureus and methicillin-resistant Staphylococcus aureus (MRSA) have been 

associated with hospitals, but during the past decades MRSA has emerged in the community and 

now a new branch of MRSA has been found in association with livestock (LA-MRSA). A specific 

lineage (multilocus sequence type 398 (ST398)) has been particularly successful in colonization of 

pigs and ST398 has become the most frequently reported MRSA strain found in associated with 

livestock.  

Currently the understanding of the successful colonization and transmission of LA-MRSA ST398 in 

pigs are limited and mainly based on observational field surveys. The aim of this work was to 

develop a high-throughput approach for genotypic and phenotypic characterization of LA-MRSA 

ST398 in the porcine reservoir.  

The thesis represents three studies (manuscript I-III). In manuscript I a genome-saturated 

transposon mutant library was generated and Transposon Directed Inserted site Sequencing 

(TraDIS) was for the first time assessed in an LA-MRSA ST398 strain. Using this high-throughput 

approach, genes essential for LA-MRSA ST398 survival under laboratory conditions and in whole 

porcine blood in vitro were identified. In manuscript II, genes important for LA-MRSA ST398 

survival on porcine skin and nasal epithelium ex vivo were identified. These genes could represent 

targets for de-colonization, which could help prevent further spread and adaption of LA-MRSA 

ST398. Manuscript III describes the construction of the S. aureus VirulenceFinder database. The 

database can be applied for identification of virulence genes in S. aureus using whole genome 
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sequence data. The S. aureus VirulenceFinder will be part of the tool package generated for the 

Centre for Genomic Epidemiology (CGE) (www.genomicepidemiology.org). 
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Dansk resumé 
 

Staphylococcus aureus er en opportunistisk patogen, der koloniserer næsen og huden hos 

forskellige dyrearter, inklusive mennesker. S. aureus kan forårsage en lang række forskellige 

infektioner, der bl.a. omfatter overfladiske hudinfektioner og mere alvorlige systemiske infektioner. 

Traditionelt har S. aureus og methicillin-resistente Staphylococcus aureus (MRSA) været associeret 

med hospitalserhvervet infektioner, men i de seneste årtier har MRSA spredt sig til resten af 

samfundet, og en ny gren af MRSA med association til produktionsdyr er blevet identificeret (LA-

MRSA). En specifik slægt har vist sig at være yderst succesfuld til at kolonisere grise, og denne 

slægt (ST398) er nu den hyppigst rapporterede MRSA stamme fundet i association med 

produktionsdyr.  

Den nuværende viden, om hvorfor LA-MRSA ST398 er succesfuld i kolonisation og spredning hos 

grise, er begrænset og primært baseret på overvågnings-studier. Formålet med dette studie var at 

udvikle en metode til at udføre en omfattende genotypisk og fænotypisk karaktering af LA-MRSA 

ST398 i et grise-reservoir.   

Denne afhandling repræsenterer tre studier (manuskript I-III). I manuskript I blev der genereret et 

genom-mættet transposon mutant bibliotek, og ’Transposon Directed Inserted site Sequencing 

(TraDIS)’ blev for første gang anvendt på en LA-MRSA ST398 stamme. Ved brugen af disse 

metoder blev gener essentielle for LA-MRSA ST398s overlevelse under laboratorie forhold og i 

svine blod identificeret. I manuskript II blev gener vigtige for LA-MRSA ST398 overlevelse på 

svine hud og svine-næseepitel bestemt. Disse gener kan potentielt udgøre nye mål for 

afkolonisering og dermed forebygge videre spredning og tilpasning af LA-MRSA ST398. 

Manuskript III beskriver konstruktionen af en S. aureus VirulenceFinder database. Denne kan 

anvendes til identifikation af virulens gener i S. aureus hel-genom sekvens data. S. aureus 
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VirulenceFinder er en del af den redskabspakke, der bliver genereret for Center for Genomisk 

Epidemiologi (CGE) (www.genomicepidemiology.org).  
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Background 

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most frequent cases of hospital- 

and community-associated infections and constitute a major burden on society world-wide (DeLeo 

et al., 2010; Otto, 2012). Resistance to beta-lactam antibiotics, which are the most widely used 

group of antibiotics, makes MRSA infections very difficult to treat and only very few alternative 

drugs are currently available for treatment. Vancomycin is the first-line treatment of severe MRSA 

infections (DeLeo et al., 2010), it is however less efficient, requires intravenous administration, and 

resistance has already been reported in the form of vancomycin-resistant Staphylococcus aureus 

(VRSA) (Robinson and Enright, 2003).   

MRSA has primarily been considered as a hospital-associated (HA) pathogen but has emerged in 

the community in the recent decades (DeLeo et al., 2010; Verkade and Kluytmans, 2013). 

Community-associated (CA) MRSA differ from the HA-MRSA (Diep and Otto, 2008) as they show 

a more virulent phenotypic profile. They frequently produce the Panton-Valentine leukocidin, 

which is a toxin often associated with severe skin infections (Vandenesch et al., 2003).  

More recently a third group of MRSA has emerged. This group has been associated with livestock 

and especially pigs (Smith and Pearson, 2011; Voss et al., 2005). These strains termed livestock-

associated (LA) MRSA make up yet a different profile compared to HA- and CA-MRSA. LA-

MRSA has been identified to be less aggressive, not encoding many of the toxins often associated 

with S. aureus (Hallin et al., 2011). LA-MRSA is often found in related to colonization, but can in 

some cases cause illness of different severity in both animals and humans, and LA-MRSA is in fact 

the most frequent cause of porcine skin infections (Cuny et al., 2010; van Duijkeren et al., 2004). 

LA-MRSA differ in their resistance pattern compared to the human-associated MRSA, by 

expressing resistance to tetracycline (Price et al., 2012). Tetracycline is repeatedly used in the swine 

production industry and is most likely the driving force for tetracycline resistance in LA-MRSA 
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(Schijffelen et al., 2010). Many of the LA-MRSA strains belong to lineage multilocus sequence 

type 398 (ST398), and they show a broader host range compared to most other S. aureus lineages 

(Verkade and Kluytmans, 2013). A whole genome sequenced LA-MRSA ST398 isolate has shown 

genotypic traits that could imply increased ability to take up foreign DNA as it contains multiple 

integrative conjugative elements combined with the absence of a type I restriction and modification 

system (Schijffelen et al., 2010). It has been postulated, that LA-MRSA originated as methicillin-

sensitive S. aureus in humans and were transferred to pigs where they acquired methicillin and 

tetracycline resistance via the uptake of mobile genetic elements, and then transferred back to 

humans (Price et al., 2012).  

Even though LA-MRSA has been the subject of several studies most of them are based on survey 

data (E M Broens et al., 2011b; Els M Broens et al., 2011) and only few have investigated bacterial 

ecology in the porcine reservoir (Moodley et al., 2012; Tulinski et al., 2013). The potential of LA-

MRSA transmission and adaption is still unknown and further investigations into why ST398 has 

successfully colonized so many different animal species are needed to help understand how we 

might prevent similar problems in the future. 

 

Objectives and research approach 

The overall objective of this study was to identify genes of importance for the emergence and 

spread of LA-MRSA in food animals. The focus was on lineage multilocus sequence type 398 

(ST398) as it has become the most commonly reported MRSA strain associated with livestock in 

the recent years (Smith and Pearson, 2011). Identification of such genes could assist in a better 

understanding of the ecology of ST398 in the porcine reservoir and facilitate the identification of 

targets in intervention strategies. The following objectives were defined:  
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1. Develop high-throughput approach for bacterial characterization. 

2. Perform a comprehensive phenotypic and genotypic characterization of LA-MRSA ST398. 

3. Investigate genes important for LA-MRSA ST398 colonization in the porcine reservoir. 

 

Most of the information on ST398 colonization known to date has been based on survey data. In 

this project a different approach has been taken.  High-throughput methods were applied to 

simultaneously link all genes within a genome to phenotypes. This approach may facilitate the 

discovery of new gene function and can highlight which genes are essential for bacterial survival in 

specific environments.   

 

Manuscript presentation 

The thesis includes three manuscripts, each of which represents studies performed to answer the 

objectives. In manuscript I and II a high-throughput method was developed and used for 

investigation of genes important for LA-MRSA ST398 survival in the porcine reservoir, as this 

reservoir contributes to the on-going spread and adaptation of LA-MRSA. In manuscript III a 

bioinformatic tool was constructed to define virulence profiles of S. aureus using whole genome 

sequence data. This database will be freely available online and can contribute to the identification 

of virulence genes in LA-MRSA isolated from different host reservoirs.    

 

Manuscript I entitled, Genome-wide high-throughput screening to investigate essential genes 

involved in methicillin-resistant Staphylococcus aureus Sequence Type 398 survival represents a 

method paper. The aim of the work was to generate a high complexity transposon mutant library 

and assess the application of Transposon directed inserted site sequencing (TraDIS) in LA-MRSA 

ST398. The manuscript describes the generation and verification of a genome-saturated transposon 
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mutant library. The data obtained in the manuscript verifies that the high-throughput genotypic 

approach TraDIS can be assed for transposon insertion site identification in S. aureus. Genes 

essential for LA-MRSA ST398 survival under laboratory conditions were identified. In addition the 

manuscript describes an evaluation of the approach, where the mutant library was screened in whole 

porcine blood in vitro and mutant composition pre- and post- selection was compared. Manuscript 

accepted for publication in PloS One (publication date Feb. 12
th

 2014). 

 

Manuscript II entitled, Genes important for survival of livestock-associated methicillin-resistant 

Staphylococcus aureus Sequence Type 398 in the porcine reservoir was carried out as part of an 

externship conducted at Department of Veterinary Medicine, University of Cambridge, UK. The 

aim of the study was to identify genes important for LA-MRSA ST398 survival on porcine skin and 

nasal epithelium, as these locations are believed to be relevant habitats for LA-MRSA ST398. Two 

ex vivo models, using porcine nasal epithelium and porcine skin tissue, were developed. By 

screening the transposon mutant library (generated in manuscript I) within the models, a number of 

genes important for bacterial survival on porcine explants, were identified. These genes could 

represent targets for de-colonization, which could help prevent further spread and adaptation of LA-

MRSA ST398. Manuscript in preparation. 

 

Manuscript III entitled, Identification of virulence genes in whole genome sequenced 

Staphylococcus aureus describes the construction of the S. aureus VirulenceFinder database. The 

aim of the study was to develop a database which can define virulence profiles in S. aureus using 

sequence data. The generated database can be applied for identification of previous described 

virulence genes. S. aureus VirulenceFinder is part of the tool package generated for the Centre for 

Genomic Epidemiology (CGE) (www.genomicepidemiology.org). CGE aims at generating 
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bioinformatic tools for handling whole genome sequence information, useful for outbreak 

investigation, epidemiological surveillance, source tracking and diagnostics. The service is 

publically available through web servers. Manuscript in preparation.  
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Chapter 1 

Introduction 

1. Staphylococcus aureus 

Staphylococcus aureus is a facultative anaerobic Gram-positive coccus that normally is arranged in 

grape-like clusters. They are non-motile and often golden-yellow pigmented cells. The primarily 

colonization sites are the anterior part of the nares and skin surfaces. The organism is non spore 

forming but is resistant to dry conditions and high salt concentrations, which is essential when 

colonising the skin surface. There are more than 50 species and sub-species of Staphylococci of 

which S. aureus is often associated with pathogenicity in humans. S. aureus is distinguished from 

the other species by its ability to clot blood plasma by the action of the enzyme coagulase (Foster, 

2009; Harris et al., 2002).  

 

S. aureus is a commensal commonly found to colonize several animal species, including humans. 

Around 20-40% of the human population are carriers and some humans are intermediate carriers 

whereas others are persistent carries (Foster, 2009; Williams, 1963). The difference in colonization 

implies that host factors are important elements for successful bacterial colonization.  

If given the opportunity S. aureus can cause infection, most commonly at sites of lowered host 

resistance such as damaged skin or mucosal membranes. The bacteria possesses a large number of 

cell-associated and extracellular virulence factors, some of which contribute to the ability of the 

organism to overcome the host immune defence and to invade and colonize the tissue (Foster, 

2009). S. aureus can cause a wide variety of infections ranging from superficial soft tissue and skin 

infections like pimples, boils and abscesses to severe systemic infections like bacteraemia, 

endocarditic, pneumonia and toxic shock syndrome (Otto, 2012).  
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S. aureus has a clonal population structure and it does not undergo extensive genomic 

recombination but rather random nucleotide mutations and horizontal gene transfer are the main 

factor for diversity (Holmes and Zadoks, 2011).  

Due to the clinical relevance a large number of typing methods with different discriminative power, 

are being used to study the population genetics of S. aureus. Pulse-field gel electrophoresis (PFGE) 

is a method that can detect rapidly accumulating genetic variation by looking at a genetic 

fingerprint. The methods can be used to study outbreaks or the phylogeny of small populations 

(Tenover and Arbeit, 1995). spa-typing and multilocus sequence typing (MLST) are other methods 

looking at more slowly accumulating genetic variations and are used for the investigation of global 

epidemiology and population genetics. spa-typing is based on DNA sequencing of the polymorphic 

24 base pair tandem repeat of the 3-prime end of the S. aureus-specific staphylococcal protein A 

(spa gene). In MLST typing, a bacterial isolate is assigned an allelic profile relating to nucleotide 

sequences of seven housekeeping genes and based on the allelic profile the isolate will be given a 

sequence type (ST). If isolates differs in only one allele they will be given different sequence types 

but are said to be in the same clonal complex (CC)  (Urwin and Maiden, 2003; Fitzgerald et al. 

2001). MLST is less discriminative than PFGE and spa-typing and a multilocus sequence type (ST) 

linage can contain several (often related) spa-types. 

In the recent years next generation sequencing has become increasingly available. By using a whole 

genome sequencing approach, one will obtain all the genetic information, and this can potentially be 

translated into information about population structure, genetic variation, outbreak investigation,  

global epidemiology, typing, and diagnostics (Hall, 2007; Price et al., 2012; Zankari et al., 2012).     

 

1.1 Methicillin-resistant Staphylococcus aureus (MRSA) 
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S. aureus is known for its potential to adapt to a selective pressure from antibiotics. In 1948 the first 

report of a penicillin-resistant S. aureus was published, which was only shortly after the 

introduction of penicillin in the clinical practice (Barber and Rozwadowska-dowzenko, 1948). In 

the late 1950s methicillin was introduced as treatment of infections with penicillin resistant strains 

and soon after, in 1961, methicillin-resistant S. aureus (MRSA) was identified in the UK, and was 

after that recognized as a hospital-associated pathogen worldwide (DeLeo et al., 2010; Jevons et al., 

1963; Otto, 2012).  

 

Methicillin-resistance is in staphylococci conferred by the carriage of the Staphylococcal Cassette 

Chromosome mec (SCCmec). The SCCmec cassette is a mobile genetic element that includes the 

mecA gene encoding the penicillin binding protein (PBP) 2a, which shows low affinity for beta-

lactam antibiotics such as penicillin and methicillin, and allows, even in the presence of such 

antibiotics, the cell to produce a functional cell wall  and therefore survive beta-lactam treatment  

(Hartman and Tomasz, 1981). The structure of the SCCmec cassette is diverse and is classified 

based on the combination of the cassette chromosome recombinase (ccr) the mec-class. The ccr 

genes are responsible for mobility of the element, whereas the mec-class relates to beta-lactam 

resistance and its regulation. In addition to the ccr and mec genes some non-essential junkyard 

regions are included in SCCmec typing (Kondo et al., 2007). Some SCCmec cassettes include other 

resistance genes besides the mecA gene, which encode resistance to other antibiotics and/or heavy 

metals. Such genes are part of integrated copies of plasmids or transposons (Grundmann et al., 

2006). 

Recently a divergent mecA homologue, termed mecC (formerly mecALGA251), was identified in S. 

aureus isolates from dairy cattle in United Kingdom (García-Álvarez et al., 2011). mecC shows 70 

% nucleotide identity to mecA and is located in a novel SCCmec element designated SCCmec type 
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XI. Routine culture and susceptibility testing will identify S. aureus isolates containing mecC, 

however, molecular confirmatory methods will not identify them as MRSA (García-Álvarez et al., 

2011). S. aureus containing mecC has been found in a range of multilocus sequence type lineages 

isolated from humans and other animal species (Cuny et al., 2011; García-Álvarez et al., 2011; 

Harrison et al., 2013; Laurent et al., 2012).    

 

Colonization with MRSA is normally asymptomatic in healthy individuals but elderly, immune-

compromised people, and post-operation patients have a significant higher risk for developing 

symptomatic infections. It has been estimated that patients with MRSA have a pronounced higher 

risk of mortality compared to other patients (Grundmann et al., 2006; Memorial, 2005).  

 

1.1.1 Hospital- and Community-associated MRSA 

MRSA infections were traditionally hospital-associated (HA-MRSA) and have been a major public 

health issue for the last 50 years causing severe nososcomial infections worldwide. However in the 

past approximately 10-15 years, an increased number of infections due to community-associated 

MRSA (CA-MRSA) has been reported in Europe and the US (DeLeo et al., 2010; Verkade and 

Kluytmans, 2013). CA-MRSA infections are mainly seen in healthy individuals with no recent 

contact to the healthcare system. 

 

There are about ten human multilocus lineages distributed globally (CC1, CC5, CC8, CC12, CC15 

CC22, CC25, CC30, CC45, CC51) of which CC1, CC5, CC8, CC22, CC30 and CC45 contain the 

most common MRSA strains (Feil and Cooper, 2003; Holmes and Zadoks, 2011).  

Typically CA-MRSA is genetically distinct from HA-MRSA (Diep and Otto 2008). They 

frequently carry the SCCmec type IV or V and they often harbour the Planton-Valentine leukocidin 



21 

 

(PVL) that is associated with skin and soft tissue infections (DeLeo et al., 2010; Vandenesch et al., 

2003). The SCCmec types IV and V are smaller in comparison to the SCCmec types I, II and III 

often carried by HA-MRSA, which may facilitate a lower metabolic cost and a more efficiently 

transferred element between CA strains.  

The genetic differences seen between HA-MRSA and CA-MRSA correlate with the host 

environment (David and Daum, 2010; Diep and Otto, 2008). HA-MRSA often infects immune-

compromised individuals in hospital settings where a high antibiotic selective pressure are present, 

whereas CA-MRSA, infecting healthy individuals, requires fewer resistance genes, additional 

virulence factors, and a growth advantage in the more competitive environment outside the hospital 

setting.  

 

1.1.2 Livestock-associated MRSA 

A third emerging branch of S. aureus has been identified in association with livestock animals. The 

isolation of MRSA from animals was first reported in 1972. This was following the detection of 

MRSA in milk from mastitic cows (Devriese et al., 1972) but was at that time most likely 

associated with human to animal transmission of an MRSA strain acquired by the farmer during 

hospitalisation. Since then livestock-associated MRSA (LA-MRSA) has been identified in various 

animals in several European countries, the US and Asia (Smith and Pearson, 2011). Population 

genetic studies have identified certain genotypes to be associated with specific host species. 

Multilocus sequence type ST71, ST97, ST126, ST133 and ST151 are often found among ruminants, 

and are the major course of bovine mastitis, whereas ST5 is often associated with poultry and ST9, 

ST433, ST398 are often found in pigs (Armand-Lefevre, 2005; Holmes and Zadoks, 2011; Lowder 

et al., 2009; Moodley et al., 2012; Nickerson, 2009).  
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1.1.2.1 Clonal Complex 398 

The first LA-MRSA isolated from pigs was reported in France in 2005 (Armand-Lefevre, 2005) and 

the same clonal complex (CC398), was discovered as being widespread in pigs in the Netherlands 

(Voss et al., 2005). Multilocus sequence type 398 (ST398), belonging to CC398, has shown a 

broader host-spectrum compared to most other MRSA, and have until now been found in pigs, 

cattle, veal calves, horses, poultry, turkeys, companion animals as well as humans (Verkade and 

Kluytmans, 2013).  

The main reservoir for LA-MRSA CC398, as well as for MSSA ST398 (Hasman et al., 2010), 

seems to be pigs and many of the early studies on swine LA-MRSA CC398 were carried out in the 

Netherlands. Here the prevalence of HA-MRSA is generally low but LA-MRSA CC398 is found to 

be widespread (Smith and Pearson, 2011; Voss et al., 2005). Dutch prevalence studies report that 

the number of CC398 positive farms varies from 23 % to 81 %, whereas the prevalence in 

individual pigs varies from 11 % to 39 %  (E M Broens et al., 2011a; de Neeling et al., 2007; van 

Duijkeren et al., 2008). Only around five years after the first LA-MRSA isolate was found in pigs, a 

prevalence study examining swine breeding farms in Europe found swine MRSA to be present in 

pig facilities in Austria, Belgium, Cyprus, the Czech Republic, the Netherlands, Denmark, Finland, 

France, Germany, Hungary, Italy, Luxembourg, Poland, Portugal, Slovakia and Spain (Food and 

Authority, 2010). The prevalence of MRSA CC398 in pigs at slaughter in Denmark in 2012 was 

estimated to 77 % (Agersø et al., 2012). LA-MRSA CC398 has also been found in high prevalence 

in veal calves, with 28 % of the calves and 88 % of the farms tested being positive (Graveland et al., 

2010).   

 

The main risk factors for human colonization with CC398 are direct exposure to pigs and veal 

calves or sharing a household with people who are in direct contact with these animals (Graveland 
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et al., 2011; van den Broek et al., 2009). In addition living in regions with high densities of 

livestock, has been proposed as a risk factor for human colonization with CC398, despite not having 

direct contact with pigs (Feingold et al., 2012). By the end of 2008, 42 % of all newly identified 

MRSA strains in humans in the Netherlands belonged to CC398 (Verkade and Kluytmans, 2013). 

MRSA was found in 232 human cases in Denmark in 2012, which was an increase from the 

previous years (42 in 2009, 111 in 2010, and 164 in 2011) despite no targeted screening for CC398 

in 2012. The majority of the human cases identified in Denmark were from persons with 

documented close contact to pigs or household members to pig handlers (Agersø et al., 2012).  

 

ST398 do not typically cause illness in pigs but nonetheless, it is the most frequent cause of porcine 

skin infections (Cuny et al., 2010; van Duijkeren et al., 2004). In addition S. aureus is frequently 

isolated from lesions observed during post-mortem inspection, especially from abscesses in lungs 

and udder (O’Mahony et al., 2005; Strommenger et al., 2006).  

LA-MRSA ST398 infections in human are rare compared to infections caused by HA- or CA-

MRSA, but has been seen of various severities. Human to human transmission is not as pronounced 

as for other MRSA types, but recently several studies have identified ST398 infections in humans 

with no previous contact to animals. These infections are primarily caused by methicillin-sensitive 

S. aureus (MSSA) ST398 (Agersø et al., 2012; Bhat et al., 2009).  

 

The porcine reservoir constitutes an important niche for adaptation and transmission of LA-MRSA 

ST398. Therapeutic treatment of pigs with oxytetracycline and treatment of complete flocks with 

prophylactic oxytetracycline are both common practices in farming (van Duijkeren et al., 2004). 

The vast majority of S. aureus ST398 isolated from pigs show tetracycline resistance, and 

tetracycline resistance is most likely one of the responsible agents for the selection of ST398 
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isolates (Hasman et al., 2010; Schijffelen et al., 2010). A recent study has demonstrated that ST398 

originated as MSSA in humans, was then transmitted to the pig reservoir where it acquired 

methicillin and tetracycline resistance and are now being transferred back to humans (Price et al., 

2012). LA-MRSA CC398 harbors most often the smaller SCCmec cassette types IV or V. 

Specifically the SCCmec subtype Vc (2C5&5) encoding the cadmium-zinc resistance gene czrC are 

often found among LA-MRSA (Cavaco et al., 2011; Price et al., 2012). This emphasizes that the 

industrialization of pig production with high livestock densities, frequent animal transmission 

between farms and the use of antibiotics and heavy metals generate an ideal environment for this 

highly adaptable opportunistic pathogen.  

 

During the past decade, ST398 has been rapidly emerging and has now become the most commonly 

reported MRSA strain found in association with livestock (Smith and Pearson, 2011). This 

highlights that better intervention strategies to control the spread are needed. However, the 

transmission between animals and between farms is most likely multi factorial, which complicates 

efforts to control spread of LA-MRSA ST398.  

Even though LA-MRSA ST398 has been subject of epidemiologic research on farms and hospitals, 

various central questions remain unanswered. Profession and geographic regional location have 

been recognized as risk factors for human colonization, but specific genetic factors facilitating 

zoonotic transmission remains unidentified. The potential of LA-MRSA transmission and 

adaptation are still unknown and further investigations into why ST398 have successfully colonized 

so many different animal species are needed to help understand how we might prevent similar 

problems in the future.  

The porcine reservoir seems to constitute a very important environment for ST398 adaption and 

transmission, however, little is known about which genes in the ST398 genome are important for 
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persistent porcine carriage. Identification of essential genes for porcine colonization could 

constitute targets for decolonization in an attempt to control the spread of ST398. A comprehensive 

phenotypic and genotypic characterization of LA-MRSA ST398 may help to better understand how 

ST398 has become the most dominant MRSA strain within livestock. Essential genes for porcine 

colonization could constitute markers in future epidemiology, surveying pathogens associated with 

pig farming. In addition, as ST398 displays resistance to various antibiotics, identification of 

essential genes for bacterial infection could highlight new potential targets for therapeutic agents. 

 

2. Methods for bacterial characterization 

Comprehensive insight into bacterial behaviour is crucial to overcome and prevent bacterial 

infections.  To gain a better understanding of bacterial ecology in specific environments various 

methods can be applied. Some characterize only bacterial phenotypes and some only the genotypes, 

but to gain the most comprehensive bacterial characterization, a combination must be applied.  

  

2.1 Model systems 

Model systems mimicking natural environments are essential to understand bacterial behaviour. 

Various in vitro, in vivo or ex vivo models to investigate bacterial colonization and infection have 

been described. Such models are used in different ways to study adhesion, colonization, virulence 

and differences between strains. 

As mentioned above S. aureus colonizes the nares and skin surfaces of several animal species. In 

vitro adhesion and colonization studies have been performed using desquamated nasal epithelial 

cells, skin corneocytes, epidermal keratinocytes and keratin (Corrigan et al., 2009; Moodley and 

Espinosa-Gongora, 2012; O’Brien et al., 2002). Cells originating from different hosts has been used 

for investigating host specificity of different lineages (Corrigan et al., 2009; Moodley and Espinosa-
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Gongora, 2012). Whole blood and immune cells isolated from blood have been used to evaluate 

gene expression, bacterial survival and invasion, and host immune evasion (den Reijer et al., 2013; 

Malachowa et al., 2011) (manuscript 1). In vitro models are useful however such models lack 

several host components present in a natural S. aureus environment. 

Therefore animal models are often used and they are useful models to study colonization and 

infection. Murine and rat models have been developed to mimic S. aureus colonization in humans 

(Kiser et al., 1999; Kokai-Kun, 2008), but as the murine nasal cavity is not a natural habitat for S. 

aureus, this model system is not optimal to study S. aureus colonization (González-Zorn and Senna, 

2005). Pigs are, however, natural hosts and piglets have also been applied in colonization and 

persistent carriage studies (Els M Broens et al., 2011; Crombé et al., 2012; Moodley and Espinosa-

Gongora, 2012).  

The nematode Caenorhabditis elegans constitutes an alternative model to mammalian animal 

models. A variety of bacteria, including S. aureus can kill C. elegans and there seems to be a high 

degree of correlation between virulence factors required for nematode killing and virulence in 

vertebrates (Sifri et al., 2005). It has been used as a simple surrogate model to study infection (Bae 

et al., 2004; Begun et al., 2005). A hallmark feature of invasive S. aureus disease is its ability to 

cause bacteraemia which can lead to severe systemic infections. Murine and rabbit models have 

been used for studying bacteraemia caused by S. aureus (Benton et al., 2004; Coulter et al., 1998; 

Diep et al., 2008a; Mei et al., 1997).  

An alternative to the animal models is freshly isolated tissues from various animals, in which ex 

vivo adhesion, colonization and infection studies and be performed (Tulinski et al., 2013) 

(manuscript II). The advantages of using tissue explants are that it resembles the natural host 

environment to a higher degree than in vitro systems, it is easier to set up, and more cost effective 

compared to in vivo animal models. Tissue from larger animals than rodents can be applied and as 
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pigs constitute a large natural reservoir for S. aureus this approach can help to highlight bacterial 

features important for successful porcine colonization. Examples of porcine ex vivo models are 

illustrated in Figure 1. 

 

Figure 1: Porcine ex vivo models. 

 

The figure illustrates two ex vivo porcine models. On the left, porcine nasal epithelium tissue explants are placed on 

filter paper on agar plugs. The filter paper feeds the tissue with media to sustain tissue viability. The exterior surface of 

the nasal tissue is infected with S. aureus. On the right porcine skin tissue explants are embedded in HEPES agar, 

leaving the skin surface exposed. S. aureus is inoculated onto the skin surface. Both models are applied in manuscript 

II.    

 

Wild-type strains can be tested in model systems to investigate and compare phenotypes. To 

associate a bacterial genotype with a phenotype, mutants, lacking specific gene function can be 

tested in these model systems. This approach is applied in the investigation of genes important for 

bacterial colonization and infection. For this purpose single gene knockouts or complex mutant 
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libraries can be generated. Single gene knockouts are primarily used for investigation of specific 

genes with an already known or hypothesized function, whereas genome saturated mutant libraries 

facilitate a high-throughput screening for investigation of all genes within a genome 

simultaneously. Both are strong tools to associate genes with phenotypes. 

 

2.1.1 Single gene knockout 

Gene knockout is a genetic technique that, via different approaches, makes a gene in an organism 

non-functional. Once the gene of interest has been “knocked out” the so-called knockout organism 

can be tested in various functional assays to gain knowledge about gene function. Conclusions are 

drawn from the difference between the knockout organism and the wild-type strain.   

The gene knockout approach is often used for investigation of pathogenic bacteria to show that a 

gene found in such strains encodes a product that contribute to the disease caused by the pathogen. 

The principal behind the use of genetic manipulation to investigate genes encoding virulence factors 

was first formulated by Standley Falkow in 1988 and was based on Koch’s postulates (Falkow, 

1988). The basic premise is that by using genetic manipulation a gene encoding a putative virulence 

factor can be inactivated and the mutant can be tested for loss of virulence capacity in a virulence 

model. In addition, Falkow described that it is necessary to demonstrate that by complementation 

the virulence capacity can be restored to wild-type level.   

 

Gene manipulation in Gram-negative bacteria is generally easier compared to gene manipulation in 

Gram-positives, as the thick peptidoglycan cell wall harboured by Gram-positive bacteria hampers 

the manipulation. In addition, the majority of S. aureus strains possess a strong restriction 

modification barrier that hinders the uptake of foreign DNA (Monk et al., 2012; Monk and Foster, 

2012). The first step in generation of knockout mutant is to introduce a vector, which includes a 
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sequence identical to the gene of interest or its flanking regions, into the strain of interest. For 

vector DNA to be transferred into S. aureus and not undergo destruction by the restriction and 

modification systems, the DNA must pass through a modified S. aureus laboratory strain (Bae et al., 

2008). S. aureus RN4220 is a laboratory strain that has been mutated in one of the restriction 

systems, which allows it to take up foreign DNA, which has been cloned in for example E. coli. 

Once the foreign DNA has been replicated by RN4220 the methylation pattern will be of S. aureus 

origin and thereby acceptable for uptake by most wild-type S. aureus strains. 

Introduction of DNA can be performed via for example transformation or transduction. The most 

widely used approach is transformation, which is the transfer of free DNA. Transformation can be 

difficult in S. aureus and have mostly been done in laboratory strains like in S. aureus RN4220 

described above. However, new methods are being developed for S. aureus gene manipulation 

(Monk and Foster, 2012). Transduction is based on the usage of a virus that infects bacteria, a so-

called bacteriophage. When a bacteriophage infects a bacterial cell, it utilises the cell machinery for 

viral DNA replication. Once viral DNA replication is complete, the virus transmits to other bacterial 

cells through a lytic cycle, killing the host cell. In this process bacterial DNA can, by accident, be 

packed into the viral capsid and once the bacteriophage infects a new cell, bacterial DNA can be 

transferred from one bacterium to another. Transduction is only an intra-species approach as 

bacteriophages are species specific and enter the bacterial cells by recognition specific surface 

bound receptors (Novick, 1991). Generally DNA transfers with low frequencies in S. aureus, 

complicating gene manipulation in this species.  

Once the vector DNA has been introduced, homologous recombination can occur and the gene of 

interest can be replaced with a selection marker and in that way inactivated. The mutant is tested in 

parallel to the wild-type in for example an infection model. If the mutant displays reduced virulence 

compared to the wild-type, it can be postulated that the gene, which has been “knocked out”, 
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encodes a virulence factor. In addition to testing the mutant in various assays, complementation 

experiments must be performed for a definitive conclusion. Such complementation can be done by 

reintroducing gene function in the mutant or by testing the gene function in a surrogate host lacking 

pathogenicity.  

 

2.1.2 Transposon mutant libraries 

Screening of a transposon mutant library is similar to the gene knockout approach. However, it is a 

high-throughput method that facilitates investigation of all genes within a genome simultaneously.  

A transposon mutant library is composed of numerous mutants, where each mutant has intergrated a 

transposon at a random position within the bacterial genome. The approach is based on a negative 

selection strategy, where transposon inserts into functional genes will result in mutants with 

attenuated fitness, or a complete inability to survive, and recovery of only those mutants with 

inserts in non-essential genes. 

 

Transposon mutagenesis can be used for building a library of random mutants (Figure 2). Typically 

a two-plasmid-system is used for generation of transposon mutant libraries in S. aureus (Bae et al., 

2004; Chaudhuri et al., 2009; Fey et al., 2013) (manuscript I). One of the plasmids carries a mariner 

transposon, which is required for insertion in S. aureus genomes, and another plasmid carries a 

transposase facilitating the transposition event. Both plasmids contain a temperature sensitive origin 

of replication, which allows for removal of the plasmids by increasing growth temperature (Bae et 

al., 2008).  

The transposon inserts randomly into the bacterial genome and when a gene is inserted with a 

transposon the gene function is potentially disrupted. If a gene essential for cell survival is disrupted 

the mutant will die, and as a result no essential genes will be present in the mutant library.  
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The transposition event happens once per cell as only one transposon is present within each cell. 

Every cell in the library will by chance contain a transposon at a unique genomic position. The 

transposon will contain a selection marker which will enable selection of the transposon mutants.  

A transposon mutant library can be generated via liquid transposition (Figure 2) resulting in a pool 

of thousands of mutants or transposition can be conducted on solid phase. Solid phase transposition 

enables separation of the individual mutants but is more laborious than liquid transposition and 

often results in mutant libraries containing fewer mutants compared to mutant libraries generated by 

liquid transposition.  

 

Figure 2: Generation of a transposon mutant library. 

 

The figure illustrates a schematic presentation of how a transposon mutant library can be generated in S. aureus using 

a two-plasmid-system. Plasmid 1 carries the transposon which includes a resistance marker (Res1), a temperature 

sensitive origin of replication (Rep ts), and a second resistance marker (Res2) carried on the plasmid backbone. 

Plasmid 2 carries a transposase essential for the transposition event, a temperature sensitive origin of replication (Rep 

ts), and a resistance marker (Res3) carried on the plasmid backbone. The plasmids are carried by two different donor 

cells (Donor 1 and Donor 2) and are via two separate rounds of transduction introduced into the strain of interest. 
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After the transposition event (illustrated as liquid transposition) the culture is grown at high temperatures to facilitate 

plasmid loss (no plasmid replication >30°C). The result is a transposon mutant library consisting of mutants with one 

transposon inserted randomly once per bacterial genome.  

 

Once the library is generated and validated the transposon insertion sites must be identified to 

characterize the mutant pool. Various genetic techniques can be applied to identify the flanking 

regions of the transposon insertion sites.  

For an optimal output it is desirable that the genotypic approach is high-throughput to match the 

large number of mutants generated using transposon mutagenesis. A high-throughput genotypic 

approach has been developed by Chaudhuri et al. (Chaudhuri et al., 2009). It is a DNA microarray 

and PCR-based method called Transposon Mediated Differential Hybridization (TMDH). Once the 

mutant library has been generated, genomic DNA is digested with a restriction enzyme and labelled 

RNA run-offs are produced from outward facing promoters integrated into the flanking ends of the 

transposon. The labelled RNA is hybridized to a tiling oligonucleotide microarray. Probes that are 

downstream of the transposon give a positive “on” signal while other probes give an “off” signal. 

Small genes (<300 bp) have fewer transposon insert possibilities compared to larger genes. Such 

small genes are only covered by a low number of probes resulting in a poor signal and they can be 

problematic to detect as “on” signals. For these genes a laborious PCR step using a transposon 

specific primer is necessary. In addition, in some microarray features the distinction between 

positive and negative signals can be difficult. The TMDH approach was applied in the first 

comprehensive study identifying essential genes in S. aureus (Chaudhuri et al., 2009).  

Another genotypic strategy, superior to the microarray approach, is based on high-throughput 

sequencing. Langridge et al. developed a system named Transposon Directed Insertion site 

Sequencing (TraDIS), which uses a transposon specific primer, enabling sequencing of the genomic 

target region flanking the transposon insertion sites (Langridge et al., 2009). The primer is designed 
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in such a manner that the first 10 bp in each sequence read is of transposon origin. As the method is 

of a “digital” nature, any sequence read that have the 10 bp transposon tag sequence with adjacent 

genomic sequence is almost certainly an indication of the transposon insertion site. Importantly, this 

sequencing procedure not only identifies essential genes under different environmental conditions, 

but also provides an estimate of the relative importance of gene function (Langridge et al., 2009). 

Statistical analysis can be performed with tools like R for a quantitative comparisons between 

samples (Anders and Huber, 2012).  

 

Figure 3: TraDIS approach. 

 

The figure illustrates how the TraDIS approach was applied in manuscript 1 and 2. An input pool of the transposon 

mutant library was screened in a functional assay and an output mutant pool was recovered. DNA from both input and 

output, representing mutants pre- and post- selection, were purified and sequenced on the Illumina platform. Sequence 

reads from the input and output samples were mapped to a reference genome and compared. Mutants present in input 

but absent in output (pink) represent a gene that is essential for survival in the specific environment defined in the 

functional assay. Mutants recovered in decreased numbers in output compared to input (blue) represent a gene that is 
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to some degree important for survival in the defined environment. Whereas mutants present in comparable numbers in 

input and output (green) represent a gene that is non-essential in the functional assay.  

 

The sequencing approach has been used by Langridge et al., Khatiwara et al., Pickard et al. and 

Chaudhuri et al. to study essential and conditional essential genes in Salmonella Typhi and 

Salmonella Typhimurium (Chaudhuri et al., 2013; Khatiwara et al., 2012; Langridge et al., 2009; 

Pickard et al., 2013). Manuscript I describes, for the first time, the use of TraDIS in an S. aureus 

isolates and Figure 3 illustrate how TraDIS was applied in manuscript I and II. 

 

The optimal mutant library will compose a genome-saturated library. Such a library will consist of 

mutants, each containing one transposon insertion site at a unique position, increasing the likelihood 

of every functional gene being disrupted. To verify that the transposon has been inserted throughout 

the genome within the mutant pool, each insertion site can be identified and mapped against a 

reference genome, revealing potential “hot spots” or confirming that all the genes, within the 

genome have been inserted with a transposon. This can be visualized by a genome atlas as shown in 

Figure 4. 
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Figure 4: Visualization of genomic insertion sites – genome atlas.  

 

The figure shows a visualisation of the genome-saturated transposon mutant library generated in manuscript 1. The 

LA-MRSA ST398 S0385 reference genome (GenBank accession no. AM990992) is illustrated by the green outer circle 

and the black spikes illustrate staked sequence reads aligned to the reference genome. Each sequence read represent a 

transposon insertion site. The figure illustrate that no “hot spots” for transposon insertion were identified and almost 

every region within the genome has been inserted with a transposon.  

 

Both TMDH and TraDIS require a cut-off strategy separating essential and non-essential genes, as a 

transposon can insert into non-functional parts of the gene without disrupting gene function. In the 

TMDH approach, PCR foot-printing is used to evaluate the microarray screen to verify the true 

essential and true non-essential genes, if an exhaustive essential gene list is required (Chaudhuri et 
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al., 2009). Using TraDIS, a normalized insertion index can be calculated of each gene and plotted 

against insertion frequency. Such a plot will have a bimodal distribution with two peaks and the 

local minimum separating those can define a cut-off, separating essential from non-essential genes 

(Langridge et al., 2009) (illustrated in Figure 2 in manuscript I).  

 

When interpreting the data it is important to recognize that environmental and experimental factors 

have unintended consequences for the output data. When comparing samples pre- and post-

selection, only non-essential genes can be studied, as mutants with inserts in essential genes will not 

be present in the mutant library. In addition, transposon insertions may affect the expression of 

downstream genes or operons, causing polar mutations that lead to incorrect identification of 

essential genes in a defined environment. For definitive identification of gene function it is 

necessary to generate single gene knockouts and test those in the same functional assays used for 

the screenings. However, since a large number of genes are listed as having no known function and 

there is inconsiderable value in generating evidence for the phenotypes resulting from the 

possession of these genes, high-throughput methods can help to narrow the pool of genes to be 

investigated further.  

 

2.2 Expression studies 

Gene function is an important bacterial characteristic. However as many genes are only expressed 

under certain conditions, expression studies and information about the bacterial transcriptome are 

equally important. Knowledge about when a gene is expressed provides a deeper insight into gene 

function and this can be crucial when investigating new targets for antimicrobial agents.  
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Microarray was first described in 1995 and since then, the method has been used extensively in 

various studies (Schena et al., 1995). Microarray is a high-throughput automated approach 

consisting of multiple probes deposited or directly synthesized on a surface in an ordered fashion. 

The probes can be made of nucleic acid, proteins, carbohydrates or antibodies. On a DNA 

microarray nucleic acid probes are deposited on a planar glass surface, which is coated with a 

chemical reactive group to ensure efficient binding of the probes to the surface. To identify target 

genes, DNA samples are labelled chemically or enzymatic. The labelled samples are hybridized 

onto the array and washed. The remaining signal from the bound nucleic acids, specifically 

interacting with the probes deposited on the array, is measured using a confocal microarray scanner. 

Only probes hybridized with target DNA will give a signal thus identifying the gene with the related 

DNA motif in the sample (Huyghe et al., 2009). 

 

DNA microarray can be used for identification of genes in multiple regions within a bacterial 

genome, or it can be applied to samples consisting of different genomes. However, only the genes 

with a target probe will be identified. A variety of genes, e.g. genes encoding virulence factors, 

phylogenetic markers or antibiotic resistance, have been employed on microbial characterization 

microarrays (Hallin et al., 2011; Sung et al., 2008). Microarray have been applied widely in 

expression studies, where mRNA is isolated from a bacterial culture in a defined environment and 

translated back into cDNA before quantified on the microarray (den Reijer et al., 2013; Malachowa 

et al., 2011). The transcriptomic approach can emphasize if specific genes are up- or down-

regulated under specific physiological conditions. A significant change in transcript will highlight 

the importance of gene function under the environmental conditions. In addition, microarray can be 

used for other applications like comparative genome hybridization, microbial community 

characterization and single nucleotide polymorphism (SNP) analysis (Huyghe et al., 2009).  
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2.3 Whole genome sequencing and comparative genomics 

Several bioinformatic tools have been developed to characterize bacteria. Such tools are primarily 

based on a homology strategy, where nucleotide identity to already defined genes are used to  

describe new gene function (Hall, 2007). In recent years, whole genome sequencing (WGS) has 

become increasingly available. There have been huge improvements in sequencing technologies and 

the cost has gone down significantly. This gives rise to a new approach within diagnostics and 

surveillance, where WGS can be utilized for species identification, evolutionary clustering (Price et 

al., 2012), identification of resistance (Zankari et al., 2012) and virulence markers, just to mention a 

few of the many applications. WGS has enormous potential as it contains all the information, 

however, the biggest challenge with the appliance of WGS is to interpret the large amount of data 

retrieved with this technology. To translate large amounts of DNA sequences into functional 

information requires bioinformatic tools that are standardized and simple to use.  

 

The improvements within WGS have boosted the approach of comparative genomics, where 

bacteria, as well as other organisms, can be compared on a genome level (Price et al., 2012). A 

complete bacterial genotype obtained by WGS can stand alone (Schijffelen et al., 2010), but by 

comparing the complete genotype from different strains living in different environments, genetic 

traits can potentially be identified, which can explain the successful colonization of a given 

environment.  

 

3. Characterization of Staphylococcus aureus 

The methods introduced have been used for characterization of S. aureus and various results from 

previous studies will be presented in this section. The focus will mainly be on S. aureus CC398.  
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3.1 Essential genes 

Transposon mutagenesis has been used to define essential genes in S. aureus (Bae et al., 2004; 

Chaudhuri et al., 2009; Fey et al., 2013) (manuscript I). A schematic overview of the results 

obtained in the different studies can be found in manuscript I supporting figures Table S2.  

 

Bae et al. generated an unsaturated transposon mutant library consisting of 10,325 transposon 

mutants. The insertion sites were amplified by PCR and sequenced and 450-550 genes were 

identified as essential for S. aureus strain Newman under laboratory conditions (Bae et al., 2004).  

Chaurhuri et al. generated the first genome-saturated transposon mutant library generated in S. 

aureus. The library was generated in S. aureus strain SH1000 and 351 genes were proposed 

essential for growth under laboratory condition. The TMDH approach was used for identification of 

transposon insertion sites (Chaudhuri et al., 2009).  

Fey et al. identified 579 open reading frames which were not disrupted by a transposon in S. aureus 

strain JE2 (derived from a USA300 isolate) and these genes were proposed as essential for growth 

under laboratory conditions. They used a high-throughput sequencing method to identify transposon 

insertion sites (Fey et al., 2013).  

 

The proposed essential genes are classified into functional categories and represents genes involved 

in DNA and RNA metabolism, protein synthesis, cell envelope, carbon metabolism, respiratory 

pathways, nucleotide biosynthesis and metabolism and cofactors. A fairly large portion of the 

essential genes are of unknown function underlining the need for further investigations.  

Some differences are seen between the lists of proposed essential genes in S. aureus. Any attempt to 

define the minimum set of essential genes will inevitably be influenced by the conditions under 
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which the experiment is performed. A gene may be scored as essential in a particular experiment 

because it is required for survival following exposure to a particular stress inherent in the methods 

or because it is involved in uptake or metabolism of the particular nutrients provided in the growth 

media. The differences found in the studies presented could be a result of differences in 

methodology, experimental conditions or true differences between strains.  

 

3.2 Adhesion and colonization  

3.2.1 The nares.  

Adhesion is the first step in colonization and infection. S. aureus colonizes both the nares and skin 

surfaces of several animal species, including humans, but the most frequent site of carriage is the 

moist squamous nasal epithelium of the anterior nares. It has been postulated that the ability of S. 

aureus to adhere to the nares is widely determined by its ability to adhere to desquamated cells on 

the epithelial surface of the nasal vestibules (Corrigan et al., 2009; Foster, 2009). As “only” 20-40% 

of the human population are intermediate or persistent carriers of S. aureus, it is clear that host 

factors play an important role in colonization (Foster, 2009).  

 

Clumping factor B (ClfB encoded by the clfB gene) and iron regulated surface determinant protein 

A (IdsA encoded by the isdA gene) are surface expressed proteins utilized by S. aureus for adhesion 

to desquamated epithelial cells in vitro. In addition, they have been shown to be important for 

colonization of the nares of rodents in vivo and in humans in the case of ClfB (Clarke et al., 2004; 

Schaffer et al., 2006; Wertheim et al., 2008). ClfB binds human type 1 cytokeratin 10 found on the 

surface of human nasal cells (O’Brien et al., 2002). IsdA is only expressed under iron-limited 

conditions, which the bacterium often encounters in a host environment. It binds a number of 

different substrates including fibronectin, fibrinogen and several proteins associated with the cell 
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envelope of desquamated nasal epithelial cells such as cytokeratin 10. Both proteins constitute 

attractive candidates as antigens for a colonization-blocking vaccine (Clarke et al., 2006, 2004).  

By testing gene knockouts in vitro Corrigan et al.demonstrated that S. aureus strain Newman 

adherence to human desquamated nasal epithelial cells is multifactorial and involves the serine-

aspartic acid repeat surface proteins SdrC and SdrD as well as ClfB and IsdA (Corrigan et al., 

2009).  

In addition to proteinaceous adhesins, cell wall teichoic acids (WTA) and capsular polysaccharides 

have been shown to be involved in nasal adhesion. Further investigations have shown by expression 

analysis that various adhesion factors are expressed at different stages in nasal colonization. Genes 

involved in WTA biosynthesis are primarily expressed in the initial stage of colonization whereas 

clfB and idsA are up-regulated at a later stage (Burian et al., 2010; Kiser et al., 1999).  

S. aureus surface protein (Sas) G and X have also been demonstrated to bind nasal epithelial cells 

(Li et al., 2012; Roche et al., 2003). SasX is encoded on a mobile genetic element (MGE) occurring 

predominantly in ST239 MRSA strains, which are the most frequent source of MRSA infections in 

Asia. It has been shown to contribute to colonization, biofilm formation, immune evasion and 

virulence in animal infection models (Li et al., 2012; Otto, 2012). 

 

Pigs constitute an important reservoir for the spread and adaption of S. aureus ST398. Current 

knowledge on colonization and transmission of LA-MRSA in pigs is limited and mainly based on 

observational field surveys, but recently, in vivo pig colonization models have been applied (E M 

Broens et al., 2011b; Els M Broens et al., 2011; Crombé et al., 2012; Moodley and Espinosa-

Gongora, 2012). Transmission quantification studies indicated that LA-MRSA ST398 easily spread 

among pigs and once a pig is colonized, there is a high probability of persistence, even without 

antimicrobial use (Els M Broens et al., 2011; Crombé et al., 2012).  
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Incubation in pigs yielded however variable results, which is possibly due to unstable colonization. 

To obtain stable colonization, porcine ex vivo model systems constitute an excellent alternative to 

animal experiments. Ex vivo models mimics the natural host environment but under more controlled 

conditions. In addition, several explants from one animal can be derived allowing for replicates 

within the same genetic background. Such models have been developed by Tulinski et al. as well as 

in manuscript II (Tulinski et al., 2013) (manuscript II).  

Tulinski et al. studied MRSA ST398 colonization of porcine nasal epithelial explants. Three 

different isolates were tested. One of the MRSA isolates was isolated from a carrier pig (S0462), 

one from a human case of endocarditis (S0385) and a beta hemolysin (Hlb) laboratory mutant (∆hlb 

= S0385-2) derived from the S0385 isolate. Different porcine colonization properties were observed 

suggesting differences in interaction of the different isolates and the tissue. All isolates showed an 

initial decline in attached cells, which could indicate bacterial adaptation to the environment. After 

prolonged incubation, the isolate from the carrier pig showed an increase in cell number.  However, 

the bacteria number was unaltered for the isolate from the humane case of endocarditis and 

decreased for the corresponding hlb mutant (Tulinski et al., 2013).  

Hlb is an exotoxin produced by S. aureus for complete lyses of red blood cells. Hlb production has 

also been demonstrated to damage keratinocytes and subsequent lead to colonization of skin 

(Katayama et al., 2013). MRSA Mu50, a human derived MRSA isolate, showed a similar pattern in 

porcine nasal colonization as the MRSA ST398 S0385 isolate. The similarity between the isolate 

Mu50 and S0385 suggests that the S0385 isolate potentially has lost some porcine specificity 

despite being of porcine origin. This underlines the adaptive potential of ST398.  

 

3.2.2 The Skin  
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The skin surface constitutes a harsh environment and S. aureus must overcome surroundings that 

are constantly changing. Sweating and drying of the skin mean considerable changes in osmolarity, 

salt concentration and pH, in addition to mechanical stress. Host defence plays a significant role for 

bacterial survival and resistance to antimicrobial peptides produced by the host is likely to be of 

major importance for the ability of S. aureus to survive on skin surfaces (Foster, 2009; Otto, 2012).  

Fatty acids present in sebum are part of the anti-bacterial defence of the skin and in order to defend 

itself S. aureus produces IsdA which makes the cell surface more resistance to these molecules. It 

has been shown that IsdA mutants are more sensitive to killing in vitro by bactericidal lipids and the 

mutants survive poorly on human skin compared to wild-type (Clarke et al., 2007). 

In some CA-MRSA strains the presence of the arginine catabolic mobile element (ACME), which is 

linked to the SCCmec element, has been proposed to be important for pH haemostasis in the acid 

environment of the skin (Diep et al., 2008b; Foster, 2009). ACME has been identified in S. 

epidermidis, a commensal of the skin in humans, but was not identified in all the CA-MRSA 

isolates investigated by Diep et al. (Diep et al., 2006). In addition Hallin et al. did not find ACME 

in 16 LA-MRSA ST398 isolates using a microarray approach (Hallin et al., 2011). This indicates 

that other factors, than the ACME which was identified as important for human skin colonization, 

are important for skin colonization of animals. 

 

3.3 Infection 

S. aureus is an opportunistic pathogen that is capable of causing a variety of infections ranging from 

minor soft tissue and skin infections to life-threatening systemic infections (Ekkelenkamp et al., 

2006; Hasman et al., 2010; Huijsdens et al., 2006). Successful infection in a specific host is 

multifactorial and depends on virulence factors produced by S. aureus. Both secreted and cell 

surface-associated proteins can promote adhesion to host extracellular matrices, damage host cells, 
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and facilitate host immune evasion (Fluit, 2012; Foster, 2005). Manuscript III, supporting material 

Table S2 shows an overview of the virulence factors that have been described in S. aureus. The 

genes are categorized based on functionality like adherence, exoenzymes, host immune evasion, 

secretion system and toxins.  

The LA-MRSA ST398 lineage is mainly associated with porcine colonization and porcine skin 

infections (Cuny et al., 2010; van Duijkeren et al., 2008) and encodes generally not as many of the 

traditionally human described virulence genes compared to HA-MRSA and CA-MRSA lineages. 

Table 1 in manuscript III illustrates a virulence profile of the whole genome sequenced LA-MRSA 

ST398 S0385 genome using the S. aureus VirulenceFinder generated and described in manuscript 

III (manuscript III Table 1).  

 

3.3.1 Toxins 

S. aureus encodes toxin like hemolysins, enterotoxins, exotoxins, exfoloative toxins, toxic shock 

syndrome toxin (tsst) and leukotoxins as the Panton-Valentine leukocidin (PVL) (Foster, 2009). 

Different S. aureus strains encode different toxins. Exfoliative toxins, tsst and PVL are only present 

in some clones, because they are encoded on MGEs, whereas alpha and gamma hemolysin are 

encoded in the core-genome and produced by most strains. Differential expression of core-genome 

encoded genes will nevertheless result in differences in pathogenesis (Novick et al., 1993).  

 

Generally, the ST398 lineage is not associated with any of the human-associated enterotoxins 

(Golding et al., 2012; Hallin et al., 2011). A reduced toxicity could to some extent hide the bacteria 

from the immune system and may therefore facilitate a more stable and successful colonization of 

the host. This could explain why this particular lineage shows a broader host capacity compared to 
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most other S. aureus lineages. However, there are a number of un-described genes in the LA-MRSA 

stains which could encode virulence factors associated with infections in animals. 

 

The world-wide emergence of CA-MRSA has been linked to the carriage of the PVL genes (DeLeo 

et al., 2010). The specific role of PVL in pathogenesis has been much debated. Based on a gene 

knockout screen, the PVL genes have been identified as contributing transiently to CA-MRSA 

pathogenesis in a rabbit bacteraemia model (Diep et al., 2008a). In addition there is a strong 

association between PVL and severe skin infections in humans (Lina et al., 1999). By comparative 

genomics the PLV genes have been identified in some human-associated MSSA ST398 isolates 

(Price et al., 2012) ( manuscript III), which could contribute to increased virulence in these strains.  

 

3.3.2 Host immune evasion 

S. aureus produces several surface-associated components that increase bacterial resistance to 

phagocytosis (Foster, 2005). This is primarily obtained via anti-opsonic means disguising the 

bacterium from immune cell recognition. If S. aureus is recognized and potentially engulfed by 

phagocytic cells it is equipped with mechanisms promoting intracellular survival in addition to 

killing of host cells and manipulation of the adaptive immune response. Some of the S. aureus host 

immune evasion factors are presented in the following section.   

 

Resistance to phagocytosis is an important bacterial feature to avoid being killed by the host 

immune system. S. aureus expressed various factors that contribute to a reduction in phagocytosis. 

The surface protein A, which is encoded by the spa gene, has demonstrated anti-phagocytic effects 

in vitro (Foster, 2009). It contains several domains that each binds to the Fc region of IgG (Forsgren 

and Sjöquist, 1966). This interaction coats the bacterium with IgG molecules in the incorrect 
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direction, which prevents any recognition by the neutrophil Fc receptor and activation of the 

complement system. Neutrophils and the complement system are both important candidates in an 

innate immune response. In addition, protein A has been identified as a virulence factor in vivo 

(Palmqvist et al., 2002).  

The surface-associated clumping factor A (ClfA) binds fibrinogen and enhances virulence in vivo 

(Josefsson et al., 2001). This is most likely due to impaired recognition of opsonins resulting in 

increased resistance to phagocytosis (Higgins et al., 2006). Most S. aureus strains express a 

microcapsule that is composed of capsular polysaccharides (O’Riordan and Lee, 2004; Roghmann 

et al., 2005). Capsular serotype 5 and 8 is associated with increased virulence in animal infection 

models and the presence of a capsule has been shown to reduce bacterial uptake by human 

neutrophils in vitro (Luong and Lee, 2002; Nilsson et al., 1997; Thakker et al., 1998). In a 

microarray study both clumping factor (clfA) and capsular type 5 (cap5A) were identified in ST398 

isolates (Hallin et al., 2011). 

 

S. aureus displays several mechanisms to evade the host immune system. Beside anti-phagocytotic 

capacities the pathogen encodes virulence factors that can kill host immune cells, modulate the 

immune response and facilitate bacterial survival within phagocytotic cells.  

Leukotoxins are cytotoxins that target leukocytes. S. aureus expresses different leukotoxins, of 

which only gamma hemolysin can lyse the membrane of both humane erythrocytes and humane 

leukocytes.  The staphylococcal gamma hemolysins are bi-component and two active toxin (AB or 

CB) can be formed by combining the class-S components (HlgA or HlgC) with the class-F-

component HlgB (Dalla Serra et al., 2005). An expression study showed that the gamma hemolysin 

components in S. aureus were up-regulated during short-term incubation in human blood in vitro. 

hlgABCgene knockouts did, however, show similar virulence as the wild-type in a murine skin 
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infection model, and bacterial survival and neutrophil lysis after phagocytosis were similar between 

mutants and wild-type (Malachowa et al., 2011). The gamma-hemolysin components were not 

identified within the ST398 isolates investigated by Hallin et al. (Hallin et al., 2011). 

 

The bacterial encoded MHC class II-analogue protein Map (also called Eap) can bind the T-cell 

receptor on T cells resulting in alteration in T cell function and causing a reduction in T cell 

proliferation. The protein can also manipulate the adaptive immune response by shifting a Th1 

response to a Th2 response. This manipulation could explain why map/eap mutants are rapidly 

cleared compared to wild-type in vivo (Haggar et al., 2005). In addition, a high concentration of 

Map protein can have similar effect as a superantigen, stimulating apoptosis of B and T cells 

(Foster, 2009). A previously published study has identified the map/eap gene in MRSA ST398 

isolates (Hallin et al., 2011).  

 

When engulfed by phagocytes the bacterium encounter negatively charged antimicrobial defensins, 

which are secreted into the phagosome. S. aureus secretes proteins that can neutralise cationic 

defensins. The staphylokinase (sak), which is a prothrombin activator, can dissolve fibrin clots and 

cleave IgG and complement factor C3, both of which have potent defensin-binding effects (Foster, 

2009). The sak gene has been associated with S. aureus host specificity (Sung et al., 2008).  

 

S. aureus is an opportunistic pathogen shifting from being a colonising agent to cause infection in 

response to changes to host environments. It has the capacity to switch on selective sets of genes to 

enhance its chance for survival. This includes the regulation of virulence genes, which needs to be 

differentially expressed at different stages of infection. The expression is controlled by global 

regulatory systems, such as Agr, SarA, SaeRS and the alternative transcription factor sigmaB (σ
B
) 
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(Otto, 2012; Pané-Farré et al., 2006). Inactivation of the sarA and agr loci has been shown to result 

in reduced virulence in several staphylococcal in vivo infection models (Abdelnour et al., 1993; 

Cheung et al., 2004; Nilsson et al., 1997).  

 

3.3.3 High-throughput screening of S. aureus virulence genes 

Various studies have used S. aureus transposon mutant libraries to screen for genes involved in 

infection. A collection of 6,300 S. aureus mutants were screened in vivo in a murine systemic 

infection model (Benton et al., 2004). 24 attenuated mutants were identified. The transposon inserts 

were identified by DNA size marker identification technology (SMIT). The mutants grouped into 

four functional classes, small molecule biosynthetic enzymes, cell surface binding and transport 

proteins, signal transduction systems, and anaerobic energy generation, as well as several conserved 

hypothetical proteins of unknown function. Mutations in genes encoding secreted virulence factors, 

such as hemolysins were not isolated (Benton et al., 2004).  

 

Another study screening 1,248 S. aureus transposon mutants in vivo, in a murine bacteraemia 

model, did not identify previous described virulence genes as important for bacterial survival (Mei 

et al., 1997). Fifty attenuated mutants were identified and approximately half represented genes 

with unknown function. They recovered several mutants with insertion in the femAB operon. FemA 

and FemB are involved in methicillin resistance and femA mutants have shown a reduced cell wall 

turnover in growing cells, reduced whole-cell autolysis under non-growing conditions and increased 

methicillin sensitivity (Maidhof et al., 1991). In addition they recovered mutants with mutations in 

other cell surface components, like components of cell wall peptidoglycan, surface adhesion 

integrity, membrane transport, lipoprotein modification and genes affecting the capsule. Mutations 

affecting the tricarboxylic acid (TCA) cycle were also identified as important for survival in the 
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bacteraemia model. Such mutations were correlated to capsule production by Mei et al., as 

respiratory activity is essential for capsule production during some stages of S. aureus growth in 

vitro and capsule size can have a significant effect on virulence (Dassy and Fournier, 1996; Mei et 

al., 1997).   

 

Begun et al. screened 2,950 transposon S. aureus mutants in a C. elegans-killing model and 

identified 10 unique mutants with mutations in TCA cycle components, nucleic acid 

metabolism/DNA replication, transporter, and miscellaneous proteins (Begun et al., 2005).   

 

These findings underlines that the TCA cycle has a critical role in S. aureus pathogenesis and that 

the maintenance of the bacterial cell wall and cell wall transport are essential for successful 

colonization and infection.  

 

3.4 Host specificity 

It is generally believed that clones display a high degree of host specialization. Phylogeny has 

indicated that clones isolated from one host species tend to be uncommon in other species. There 

has however been increasing evidence that some lineages have a broader host-spectrum (McCarthy 

et al., 2012).  

 

To study host specificity Moodley et al. used an in vitro skin corneocytes model to quantify 

adhesion in five S. aureus lineages (Moodley and Espinosa-Gongora, 2012). The human specific 

lineage ST36 showed preferred adhesion to human derived corneocytes whereas the pig-associated 

lineage ST433 showed preferred adhesion to porcine derived corneocytes. This was confirmed by in 
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vivo colonization of piglets, where ST433 was better at colonising than ST36. No differences were 

found in adhesion properties between a human and a pig derived ST398 isolate.  

Uhlemann et al. compared adhesion properties of MRSA ST398 isolates derived from pigs and 

MSSA ST398 isolates, isolated from humans with no previous pig contact. The MSSA ST398 

adhered significantly better to human derived skin keratinocytes in vitro compared to the MRSA 

ST398 isolates. However, no significant difference was observed in adhesion of the MRSA ST398 

isolates to human- or pig-derived skin keratinocytes. The genomes differed in the content of mobile 

genetic elements (MGEs) and in surface-associated adhesion genes (Uhlemann et al., 2012)..  

 

To elucidate the molecular mechanism underlying S. aureus host specificity several studies 

comparing human and animal derived strains have been performed. A micro-array based study 

revealed that six livestock-associated S. aureus ST398 isolates were distinct from more than 2,000 

S. aureus isolates from humans (Belkum et al., 2008). Another study used a microarray-based 

comparative genomic approach to study genes associated with host specificity (Sung et al., 2008). 

Sung et al. found fibronectin binding protein A (fnbA), coagulase (coa) and cell wall-associated 

fibronectin binding protein (ebh) to be of most significance in relation to host specificity. They 

emphasized that it is likely that minor variation in other surface proteins are important as well, but 

these are too small to be detected by microarray. They also found a low incidence of the scn, chp 

and sak genes in the animal isolates. These genes are typically found as part of a prophage and 

implicate immune evasion in the human host. The staphylococcal complement inhibitor (scn) 

reduces phagocytosis by neutrophils and has been found to be specific to humans (Rooijakkers et 

al., 2005). chp encodes a chemotaxis inhibitory protein that modulates the chemokine response 

preventing neutrophil chemotaxis and activation, whereas sak encodes an anti-opsonin and inhibitor 

of defensins (Wamel, 2006). 
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Price et al. compared 89 MRSA and MSSA ST398 strains isolated from different hosts using WGS 

(Price et al., 2012). They identified a prophage encoding innate immune modulators specific for the 

human-derived isolates. scn was identified in all, chp in the majority, and sak in a third of the 

human originating isolates. In addition, only one of the 70 pig originating isolates contained the 

prophage. The tetracycline resistance gene tetM, encoded on an MGE, was identified in all the pig 

originating isolates and none of the human isolates. Price et al. suggests that ST398 originated in 

humans as MSSA and acquired methicillin (primarily SCCmec type Vc 5C2&5) and tetracycline 

resistance after the introduction to livestock (Price et al., 2012). This indicates the use of antibiotics 

(like tetracycline and beta-lactams) and heavy metals (like mercury) in food animal production is 

likely selecting for MRSA ST398 in pigs.   

 

The S. aureus ST398 isolate S0385 isolated from a human case of endocarditis has been genome 

sequenced and annotated and can be found in GenBank under the accession no. AM990992 

(Schijffelen et al., 2010). The фSA3 prophage found to be associated to S. aureus of human origin 

was not identified in this isolate and it has therefore been defined as a LA-MRSA isolate (Price et 

al., 2012; Schijffelen et al., 2010). The S03985 isolate harbour a scn homolog encoded on a 

pathogenecity island, which could be specific for the porcine host. Schijffelen et al. stress that this 

could mean that genes targeting animal immune systems could be found in S. aureus strains isolated 

from animals. However, there may only be relatively few conserved differences between human 

and animal isolates and that genes determining host specificity are difficult to identify even though 

most S. aureus lineages seem to be host specific (Sung et al., 2008). 

The sequence analysis of the S0385 genome showed that the isolate was relatively different to other 

non-ST398 S. aureus genome sequences. These differences were identified in unique MGEs and 
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most of the elements harboured determinants for virulence and antimicrobial resistance. In addition, 

this isolate lacked one of the restriction and modification systems, which could make it more prone 

to up-take of foreign DNA (Schijffelen et al., 2010). These features may allow ST398 to adapt to 

new niches and could explain, at least in part, the broad host range this lineage is able to colonize.   
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Chapter 2 

4. Summary and discussion of the results from the manuscripts 

4.1 Manuscript I 

The aim of this study was to generate a high complexity transposon mutant library and assess the 

application of TraDIS in S. aureus Sequence Type 398 (ST398), belonging to CC398. The 

generated transposon mutant library was screened in BHI and porcine blood in order to identify 

genes essential for ST398 to survive under these conditions. 

 

The strain LA-MRSA ST398 S0385 was selected for this study because this isolate was the first 

CC398 isolate to be whole genome sequenced and annotated. The TraDIS method is based on next 

generation sequencing for comparing mutant composition pre and post selection. This approach 

requires an annotated reference strain to identify transposon insertions into open reading frames. 

The S0385 isolate was isolated from a human case of endocarditis but is considered a livestock-

associated strain as it contains the Tn916 transposon encoding tetracycline resistance and the strain 

do not contain any of the phage associated genes often found in S. aureus isolated from humans.   

 

The transposon mutant library was generated using a two plasmid system. One of the plasmids 

carried a Tn5-derived transposon with an erythromycin resistance marker (erm) and mariner mosaic 

ends. The mariner mosaic ends constitute inverted repeats, which is required for transposon 

insertion into the S. aureus genome. In addition the plasmid backbone contains a chloramphenicol 

resistance marker (cat). The other plasmid contains a transposase that is responsible for the 

insertion and excision of the mariner transposon. The transposase-carrying plasmid was modified in 

this study to contain gentamicin resistance (AAC6’-APH2’) as the selection marker because the 

original selection marker was based on tetracycline resistance (tet). Thus, the new tool is also 
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available for future genetic manipulation in other tetracycline resistant strains. Both plasmids 

contain temperature-sensitive origins of replication only allowing plasmid replication at 30°C or 

below. The plasmids have previously been used to generate a high complexity transposon mutant 

library in an S. aureus laboratory strain (Chaudhuri et al., 2009). Both plasmids were transduced 

into the strain of interest using the S. aureus specific bacteriophage ф11, which has been described 

for genetic manipulation previously (Novick, 1991). After transduction the cells will contain one set 

of plasmids and within these cells the transposition event were conducted. During transposition the 

mariner transposon was inserted at a random TA di-nucleotide position in the S. aureus genome.  

Once the transposon insertion mutants were generated the mutant pool was grown at 43°C to 

facilitate plasmid loss. To eliminate the plasmids the mutant pool was passaged up to four times at 

43°C and serial dilution and plating were used to determine the mutant library size and plasmid 

loss. At this temperature the plasmids will not replicate and thus their presence in the mutant 

population will be diluted. After each passage, mutant library aliquots were diluted and cultured on 

BHI agar plates containing erythromycin, chloramphenicol or gentamicin. Approximately 10
6 

CFU/ml showed erythromycin resistance but chloramphenicol sensitivity. This showed 

chromosomal integration of the transposon and 100 % plasmid loss of the transposon-carrying 

plasmid. After growth at 43°C for two generations, 70 % of the erythromycin resistant mutants 

showed sensitivity to gentamicin, indicating that approximately 30 % of the mutants still contained 

the transposase-carrying plasmid. To increase the plasmid loss two additional passage at 43°C were 

conducted.  This resulted in approximately 93 % plasmid loss after both the third and fourth growth 

passages. Growth at high temperatures will induce selection on the mutant library and will influence 

the specificity of further downstream screenings and therefore, the passage at high temperatures was 

terminated after three passages. However, due to the incomplete plasmid loss, around 7 % of the 

mutants will contain a transposase. The transposase could facilitate excision and re-insertion of the 
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transposon and thereby influence the stability of the mutant library. To avoid relocation of the 

transposon nutrient-rich broth was supplemented with erythromycin at each growth step and thus, 

the mutants were in that way continuously exposed to erythromycin. This will aid stability of the 

transposon insertions as the erythromycin resistance gene will not be transcribed in an excised 

transposon which will make the mutants sensitive to erythromycin. After generating the mutant 

library, various screenings assays where performed, where the mutant composition in an input pool 

was compared to a mutant composition in an output pool. If any genomic transposon relocation had 

taken place despite the presence of erythromycin, the mutant composition would have altered 

unintentionally. Such potential alterations could however only take place in a minor proportion of 

the mutants and would only be included in the analysis if the change in mutant composition 

happens at the output pool level, as only mutants present in the input pool will be considered in the 

final evaluation. Additionally this will only influence the results if the unintended transposon 

relocation happens with a similar frequency in all biological replicates.  

 

The transposon mutant library was validated using Linker-PCR and sequencing. Linker-PCR is a 

method to validate if the transposon had inserted randomly throughout the genome. A transposon-

specific forward primer facing outwards and a linker-specific reverse primer were used. The reverse 

primer will not recognize its target before after the first round of amplification with the transposon-

specific primer and therefore, only transposon insertion sites will be exponentially amplified. 

Random mutants from the mutant library were selected and the transposon insertion site was 

amplified using linker-PCR, sequenced, and mapped against the reference genome to identify the 

genomic insertion site (see manuscript I supporting Figures S2 and S3).    
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Once the genome-saturated mutant library was generated and validated, the library was screened for 

genes important for bacterial survival under specific condition. Genomic DNA from mutant pools 

were sequenced using Transposon Directed Insertion site Sequencing (TraDIS). The sequencing 

was performed using a custom sequencing primer, sequencing from the 5’ end of the transposon and 

into the genomic DNA flanking the transposon insert. In a sequencing run, one lane from an 

Illumina flow cell generated a minimum of 40 million reads of 43 bp plus index reads. The first 10 

bp of each read constitute the Tn sequence, which were stripped from the reads. The remaining 

reads were between 10-23 bp in length. The sequence reads were mapped to the reference strain 

(Accession no. AM990992). Reads of down to 10 pb in length were allowed in this analysis, as all 

the sample genomes were identical to the reference genome. It is very likely that when comparing 

two identical genomes even small reads of 10 bp will map correctly. However, it might be more 

likely that a 10 bp read will map to more than one position within the reference strain. The aligner 

tool Bowtie 2.0 was used for mapping the sequence reads to the reference genome. By default, all 

reads mapping more than once to the reference genome will randomly be mapped to only one 

position and such reads will be given a low mapping quality score. When defining the number of 

unique insertion sites only reads with a high quality score will be taken into account and this 

number will therefore be based on reads mapping only once to the reference genome.  

It is known that the S. aureus genome contains duplicate regions, which is important to recognize 

when evaluating essential genes with zero transposon insertion sites. For this evaluation all reads 

was considered despite mapping quality score and only the genes with zero reads mapping was 

proposed as essential in this study.  

 

The high-throughput approach is based on a negative selection strategy. If an essential gene has 

been disrupted by a transposon insertion the mutant will not be viable and thereby not present in the 
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mutant pool. This strategy was used in the study to identify essential genes under laboratory 

conditions. A total of 152 genes had zero transposon inserts and were proposed as essential for LA-

MRSA ST398 survival under laboratory conditions (manuscript I supporting figures Table S1). As 

gene function can be maintained with few inserts in non-functional parts of a gene, genes with a low 

number of inserts was also considered as essential or advantageous. In manuscript I, 526 genes with 

only few transposon inserts were identified and therefore evaluated as beneficial for growth under 

the laboratory conditions (manuscript I supporting figures Table S2).  

A comparison between previous studies all identifying S. aureus essential genes under laboratory 

conditions using high-throughput approaches was performed (Bae et al., 2004; Chaudhuri et al., 

2009; Fey et al., 2013). Some differences between the lists of proposed essential genes in S. aureus 

were identified and can be found in manuscript I supporting figures Table S3. 

Any attempt to define the minimum set of essential genes will inevitably be influenced by the 

conditions under which the experiment is performed. A gene may be scored as essential in a 

particular experiment because it is required for survival following exposure to a particular stress 

inherent in the methods or because it is involved in uptake or metabolism of the particular nutrients 

provided in the growth media. An example of this is the requirement for extended incubation of S. 

aureus at high temperatures (>43°C) to facilitate loss of the temperature-sensitive plasmids. 

Consequently, genes required for high temperature survival will be scored as putative essential. 

Thus the differences found in the studies presented in Table S3 could either be a result of 

differences in methodology and experimental conditions or true differences between strains. In this 

study an insertion index was calculated and a cut-off was defined to identify genes with a low 

number of transposon inserts as beneficial for growth under laboratory conditions. The application 

of the insertion index was introduced by the authors of the original TraDIS paper (Langridge et al., 

2009) but was not applied in the previous studies identifying S. aureus essential genes (Bae et al., 
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2004; Chaudhuri et al., 2009; Fey et al., 2013). The selection of the cut-off separating 

essential/beneficial from non-essential genes is an important consideration. The cut-off defined in 

this study may not be optimal and could in part be the reason for the difference seen in the 

comparison with previous studies (manuscript I supporting figures Table S3).  

A complex transposon mutant library is a very sensitive system and even small differences in 

library generation and experimental conditions may influence the output. To generate a true 

comparison of S. aureus essential genes in various strains the transposon mutant library should be 

generated under the same conditions using the same approach for identification of the transposon 

insertion sites and for the sake of clarity, it might be better to use less complex libraries containing a 

lower number of mutants.  

 

4.1.1 Evaluation of a high-throughput screening in whole porcine blood  

To assess the appliance of the high-throughput screening approach, the transposon mutant library 

was screened in whole porcine blood in vitro. Two 50 ml falcon tubes were filled with 

approximately 10 ml heparinised whole porcine blood and each tube was inoculated with 0.5 ml of 

the mutant pool (8.8 x 10
7 

cells). DNA was extracted from the input mutant pool (~10
9 

cells) 

representing the mutant composition before screening the library in whole porcine blood. The blood 

samples were incubated for 24 hours at 37°C with aeration. The following day the blood cultures 

were tested for viable counts (1.4 x 10
7
 CFU/ml) and 500 µl (~10

7 
cells) from each blood-culture 

were inoculated into 2x 10 ml BHI supplemented with 5 mg/l erythromycin, to increase the 

bacterial/blood cell ratio prior to DNA extraction, and incubated over night at 37°C with aeration. 

This resulted in two rounds of growth selection: one selection round in whole porcine blood 

followed by a selection round in BHI. After the second round of selection, DNA was extracted from 

~10
9 

of the mutants from each blood culture and stored as output pools representing two biological 
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replicates. No specific cell viability tests were performed on the blood cells, but it has been shown 

previously that whole-blood units stored at room temperature maintain cellular counts and 

coagulation activity for up to 72 hours (Hughes et al., 2007). In addition, in previous experiments an 

initial decrease in bacterial cell counts was observed when incubating the transposon mutant library 

in whole porcine blood, which could reflect neutrophil killing (see manuscript I Figure S4).  

 

To identify genes representing mutants with altered fitness after screening in whole porcine blood in 

vitro, gDNA from the input pool and the output pools were extracted and sequenced. The number of 

reads corresponding to each transposon insertion site in the input pool was compared to the number 

of reads mapping to the equivalent position in the output pools using the DESeq package in R  

The raw read counts were expected to follow an approximately normal distribution. However, based 

on a frequency distribution plot, read counts below 2
4
 showed inconsistency with this assumption 

and were therefore considered as noise and not used in the analysis (< 0.05 % of the reads were 

discarded). The reason for this noise is not understood but was seen repeatedly in all the samples. 

The sequence reads could potentially be chimeric reads that contains a Tn sequence and a part of a 

genomic position, but do not correspond to a true insertion site. A potential way of avoiding such 

chimeric reads could be to use paired end sequencing where both ends of the transposon are used 

for defining a transposon insertion site.     

The read counts, corresponding to transposon insertion sites, were normalized with a size factor to 

account for variation in the total number of reads obtained from each samples. The ratio of 

input:output reads counts were determined and referred to as a log2 fold change. A negative log2 

fold change reflects an attenuated mutant and was determined when the number of read counts from 

input pool to output pool decreased and thereby illustrated a decrease in mutant clones after 

selection. For strongly attenuated mutants, zero clones were present in the output pools and the log2 
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fold change was defined as minus infinity for such mutants. For each individual mutant, the 

hypothesis that the fitness score was equal to zero and thereby that the mutant was present at 

equivalent levels in the input and output pools was tested for, using a negative binomial distribution 

as implemented in DESeq (Chaudhuri et al., 2013). DESeq models variance under the assumption 

that mutants with comparable levels of sequence coverage exhibit similar levels of dispersion. The 

model was fitted only from those mutants from which replicate data was available and the resultant 

model was then applied to data derived from all mutants to estimate P values. 

 

Twenty-three mutants were identified with a specific significant reduction in fitness after selection 

in whole blood (manuscript I Table 3). Some mutations related to carbon metabolism via regulation 

of the TCA cycle, enzymes involved in gluconeogenesis and galactose metabolism. Several mutants 

could be linked to the cell wall and pH shock, in the form of amino acid metabolism, transport, 

pigmentation and cell wall repair. Mutations involved in regulation, which could affect the 

transcription of virulence genes, were also identified. Eight of the 23 genes representing attenuated 

mutants were of unknown function. Mutation in one gene of unknown function resulted in a 

hypercompetitive mutant. For an overview of the genes see manuscript I Table 4. 

 

The transposon mutant library was incubated in whole porcine blood in vitro for 24 hours. This 

could partly reflect why many metabolic genes were identified as important for whole porcine blood 

survival in this study. However, an incubation period of 24 hours was specifically selected based on 

initial growth experiments performed in whole porcine blood in vitro (manuscript I Figure S4). 

These experiments showed an initial decrease in bacterial population size, which could be explained 

by phagocytosis and potential bacterial killing by host immune cells. The mutant population size 

returned to an equivalent size of the inoculated population after 24 hours, and at this point the 
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mutants had potentially seen all the selective elements within whole blood. Genes important for 

immune evasion will have undergone selection in a similar manner as the metabolic genes but as S. 

aureus encodes a larger variety of immune evasion genes it is justifiable to conclude that none of 

these are singlehandedly responsible for survivin the immune response. This may explain why no 

immune evasion genes were identified as important for whole blood survival.  

 

The results indicate that key genes for survival in porcine blood cultures may not be genes involved 

for iron uptake, such as hemolysins and sideophors, and immune evasion but may be genes 

associated with the ability to utilize the available carbon hydrates in blood, which is supported to by 

previous studies (den Reijer et al., 2013; Malachowa et al., 2011; Mei et al., 1997). In two of these 

studies it was observed, that up- or down-regulated genes were mainly involved in cellular 

metabolism or had an unknown function (den Reijer et al., 2013; Malachowa et al., 2011). A 

previous study screening 1248 transposon S. aureus mutants in an in vivo murine bacteraemia 

model identified 50 genes as being important for whole blood survival, half of which had unknown 

function and the rest with an involvement in nutrient biosynthesis and surface metabolism (Mei et 

al., 1997). Furthermore, they identified genes important for the tricarboxylic acid cycle (TCA cycle) 

and in this study we identified the icd gene, a TCA cycle regulator, as important for in vitro survival 

in porcine blood. This indicates that the TCA cycle and carbon metabolism have important 

functions for bacterial survival in blood from different hosts in vivo and in vitro. The femA and 

femB genes were previously identified as important for whole blood survival in vivo (Mei et al., 

1997). However, we found femA and femB mutants to have a growth disadvantage under laboratory 

conditions which is consistent with other studies identifying S. aureus essential genes (Bae et al., 

2004; Chaudhuri et al., 2009; Fey et al., 2013). 
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In this study, a high complexity transposon mutant library was successfully generated in an LA-

MRSA ST398 WT isolate and evaluated using the TraDIS system. S. aureus ST398 essential genes 

were identified and comparable with previous studies. Twenty-four genes were evaluated as being 

important for specific in vitro whole porcine blood survival, of which carbon metabolism, pH shock 

and regulation were related. For further evaluation of the genes identified as important for whole 

porcine blood survival it is necessary to generate single knock-out mutants and test these in the 

same assay as used in the high-throughput screening. In addition, it could be valuable to evaluate 

the single mutants in blood from different donor and under in vivo conditions.  

 

4.2 Manuscript II 

In this study, a transposon mutant library consisting of approximately one million LA-MRSA 

ST398 mutants was screened to identify genes important for survival in the porcine environment. 

The mutant library was generated and validated as described in manuscript I. The mutant library 

was screened in an ex vivo porcine skin model and an ex vivo porcine nasal epithelial model. For 

this purpose, two 6-month-old pigs, a male (Pig_1) and a female (Pig_2) were collected from the 

same farm with two weeks in between. They were euthanized by intravenous overdose of 

pentobarbitone and the tissue was collected immediately postmortem after obtaining the farm 

owner’s permission for the use of their pigs in this study.  

 

4.2.1 Porcine ex vivo skin model 

The ex vivo porcine skin model was prepared as described previously (Maisch et al., 2007). Briefly, 

the skin areas behind the ears were washed with chlorhexidine soap and disinfected with 70 % 

ethanol before epilation with a sterile razor. A squared skin piece of around 8 x 8 cm was removed 

from the pigs and the adipose tissue beneath the dermis was removed with a scalpel. The skin was 
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dissected under sterile conditions into 2 cm
2
 pieces, placed in 6-well plates and embedded in Hepes 

agar leaving the skin surface uncovered (manuscript II Figure 1). The skin pieces were disinfected 

with 70 % ethanol followed by washing with PBS three times. Swabs were taken from the washed 

skin surface to test for surface contamination and no such was found on any of the prepared skin 

explants.  

 

Aliquots, of the transposon mutant library generated as described in manuscript I were grown over 

night in BHI broth supplemented with erythromycin. gDNA was extracted from the mutant culture 

(~10
9 

cells) representing the input mutant pool.  

In the porcine skin survival assay, 10 µl of up-concentrated stationary mutant culture (~10
11

 cells) 

were inoculated onto the porcine skin surface and incubated under atmospheric conditions at 32°C 

for ~24 or ~48 hours and duplicates were generated for each incubation period from both Pig_1 and 

Pig_2. After incubation the skin explants were homogenized and 9 x 10
7
 - 2.5 x 10

8 
CFU/ml was 

recovered after ~24 hours and 2.1 x 10
8 

– 4.1 x 10
8 

CFU/ml was recovered after ~48 hours 

incubation on the skin explants. A decrease in mutant cell count was observed suggesting an initial 

selection on the mutant pool. A slight increase in cell counts were observed between ~24 and ~48 

hours incubation from an average of ~2 x 10
8 

to ~3 x
 
10

8
 CFU/ml, which propose that the mutants 

that are present on the skin explants are viable.  

S. aureus expresses different surface proteins depending on growth phase (Foster, 2009) and 

therefore both exponentially and stationary grown cell were used in the skin adhesion assay. gDNA 

was extracted from an exponentially (OD600 0.5-0.8) and stationary grown transposon mutant 

culture (~10
9 

cells from each growth phase), representing mutant input pools. 10 µl of up-

concentrated exponentially grown and stationary grown cells (~10
11 

from each growth phase) were 
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inoculated onto the porcine skin surface and incubated under atmospheric conditions at 32°C for 

~20 hours. Four replicates for each growth phase were performed on tissue explants from Pig_1.  

A decrease in cell counts was observed between the cells recovered in the adhesion assay (an 

average of ~5.4 x 10
7
 CFU/ml) compared to the cells recovered in the survival assay after 24 hours 

incubation (an average of ~2 x 10
8
 CFU/ml). This indicates that some mutants were lost in the 

washing step preformed in the adhesion assay. A lower number of mutants were recovered after 

porcine skin adhesion with exponential cells compared to stationary cells (an average of ~1.3 x 10
7
 

and ~5.4 x 10
7
 CFU/ml respectively), which could point to that the stationary grown mutants adhere 

better to the porcine skin explants.   

The cell suspensions, recovered from all the skin explants from both the survival and the adhesion 

assays were re-inoculated into 10 ml fresh BHI supplemented with 5 mg/l erythromycin to select for 

transposon mutant and reduce growth of the natural porcine skin microbiota. gDNA was extracted 

and sequenced from all the output replicates. 

 

The mutant composition in input and output was evaluated using the DESeq package in R. The read 

counts corresponding to transposon insertion sites were normalized to account for variation in the 

total number of reads obtained from each sample. The ratio of input:output read counts were 

determined and referred to as a log2 fold change, which will be referred to as a fitness score. A 

negative fitness score reflects an attenuated mutant. An attenuated mutant was determined when the 

number of read counts from input pool to output pool decreased and thereby illustrated a decrease in 

mutant clones after selection. For strongly attenuated mutants, zero clones will be present in the 

output pools and the log2 fold change was defined as minus infinity and a fitness-score of -12 was 

assigned to such mutants. For each individual mutant, the hypothesis that the fitness score was 

equal to zero, e.i. the mutant was present at equivalent levels in the input and output pools, was 
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tested for using a negative binomial distribution as implemented in DESeq, as has been done 

previously (Chaudhuri et al., 2013). DESeq models variance under the assumption that the mutants 

with comparable levels of sequence coverage exhibit similar levels of dispersion. The model was 

fitted only from those mutants from which replicate data was available, which was in this case 

primarily sequence read counts from output pools, as no biological replicates were available from 

input pools. The resultant model was then applied to data derived from all mutants to estimate P 

values. 

 

In the porcine skin survival study 27 genes were identified to be associated with alteration in fitness 

and therefore defined as important for LA-MRSA ST398 isolate S0385 survival on porcine skin. 

The genes selected represent mutants that had a significant change in fitness (P level ≤0.01) when 

screened on skin explants isolated from both pigs (two replicates from Pig_1 and from Pig_2). The 

genes are listed in manuscript II Table S1. Twenty-two genes illustrated attenuated mutants and 

fourteen of these genes have been identified as essential/beneficial for growth under laboratory 

conditions previously (manuscript I Table S1 and S2). Eight genes represent mutants with a reduced 

fitness specifically in the porcine skin survival assay and they are described as hypothetical 

proteins, regulators and transporters mainly. The S0385 strain contains 3 circular plasmids 

(Schijffelen et al., 2010) and after two days incubation on the porcine skin explants, mutants with 

transposon insert into the replication protein Rep located in plasmid 3 (PSAPIG030001) showed a 

drop in fitness. The plasmid is annotated to encode two different genes, the replication protein and a 

transcriptional regulator (SAPIG030002), one of which might be important for porcine skin 

survival. In addition, there were five genes representing hypercompetitive mutants in the porcine 

skin survival assay, of which two a reductase, one encodes a phage integrase and two encode 

repressors. These functions might not be important in porcine skin survival ex vivo but could be 
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essential in other more natural environments were competition and selection, are important factors 

for bacterial survival.  

 

The transposon mutant library was also screened in a porcine skin adhesion assay to identify genes 

important for skin surface attachment. Only the genes specifically important for skin attachment 

were of interest and therefore genes identified as essential/beneficial for growth under laboratory 

conditions (manuscript I Table S1 and S2) were removed from the gene lists.  

Sixty-eight genes were identified as representing mutants with significant reduced fitness (P level ≤ 

0.05) when the transposon mutant library was selected in the adhesion assay as stationary grown 

cells (manuscript II Table S2). Twenty-nine genes representing mutants with attenuated fitness were 

identified when screening the transposon mutant library as exponentially grown cells in the 

adhesion assay (manuscript II Table S3).  

In general various genes encoding enzymes, secreted proteins and surface-proteins represented the 

mutants with the most profound loss in fitness in the skin adhesion assays (manuscript II Table S2 

and S3). Clumping factor B (clfB) and another fibrinogen-binding protein (SAPIG1154) were 

evaluated as important for skin adhesion. ClfB has previously been evaluated to be involved in 

human nasal adhesion and carriage (Corrigan et al., 2009). Immunoglobulin G binding protein A 

and staphylococcal secretory antigen ssA1 and ssA2 were identified as important for skin adhesion 

in addition to cap5A and cap5D, which are involved in capsular polysaccharide biosynthesis. 

Protein A and capsular polysaccharide inhibit phagocytosis (Foster, 2009) and the staphylococcal 

secretory antigens have predicted immunogenic function. This indicates that immune evasion and 

modulation are important features for the initial S. aureus ST398 colonization of porcine skin. 
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When comparing the list of genes obtained in the porcine skin survival and adhesion assay using 

stationary grown cells, eight genes were evaluated as important for both adhesion and survival in 

the skin model. Of these, six genes represent attenuated mutants and two genes hypercompetitive 

mutants (manuscript II Table 1). Eight genes were identified as important for porcine skin survival 

and adhesion using exponential grown cells, two of which showed increased fitness and six 

attenuated mutants with reduced fitness (manuscript II Table 2). Three genes showed inconsistency 

between the skin survival assay after 1 day of incubation and the skin adhesion assay using 

exponentially grown mutants.  

Three genes, encoding a DNA-binding response regulator (BecR), an ABC transporter (BecB) and 

an export ATP-binding protein (BecA) were proposed as important for ST398 porcine skin survival 

(manuscript II Table 3). The genes, which are part of the BecAB transporter system, each showed a 

significant reduction in fitness when inserted with a transposon. The BecAB transporter system is 

similar to a Bacillus subtilis ABC transporter, which was previously defined as responsible for 

bacitracin efflux in Bacillus (Ohki et al., 2003). However, it could be that this ABC transporter 

system has other functions than bacitracin resistance as a becS (bacitracin sensing) mutant was not 

identified with reduced fitness in the skin survival model.  

Another gene that was evaluated as important for porcine skin survival was esaB (manuscript II 

Table 3), which is a negative regulator of esaC. EsaC production and secretion is increased when 

Staphylococci replicate in serum or infected hosts (Burts et al., 2008). EsaB and EsaC are defined 

as being involved in S. aureus virulence and are required for persistent infection, esaB mutants fail 

to repress esaC and bacteria lacking esaB function will overproduce EsaC. Even though 

overexpression of EsaC is the natural response when S. aureus is replicating in host tissue, animals 

and humans mount an immune response to EsaC during infection (Burts et al., 2008), which could 
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explain why a constitutive overexpression of EsaC, in the esaB mutants, might not be in favour of 

the pathogen. In addition, a constitutive expression can have a metabolic cost on the mutant.  

Enzymes involved in membrane lipid metabolism and galactose metabolism were also identified as 

important for porcine skin survival in manuscript 2 (manuscript II Table 3).  

 

4.2.2 Porcine ex vivo nasal epithelial model 

The genome-saturated ST398 transposon mutant library was screened in a porcine ex vivo nasal 

epithelial survival model. The library was tested on explants from two different pigs. For isolation 

of nasal epithelial tissue, the pig head was removed from the carcass and immediately used for 

isolation of the nasal septum, leaving the lining nasal epithelial tissue intact. The tissue was washed 

in Dulbecco’s Modified Eagle Medium (DMEM) supplemented enrofloxacin, streptomycin, and 

Fungizone to remove that natural microbiota. The antibiotic wash was followed by antibiotic-free 

washes in DMEM (for details, see method section in manuscript II). The nasal epithelium was 

dissected from the underlying cartilage of the nasal septum and divided into pieces of approximate 

0.5 x 0.5 cm
2
, in a sterile environment. Antibiotic residual test was performed on a bacterial lawn of 

LA-MRSA ST398 S0385 and here no growth clear zone was observed. The tissue pieces were 

placed on filter-paper overlying agar-plugs with the external side facing up-wards. The agar-plugs 

were arranged in 6-Well plates with a DMEM reservoir, moistening the filter paper and in that way 

nourishing the tissue (manuscript II Figure 1).  

 

Aliquots of the transposon mutant library generated in manuscript I, were grown over night in BHI 

broth supplemented with erythromycin and gDNA was extracted from the mutant culture (~10
9 

cells), representing the input mutant pool. From the mutant input culture, 5-10 µl of up-concentrated 

cells (~10
11

 cells) were inoculated onto the prepared nasal epithelium and incubated at 37°C plus 5 
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% CO2 for ~24 hours (duplicates from Pig_1 and Pig_2). After incubation, the epithelial tissue was 

homogenized and 2.7 x 10
8
 – 4.2 x 10

10 
CFU/ml was recovered after ~24 hours incubation on the 

nasal explants. A decrease in mutant cell count was observed suggesting selection on the mutant 

pool. The cell suspensions were re-inoculated into 10 ml fresh BHI supplemented erythromycin and 

incubated over night and gDNA was extracted (~10
9 

cells), representing mutant output pools. 

gDNA from input and output pools were sequenced and mutant composition in input and output 

was evaluated like described for the porcine skin assay. 

Four genes with specific importance for nasal epithelial survival were found in this study, two of 

which showed decrease in fitness and two with increased fitness. Manuscript II Table 3 shows the 

genes that were identified with a significant change in fitness score (P level ≤ 0.05) on both pigs.   

 

Sixteen genes were identified as important for nasal epithelial survival, encoding proteins involved 

in regulation, metabolic enzymes, cell wall components and hypothetical proteins. 

An aminoacyltransferase gene (femA) was identified as specifically important for ST398 nasal 

survival in both pigs (manuscript II Table 4). The isolate S0385 used in the screen contains four 

different genes of various lengths all described as encoding aminoacyltransferase FemA 

(SAPIG1375, SAPIG1248, SAPIG1250, SAPIG2462). In manuscript I, one of the four FemA 

encoding genes (SAPIG1375) was identified as advantageous for S. aureus survival under 

laboratory conditions (manuscript I Table S1). However, a different FemA-encoding gene 

(SAPIG1248) was identified as important for survival in the porcine ex vivo nasal epithelium 

survival model. FemA is involved in methicillin resistance and femA mutants have shown a reduced 

cell wall turnover in growing cells, reduced whole-cell autolysis under non-growing conditions and 

increased methicillin sensitivity (Maidhof et al., 1991). The alteration in the cell wall in femA 

mutants could reduce bacterial resistance to the host immune response.  
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A previous study using porcine nasal explant identified beta-toxin gene hlb as a S. aureus S0385 

nasal colonization factor, based on CFU quantifications of S0385 wild type and S0385 beta 

hemolysin mutant (Tulinski et al., 2013). SAPIG2471 encoding beta hemolysin was not among the 

genes identified as most significant for nasal epithelium survival in this study. When inspecting the 

raw count data, a decrease in read count from input to output for the beta hemolysin genes was 

indentified in three of the four replicates (data not shown), but this reduction was not defined as 

significant using the DESeq package in R. In the genome-wide screening approach, all mutants are 

compared relatively to each other and only the mutants with the most significant change will be 

identified. This could explain at least in part the inconsistency between the findings when using a 

high-throughput approach compared to a single mutant knockout strategy. Both methodologies are 

very useful for combining phenotypes to genotypes.  

 

Some consistency was found between the genes identified as important for nasal epithelial survival 

when comparing the results obtained from the two pigs. It is known that many host factors are 

involved in S. aureus colonization (Foster, 2009) and the differences seen between the two pigs 

could be related to several factors, like genetic host variation, immune status, gender or simple 

differences between pig-replicates obtained when using this model system. Unfortunately, it was 

not possible to repeat the experiments on explants isolated from other pigs. However, as the genes 

presented here only illustrate genes which were identified as important for survival on several 

replicate explants isolated from both pigs, they should be considered as genes relevant for survival 

in the porcine reservoir. They constitute good gene candidates for generation of single knockout 

mutants, which should be tested within the same assays for a complete definition of the genes.   
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Pigs are important for the spread of ST398 and the identification of genes important for bacterial 

survival in the porcine reservoir could contribute to a better understanding of LA-MRSA ST398 

ecology. Genes encoding transporters and metabolic enzymes were identified as relevant for 

porcine skin survival and genes encoding regulatory proteins, metabolic enzymes and cell wall 

components were proposed important for porcine nasal epithelium survival in this study. The genes 

could constitute targets for MRSA decolonization in pigs and thereby prevent further spread and 

adaption within the ST398 lineage. However, further investigations are needed to gain a more 

specific understanding of their role in bacterial survival.  

 

4.3 Manuscript III 

In this study the construction of the S. aureus VirulenceFinder is presented. The database is a web 

server that utilises whole genome sequence data from S. aureus genomes to extract a virulence 

profile and will be freely available through the Centre of Genomic Epidemiology (CGE) web 

services.  

 

The database was built from sequences obtained from the NCBI nucleotide database. All known S. 

aureus virulence genes were listed (manuscript III Table 1) and sequences from these genes were 

used for building the database.  The sequences were selected from 31 different S. aureus strains, 

which have been whole genome sequenced and annotated and can be found in GenBank 

(manuscript III Table S1). The sequences representing the virulence genes included in the S. aureus 

VirulenceFinder database were selected based on the annotations and gene descriptions found in the 

NCBI gene database and it can therefore not be excluded that virulence genes with a complex 

annotation or description were not included in the database.  
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For the first evaluation of the database the genome of the assembled LA-MRSA ST398 S0385 

isolate (accession no. AM990992) was screened for virulence genes. The fasta file of the completed 

S0385 genome was submitted to an S. aureus VirulenceFinder alpha version and the threshold for 

nucleotide identity was set to ID=98 %. The virulence profile of S0385 was evaluated. Sixty-three 

different genes defined as virulence genes in the database were identified. The whole genome 

sequence dataset of S0385 isolate was used in building the database and it was therefore expected 

that all the identified virulence genes would show 100 % identity to a sequence within database. 

However, 16 of the identified virulence genes showed <100 % identity. This indicates that the 

annotation of these 16 genes was not recognized as virulence genes and these sequences were 

therefore not included in the database.  Despite the incomplete collection of sequences from this 

genome the virulence genes were identified by lowering the default identity threshold to 98 % 

nucleotide identity. The ID threshold is by default set to 100 % nucleotide identity but by lowering 

the threshold, gene variants not included in to the database can be identified.  

Correlating with previous findings in ST398 isolates, the VirulenceFinder identified fnbA, clfA, cna, 

cap5A and eap/map in the ST398 S0385 genome (Fluit, 2012; Hallin et al., 2011). 

 

For further evaluation of the database previously whole genome sequenced S. aureus ST398 

isolates, originating from various host origins, were screened for virulence profiles (Price et al., 

2012). All together 89 S. aureus ST398 isolates were screened using the database but only 14 

representatives were included in manuscript III (Table 2). The 14 isolates represent different 

clusters of the 89 isolates and both human- and porcine-originating isolates were analyzed. The 14 

S. aureus ST398 isolates constitute useful candidates for initial screenings using the 

VirulenceFinder as they have been analyzed in a previous study (Price et al., 2012). A threshold of 

95 % nucleotide identity (ID=95 %) was selected for this evaluation. The ID threshold can be set by 
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the user and a less stringent threshold is recommended as the alpha version of the database only 

contains variants of each virulence gene originating from 31 different S. aureus genomes used in 

building the database. A stringent threshold may result in some variation missed when using the 

database. However, a less stringent threshold will result in a considerably larger output that requires 

more analysis and potentially includes false positives. 

 

Overall, the profiles of the 14 ST398 isolates were similar except for one isolate (13349_6), which 

also has been found to be an outlier previously (Price et al., 2012). The four isolates originating 

from a human host were positive for the scn gene, whereas none of the isolates originating from 

pigs contain the staphylococcal complement inhibitor. The scn and sak genes are both markers for 

strains of human origin (Price et al., 2012; Sung et al., 2008). Even though the scn was not 

identified in the isolates originating from pigs, a staphylococcal complement inhibitor variant has 

been identified on a pathogenicity island in ST398 S0385 (Schijffelen et al., 2010). Two of the 

human originating isolates contained both the sak gene and the two Panton-Valentine leukocidin 

encoding genes lukF-PV and lukS-PV. This is in agreement with the finding in Price et al. (2012) 

showing that some LA S. aureus strains are highly virulent, as is common for many of the CA S. 

aureus strains (Price et al., 2012).  

Four of the 14 ST398 isolates originated from a human host. They all contained the SdrC and SdrD 

gene, whereas only SdrC was identified in all the ten isolates from porcine origin, when using the 

defined threshold (manuscript III Table 2). This might indicate that only SdrC is essential for 

adhesion to the porcine nares. However, phenotypic studies are needed for conformation. 

Even though previous studies have emphasized that S. aureus ST398 do not contain any 

enterotoxins, two enterotoxin-encoding genes (sep and sea) were identified in 13 ST398 isolates 

using the VirulenceFinder (manuscript III Table 2). sep was identified in all 13 ST398 isolates with 
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100% nucleotide identity to an annotated sep gene from the whole genome sequenced ST398 S0385 

isolate, whereas sea was identified with only ~96 % nucleotide identify to an annotated sea gene 

from a ST80 CA-MRSA isolate. The enterotoxin P (sep) was originally defined after the full 

genome sequencing of S. aureus N315 (Omoe et al., 2005), however, the sep gene identified within 

the 13 ST398 isolates using the S. aureus Virulence Finder (GenBank gene SAPIG1666) showed 

similarity to two different genes within the N315 genome (GenBank gene SA1429 and SA1430). 

These genes encode an enterotoxin homolog and a protein similar to enterotoxin A precursor. This 

indicates that the sep gene identified in the 13 ST398 isolates is not the same as the original sep 

gene defined in S. aureus N315 (GenBank gene SA1761). However, ST398 might contain 

enterotoxin-like proteins that can be identified when using whole genome sequence data. Results 

obtained with the S. aureus Virulence Finder will reflect sequence and annotation quality found in 

the NCBI nucleotide database and might sometimes require further investigation.  

Clumping factor A (clfA), protein A (spa) and capsular serotype 5 (cap5A) were found in all 14 

ST398 isolates (manuscript III Table 2). The gamma-hemolysin components were not identified 

within the ST398 isolates investigated previously (Hallin et al., 2011). However, using the 

VirulenceFinder the gamma-components were identified in the 14 ST398 isolates. hlgA and hlgC 

were identified with >99 % identity to the sequences included in the database, whereas hlgB was 

identified with >95 % identity to a sequence from the database.  

The map/eap gene was also identified in all the ST398 MRSA and MSSA isolates investigated. The 

sak gene was identified in two of the 14 ST398 isolates. These two isolates were MSSA ST398 of 

human origin. Two other MSSA ST398 isolates of human origin did not test positive for the sak 

gene when using the S. aureus VirulenceFinder.  
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Resistance and virulence profiles can help elucidate the approach for optimal treatment and define 

the virulence capacity of the infectious agent. Such information is crucial at hospitals in diagnostics 

and such profiles can as well be applied in local and global surveillance studies.  

The S. aureus VirulenceFinder database generated in this study comprises an informative tool for 

whole genome sequence data to identify virulence genes in S. aureus genomes. The current version 

of the S. aureus VirulenceFinder is an alpha version and some adjustments of the included 

sequences are needed. The S. aureus Virulence Finder database will be part of the tool package 

found on the CGE webpage (www.genomicepidemiology.org). Here, tools like MLST and 

ResFinder are already available and additional tools for phylogenetic studies are under 

development.   

 

5. Concluding remarks and future perspectives 

S. aureus has multiple ways of thwarting the host immune system. The bacterium is able to colonize 

various hosts silently and under certain conditions cause infections of different severity. Various 

methods have been used to characterize S. aureus both as colonizer and as infectious agent. S. 

aureus and especially MRSA have been of world-wide importance for many years. The latest 

branch of MRSA is the LA-MRSA, which have been emerging the past decade. This group shows a 

broader host-spectrum compared to most other MRSA and a different virulence profile with fewer 

toxin-encoding genes. Little is known about the ecology of ST398 on farms, however, it is assumed 

that the use of antibiotics in the production animal industry has been the key force, driving emerge 

and spread of MRSA ST398. Even though some studies have shown that ST398 transmits less 

frequent among humans than human S. aureus strains, the transmissibility of ST398 still needs 

further investigation. ST398 has been the most commonly reported MRSA strain associated with 

livestock in recent years (Smith and Pearson, 2011), but knowledge on colonization and 
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transmission of LA-MRSA in pigs is limited and mainly based on observational field surveys (E M 

Broens et al., 2011b; Els M Broens et al., 2011). We are only in the beginning of understanding the 

role of these strains in the epidemiology of human S. aureus ST398 colonization and disease. 

 

The three manuscripts that should be regarded as the main body of this thesis supplement the 

current knowledge about LA-MRSA ST398 characterization. It was demonstrated how high-

throughput approaches can be utilized to perform a comprehensive phenotypic and genotypic 

characterization of a ST398 isolate.  

Overall, the results showed that essential genes in ST398 seem to be similar to other S. aureus 

lineages, with few exceptions. Genes involved in the TCA cycle, membrane transport and pH shock 

are potentially important for ST398 survival in whole porcine blood in vitro. These findings 

correlate with previous studies investigating genes important for S. aureus survival in vitro in 

human blood and in vivo in a bacteraemia murine model. Membrane transport was identified as one 

of the main factors for ST398 survival on porcine skin and a FemA encoding gene was identified as 

essential for nasal epithelial survival ex vivo. The ex vivo nasal survival studies showed variations 

between explants isolated from two different porcine hosts, which underlines that host factors are 

important for nasal survival. Even though ST398 is not generally associated with enterotoxins, 

ST398 appears to contain some enterotoxin-like encoding genes. The staphylococcal complement 

inhibitor (scn) was, as shown previously, identified as a marker for host specificity of ST398, 

separating isolates of porcine and human origin. Additional serine-aspartic acid repeat surface 

proteins SdrC and SdrD may be of different importance for nasal colonization in pigs and humans.  

 

The high-throughput approach applied in this work should be considered as a screen identifying 

genes that are potentially essential/beneficial for bacterial survival in a defined environment. For 
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definitive identification of gene function, it is necessary to generate single knockout mutants and 

test those in the same assays as used in the high-throughput screening. However, since a large 

number of genes are listed as having unknown function and there is a lack of correlation between 

phenotype and genotype, high-throughput methods, like the once developed and used in this work, 

will help to narrow the pool of genes to be investigated further.  

The genes identified here as important for porcine survival could potentially constitute targets for 

MRSA decolonization within the porcine reservoir. By blocking transcription of these genes, LA-

MRSA isolates will be attenuated in fitness, which could result in a reduction of LA-MRSA spread 

between pigs.  
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Abstract

Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) Sequence Type 398 (ST398) is an opportunistic
pathogen that is able to colonize and cause disease in several animal species including humans. To better understand the
adaptation, evolution, transmission and pathogenic capacity, further investigations into the importance of the different
genes harboured by LA-MRSA ST398 are required. In this study we generated a genome-wide transposon mutant library in
an LA-MRSA ST398 isolate to evaluate genes important for bacterial survival in laboratory and host-specific environments.
The transposon mutant library consisted of approximately 1 million mutants with around 140,000 unique insertion sites and
an average number of unique inserts per gene of 44.8. We identified LA-MRSA ST398 essential genes comparable to other
high-throughput S. aureus essential gene studies. As ST398 is the most common MRSA isolated from pigs, the transposon
mutant library was screened in whole porcine blood. Twenty-four genes were specifically identified as important for
bacterial survival in porcine blood. Mutations in 23 of these genes resulted in attenuated bacterial fitness. Seven of the 23
genes were of unknown function, whereas 16 genes were annotated with functions predominantly related to carbon
metabolism, pH shock and a variety of regulations and only indirectly to virulence factors. Mutations in one gene of
unknown function resulted in a hypercompetitive mutant. Further evaluation of these genes is required to determine their
specific relevance in blood survival.
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Editor: Stefan Bereswill, Charité-University Medicine Berlin, Germany

Received October 30, 2013; Accepted January 14, 2014; Published February 12, 2014

Copyright: � 2014 Christiansen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded in part by the Danish Ministry of Food, Agriculture and Fisheries (Grant no. 3304-FVFP-09-F-002-1) and The Technical University
of Denmark. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: m.christiansen@ucl.ac.uk (MTC); fmaa@food.dtu.dk (FMA)

¤a Current address: Immunity and Infection, University College London, London, United Kingdom
¤b Current address: Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom

Introduction

Bacterial genomes contain between 470 to more than 9,000

different genes [1,2], many of which have unknown function.

Detailed information on the importance and function of all genes

within the genome is essential to understand bacterial survival and

adaptation, especially for bacteria that may change between

ecological stages as colonizers and pathogens and for those that

may infect multiple hosts. Homology studies and other bioinfor-

matic analyses of bacterial genomes have enabled prediction of

gene function for many genes. However, there is still a shortage of

data associating gene function with uncharacterized genes and

characterized genes with phenotypes [3], as well as data on the

relative importance of different genes for bacterial isolates living in

different niches.

Transposon mutagenesis is a high-throughput method for

functional phenotypic studies that can be utilised to associate

genes to phenotypes. The method has been used to generate

genome-saturated mutant libraries in several bacterial genomes

[4–12]. The approach is based on a negative selection strategy,

where transposon inserts into functional genes will result in

mutants with attenuated fitness, or a complete inability to survive,

and subsequent recovery of only those mutants with inserts in non-

essential genes. The flanking regions of the transposon inserts can

be identified and the composition of mutant libraries can be

compared, pre- and post selection, resulting in identification of

essential genes in a defined environment.

One genotypic approach for identifying transposon insertion

sites, developed by Chaudhuri et al. (2009), is a DNA microarray

and PCR-based method called Transposon Mediated Differential

Hybridization (TMDH) [8]. This approach was applied in the first

comprehensive study identifying essential genes in Staphylococcus

aureus. Another genotypic strategy is based on high-throughput

sequencing. Langridge et al. (2009) developed a system named

Transposon Directed Insertion site Sequencing (TraDIS) which

uses a transposon specific primer, enabling sequencing of the
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genomic target region flanking the transposon insertion sites [9].

The sequencing approach has been used by Langridge et al. (2009),

Khatiwara et al. (2012), Pickard et al. (2013) and Chaudhuri et al.

(2013) to study essential and conditionally essential genes in

Salmonella Typhi and Salmonella Typhimurium [9–11,13], but has

not been applied previously to study S. aureus or other Gram

positive bacteria. Importantly, this procedure not only identifies

essential genes under different environmental conditions, but also

provides an estimate of the relative importance of the presence or

absence of genes.

S. aureus is an opportunistic pathogen that normally colonizes

the host asymptomatically but given the opportunity, may cause a

variety of pathogenic infections [14]. Some S. aureus clones are

more successful human pathogens than others, and some show a

high degree of host specificity for different animal species [15,16].

Recently, a specific linage belonging to clonal complex 398

(CC398), most likely of human origin, has spread among livestock

globally, acquired methicillin resistance and is now transferring

back to humans leading to both colonization and disease [17]. Pigs

constitute a large reservoir for livestock-associated methicillin-

resistant S. aureus (LA-MRSA) CC398 and contribute to an

ongoing spread and genetic adaptation. Comparative genomic

studies have identified a few phage associated genes that appear to

be correlated with virulence in humans, but no genes of

importance for successful colonization or infection in livestock or

other animals have been identified [18]. A greater understanding

of the pathogenicity and transmission of CC398 requires further

investigations into the survival mechanisms utilized by this lineage.

The aim of this study was to generate a high complexity

transposon mutant library and assess the application of TraDIS in

S. aureus Sequence Type 398 (ST398), belonging to CC398. The

generated transposon mutant library was screened in laboratory

and host specific environments in order to identify genes essential

for ST398 to survive under the given conditions. Even though

ST398 is mainly associated with pig colonization and skin

infections [19,20], S. aureus has potential to cause bacteraemia in

pigs as well as in humans [15]. In this study whole porcine blood

was applied for evaluation of the method.

Materials and Methods

Bacterial strains and culture conditions
The whole genome sequenced wild type (WT) livestock-

associated methicillin-resistant S. aureus ST398 (Genbank accession

AM990992) [21] and S. aureus RN4220 were grown in Brain Heart

Infusion (BHI) (Oxoid, Difco) broth at 37uC with aeration. S. aureus

SH1000 pMARGH2b, S. aureus SH1000 pFA545 and S. aureus

RN4220 pFA545gen were grown in BHI or Tryptic Soy Broth

(TSB) (Oxoid) with 5 mg/l erythromycin (Sigma), 5 mg/l

tetracycline (Sigma) and 16 mg/l gentamicin (Sigma) respectively,

at 30uC with aeration. For solid growth BHI agar, sheep blood

agar plates (Oxoid) or Tryptic Soy Agar (TSA) (Oxoid) were

applied and supplemented with the appropriate antibiotic if

needed. Escherichia coli DH10 was cultured in Luria Broth (LB) at

37uC with aeration or on LB agar plates (Sigma).

Plasmids
The plasmids pMARGK2b and pFA545 previously described

by Chaudhuri et al. (2009) were used for generating a transposon

mutant library in the whole genome sequenced LA-MRSA ST398

S0385 isolate. The pMARGK2b plasmid contains a mariner

transposon which includes an erythromycin resistance selection

marker. The plasmid backbone holds a chloramphenicol resis-

tance selection marker and a temperature-sensitive origin replica-

tion (replication at #30uC). The pFA545 encodes a transposase, a

temperature-sensitive origin of replication (replication at #30uC)

and a tetracycline resistance selection marker [8]. As the LA-

MRSA ST398 S0385 isolate displays natural tetracycline resis-

tance the pFA545 plasmid was purified (Qiagen tip100) and

modified. Forward primer KpnI and reverse primer SpeI (see

Table 1) were used for amplification of the AAC69-APH29 gene

encoding gentamicin resistance from MRSA MU50 DNA, The

PCR product and the original pFA545 were digested with SpeI and

KpnI (New England Biolabs). The digested products were ligated

using T4 DNA ligase (Fermentas). The modified pFA545

including the AAC69-APH29 gene (pFA545gen) was transformed

into E. coli DH10 competent cells (Invitrogen), amplified (selected

on ampicillin 100 mg/l or gentamicin 4–8 mg/l) and purified

using the QIAprep spin column (Qiagen). An EcoRV (Fermentas)

digest was performed on the purified original pFA545 (predicted

digest products 7729 bp, 2038 bp, 312 bp R giving a total size of

10,079 bp) and the modified pFA545gen (predicted digest

products 10,432 bp, 312 bp R 10,744 bp in total) and band

patterns were compared on a 0.8% agarose gel (data not shown).

pFA545gen was transformed into S. aureus RN4220 by electropo-

ration.

Construction of transposon mutant library
pMARGK2b and pFA545gen were transduced into S. aureus

ST398 S0385 in two separate rounds of transduction using the S.

aureus bacteriophage 11. Donor cells (SH1000 pMARGH2b or

RN4220 pFA545gen) grown to mid-exponential phase OD600

0.5–0.8 were mixed in a 1:1 ratio with two fold dilutions of phage

in a 0.9% NaCl solution enriched with 10 mM CaCl2. Following

5 min absorption at room temperature (rt.), the cells were plated in

a TSB-top-agar solution (TSB, 0.5 mM CaCl2, 0.5% agar) onto

TSA plates supplemented with the appropriate antibiotics and

incubated at 30uC over night. Top agar from plates with high

phage titre were isolated, centrifuged (7,000 rpm, 10 min.) and

sterile filtered using a 0.45 mm Millipore filter. Recipient cells (S.

aureus ST398 S0385) were grown to OD600 1–1.2, cells harvested

by centrifugation (11,000 rpm, 10 min.) and re-suspended in TSB

with 0.5 mM CaCl2. Prepared recipient cells and phage lysate

were mixed in different ratios (100:1–100:15), incubated at rt. for

5 min, followed by the addition of 0.5 mM CaCl2 and incubated

additionally 20 min. at rt. 0.02 M ice cold sodium citrate was

added and mixed by vortexing. Cells were isolated by centrifu-

gation (4000 rpm, 20 min, 4uC), re-suspended in 0.02 M sodium

citrate, plated and incubated on BHI agar enriched with 0.2 mM

sodium citrate and the appropriate antibiotic at 30uC over night.

Transductants were sub-cultivated on selective plates containing

the appropriate antibiotics and tested in an ermB and AAC69-

APH29 PCR. Transductant, MRSA ST398 S0385 pMARGK2b

pFA545gen was cultured at 30uC (plasmid replication at #30uC)

with aeration in BHI supplemented with 5 mg/l erythromycin and

16 mg/l gentamicin and stored at 280uC in 0.5 ml aliquots (.106

cells) with 50% glycerol.

The transposon mutant library was generated as described by

Chaudhuri et al. (2009) with some modifications [8]. A 0.5 ml

aliquot was inoculated into 100 ml BHI containing 5 mg/l

erythromycin and chloramphenicol (Sigma) and 16 mg/l genta-

micin and incubated at 30uC with aeration until the culture

reaches OD600 0.4. Cells were recovered from 30 ml culture by

centrifugation (4000 rpm, 10 min) and re-suspended in 600 ml

BHI containing 5 mg/l erythromycin pre-warmed to 43uC. The

culture was grown at 43uC with aeration until the culture reached

an OD600 0.4. 30 ml culture was recovered by centrifugation

(4000 rpm for 10 min) and re-suspended in 600 ml BHI

Genes Essential for LA-MRSA ST398 Survival
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containing 5 mg/l erythromycin pre-warmed to 43uC and the

culture was grown at 43uC with aeration over night. The following

day 30 ml culture was recovered and re-suspended in 600 ml BHI

containing 5 mg/l erythromycin pre-warmed to 43uC and grown

at 43uC with aeration over night and the same procedure was

repeated one more day resulting in a 3rd generation transposon

mutant library. Each day cells were plated on BHI plates

containing 5 mg/l erythromycin, 5 mg/l chloramphenicol or

16 mg/l gentamicin and grown at 37uC over night. The growth

pattern demonstrated a 100% cure of pMARGK2b, ,93% cure

of pFA545gen and successful transposition of the transposon.

Transposon mutants were stored in 0.5 ml (.106 cells) 50%

glycerol aliquots at 280uC until further use.

Mutant library verification
Linker PCR was used to verify the complexity of the generated

transposon mutant library. DNA was extracted (Gram positive

DNA extraction Epicentre – lysing the cells with Ready-Lyse

Lysozyme over night) from the transposon mutant pool in addition

to DNA from 15 randomly isolated colonies (BHI plates

containing 5 mg/l erythromycin) representing 15 random trans-

poson mutants from the library. The DNA was digested with RsaI

(Promega) and purified using a Minielute PCR purification kit

(Qiagen). Adaptor molecules were made by mixing a 1:1 ratio

(100 mM) of oligo 254 and 256 (see Table 1), denatured at 95uC
for 3 min. in annealing buffer (106 annealing buffer = 100 mM

Tris pH8, 500 mM NaCl, 10 mM EDTA) and annealed at room

temperature for 1 hour (store at 220uC). Adaptors and digested

DNA were ligated using a Quick DNA Ligase (New England

Biolabs) followed by purification using a PCR purification kit

(Qiagen). A PCR with primers ForwardTnL and reverse primer

258 (see Table 1) and Hotstar taq polymerase (Qiagen) was

conducted with the following conditions: Hot-start 15 min at

95uC, 30 cycles of denaturation for 45 sec at 94uC, annealing

1 min at 55uC and elongation for 2 min at 72uC and a final

elongation for 5 min at 72uC. The PCR products were visualised

on a 2% NuSieve GTG Agarose gel (Lonza) (3 hours, 100 volts).

Passage of transposon mutant library in broth
A 0.5 ml mutant library aliquot (.106 cells) was inoculated in

10 ml BHI supplemented with 5 mg/l erythromycin and incubat-

ed over night at 37uC with aeration. 500 ml of the culture was re-

inoculated into fresh BHI supplemented with 5 mg/l erythromy-

cin and incubated over night at 37uC with aeration. The passage

of the transposon mutant library was repeated three times. After

each passage the library was tested for viable counts (results not

shown) and DNA (from ,109 cells) was extracted using Easy-DNA

kit (Invitrogen) which was stored at 220uC.

Ethical statement
The study protocol was submitted to the ethical review

committee at the University of Cambridge, Department of

Veterinary Medicine, who reported that post mortem collection

of blood following the slaughter of male pigs, surplus to a breeding

program, is not a regulated procedure and provided ethical

approval. The UK Animals (Scientific Procedures) Act 1986 allows

for the use of animal tissues and blood in research that comes from

animals not regulated by the Act. These animals were slaughtered

by a method of killing identified in Schedule 1 of the Act. In this

case, a 6-month-old male pig was euthanized by intravenous

overdose of pentobarbitone and the blood was collected immedi-

ately postmortem into heparinised containers after obtaining the

farm owner’s permission for the use of their pigs in this study.

Whole porcine blood survival
Two 50 ml falcon tubes were filled with approximately 10 ml

heparinised whole porcine blood and each tube was inoculated

with 0.5 ml mutant library aliquot (8.86107 cells). DNA was

extracted from pooled mutant library aliquots (,109 cells) using

MasterPure Gram Positive Purification Kit (Epicentre) and stored

as input pools (replicates) at 220uC. The blood samples were

incubated for 24 hours at 37uC with aeration. The following day

the blood cultures were tested for viable counts (1.46107 CFU/

ml) and 500 ml (,107 cells) from each blood-culture were

inoculated into 26 10 ml BHI supplemented with 5 mg/l

erythromycin, to increase the bacterial/blood cell ratio prior to

DNA extraction, and incubated over night at 37uC with aeration.

This resulted in two rounds of growth selection, one selection

round in whole porcine blood followed by a selection round in

BHI. After the second round of selection DNA was extracted from

,109 of the mutants and stored at 220uC as output pools

(replicates).

Table 1. Primers.

Name Sequence (orientation 59 - 39) Source

Forward primer KpnI GTGGGTACCTTAAFCCTAGAGCTTGCCATGTATATG This study

Reverse primer SpeI CTCACTAGTGTCTGGACTTGACTCACTTCC This study

254 oligo CGACTGGACCTGGA J. H. Wang

256 oligo GATAAGCAGGGATCGGAACCTCCAGGTCCAGTCG J. H. Wang

ForwardTnL CTTAAGTTTGCTTCGATGACTGG This study

Reverse primer 258 GATAAGCAGGGATCGGAACC J. H. Wang

ErmB forward 26 GGAACATCTGTGGTATGGCG This study

ErmB reverse 27 CATTTAACGACGAAACTGGC This study

Transposon-specific primer AATGATACGGCGACCACCGAGATCTACACCTGAATTACCCTGTTATCCCTATTTAGGTGAC Langridge et al. (2009)

P5 AATGATACGGCGACCACCGA Illumina

P7 CAAGCAGAAGACGGCATACGA Illumina

Sequencing primer GACACTATAGAAGAGACCGGGGACTTATCAGC This study

The table lists the primers used in the experimental approach. It includes primer name, nucleotide sequence and orientation, and source.
doi:10.1371/journal.pone.0089018.t001
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Library preparation for Illumina sequencing
For the TraDIS approach the library preps were prepared as

described by Langridge et al. (2009) with modifications [9]. 3–5 mg

of DNA from input and output pools were fragmented to an

average size of approximately 200 bp by Covaris E210. The size

profile was evaluated with Agilent 2100 Bioanalyzer on a

DNA1000 chip. The fragmented DNA was prepared for

sequencing on an Illumina platform using the SureSelect XT

Library Prep Kit-ILM (Agilent). The ligated fragments were

amplified using a transposon-specific primer (see Table 1) and the

multiplexing PCR primer index 1–8 supplied in the SureSelect

Library Prep Kit. The PCR was run for 22 cycles with 200–400 ng

template-DNA per reaction to amplify the transposon insert and

junction sites. The PCR products were cleaned using 0.86
Agencourt AMPure XP beads (Ramcon) to remove DNA

fragments below 200 bp. The quality of the amplified products

was assessed using an Agilent 2100 bioanalyzer on a high

Sensitivity DNA chip and quantified by Q-PCR with primers P5

and P7 (see Table 1). The libraries were pooled in a 1:1 molar

ratio and sequenced on an Illumina Hiseq2000 platform for 43

cycles plus index read using a custom sequencing primer (see

Table 1) resulting in reads with the initial 10 bp being transposon

insert specific followed by the junction region.

Sequencing analysis and statistics
Sequence reads from the Illumina FASTQ files were sorted by

index and evaluated for the 10 bp transposon (Tn) sequence

CAACCTGTTA allowing 1 mismatch, using the program Sabre

(https://github.com/najoshi/sabre). The Tn and adapter se-

quences, as well as short reads (,10 nucleotides) and nucleotides

with poor base call quality (,Q15), were stripped using Cutadapt

[22] and the junction regions were extracted and mapped to the

reference genome (AM990992) using Bowtie 2.0 [23]. An in-house

script was used to identify the precise transposon insertion sites

and quantify the number of reads mapping to the open reading

frames within the reference genome. The program Circos [24] was

applied for a genome wide visualization of the transposon mutant

library.

The number of unique transposon insertion sites for any given

gene was calculated and divided by the average gene length using

an in-house script (insertion index calculation). Genes with zero or

few transposon insertions sites were categorised based on function

using the COG (Cluster of Orthologous groups) database [27,28],

as described in Khatiwara et al. (2012) [10]. They were plotted as a

percentage of all the COG categorised genes encoded by the

reference genome.

The transposon mutant library was screened in whole porcine

blood in vitro and mutants from input and output pools were

compared using the DESeq package in R [25] enabling

identification of significant differences in mutant composition

pre- and post- selection. The approach was as described in Anders

and Huber (2012) [26] and the settings are defined in Figure S1.

The read counts, corresponding to transposon insertion sites were

normalized to account for variation in the total number of reads

obtained from each samples. The ratio of input:output read counts

were determined and referred to as a log2 fold change. A negative

log2 fold change reflects an attenuated mutant whereas a positive

log2 fold change mirror a hypercompetitive mutant. For each

individual mutant, the hypothesis that the fitness score was equal

to zero and thereby that the mutant was present at equivalent

levels in the input and output pools was tested for, using a negative

binomial distribution as implemented in DESeq. The model was

fitted only from those mutants from which replicate data was

available and the resultant model was then applied to data derived

from all mutants to estimate P values. An attenuated mutant was

determined when the number of read counts from input pool to

output pool significantly decreased and a hypercompetitive mutant

was determined when the number of read counts from input to

output pool significantly increased.

The raw sequence data will be available in the NCBI Sequence

Read Archive (SRA) upon publication (Accession: SRR1056406 -

SRR1056422).

Results

A construct for manipulation of LA-MRSA ST398
The transposon mutant library was generated in the whole

genome sequenced wild type LA-MRSA ST398 S0385 isolate

using a two plasmid system. One of the plasmids carried a Tn5

derived transposon with an erythromycin resistance marker and

mariner mosaic ends, which was required for use in S. aureus. As

most LA-MRSA ST398 harbour natural resistance to tetracycline,

the tetracycline resistance marker in the transposase-bearing

plasmid was substituted with a gentamicin resistance cassette, as

S0385 was found, by susceptibility testing to be susceptible to

gentamicin (Minimal Inhibitory Concentration, MIC = 0.5 mg/l).

The tetracycline resistance gene was removed from the plasmid

and the AAC69-APH29 gene originating from MRSA MU50

encoding gentamicin resistance was inserted into the plasmid at a

position that facilitate the usage of the tetracycline resistance gene

promoter. The plasmids were successfully transduced into the

S0385 isolate.

Transposon mutant library
A high complexity mariner transposon mutant library was

generated in the whole genome sequenced wild type LA-MRSA

ST398 S0385 isolate. Serial dilution and plating on BHI agar

plates containing the appropriate antibiotic determined a mutant

library size of ,106 mutants, a 100% plasmid loss of the

transposon carrying plasmid and approximately 93% plasmid loss

of the transposase-carrying plasmid. Due to the incomplete loss of

the transposase bearing plasmid, nutrient-rich broth was supple-

mented with erythromycin at each growth step to ensure that the

genomic insertion of the transposon was maintained. Linker PCR

and DNA sequencing was used to verify transposon insert

throughout the bacterial genome (Figures S2 and S3).

Validation of the mutant library
DNA was isolated from the raw transposon mutant library and

prepared for Illumina sequencing and sequenced on the

HiSeq2000 platform. The sequencing was performed using a

custom sequencing primer, sequencing from the 59 end of the

transposon and into the genomic DNA flanking the transposon

insert.

In a sequencing run, one lane from an Illumina flow cell

generated a minimum of 40 million reads of 43 bp plus index

reads. The first 10 bp of each read constitutes the Tn sequence.

Each lane was multiplexed with seven or eight samples, resulting

in a minimum of 165 million nucleotides that represent the actual

target DNA per sample. S. aureus S0385 has a total of 2777

annotated genes with an average length of 874 bp resulting in an

average of 67x gene-coverage.

One mismatch was allowed when matching the Tn sequence.

When using the HiSeq platform a lower quality of the Tn

sequence was obtained in comparison to the quality of the target

regions, as the Tn sequence is identical in all the reads. The

sample used for validation had a total output of ,7.1 million reads

and of these the Tn sequence was identified in ,6 million reads.
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Tn sequence and adapter sequence were stripped and the reads

(10–23 bp in length) were mapped to the reference genome. ,4.5

million reads were mapped exactly one time and 140,330 unique

insertion sites were identified. The average distance between

unique insertion sites was 20.5 bp and by utilising an average gene

length of 911 bp (average gene length for genes containing an

insert), the average number of unique inserts per gene was 44.8.

The top row of Table 2 shows an overview of the transposon

inserts recovered from the raw mutant library.

The distribution of the reads aligned to the reference

chromosome is illustrated in Figure 1 by the right semicircle of

the genome atlas. Reads are demonstrated as black spikes that are

aligned to the reference genome, which is illustrated by the

outermost green circle. The distribution of the aligned reads shows

a high complexity transposon mutant library with inserts

throughout the chromosome and no specific hotspots for

transposon insertion.

Transposon insertion into a non-functional part of a gene may

not disrupt gene function so it is necessary to define a threshold to

separate essential/beneficial genes from non-essential genes. An

insertion index was calculated by dividing the number of unique

insertion sites for any given gene by the average gene length for

genes containing an insert. Figure 2 illustrates a density plot based

on the calculated insertion index for each gene. This plot separates

genes with a low number of transposon inserts from genes with a

high number of inserts (see Figure 2). The left most peak shows

genes with a low number of inserts representing mutants with a

decrease in fitness, which could lead to total loss of cellular survival

or an arrested cell cycle, whereas the right most peak illustrates

genes with a high number of inserts, representing viable mutants.

The local minimum separating the peaks suggests that a cut-off

value of around 0.02 would be suitable to distinguish essential/

beneficial genes from non-essential genes.

The seven housekeeping genes aroE, glpK, gmk, pta, tpiA, yqiL and

arcC used for Multi Locus Sequence Typing (MLST), shown in red

in the left semicircle of Figure 1, represent potential candidates of

essential genes within the S. aureus genome. One of the MLST

genes (tpiA (SAPIG0853)) mapped zero reads, four genes mapped

few reads (pta (SAPIG0662), gmk (SAPIG1207), yqiL (SAPIG0434)

and glpK (SAPIG1302)) resulting in insertion indices below the cut-

off (,0.02), identifying five of the MLST genes as essential/

beneficial using this system. aroE (SAPIG1661) and arcC had

insertion indices above the cut-off defining them as non-essential.

SAPIG2704 and SAPIG2129 (see Figure 1), shown in the left

semicircle of Figure 1, encode serine-rich adhesin for platelets and

cardiolipin synthetase, respectively, and are examples of two non-

essential genes from the S0385 genome. A high number of reads

mapped to these open reading frames, indicating that there was no

significant loss of fitness when these genes were disrupted by

transposon insertions.

LA-MRSA ST398 genes important for growth
The mutant library was grown for three passages in nutrient-

rich broth at 37uC to identify genes essential for growth in this

substrate. Table 2 shows an overview of the sequence analysis from

passage 0 to passage 3. 71–75% of the reads containing the Tn tag

sequence were found to map the reference genome. The number

of unique insertion sites was between 97,000 and 162,000 with 31–

51 unique insertion sites per gene. The number of unique insertion

sites showed an initial decrease between passage 0 and passage 1.

The decrease could illustrate that the transposon mutant library

contains slow growing mutants, which will not be identified in the

first growth passage. The passages were performed 3 times to

increase selection sensitivity and to reduce the presence of arrested

and dead cells.

A total of 152 genes mapping zero reads were identified from

the mutant pool after three passages under laboratory conditions –

of these, 100 were protein-coding genes, 4 encoded ribosomal

RNAs (rRNA) and 48 transfer-RNAs (tRNAs). These genes are

proposed to be essential for bacterial survival under laboratory

conditions. In addition, 526 genes had only a few mapped reads

and had an insertion index below the calculated cut-off of 0.02,

indicating that these may also be important for growth (Tables S1

and S2). Genes with few transposon insertion sites may have

maintained gene but cannot be identified as true essential genes

and are therefore referred to as genes beneficial for bacterial

survival under laboratory conditions. The protein coding genes

were categorised based on functionality using the COG database

and plotted as percentage of all the COG categorised genes in the

WT (see Figure 3). Some genes were categorised as belonging to

several COGs. The proposed essential gene list includes repre-

sentatives of all the major functional COGs except group B

(chromatin structure and dynamics) and N (cell motility).

Representatives in V (defence mechanisms) were only identified

when including the genes with few inserts (insertion index ,0.02).

Protein-coding genes involved in translation (COG group J), cell

division (COG group D), coenzyme transport and metabolism

(COG group H), and intracellular trafficking, secretion and

vascular transport (COG group U) had the largest number of

representatives in the proposed essential and beneficial gene sets.

Approximately 9% of the proposed essential and beneficial

protein-coding genes were of unknown function or not related to

any COG group.

Table 2. Overview of the raw Transposon mutant Library and the passages in BHI - Illumina sequence data.

Total no. of reads
Read with Tn tag
(#1 mismatch) Reads mapped exactly 1 time

No. of unique
insertion sites

Average no. of unique insertion
sites per gene

Raw library 7,129,995 6,070,601 4,503,675 (75.88%) 140,330 44.8

Passage 0 7,564,547 5,931,390 4,284,574 (73.97%) 136,440 42.4

Passage 1 10,503,621 8,586,527 6,003,415 (71.14%) 97,236 31.2

Passage 2 10,316,723 8,481,909 6,017,839 (72.35%) 115,921 37

Passage 3 13,618,447 11,261,919 7,899,885 (71.54%) 162,228 51

The table shows the output from the raw transposon mutant library and the three passages in BHI. The number of reads recovered after trimming and alignment were
identified and the number of unique insertion sites per gene was calculated. The sequence data of the raw mutant library was obtained from one lane of a flow cell
which was multiplexed with eight samples. The sequence data from the three passages were obtained from one lane of a flow cell that was multiplexed with seven
samples. The sequencing was performed on a Hiseq2000 platform.
doi:10.1371/journal.pone.0089018.t002
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Survival in whole porcine blood
The mutant library was grown in porcine blood and DNA from

mutants pre- and post- selection was prepared as input and output

pools, respectively. The blood samples were inoculated with the

transposon mutant library and incubated for 24 hours. Previous

growth experiments in whole porcine blood showed an initial

decrease in cell counts but after 24 hours of incubation the

number of mutants returned to a population size equivalent to the

inoculums (see Figure S4 for more details). The total number of

reads corresponding to transposon insertion sites in the input pool

was compared to the total number of reads mapping to the

equivalent position in the output data. The read counts are

expected to follow an approximately normal distribution but the

data showed some noise in the lower end and read counts below 24

were considered as noise based on a frequency distribution plot

(data not shown). Using the DESeq package in R the effective size

of each sequence library was estimated based on the read counts

and the estimated size factors were used for normalization of the

Figure 1. Genome atlas. Right semicircle: The green band in the outermost part of the semicircle illustrates the reference chromosome
(AM990992) with the size of 2,872,582 bp. The three circular plasmids harboured by the reference are not included. The black spikes connected to the
green semicircle shows the distribution of the reads from the raw transposon mutant library aligned to the reference strain. The black and red dots
indicate positions within the reference with large number of reads (insertion index .0.02) and low number of reads (insertion index ,0.02)
respectively. Left semicircle: The red colours show of zoom of the seven MLST genes (arcC represented twice due to two copies of this particular
gene) and the black spikes illustrated in some of the genes show reads mapping within the open reading frame. The arrows indicate transcription
direction. The zoom of SAPIG2704 and SAPIG2129, visualised in blue colours, show examples of two genes with a large number of read mapping
throughout the open reading frames.
doi:10.1371/journal.pone.0089018.g001

Genes Essential for LA-MRSA ST398 Survival

PLOS ONE | www.plosone.org 6 February 2014 | Volume 9 | Issue 2 | e89018



data. To contrast the two conditions and highlight a possible

differential composition in mutants, recovered pre- and post-

selection, the variance of reads mapping each gene was estimated

and subsequently tested using a negative binomial test. Ratios of

normalized read counts in the input and output samples were

determined and expressed as a log2 fold change. A negative log2

fold change corresponds to a decrease in read counts from input to

output and indicates attenuated mutants, whereas a positive log2

fold change reflects an increase in read counts from input to

output.

Only the mutants that were uniquely attenuated under the

selective conditions were of interest. The mutant composition pre-

selection in whole porcine blood was compared to the mutant

composition post-selection. The genes representing the mutants

with the most significant change in clone number were identified.

To eliminate general selection due to growth in BHI the mutant

library was selected for an equivalent number of growth rounds in

BHI and genes representing mutants with the most significant

change in clone number were identified. The two gene lists were

compared and the genes specific for survival in whole porcine

blood were identified (see Figure S5).

Transposon inserts in 23 genes induced a significant decrease in

fitness (negative log2 fold change) and transposon inserts in one

gene induced a significant hypercompetitive mutant (positive log2

fold change), all as a consequence of being selected in porcine

blood (see Table 3). Six of the mutants, illustrated with a minus

infinity (-inf) log2 fold change in Table 3, were represented in the

input pool but totally absent, with zero read counts, in the output

pools. Seven of the 23 genes are defined as encoding hypothetical

proteins with unknown function. Additionally two genes were of

unknown function, whereas fifteen could be assigned a potential

function (see Table 3 and Table 4).

Discussion

The purpose of the work was to generate a high complexity

transposon mutant library and assess the application of TraDIS in

S. aureus ST398. LA-MRSA ST398 was selected for this study as it

shows different host infection/colonization patterns compared to

most other MRSA strains. The isolation of MRSA from animals

was first reported in 1972 [29], but was at that time most likely

associated with human to animal transmission of an MRSA strain

acquired by the farmer during hospitalisation. More recently, a

specific lineage belonging to CC398, most likely of human origin,

has spread among livestock globally, acquired methicillin resis-

tance and is now transferring back to humans leading to both

colonisation and disease [17,30]. ST398 is able to adapt to various

host environments and continues to emerge worldwide both in

livestock and also to some extent in hospital settings [31].

When interpreting the data it is important to recognize that the

environment and other factors resulting from the experimental

design can have unintended consequences on the output data.

Nutrient-broth was supplemented with erythromycin to maintain

the genomic insertion of the transposon and high temperatures

Figure 2. Density plot - Insertion index distribution. The figure shows a density plot illustrating the distribution of insertion indices (number of
transposon inserts per gene divided by an average gene length). The plot indicates the density according to which the insertion indices are
distributed and it shows that the insertion indices have a bimodal frequency distribution. The leftmost peak represents the genes with zero or very
few insertions, whereas the rightmost peak represents the genes with a large number of insertions. The vertical line piercing the local minimum and
separating the two peaks, defines the cut-off sorting genes as either, essential/beneficial or non- essential/neutral for bacterial fitness in a given
environment.
doi:10.1371/journal.pone.0089018.g002
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were applied to promote plasmid loss, both of which may influence

the output when screening for essential genes. For example it has

been reported that incubation at high temperatures in the

presence of erythromycin enriches for mutants of the sae system,

which is a two-component system involved in regulation of some

virulence genes [32]. Enrichment of a regulatory system could

have an unattended effect on the transposon mutant composition.

In addition, transposon insertions may affect the expression of

downstream genes or operons, causing polar mutation that leads to

incorrect identification of essential genes in a defined environment.

For definitive identification of gene function it is necessary to

generate single knockout mutants and test those in the same

functional assays used in the screenings. However, since a large

number of genes are listed as having no known function and there

is inconsiderable value in generating evidence for the phenotypes

resulting from the possession of these genes, high-throughput

methods can help to narrow the pool of genes to be investigated

further.

In our study we generated a transposon mutant library

consisting of ,106 mutants and we identified around 140,000

unique insertion sites. The transposon mutant library generated in

Salmonella Typhi by Langridge et al. (2009) [9] yielded 370,000

unique insertion sites, which may be explained by the fact that the

Salmonella genome is more than 2 Mb larger than the S. aureus

genome and so provides the potential for a higher number of

unique insertion sites. Langridge et al. showed an average of one

insertion site for every 15–20 bp, which was similar in this study

showing an average insertion site for every 20.5 bp. The sequence

data (Table 2), linker PCR data (Figures S2 and S3) and the

coverage atlas (Figure 1) showed a successful generation of a high

complexity mutant library with transposon inserts throughout the

bacterial genome, comparable to the mutant library generation in

Salmonella Typhi [9].

The MLST genes are housekeeping genes and are expected to

be essential for cell viability [33]. However not all seven MLST

genes were defined as essential in this study. The glpK, gmk, pta, tpiA

and yqiL MLST genes were identified as essential or beneficial with

zero or few transposon inserts, whereas aroE and arcC were defined

as non-essential. tpiA, pta, gmk and yqiL have all been identified as

essential previously (see Table S3) [6,8,12]. The arcC gene

encoding carbamate kinase has a paralogous gene at a different

locus within the S0385 genome, which also encodes carbamate

kinase. When one of the arcC homologues is disrupted by the

transposon insert the transcript of the other may take over and this

could explain an insertion index above the cut-off for both arcC

genes (SAPIG1164 and SAPIG2682).

Gene SAPIG2704 and SAPIG2129, which encode serine-rich

adhesin for platelets and cardiolipin synthetase respectively,

constitute two examples of genes defined as non-essential for

S0385 survival under laboratory conditions in this study. Figure 1

illustrates that a high number of reads mapped within these open

reading frames. Serine-rich adhesins are postulated to be

important for bacterial binding to platelets as part of the

pathogenesis in infective endocarditis in humans [34]. The

S0385 isolate was isolated from a human case of endocarditis

[35], where serine-rich adhesins may be essential, but when

Figure 3. Proposed essential genes classified by functionality. The proposed essential genes for growth under laboratory conditions were
classified by functionality and plotted as a percentage of all genes within each functional group encoded by the reference strain. The genes were
assigned a functionality based on the COG database and these groups are illustrated on the vertical axis. The dark grey columns represent the
proposed essential protein-coding genes with zero inserts, whereas the light grey columns add the protein-coding genes with few inserts (insertion
index ,0.02), which were proposed beneficial for growth under laboratory conditions.
doi:10.1371/journal.pone.0089018.g003
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transferring the isolate to a laboratory environment, these adhesins

might lose their importance for bacterial survival. Cardiolipin

synthetase are involved in conversion of bacterial membrane

phosphatidylglycerol (PG) to cardiolipin (CL) when the bacteria

progress from exponential growth phase to stationary and when

phagocytosed by human neutrophils [36]. The S. aureus S0385

genome contains two open reading frames (Cls1: SAPIG1324 and

Cls2: SAPIG2129) encoding cardiolipin synthetases. Cls2 is

primarily responsible for CL accumulation under stationary phase

[36], but when SAPIG2129 encoding Cls2 is disrupted by

transposon insert, the homologous Cls1 may take over. The

examples above illustrate the sensitivity of this methodology for

identifying essential/beneficial or non-essential genes.

A total of 152 S. aureus S0385 genes had zero transposon inserts

and were therefore proposed as essential genes, while 526 genes,

with a low number of transposon inserts, were proposed as

beneficial for growth under laboratory conditions. Table S1 shows

the lists of proposed essential genes and Table S2 the list of

proposed beneficial genes. Table S3 shows a comparison with

previously described S. aureus essential genes using high complexity

transposon mutant libraries [6,8,12].

Of the 526 genes (insertion index ,0.02) proposed here as

beneficial, 268 genes have been described as essential in S. aureus

previously (see Table S2). The 258 proposed beneficial genes that

have not been described as essential previously encode proteins

involved in DNA repair, replication and recombination, which

indicate that the high temperatures applied to promote plasmid

loss under the mutant library construction induced as expected

bacterial stress conditions. These genes are therefore evaluated as

beneficial for ST398 survival in this study due to the specific

conditions applied in the experimental setup. When ranking the

genes with insertion indices ,0.02, it is clear that, as the insertion

index increases and approaches the cut-off (0.02), there is an

increase in number of genes that have not been described as

essential in S. aureus previously (see Table S2). The ranking and

knowledge from previous studies could indicate an insertion index

cut-off of approximate 0.007 instead of 0.02. This shows that the

selection of the cut-off separating essential/beneficial from non-

essential genes is an important consideration.

The differences found between this study and previous studies

defining essential genes could be due to differences in methodol-

ogy, sensitivity of the methods, environmental conditions or true

differences between bacterial strains. However, the results need to

Table 3. Genes representing 23 attenuated mutants and 1 hypercompetitive mutant when selected in whole porcine blood.

ID (gene) Read Count Input Read Count Output

Mean Mean Log2 Fold Change P-value

SAPIG2099 428.16 0.00 -inf 0.0237

SAPIG1465 317.79 0.00 -inf 0.0156

SAPIG2108 203.34 0.00 -inf 0.0288

SAPIG0429 196.84 0.00 -inf 0.0298

SAPIG1848 164.21 0.00 -inf 0.0354

SAPIG0633 143.38 0.00 -inf 0.0398

SAPIG0142 726.16 1.10 29.3631 0.0024

SAPIG1650 492.68 1.10 28.8088 0.0128

SAPIG1041 799.62 2.20 28.5048 0.0025

SAPIG1748 352.17 1.10 28.3244 0.0249

SAPIG1921 306.01 1.10 28.1163 0.0430

SAPIG0315 605.24 2.21 28.1003 0.0090

SAPIG2670 256.41 1.10 27.8613 0.0406

SAPIG2057 469.89 2.21 27.7351 0.0203

SAPIG1726 853.28 4.40 27.5998 0.0038

SAPIG1977 526.66 3.30 27.3165 0.0272

SAPIG0258 446.43 3.31 27.0762 0.0426

SAPIG1054 1430.32 12.11 26.8836 0.0019

SAPIG1096 694.20 6.60 26.7168 0.0137

SAPIG2156 529.71 5.51 26.5882 0.0296

SAPIG0647 1739.26 31.92 25.7678 0.0497

SAPIG2568 751.50 15.43 25.6056 0.0259

SAPIG2639 1449.27 77.16 24.2314 0.0360

SAPIG0185 120.11 2868.20 4.5777 0.0328

The table lists the mutants that significantly changed in clone number from input to output (pre- and post-selection in whole porcine blood). The top 23 genes represent
the mutants that were significantly reduced in number of clones after selection in whole porcine blood. The lowermost gene represents the mutant that significantly
increased in clone number after selection in whole porcine blood. Mean read count input and Mean read count output represent the mean number of reads mapping
within the defined gene. The differences between the mean values are illustrated by a log fold change from input to output and a negative log2 fold change indicating
changes in fitness. A negative log2 fold change defines attenuation in fitness whereas a positive log2 fold change defines increase in fitness. The p-value shows the level
of significance.
doi:10.1371/journal.pone.0089018.t003

Genes Essential for LA-MRSA ST398 Survival

PLOS ONE | www.plosone.org 9 February 2014 | Volume 9 | Issue 2 | e89018



be verified by additional studies to provide further evidence of the

essential nature of these genes.

None of the proposed essential genes were defined within the

group of Defence mechanisms (COG group V), but four of the

proposed beneficial genes were categorised as belonging to COG

group V. These four genes, SAPIG1054, SAPIG1375, SA-

PIG1376 and SAPIG2314, encode beta-lactamase ampC and

aminoacyltransferase femA, femB and femX respectively. femA, femB

and femX have been identified as essential genes in previous studies

[6,8] and it has been shown that femA and femB mutants have a

reduced peptidoglycan (PG) glycin content compared with femA+

and femB+ strains [37,38]. The staphylococcal cell wall plays an

important role in infection and pathogenicity, but based on our

data these cell-wall impairments may also have wider influence on

cell growth and survival in general. However, it has also been

demonstrated that femAB null mutants harbouring an erythromy-

cin resistance marker lead to a low level of erythromycin

resistance, which may be due to a higher uncontrolled influx of

erythromycin through the impaired cell-wall [39]. The presence of

erythromycin in the nutrient-broth used in this study could explain

the decreased fitness identified for the femA, femB and femX

mutants.

Overall 24 genes were identified with a significant change in

fitness after whole porcine blood incubation. Twenty-three of these

genes were identified as giving a significant reduction in bacterial

fitness when inserted with a transposon and selected in vitro in

Table 4. Description of the genes identified as important for S. aureus ST398 survival in whole porcine blood.

ID (gene) Description Process Whole blood survival

SAPIG2099 (leuD) 3-isopropylmalate dehydratase, small
subunit

Leucine biosynthesis (amino acid
biosynthesis)

Oxidative stress and pH shock. Stringent response (cellular
adaptation to nutrient limiting conditions).

SAPIG1465 (aroB) 3-dehydroquinate synthase Nucleotide and amino acid
metabolism (aromatic amino acid
metabolism)

Oxidative stress and pH shock.

SAPIG0429 Hypothetical protein Unknown ?

SAPIG2108 Phosphoserine phosphatase, RsbU Up-regulation of sB (alternative
sigma factor)

sB influences expression of a variety of genes including
virulence genes under stress and specific environmental
conditions.

SAPIG1848 Hypothetical protein Unknown ?

SAPIG0633 tRNA-specific adenosine deaminase Unknown ?

SAPIG0142 NAD dependent epimerase/dehydratase
family protein

Galactose metabolism Glucose depletion. Galactose metabolism (galactose
molecules compose important components of the surface
bound antigens located on red blood cells).

SAPIG1650 (lepA) GTP-binding protein Specific function unknown LepA protein homologous to translation factors that binds
ribosomes.

SAPIG1041 (menD) 2-succinyl-6-hydroxy-2,
4-cyclohexadiene-1-carboxylic acid
synthase/2-oxoglutarate decarboxylase

Menaquinone biosynthetic pathway Respiration. Involved in protection against haem toxicity

SAPIG1748 (icd) Isocitrate dehydrogenase (IDH),
NADP-dependent (icd gene)

Regulation of tricarboxylic acid (TCA)
cycle

Icd up-regulation under acidic conditions. Regulation of
the TCA cycle.

SAPIG1921 RNA methyltransferase, TrmH family,
group 2

RNA metabolism Regulation – balance between transcript and degradation
of mRNA.

SAPIG0315 Hypothetical protein Unknown ?

SAPIG2670 Hypothetical protein Unknown ?

SAPIG2057 Aspartate transaminase Aminoacid metabolism. Decrease in pH.

SAPIG1726 HemA concentration negative effector
hemX

Transport ABC-type transport system. C ytochrome c biogenesis.

SAPIG1977 Response regulator protein VraR Regulator of cell wall damage stress
response

Response to cell wall damage.

SAPIG0258 PTS system galactitol-specific enzyme
II B component

Galactose metabolism Glucose depletion. Galactose metabolism (galactose
molecules compose important components of the surface
bound antigens located on red blood cells).

SAPIG1054 Beta-lactamase

SAPIG1096 Spermidine/putrescine ABC transporter
ATP-binding subunit

ABC transporter involved in ion
homeostasis

pH shock/changes.

SAPIG2156 Hypothetical protein Unknown ?

SAPIG0647 Indigoidine systhesis protein Secondary metabolite composing a
blue pigment.

Oxidative stress – ph shock.

SAPIG2568 (fbp) Fructose-1,6-bisphosphatase Gluconeogenesis Response to depletion of glucose.

SAPIG2639 (pyrD) Dihydroorotate oxidase Pyrimidine biosynthesis Nucleic acids biosynthesis.

SAPIG0185 pANL51 Unknown function ?

doi:10.1371/journal.pone.0089018.t004
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porcine blood. Mutation in one gene resulted in a hypercompet-

itive mutant post-selection in whole porcine blood.

No specific cell viability tests were performed on the blood cells,

but it has been shown previously that whole-blood units stored at

room temperature maintained cellular counts and coagulation

activity for up to 72 hours [40]. In addition, in previous

experiments an initial decrease in bacterial cell counts was

observed when incubating the transposon mutant library in whole

porcine blood, which could reflect neutrophil killing. It is therefore

reasonable in this case to believe that the genes identified are

important for survival in whole porcine blood under in vitro

conditions.

The 23 genes identified in the attenuated mutants represent

mutants showing the greatest reduction in cell count when

comparing input and output pools. However, they are unlikely

to be the only genes important for survival in porcine blood. For

example, mutants with transposon inserts in essential genes are

absent in the input pools and a potential difference between input

and output pools for those essential genes will not be detected and

they can therefore not be considered as important for whole

porcine blood survival in this experiment.

Seven of the 24 genes are defined as hypothetical genes of

unknown function and two other proteins were annotated with

unknown function. Fifteen genes were annotated to be predom-

inantly involved in carbon metabolism, pH shock, regulation and

transport (see Table 4) [41–47]. This indicates that key genes for

survival in porcine blood cultures may not be genes involved in

iron uptake such as hemolysins and sideophors, but may be genes

associated with the ability to utilize the available carbon hydrates

in blood, regulation at different levels as well as survival under

extreme pH conditions. This is supported by previous studies

analysing global gene expression of S. aureus under in vitro

conditions of short-term culture in human blood [48,49]. In these

studies, it was observed that up- or down regulated genes were

mainly involved in cellular metabolism or had an unknown

function. A previous study screening 1248 transposon S. aureus

mutants in an in vivo murine bacteraemia model identified 50 genes

as being important for whole blood survival, half of which had

unknown function and the rest with an involvement in nutrient

biosynthesis and surface metabolism [50]. Furthermore they

identified genes important for the tricarboxylic acid cycle (TCA

cycle) and in this study we identified the icd gene, a TCA cycle

regulator, as important for in vitro survival in porcine blood. This

indicates that the TCA cycle and carbon metabolism, have

important functions for bacterial survival in blood in vivo and in vitro

and in blood from different hosts. The femA and femB genes were

previously identified as important for whole blood survival in vivo

[50]. However, we found femA and femB mutants to have a growth

disadvantage under laboratory conditions which is in correlation

with other studies identifying S. aureus essential genes [6,12,13].

The transposon mutant library was incubated in whole porcine

blood in vitro for 24 hours. This could partly reflect why many

metabolic genes were identified as important for whole porcine

blood survival in this study. However, an incubation period of

24 hours was specifically selected based on initial growth

experiments in whole porcine blood in vitro (Figure S4). These

experiments showed an initial decrease in bacterial population

size, which could be explained by phagocytosis and potential

bacterial killing by host immune cells. The mutant population size

returned to an equivalent size of the inoculated population after

24 hours, and at this point the mutants had potentially seen all the

selective elements within whole blood. Genes important for

immune evasion will have undergone selection in a similar

manner as the metabolic genes. S. aureus encodes however various

immune evasion genes and it is justifiable to conclude that none of

these are singlehandedly responsible for survival of the immune

response, which could explain why none of these genes were

identified as important for whole blood survival. Even though no

specific virulence genes were identified as being important for

blood survival in this study they might have important functions in

more specific infection models.

In this study, we successfully generated a high complexity

transposon mutant library in an LA-MRSA ST398 WT isolate

and evaluated it using the TraDIS system. We identified S. aureus

ST398 essential genes comparable with previous studies. Twenty-

four genes were evaluated as being important for specific in vitro

whole porcine blood survival, of which carbon metabolism, pH

shock and regulation were related. For further evaluation of these

genes, we aim to generate single knockout mutants and test these

for survival in porcine blood, as well as in blood from other

relevant donors. In addition, the generated transposon mutant

library will be used in a screen for survival and colonization in

other host relevant environments such as on porcine skin and nasal

epithelium.

Supporting Information

Figure S1 Commands and settings used in R for the
statistical analysis.
(TIF)

Figure S2 Whole mutant library and single colony
verification. The gels show the result of the linker PCR used

for library validation. The left gel shows squared in red a low

complexity mutant library with a laddering of the smears. The

blue squared lanes illustrate the same high complexity transposon

mutant library from passage 0 (lane 2) to passage 3 (lane 5). The

third generation transposon mutant library shows a smear with no

specific bands. The right gel represents 15 randomly picked single

mutant colonies isolated from the third generation transposon

mutant library, each giving a band of different size indicating that

the transposon has inserted at different locations with the genome.

(TIF)

Figure S3 Genome atlas identifying transposon inserts
of 11 random isolated mutants. The genome atlas illustrates

by black marks in the outer most circle 11 different transposon

insertion sites within the reference genome. The insertion sites

were identified based on sequencing 11 of the 15 randomly picked

mutant colonies described in figure S1. The fragments from the 11

mutants were sequenced and aligning to the reference genome.

The blue and red parts of the atlas indicate forward and reverse

transcriptional direction of the open reading frames within the

reference genome.

(TIF)

Figure S4 Growth profile of transposon mutant library
in whole porcine blood in vitro. The figure shows the growth

profile of the transposon mutant population in whole porcine

blood in vitro. Mutant population size was determined at specific

time-points to identify functionality of the blood immune cells.

After 24 hours incubation in vitro the mutant population size was

equivalent to the inoculated population size (indicated by the red

circle).

(TIF)

Figure S5 Experimental setup for identification of genes
important for bacterial growth in whole porcine blood.
The mutant composition in input pool pre-selection in whole

porcine blood (Input pool - library aliquot) were compared with

mutant composition in output pool post-selection in porcine blood
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(output pool BHI – second generation library). The mutants

identified with a significant change in number of clones represent

genes important for whole porcine blood survival in addition to

growth BHI. The mutant composition in output pool post-

selection in porcine blood (output pool BHI – second generation

library) was compared to mutant composition after growth in BHI

(BHI – second generation library). The mutants identified with a

significant change in number of clones in both of the comparisons

were evaluated as specific for survival in whole porcine blood in

vitro.

(TIF)

Table S1 Proposed essential genes.
(XLSX)

Table S2 Proposed beneficial genes.
(XLSX)

Table S3 Comparison of essential gene lists of S.
aureus.

(XLSX)
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Supporting figures 

Figure S1. Commands and settings used in R for the statistical analysis. 

Description of the sample 

> BloodDesign <- data.frame( 

 row.names = colnames( CountTable7.4 ), 

 condition = c( "untreated", "untreated", "treated", "treated" ), 

 libType = c( "single-end", "single-end", "single-end","single-end" 

) ) 

 

Create a condition factor 

> conds <- factor( c( "untreated", "untreated", "treated", "treated" 

)) 

 

Examplify a CountDataSet (cds) which is the central structure in the 

DESeq package 

 

> library( DESeq ) 

> cds <- newCountDataSet( CountTable7.4, conds ) 

 

Acess counts 

> head( counts(cds) ) 
 

Histogram to check for noise in data 

> hist(log2(CountTable7.4$sample_46),100) 

 

Romoval of noise 

> cds <- newCountDataSet( CountTable7.5[CountTable7.5$sample_46>16, 

], conds ) 

 

Access the count data 

> head( counts(cds) ) 

 

Estimate the size factor (coverage) 

 

> cds <- estimateSizeFactors( cds ) 

> sizeFactors ( cds ) 

 

Normalize count data according to size factor 

> head( counts( cds, normalized=TRUE ) ) 

 

Estimate dispersion 

> cds <- estimateDispersions( cds, fitType="local" ) 

 

Inspect the intermediate steps for the dispersion estimation 

> str( fitInfo(cds) ) 
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To visualize these steps plot the per-gene estimates against the 

normalized mean expressions per gene and then overlay the fitted 

curve 

 
> plotDispEsts <- function( cds ) 

 { 

 plot( 

 rowMeans( counts( cds, normalized=TRUE ) ), 

 fitInfo(cds)$perGeneDispEsts, 

 pch = '.', log="xy" ) 

 xg <- 10^seq( -.5, 5, length.out=300 ) 

 lines( xg, fitInfo(cds)$dispFun( xg ), col="red" ) 

 } 

 

Calling the function preduces the plot 

> plotDispEsts( cds ) 

 

Dispersion values used by the subsequent testing are stored in the 

feature data slot of cds 

> head( fData(cds) ) 

 

Fit to model based on the negative binomial distribution 

> res <- nbinomTest( cds, "untreated", "treated" ) 

> head ( res ) 

 

Plot the log2 fold change against the base means, colouring in red 

those genes that are significant at 5% level 

 

> plotDE <- function( res ) 

 plot( 

 res$baseMean, 

 res$log2FoldChange, 

 log="x", pch=20, cex=.3, 

 col = ifelse( res$pval < .05, "red", "black" ) ) 

> plotDE( res ) 

 

Filter for significant genes according to some chosen threshold  

> resSig <- res[ res$pval < 0.05, ] 

 

List the most significantly differentially expressed genes 

> head( resSig[ order(resSig$pval), ] ) 

 
To save the output file use the R functions write.table and 

write.csv  

 

Export to excel 

> write.csv( resSig, "datafile7.4_0.05.csv" ) 
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Figure S2. Whole mutant library and single colony 

The gels show the result of the linker PCR used for library validation. The left gel shows 

squared in red a low complexity mutant library with a laddering of the smears. The blue 

squared lanes illustrate the same high complexity transposon 

(lane 2) to passage 3 (lane 5). The third

with no specific bands. The right gel represents 15 randomly picked single mutant colonies 

isolated from the third generation 

size indicating that the transposon has

  

 

Figure S3. Genome atlas identifying transposon inserts of 11 random isolated mutants.

16 

Whole mutant library and single colony verification. 

The gels show the result of the linker PCR used for library validation. The left gel shows 

squared in red a low complexity mutant library with a laddering of the smears. The blue 

squared lanes illustrate the same high complexity transposon mutant library from 

passage 3 (lane 5). The third generation transposon mutant library shows a smear 

with no specific bands. The right gel represents 15 randomly picked single mutant colonies 

isolated from the third generation transposon mutant library, each giving a band 

dicating that the transposon has inserted at different locations with the genome. 

identifying transposon inserts of 11 random isolated mutants.

 

The gels show the result of the linker PCR used for library validation. The left gel shows 

squared in red a low complexity mutant library with a laddering of the smears. The blue 

mutant library from passage 0 

generation transposon mutant library shows a smear 

with no specific bands. The right gel represents 15 randomly picked single mutant colonies 

transposon mutant library, each giving a band of different 

inserted at different locations with the genome.  

identifying transposon inserts of 11 random isolated mutants. 
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The genome atlas illustrates by black marks in the outer most circle 11 different transposon 

insertion sites within the reference genome. The insertion sites were identified based on 

sequencing 11 of the 15 randomly picked mutant colonies described in figure S1. The 

fragments from the 11 mutants were sequenced and aligning to the reference genome. The 

blue and red parts of the atlas indicate forward and reverse transcriptional direction of the 

open reading frames within the reference genome.  

 

Figure S4. Growth profile of transposon mutant library in whole porcine blood in vitro. 
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The figure shows the growth profile of the transposon mutant population in whole porcine 

blood in vitro. Mutant population size was determined at specific time-points to identify 

functionality of the blood immune cells. After 24 hours incubation in vitro the mutant 

population size was equivalent to the inoculated population size (indicated by the red circle).  
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Figure S5. Experimental setup for identification of genes important for bacterial growth 

in whole porcine blood. 

 

The mutant composition in input pool pre

library aliquot) were compared with mutant 

porcine blood (output pool BHI 

significant change in number of clones represent genes important for whole porcine blood 

survival in addition to growth BHI. The mutant composition in output pool post

porcine blood (output pool BHI 

composition after growth in BHI (BHI 

with a significant change in number of clones in both of the comparisons were evaluated as 

specific for survival in whole porcine blood

 

Table S1. Proposed essential genes.

Table S2. Proposed beneficial genes.

Table S3. Comparison of essential gene lists in 
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Experimental setup for identification of genes important for bacterial growth 

The mutant composition in input pool pre-selection in whole porcine blood (Input pool 

library aliquot) were compared with mutant composition in output pool post

porcine blood (output pool BHI – second generation library). The mutants identified with a 

significant change in number of clones represent genes important for whole porcine blood 

BHI. The mutant composition in output pool post

porcine blood (output pool BHI – second generation library) was compared to mutant 

composition after growth in BHI (BHI – second generation library). The mutants identified 

nge in number of clones in both of the comparisons were evaluated as 

specific for survival in whole porcine blood in vitro. 

Table S1. Proposed essential genes. 

genes. 

Table S3. Comparison of essential gene lists in S. aureus. 

Experimental setup for identification of genes important for bacterial growth 

 

selection in whole porcine blood (Input pool - 

composition in output pool post-selection in 

second generation library). The mutants identified with a 

significant change in number of clones represent genes important for whole porcine blood 

BHI. The mutant composition in output pool post-selection in 

second generation library) was compared to mutant 

second generation library). The mutants identified 

nge in number of clones in both of the comparisons were evaluated as 
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Category

NCTC8325 genes

ST398 genes

Essential or advantageous by TraDIS This study

Essential by Automated TMDH Chaudhuri et al. 2009

Essential in S. aureus Bae et al. 2004

Essential in S. aureus  Fey et al. 2013 
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Abstract 

Staphylococcus aureus is an important opportunistic pathogen that colonizes the upper 

respiratory tract and the skin surface of several animal species, including humans. 

Comparative genomic studies have identified a few phage associated genes that appears to be 

correlated with virulence in humans, but have not been able to identify genes of importance 

for successful colonization or infection in livestock or other animals. The porcine reservoir is 

important for the spread of S. aureus sequence type 398 (ST398) and the identification of 

genes important for survival of ST398 in pigs could contribute to a better understanding of 

transmission and adaptation. In this study we screened a transposon mutant library consisting 

of approximately one million livestock-associated methicillin-resistant S. aureus (LA-

MRSA) ST398 mutants to identify genes important for porcine survival. Seventeen genes 

were identified as important for porcine skin adhesion and survival. Ten genes represent 

mutants with reduced fitness and they primarily encode transporters and enzymes involved in 

metabolic pathways. In addition four mutants with increased fitness were identified and they 

encode DNA binding proteins involved in regulation. Sixteen genes were identified as 

important for nasal epithelial survival, encoding proteins involved in regulation, metabolic 

enzymes, cell wall components and hypothetical proteins. The genes identified here can 

constitute targets for MRSA decolonization in pigs, which could prevent further spread of the 

ST398 linage. Additional investigations into the specific function of the genes identified in 

this study as important for porcine survival are needed.    
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Introduction 

Staphylococcus aureus is an important opportunistic pathogen that colonizes the upper 

respiratory tract and the skin surface of several animal species, including humans (1–3). 

During the past decade a livestock-associated methicillin-resistant Staphylococcus aureus 

(LA-MRSA) linage, belonging to clonal complex 398 (CC398), has become of increasing 

concern. CC398 is the predominant clonal complex in pigs (4). It has been suggested that 

sequence type 398, belonging to CC398, originated as MSSA in humans and from there 

transmitted to livestock, where it acquired mobile genetic elements like SCCmec and Tn916 

facilitating methicillin and tetracycline resistance and in addition lost a prophage, carrying 

genes potentially important for survival in the human host (5).  

Pigs constitute a large reservoir for LA-MRSA ST398 and contribute to an ongoing spread 

and genetic adaptation. However the bacterial mechanisms underlying successful 

colonization and survival in pigs are poorly understood. To better understand the adaptation 

and interspecies transmission potential of LA-MRSA ST398, genes important for porcine 

survival needs to be determined.  

Previous studies have applied porcine nasal epithelial cells, porcine and human skin 

corneocytes and keratinocytes, porcine nasal mucosa explants and live pigs to study S. aureus 

nasal and skin colonization (1, 6–8). All studies used wild type strains or single knockout 

mutants. Corrigan et al. (2009) concluded that the ability of S. aureus to adhere to human 

desquamated nasal epithelial cells was multifactorial and involved the serine-aspartic acid 

repeat proteins SdrC and SdrD as well as iron regulated surface determine protein A (IsdA) 

and clumping factor B (ClfB) (6). IsdA and clfB have also been suggested as important for 

nasal adhesion in other studies (9–11). Tulinski et al. (2013) demonstrated that a beta-toxin 

(hlb) S. aureus ST398 mutant, showing a different hemolysis pattern, had reduced 

colonization properties to porcine nasal epithelial explants compared to wild type (1). 
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Different S. aureus clonal lineages show different adhesion patterns. Some lineages 

demonstrate preferred adhesion to corneocytes isolated from pigs and some to skin 

corneocytes isolated from humans. These patterns were confirmed by in vivo colonization 

experiments in piglets (12). LA-MRSA ST398 did not show preferred binding to corneocytes 

from either pigs or humans (7), but human associated methicillin-sensitive S. aureus (MSSA) 

ST398 showed enhanced adhesion to human isolated skin keratinocytes and keratin (8).    

Mutants applied in previous adhesion and colonization studies were generated based on 

previous knowledge about S. aureus, but this approach cannot help to highlight other 

potential gene candidates, which has not previously been associated with S. aureus 

colonization. In this study we use a transposon mutant library consisting of approximately 

one million LA-MRSA ST398 mutants to identify genes important for porcine survival. The 

mutant library was generated and previously verified by us (manuscript I) and was used in a 

comprehensive screening of genes important for adhesion to and survival on porcine skin 

explants and survival on porcine nasal epithelial tissue.  

  

Materials and methods 

Bacterial strains and culture conditions. A mariner transposon mutant library was 

generated in a previous study in the whole genome sequenced LA-MRSA ST398 isolate 

S0385 (manuscript I). The transposon mutant library consisted of approximately 1 million 

mutants with around 140,000 unique insertion sites and the average number of unique inserts 

per gene was calculated to 44.8. >10
6 

mutant cells from frozen aliquots were inoculated into 

BHI broth (Oxoid) supplemented with 5 mg/l erythromycin (Sigma) and incubated at 37°C 

with aeration overnight. Mutants were harvested, washed twice in phosphate buffered saline 

(PBS) and re-suspended in PBS. To obtain mutant from exponential growth phase, 2 ml from 

the o/n culture was re-inoculated into fresh BHI supplemented with 5 mg/l erythromycin and 
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grown to mid-exponential phase OD600 0.5 before the cells were harvested, washed and re-

suspended in PBS.    

 

Ethics statement. The study protocol was submitted to the ethical review committee at the 

University of Cambridge, Department of Veterinary Medicine, who reported that post 

mortem collection of tissue following the slaughter of male pigs, surplus to a breeding 

program, is not a regulated procedure and provided ethical approval. The UK Animals 

(Scientific Procedures) Act 1986 allows for the use of animal tissues and blood in research 

that come from animals not regulated by the Act. These animals were slaughtered by a 

method of killing identified in Schedule 1 of the Act. In this case, two 6-month-old pigs, a 

male (Pig_1) and a female (Pig_2), were collected at different days with two weeks in 

between. They were euthanized by intravenous overdose of pentobarbitone and the tissue was 

collected immediately postmortem after obtaining the farm owner’s permission for the use of 

their pigs in this study.  

 

Preparation of porcine skin. The pig skin was prepared as described previously (13). The 

skin areas behind the ears were washed with chlorhexidine soap and disinfected with 70 % 

ethanol before epilation with a sterile razor. A squared skin piece of around 8 x 8 cm was 

removed from the pigs and the adipose tissue beneath the dermis was removed with a scalpel. 

The skin was dissected under sterile conditions into 2 cm
2
 pieces, placed in 6-well plates 

(NUNC) and embedded in Hepes agar (145 mM NaCl, 5 mM KCl, 1 mM MgSO4, 10 mM 

Hepes, 10 mM glucose, 5 % Agarose) leaving the skin surface uncovered (see Figure 1). The 

skin pieces were disinfected with 70 % ethanol for 5 min at room temperature followed by 

washing with PBS three times. Swabs were taken from the washed skin surface, streaked on 

blood agar plates and incubated overnight at 37°C to test for surface contamination.  
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Ex vivo porcine skin survival. Genomic DNA (gDNA) was extracted from a transposon 

mutant overnight culture (~10
9 

cells) using MasterPure Gram Positive Purification Kit 

(Epicentre) and stored at -20°C as input pool. 10 µl of up-concentrated mutant culture (~10
11

 

cells) were inoculated onto the porcine skin surface and incubated under atmospheric 

conditions at 32°C for ~24 or ~48 hours (duplicates were generated for each incubation 

period from Pig_1 and Pig_2). After incubation the skin explants were homogenized (with a 

ball bearing and 2 x 5 min, 20 Hz) in 1 ml PBS. 9 x 10
7
 - 2.5 x 10

8 
CFU/ml was recovered 

after ~24 hours and 2.1 x 10
8 

– 4.1 x 10
8 

CFU/ml were recovered after ~48 hours incubation 

on the skin explants. The cell suspensions from each tissue explants were re-inoculated into 

10 ml fresh BHI supplemented 5 mg/l erythromycin (to select for transposon mutant and 

reduce growth of the natural porcine skin microbiota) and incubated overnight at 37°C with 

aeration. From the overnight cultures gDNA was extracted from ~10
9 

cells and stored at -

20°C as output pools. 

 

Ex vivo porcine skin adhesion. S. aureus expresses different surface proteins depending on 

growth phase (3) and therefore both exponentially and stationary grown cell were used in the 

skin adhesion assay. The exponentially grown cells were harvested at OD600 0.5-0.8. gDNA 

was extracted from an exponentially and stationary grown transposon mutant culture (~10
9 

cells from each growth phase) and stored at -20°C as input pools. 10 µl of up-concentrated 

exponentially grown and stationary grown cells (~10
11 

from each growth phase) were 

inoculated onto the porcine skin surface and incubated under atmospheric conditions at 32°C 

for ~20 hours (four replicates for each growth phase were performed on tissue from Pig_1). 

After the tissue pieces were inoculated they were placed into a clean and sterile Eppendorf 

tube with 1 ml PBS and washed once by vigorously vortexing for 5 seconds (to remove 
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loosely adhered/attached bacterial cells). The washed tissue was transferred to a clean and 

sterile Eppendorf tube with 1 ml of 0.1 % Triton-X (to facilitate detachment of adhered 

bacterial cells) and the skin tissue was homogenized (with a ball bearing and 2 x 5 min, 20 

Hz). 3 x 10
7 

– 8 x 10
7 

CFU/ml were recovered of the stationary cells and 1.1 x 10
7 

– 1.5 x 10
7 

CFU/ml were recovered of the exponential cells. The cell suspensions from each tissue 

explants were re-inoculated into 10 ml fresh BHI supplemented 5 mg/l erythromycin (to 

select for transposon mutant and reduce growth of the natural porcine skin microbiota) and 

incubated overnight at 37°C with aeration. From the overnight cultures gDNA was extracted 

from ~10
9 

cells and stored at -20°C as output pools. 

 

Preparation of nasal epithelial tissue. For isolation of nasal epithelial tissue, the pig head 

was removed from the carcass and immediately used for isolation of the nasal septum, 

leaving the lining nasal epithelial tissue intact. The tissue was washed in Dulbecco’s 

Modified Eagle Medium (DMEM - Sigma) supplemented with 2 µg/ml enrofloxacin, 50 

µg/ml streptomycin, 100 U/ml penicillin, and 2.5 µg/ml Fungizone for 15 min. at 37°C at 80 

rpm followed by a 2 hours wash in DMEM with 2 µg/ml enrofloxacin at the same incubation 

conditions. The antibiotic wash was followed by an antibiotic free wash using 500 ml DMEM 

2 x 15 min. plus 4 x 30 min. in 250 ml DMEM (changing to fresh media 6 times) at 37°C at 

80 rpm. After washing, the tissue was kept in 50:50 ratio of DMEM and Roswell Park 

Memorial Institute medium (RPMI) (Sigma) supplemented with 50µM glutamine. The nasal 

epithelium was dissected from the underlying cartilage of the nasal septum and divided into 

pieces of approximate 0.5 x 0.5 cm
2
, in a sterile environment. Antibiotic residual test was 

performed on a bacterial lawn of LA-MRSA ST398 S0385. The tissue pieces were placed on 

filter-paper overlying agar-plugs with the external side facing up-wards. The agar-plugs were 
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arranged in 6-Well plates (NUNC) with a DMEM reservoir, moistening the filter paper and in 

that way nourishing the tissue (see Figure 1).  

 

Porcine nasal epithelial survival. Genomic DNA was extracted from a transposon mutant 

overnight culture (~10
9 

cells) and stored at -20°C as input pool. Five to ten µl of up-

concentrated mutants (~10
11

 cells) were inoculated onto the prepared nasal epithelium and 

incubated at 37°C plus 5 % CO2 for ~24 hours (duplicates from Pig_1 and Pig_2). After 

incubation the epithelial tissue was homogenized (with a ball bearing and 2 x 5 min, 20 Hz) 

in 1 ml PBS.  2.7 x 10
8
 – 4.2 x 10

10 
CFU/ml was recovered after ~24 hours incubation on the 

nasal epithelium explants. The cell suspensions were re-inoculated into 10 ml fresh BHI 

supplemented 5 mg/l erythromycin and incubated overnight at 37°C with aeration. From the 

overnight cultures gDNA was extracted from ~10
9 
cells and stored at -20°C as output pools. 

 

Library preparation for Illumina sequencing. The approach, Transposon directed 

insertion-site sequencing (TraDIS) described previously (14) was used for identification of 

genomic transposon insertions sites. The library preparations were performed as described in 

manuscript I. The libraries were pooled in a 1:1 molar ratio with 7 or 8 samples per flow cell 

lane. The samples were sequenced on an Illumina Hiseq2000 platform for 43 cycles plus 

index read using a custom sequencing primer 

(5-GACACTATAGAAGAGACCGGGGACTTATCAGC-3) resulting in reads with 10 transposon 

insert specific nucleotides (Tn sequence) followed by the junction region.  

 

Sequence analysis and statistics. Sequence reads from the Illumina FASTQ files were 

sorted by index and by using the program Sabre (https://github.com/najoshi/sabre), evaluated 

for the Tn sequence (CAACCTGTTA) allowing 1 mismatch. The Tn sequence and adapter 
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sequences were stripped using Cutadapt (15) in addition to short reads (<10 nucleotides) and 

nucleotides with poor base call quality (<Q15). The junction regions were extracted and 

mapped to the reference genome (accession no. AM990992) using Bowtie 2.0 (16).  

The number of reads corresponding to each transposon insertion site in the input pools was 

compared to the number of reads mapping to the equivalent position in the output pools   

using the DESeq package in R (17, 18). The read counts corresponding to transposon 

insertion sites were normalized to account for variation in the total number of reads obtained 

from each samples. The ratio of input:output reads counts were determined and referred to as 

a log2 fold change, which will be referred to as a fitness score. A negative fitness score 

reflected an attenuated mutant. An attenuated mutant was determined when the number of 

read counts from input pool to output pool decreased and thereby illustrated a decrease in 

mutant clones after selection. For strongly attenuated mutants zero clones will be present in 

the output pools and the log2 fold change was defined as minus infinity and a fitness-score of 

-12 was assigned to such mutants. Like done by Chaudhuri et al. (2013) for each individual 

mutant, the hypothesis that the fitness score was equal to zero and thereby that the mutant 

was present at equivalent levels in the input and output pools was tested for using a negative 

binomial distribution as implemented in DESeq (19). DESeq models variance under the 

assumption that the mutants with comparable levels of sequence coverage exhibit similar 

levels of dispersion. The model was fitted only from those mutants from which replicate data 

was available which was in this case primarily sequence read counts from output pools, as no 

biological replicates were available from input pools. The resultant model was then applied to 

data derived from all mutants to estimate P values.  

 

Results 
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Porcine skin adhesion and survival. An ex vivo porcine skin model was generated using 

freshly isolated porcine skin from the rear of the ears of two different pigs. The skin surface 

was washed and disinfected before inoculation to remove dirt and the surface associated 

natural microbiota. Skin swabs were taken to test the sterilization approach and all the tissue 

samples tested negative for surface contamination. The transposon mutant library was 

screened in the porcine skin model and the skin samples were incubated for approximately 20 

(adhesion assay), 24 (survival assay) or 48 (survival assay) hours. DNA was isolated from the 

transposon mutant library input sample and from output samples. The mutant compositions in 

the input and output pools were quantified and compared based on number of sequence reads 

mapping to open reading frames encoded in the reference genome.  

When the transposon mutant library was selected on porcine skin explants a decrease in cell 

counts (from ~10
11 

to an average of ~10
8
 CFU/ml) were observed suggesting an initial 

selection on the mutant pool. In the skin survival assay a slight increase in cell counts were 

observed between 24 and 48 hours incubation (from an average of ~2 x 10
8 

to ~3 x
 
10

8
 

CFU/ml) which propose that the mutants that are present on the skin explants are viable. A 

decrease in cell counts was observed between the stationary cells recovered in the adhesion 

assay (an average of ~5.4 x 10
7
 CFU/ml) compared to the cells recovered in the survival 

assay after 24 hours incubation (an average of ~2 x 10
8
 CFU/ml). This indicates that some 

mutants were lost in the washing step preformed in the adhesion assay. A lower number of 

mutants were recovered after porcine skin adhesion with exponential cells compared to 

stationary cells (an average of ~1.3 x 10
7
 and ~5.4 x 10

7
 CFU/ml respectively), which could 

point to that the stationary grown mutants adhere better to the porcine skin explants.   

 

In the porcine skin survival assay 27 genes were identified to be associated with alteration in 

fitness and therefore defined as important for LA-MRSA ST398 isolate S0385 survival on 
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porcine skin. The genes represent mutants that had a significant (P level ≤0.01) change in 

fitness when screened on skin explants isolated from both pigs (two replicates from Pig_1 

and Pig_2). The genes are listed in Table S2 in supplementary materials. Twenty-two mutants 

were identified as attenuated whereas five mutants were hypercompetitive within the specific 

environment. Fourteen of the attenuated mutants also showed a reduction in fitness when 

grown under laboratory conditions (genes important for LA-MRSA ST398 isolate S0385 

survival under laboratory conditions can be found in manuscript I supplementary Table S1 

and S2).  

 

The transposon mutant library was also screened in a porcine skin adhesion assay to identify 

genes that were important for skin surface attachment. The mutant pool was screened both in 

the stationary and exponential growth phase as it is known that S. aureus displays a different 

set of surface proteins in the different growth phases. As only the genes specifically 

important for skin attachment were of interest, genes identified as important for survival 

under laboratory conditions (data not shown) and survival in porcine skin assay were 

removed. Only the genes representing mutants with a significant (P level ≤ 0.05) reduction in 

fitness were selected. Sixty-eight genes were identified as representing mutants with reduced 

fitness when the transposon mutant library was selected in the adhesion assay as stationary 

grown cells (see Table S2). These genes correspond to genes encoding adhesion factors 

displayed by S. aureus when grown to a stationary phase and screened in the porcine skin 

adhesion model in the study. Twenty-nine genes representing mutants with attenuated fitness 

were identified based on the same criteria as stated above and when screening the transposon 

mutant library as exponentially grown culture in the adhesion assay (see Table S3).  

When comparing the list of genes obtained in the porcine skin survival and adhesion assay 

screened with stationary grown cells, eight genes were evaluated as important for both 
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adhesion and survival in the skin model and of these six genes represent attenuated mutants 

and two genes hypercompetitive mutants (see Table 1). Eight genes were identified as 

important for adhesion in the exponential growth phase and survival in the porcine skin 

model, two of which showed hypercompetitive mutants with increased fitness in both assays 

and six attenuated mutants with reduced fitness in both assays (see Table 2). Three genes 

showed inconsistency within the two assays. However the genes were only identified with 

fitness changes in skin survival assay for Pig_1 after 1 day of incubation.  

 

Porcine nasal epithelial survival.  Another ex vivo model based on porcine nasal epithelial 

tissue was generated to screen for S. aureus genes important for nasal survival. The tissue 

was collected from two different pigs and was washed extensively with antibiotics to remove 

the natural bacterial microbiota. The absence of residual antibiotics in the tissue was 

confirmed. The transposon mutant library was screened on the porcine nasal explants for 1 

day and DNA was isolated from input and output samples. The mutant composition in the 

input and output pools were quantified and compared.  

When the transposon mutant library was selected on porcine nasal epithelium explants a 

decrease in cell counts (from ~10
11 

to an average of ~10
9
 CFU/ml) were observed like in the 

porcine skin model, suggesting an initial selection on the mutants.  

Four genes with specific importance for nasal epithelium survival were found in this study, 

two of which showed decrease in fitness and two with increased fitness. Table 3 shows the 

genes that were identified with a significant change in fitness score (P level ≤ 0.05) on both 

pigs.   

 

Discussion 
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The purpose of this study was to identify genetic factors that are important for LA-MRSA 

ST398 survival in the pig reservoir. S. aureus porcine colonization studies have been 

performed previously using different wild type S. aureus strains or mutants that were 

generated based on already know colonization factors (1, 6–8). These types of studies will 

however not be able to identify unknown colonization factors utilized by S. aureus and will 

not give an estimate of the relative importance of the different genes. In this study, a genome-

wide screening of a previously generated transposon mutant library in the LA-MRSA ST398 

S0398 isolate, was performed in an ex vivo porcine skin and nasal epithelial model. The 

models were based on freshly isolated porcine tissue to mimic an in vivo environment where 

host factors play important parts for bacterial attachment and persistence (3). Such models 

can be studied under controlled conditions and requires fewer pigs to be sacrificed compared 

to in vivo studies. The combination of ex vivo models and high complexity transposon mutant 

libraries constitutes strong screening tools for identification of unknown genetic factors 

important for bacterial survival in various environments.  

 

Some consistency was found between the genes identified as important for porcine nasal 

epithelial survival when comparing the results obtained from the two pigs. It is know that 

many host factors are involved in S. aureus colonization because only around 20-40% of the 

human population are persistent carries of S. aureus (3, 20). The differences seen between the 

two pigs used in this study could be related to genetic variation, immune status of the host, 

gender or simple differences between pig replicates when using this model system. To get 

more conclusive data the screen should have been repeated on more explants isolated from 

other pigs but this was unfortunately not possible in this study. However, as the genes 

presented here only illustrate genes which were identified as important for survival on several 

replicate explants isolated from both pigs, they should be considered as genes relevant for 
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survival in the porcine reservoir. They constitute good gene candidates for generation of 

single knockout mutants which should be tested within the same assays for a complete 

definition of gene essentiality. 

 

Genes identified with a significant change in fitness when screened in porcine skin survival 

model on tissue samples from both pigs are illustrated in Table S1. Some of the genes 

identified as important for skin survival were also identified as important for survival under 

laboratory conditions. Eight genes representing mutant with a reduced fitness score were 

defined as important for porcine skin survival only and they are described as hypothetical 

proteins, regulators and transporters mainly. The S0385 strain contains 3 circular plasmids 

(21)  and after two days incubation on the porcine skin explants, mutants with transposon 

insert into the replication protein Rep located in plasmid 3 (PSAPIG030001) showed a drop 

in fitness. The plasmid is annotated to encode two different genes, the replication protein and 

a transcriptional regulator (SAPIG030002), one of which might be important for porcine skin 

survival. In addition five genes representing hypercompetitive mutants were defined as 

important for porcine skin survival only. Two of which encode a reductase, one phage 

integrase and two repressors. These functions might not be important in porcine skin survival 

ex vivo but could be essential in other more natural environments were competition and 

selection, are important factors for bacterial survival. 

 

The adhesion assays identified a large number of attenuated mutants which are presented in 

supplementary Table S2 and Table S3. Overall only smaller changes in fitness score were 

identified in the adhesion assays which could be due to low selection pressure in these 

specific models. The washing to remove non-adherent or loosely attached cells was only 

performed once and repetition of this step could increase the selective pressure. Generally 
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various enzymatic encoding genes and genes encoding secreted protein and surface proteins 

represented the mutants with the most profound loss in fitness in the skin adhesion assays. 

Clumping factor B (ClfB) and another fibrinogen-binding protein (SAPIG1154) were 

evaluated as important for skin adhesion when screening stationary grown cells. ClfB has 

previous been evaluated to be involved in human nasal adhesion and carriage (6). ClfB is 

predominantly expressed in the exponential growth phase and clumping factor A (ClfA) is 

mainly expressed on the surface of cells from the stationary growth phase (3). In this study 

clfB mutants are identified with attenuated fitness when screening stationary grown cells for 

skin adhesion in vitro and clfA (SAPIG0866) was not identified with attenuated fitness. The 

cells were incubated for ~24 hours on the skin surface before washing. During incubation, the 

mutants could have continued to grow at an unknown rate, resulting in a switch from 

stationary to exponential growth at some point.  

Immunoglobulin G binding protein A and staphylococcal secretory antigen ssA1 and ssA2 

were identified as important for skin adhesion. In addition cap5A and cap5D (both involved 

in capsular polysaccharide biosynthesis) mutants were identified with attenuated fitness in the 

skin adhesion assay using exponentially grown cells. Protein A and capsular polysaccharide 

inhibit phagocytosis (3) and the staphylococcal secretory antigens have predicted 

immunogenic function. This indicates that immune evasion and modulation are important 

features for the initial S. aureus ST398 colonization of porcine skin.   

 

Genes with either a fitness reduction or increase (negative or positive fitness score) in both 

the porcine skin adhesion and survival models are defined as the genes of interest (see Table 

1 and 2). The genes were selected if they showed a significant reduction or increase in read 

counts at the P level ≤0.01 in both the adhesion and the survival assay after 1 or 2 days of 

infection. Table 3 shows an overview and descriptions of the genes evaluated as important for 
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porcine skin adhesion and survival. SAPIG0737 and SAPIG0740, encoding a DNA-binding 

response regulator and an ABC transporter respectively, represent mutants with significant 

attenuated fitness in the adhesion assay, using either stationary or exponentially grown cells, 

and the skin survival assay after 1 and 2 days of infection. In addition SAPIG0739, encoding 

the export ATP-binding protein BceA known to be involved in S. aureus infection, showed a 

reduced fitness in the adhesion assay screened with a stationary culture and in the skin 

survival assay. These three proteins are encoded just next to each other in the S0385 genome 

with just one gene, SAPIG0738, in between them. BceA (SAPIG0739) and BceB 

(SAPIG0740) make up an ABC transporter whereas the BceR (SAPIG0737) and BceS 

(SAPIG0738) are the regulatory and sensing part located just upstream of the transporter 

genes (22). BceAB transporter shows similarity with Bacillus subtilis ABC transporter with 

the same annotation and was previously defined as responsible for bacitracin efflux in 

Bacillus (23). Bacitracin is a polypeptide antibiotic produced by B. subtilis and B. 

licheniformis (24, 25) and these polypeptides disrupt cell wall and peptidoglycan synthesis in 

Gram positive and Negative bacteria. It has been shown previously that mutation in bceRS 

and bceAB reduced the resistance to bacitracin and in addition inactivation of bceAB reduced 

oxacillin resistance slightly, indicating that the ABC transporter might be involved in cell 

wall biosynthesis (22). As bceS (SAPIG0738) mutants were not identified as relevant for 

porcine skin adhesion and survival and as the model environment was supposedly bacitracin 

free, this ABC transporter system may have other functions relating to the survival on porcine 

skin. In general ABC transporters constitute a large family of membrane transporters 

contributing to import and export of various substances such as proteins, peptides, 

polysaccharides and antibiotics (26). Therefore the specific bceAB transporter system 

identified here as important for porcine skin survival could have several functions relevant 

for bacterial survival. Another gene that showed importance for adhesion and survival on 
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porcine skin, though only evaluated as important for survival on one of the pigs, was EsaB, 

which is a negative regulator of EsaC. EsaC production and secretion is increased when 

Staphylococci replicate in serum or infected hosts (27). EsaB and EsaC are defined as being 

involved in S. aureus virulence and are required for persistent infection, EsaB mutants fail to 

repress EsaC and bacteria lacking EsaB function will overproduce EsaC. The over-expression 

of EsaC is also the natural response when S. aureus is replicating in host tissue. Animals and 

humans mount however an immune response to EsaC during infection (27), which could 

explain why a constitutive over-expression of EsaC, in the EsaB mutants, might not be in the 

favour of the pathogen in the long run. Enzymes involved in membrane lipid metabolism and 

galactose metabolism were also identified as important for porcine skin adhesion and 

survival. Tn916 integrase mutants were evaluated to be hypercompetitive in the porcine skin 

screening assays. Tn916 encodes tetracycline resistance which most likely is responsible for 

selection of ST398 in the pig reservoir as tetracycline often is used for therapeutic treatment 

in pigs.  The Tn916 integrase is part of the conjugation transfer system of the transposon (21). 

The mobility of the Tn916 is disrupted in the integrase mutant, which might give the mutant a 

competitive advantage under the experimental conditions applied.     

A previous study using porcine nasal explants identified beta-toxin gene hlb as a S. aureus 

S0385 nasal colonization factor, based on CFU quantifications of S0385 wild type and S0385 

beta haemolysin mutant (1). SAPIG2471 encoding beta haemolysin was not among the genes 

identified as most significant for nasal epithelium survival in this study. When inspecting the 

raw count data a decrease in read count from input to output for the beta haemolysin genes 

was indentified in three of the four replicates (data not shown), but this reduction was not 

defined as significant using the DESeq package in R. To verify the significance of the gene in 

nasal survival more tissue replicates should have been included in the analysis. Only four 

genes with specific importance for nasal epithelium survival were found in this study, two of 
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which showed decrease in fitness and two with increased fitness. SAPIG1248 encoding an 

aminoacyltransferase FemA, which is essential for expression of mecA, was identified with 

reduced fitness in the nasal survival model. S0385 genome is annotated with four different 

aminoacyltransferase FemA encoding genes, one of which (SAPIG1375) was identified by us 

previous as essential for growth under laboratory conditions (manuscript 1). This essential 

femA gene is 1263 nucleotides whereas the femA gene found as important for nasal survival 

in this study is only 486 and they show 88 % identity. FemA is involved in methicillin 

resistance and femA mutants have shown a reduced glycine content in the peptidoglycan 

layer, a reduced cell wall turnover in growing cells, reduced whole-cell autolysis under non-

growing conditions and increased methicillin sensitivity (28). The alteration in the cell wall 

could reduce bacterial resistance to the host immune response. Two genes representing 

hypercompetitive mutants when screened in the nasal survival model, encode a cell wall 

anchor domain and a transpeptidase which anchors surface proteins to the cell wall. The S. 

aureus sortase attaches surface proteins to the cell wall and the lpxtg-mediated anchoring 

domain also mediates attachment of proteins to the cell wall. These could be important for 

bacterial adhesion, but also facilitate a immune recognition site and as the nasal tissues were 

not washed post infection, genes important for adhesion to these tissue samples were not 

tested in this study. 

 

Conclusion   

Comparative genomic studies have identified a few phage associated genes that appears to be 

correlated with virulence in humans, but have not been able to identify genes of importance 

for successful colonization or infection in livestock or other animals (8). The pig reservoir is 

important for the spread of ST398 and the identification of genes important for survival of 
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ST398 in pigs could contribute to a better understanding of transmission and adaptation. In 

this study we screened a previously generated genome saturated LA-MRSA ST398 

transposon mutant library, in ex vivo porcine skin and nasal epithelium survival and adhesion 

assays.  Seventeen genes were identified as important for porcine skin adhesion and survival. 

Ten genes represent attenuated mutants with reduced fitness. They primarily encode 

transporters and enzymes involved in metabolic pathways. In addition four hypercompetitive 

mutants with increased fitness were identified and they encode DNA binding proteins 

involved in regulation. Sixteen genes were identified as important for nasal epithelial 

survival, encoding proteins involved in regulation, metabolic enzymes, cell wall components 

and hypothetical proteins. The genes identified in this study could constitute targets for 

MRSA decolonization in pigs and thereby prevent further spread and the potential adaption 

within the ST398 lineage which takes place in the pig reservoir. However the genes need 

further investigation to understand the specific function in porcine survival.    
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Figure 1. Illustration of the porcine ex vivo nasal epithelial and skin models.

The figure shows photos and schematic presentations of the porcine ex vivo nasal epithelial 

skin model.  

nasal epithelial and skin models. 

 

nasal epithelial 
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Table 1. Genes important for porcine skin adhesion (stationary cells) and survival. 

Gene ID 
Pig_1 Adhesion 

(stationary cells) 

Pig_1 

Survival 

Pig_2 

Survival 
Fitness Score P value 

SAPIG0287 Yes Day  1+2 Day 2 -3.8 to -12 

(4/5) 

0.001 to <0.0001 

SAPIG0300 
Yes 

Day 1  - -4.3 to -5.3 

(2/5) 

<0.0001 

SAPIG0737 
Yes 

Day  1+2 Day 1 -2.7 to -3.7 

(4/5) 

 0.009 to <0.0001 

SAPIG0739 
Yes 

Day 1 Day 1 -2.5 to -2.9 

(3/5) 

0.0009 to 

<0.0001 

SAPIG0740 
Yes 

Day  1+2 Day 1 -1.8 to -2.7 

(4/5) 

0.001 to < 0.0001 

SAPIG1303 
Yes 

Day  1+2 Day 1 -1.7 to -3.1 

(4/5) 

0.007 to <0.0001 

SAPIG1425 Yes Day  1+2 Day 1 2.0 to 3.2 (4/5) 0.005 to < 0.0001 

SAPIG2410 Yes Day 1 Day 1 2.6 to 3.5 (3/5) 0.002 to <0.0001 

 

The table shows the genes which represent mutants with altered fitness after selection on 

porcine skin explants. Only mutant found with altered fitness in both the adhesion assay 

using stationary grown cells and the survival assay (survival after day 1 and/or day 2) are 

represented. A negative fitness score correspond to mutants with attenuated fitness and a 

positive fitness score correspond to mutants with increase fitness. All together 5 assays were 

conducted with 2-4 biological replicates in each assay. The genes selected showed a 

significant change in mutant clones from input to output at P level ≤0.01. 

 

Table 2. Genes important for porcine skin adhesion (exponential cells) and survival. 

Gene ID 
Pig_1 Adhesion 

(exponential cells) 

Pig_1 

Survival 

Pig_2 

Survival 
Fitness Score P value 

SAPIG0737 

Yes 

Day 1+2 Day 1 

-2.5 to -4.6 

(4/5) 

0.009 to < 

0.0001 

SAPIG0740 

Yes Day 1+2 

Day 1 

-1.8 to -2.5 

(4/5) 

0.004 to < 

0.0001 

SAPIG0837 

Yes 

 - Day 1 

-2.7 to -3.3 

(2/5) 

0.0003 to 

0.0007 

SAPIG1193 

Yes Day 1+2 

 - 

-1.7 to -2.6 

(3/5) 

0.0003 to 

0.0002 

SAPIG1300 

Yes Day 1+2 

Day 1 

-2.0 to -3.3 

(4/5) 

0.01 to > 

0.0001 

SAPIG1964 

Yes Day 1+2 

 - 

-2.2 to -2.9 

(3/5) 

0.009 to < 

0.0001 

SAPIG1825 

Yes 

Day 1  - 

-1.6 to 1.4 

(2/5) 

0.003 to 0.0006 

SAPIG0721 Yes Day 1  - -1.4 to 2.3 0.004 to 0.0008 



Manuscript II 
 

25 

 

(2/5) 

SAPIG1418 

Yes 

Day 1  - 

-2.3 to 3.3 

(2/5) 

0.002 to 0.0004 

SAPIG0953 Yes -  Day 1 2.1 to 3.2 (2/5) 0.008 to 0.0006 

SAPIG1586 Yes Day 1 Day 1 1.7 to 3.4 (3/5) 0.006 to 0.003 

 

The table shows the genes which represent mutants with altered fitness after selection on 

porcine skin explants. Only mutant found with altered fitness in both the adhesion assay 

using exponentially grown cells and the survival assay (survival after day 1 and/or day 2) are 

represented. A negative fitness score correspond to mutants with attenuated fitness and a 

positive fitness score correspond to mutants with increase fitness. All together 5 assays were 

conducted with 2-4 biological replicates in each assay. The genes selected showed a 

significant change in mutant clones from input to output at P level ≤0.01. 
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Table 3. Description of the genes identified as important for porcine skin adhesion and 

survival. 

Gene ID Relative fitness Description KEGG 

Attachment (stationary cells) and Survival 

SAPIG0287 Attenuated Hypothetical protein  - 

SAPIG0300 Attenuated Protein EsaB Virulence protein/Secretion 

system 

SAPIG0737 Attenuated DNA-binding response 

regulator 

Bacitracin transport 

SAPIG0739 Attenuated Bacitracin export ATP-binding 

protein BceA 

Bacitracin transport/S. aureus 

infection 

SAPIG0740 Attenuated ABC transporter, permease 

protein 

S. aureus infection 

SAPIG1303 Attenuated Aerobic glycerol-3-phosphate 

dehydrogenase 

Glycerophospolipid metabolism 

SAPIG1425 Hypercompetitive Methionine-S-sulfoxide 

reductase MsrA 

 - 

SAPIG2410 Hypercompetitive HTH-type transcriptional 

regulator TcaR 

Arsenical Resistance Operon 

Repressor and similar 

prokaryotic, metal regulated 

homodimeric repressors 

Attachment (exponential cells) and Survival 

SAPIG0737 Attenuated DNA-binding response 

regulator 

Bacitracin transport 

SAPIG0740 Attenuated ABC transporter, permease 

protein 

S. aureus infection 

SAPIG0837 Attenuated Prolipoprotein diacylglyceryl 

transferase 

 - 

SAPIG1193 Attenuated Phosphoenolpyruvate-

dependent sugar 

phosphotransferase system, 

eiia 2, putative 

Galactose metabolism/metabolic 

pathways 

SAPIG1300 Attenuated Glycerol uptake operon 

antiterminator regulatory 

protein 

 - 

SAPIG1964 Attenuated Teichoic acid translocation 

ATP-binding protein TagH 

Transporter 

SAPIG0721 Inconsistancy Penicillin binding protein 4 Peptidoglycan biosynthesis 

SAPIG1418 Inconsistancy Hypothetical protein  - 

SAPIG1825 Inconsistancy Glucosaminidase  - 

SAPIG0953 Hypercompetitive Transposase from transposon 

(Integrase) 

DNA binding domain of tn916 

integrase 

SAPIG1586 Hypercompetitive Arginine repressor DNA binding domain 

 

The genes found to represent mutants with altered fitness when screened in the porcine skin 

survival and adhesion assay are shown in Table 2. Gene ID corresponding to the NCBI gene 

database, relative fitness, gene description, and KEGG are illustrated. The genes marked in 
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purple were identified with attenuated fitness in the adhesion assay regardless of growth 

phase.  

 

Table 4. Porcine nasal epithelium survival. 

Gene ID Nasal BHI Skin Fitness Score P value Description 

SAPIG2163 Yes Yes Yes -5.7 and -12 0.005 to < 0.0001 Transcription termination factor 

Rho 

SAPIG0562 Yes Yes Yes -3.0 and -5.2 0.04 to 0.005 Pur operon repressor 

SAPIG2016 Yes Yes Yes -3.8 and -4.9 0.03 to 0.01 YkgB 

SAPIG1363 Yes Yes Yes -3.2 and -4.7 0.02 to 0.01 Regulatory protein MsrR 

SAPIG1248 Yes No No -3.7 and 4.2 0.04 to 0.02 Aminoacyltransferase FemA 

(Factor essential for expression 

of methicillin resistance A) 

SAPIG2147 Yes Yes Yes -4.0 and -12 0.02 to 0.0006 ATP synthase F1, alpha subunit 

SAPIG2568 Yes No Yes -3.2 and -3.9 0.05 to 0.0002 Fructose-1,6-bisphosphatase 

SAPIG1302 Yes Yes Yes -3.9 and -4.5 0.04 to 0.004 Glycerol kinase 

SAPIG1833 Yes Yes Yes -3.9 and -4.9 0.003 to 0.002 Hypothetical protein 

SAPIG0738 Yes Yes Yes -2.6 and -3.8 0.007 to 0.0001 Sensor protein BceS 

SAPIG2002 Yes Yes No -3.5 and -7.8 0.04 to 0.03 Adenylosuccinate lyase 

SAPIG0814 Yes Yes No -3.3 and -6.2 0.02 to 0.0003 UDP-N-

acetylenolpyruvoylglucosamine 

reductase 

SAPIG0287 Yes No No -2.9 and -5.8 0.02 Hypothetical protein 

SAPIG0786 Yes Yes Yes -2.3 and -2.6 0.04 to 0.02 Hypothetical protein 

SAPIG1809 Yes No No 2.5 and 3.2 0.04 to 0.02 lpxtg-motif cell wall anchor 

domain 

SAPIG2578 Yes No No 4.4 and 6.4 0.03 to 0.0003 Sortases are cysteine 

transpeptidases, found in gram-

positive bacteria, that anchor 

surface proteins to peptidoglycans 

of the bacterial cell wall envelope 

 

Table 4 illustrates the genes representing mutants identified with significant altered fitness in 

the nasal epithelial survival assay (P level ≤0.05). Information about whether these genes 

were essential/beneficial for growth under laboratory conditions (manuscript I Table S1 and 

S2) and for porcine skin survival was included in the table (P level ≤0.05).  
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Supplementary materials 

Table S1. Porcine skin survival. 

Gene ID BHI Pig_1 Pig_2 
Fitness 

Score 
P value Description 

 PSAPIG030001 No Day 

2 

Day 

2 

-3.5 to -

4.2 

(2/4) 

<0.0001 replication protein Rep 

SAPIG0004 Yes Day 

2 

Day 

2 

-2.5 to -

3.6 

(2/4) 

<0.0001 DNA replication and repair 

protein RecF 

SAPIG0287 No Day 

1+2 

Day 

2 

-3.8 to -

12 (3/4) 

0.001 to 

<0.0001 

hypothetical protein 

SAPIG0737 No Day 

1+2 

Day 

1 

-2.5 to 

3.7 

(3/4) 

0.01 to <0.0001 DNA-binding response 

regulator 

SAPIG0738 Yes Day 

1+2 

Day 

1 

-2.0 to -

3.6 

(3/4) 

0.005 to 

<0.0001 

sensor protein BceS 

SAPIG0739 No Day 

1 

Day 

1 

-2.9  

(2/4) 

0.001 to 

<0.0001 

bacitracin export ATP-binding 

protein BceA 

SAPIG0740 No Day 

1+2 

Day 

1 

-1.6 to -

2.8 

(3/4) 

0.001 to 

>0.0001 

ABC transporter, permease 

protein 

SAPIG0786 Yes Day 

1+2 

Day 

1 

-2.2 to -

4.5 

(3/4) 

0.001 to 

<0.0001 

hypothetical protein 

SAPIG0814 Yes Day 

1+2 

Day 

2 

-3.2 to -

5.1 

(3/4) 

0.002 to 

<0.0001 

UDP-N-

acetylenolpyruvoylglucosamine 

reductase 

SAPIG1198 Yes Day 

1 

Day 

1 

-4.5 to -

4.6 

(2/4) 

0.0004 to 

<0.0001 

dihydroorotase (DHOase) 

SAPIG1300 No Day 

1+2 

Day 

1 

-2.4 to -

3.3 

(3/4) 

0.002 to 

<0.0001 

glycerol uptake operon 

antiterminator regulatory 

protein 

SAPIG1302 Yes Day 

1 

Day 

1+2 

-2.4 to -

5.3 

(3/4) 

0.005 to 0.004 glycerol kinase 

SAPIG1303 No Day 

1+2 

Day 

1 

-1.7 to -

3.1 

(3/4) 

0.007 to 

<0.0001 

aerobic glycerol-3-phosphate 

dehydrogenase 

SAPIG1309 Yes Day 

1+2 

Day 

2 

-1.8 to -

4.0 

(3/4) 

0.007 to 0.0004 aluminium resistance protein 

SAPIG1464 No Day 

1+2 

Day 

2 

-3.0 to -

5.0 

(3/4) 

0.02 to <0.0001 3-phosphoshikimate 1-

carboxyvinyltransferase 

SAPIG1756 Yes Day Day -4.1 to - 0.0003 to DNA polymerase III subunit 
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1 2 7.3 

(2/4) 

<0.0001 alpha 

SAPIG1788 Yes Day 

2 

Day 

1 

-5.3 to -

5.5 

(2/4) 

<0.0001 catabolite control protein A 

SAPIG1833 Yes Day 

1 

Day 

1 

-2.3 to -

4.7 

(2/4) 

0.0004 to 

<0.0001 

hypothetical protein 

SAPIG2016 Yes Day 

1+2 

Day 

1+2 

-5.2 to -

7.9 

(4/4) 

0.005 to 

<0.0001 

YkgB 

SAPIG2090 Yes Day 

2 

Day 

1 

-1.2 to -

4.5 

(2/4) 

0.005 to 0.002 peptidase M22, glycoprotease 

SAPIG2147 Yes Day 

1+2 

Day 

1+2 

-4.2 to -

6.6 

(4/4) 

0.0002 to 

<0.0001 

ATP synthase F1, alpha subunit 

SAPIG2163 Yes Day 

1+2 

Day 

1+2 

-4.8 to -

8.6 

(4/4) 

0.001 to 

<0.0001 

transcription termination 

factor Rho 

SAPIG0457 No Day 

1 

Day 

1 

1.4 to 

2.0 

(2/4) 

0.01 to 0.006 alkyl hydroperoxide reductase, 

F subunit 

SAPIG0701 No Day 

2 

Day 

1 

1.5 to 

2.5 

(2/4) 

0.008 to 0.0003 phage integrase family protein 

SAPIG1425 No Day 

1+2 

Day 

1 

2.1 to 

4.9 

(3/4) 

0.005 to 0.002 methionine-S-sulfoxide 

reductase 

SAPIG1586 No Day 

1 

Day 

1 

1.7 to 

3.4 

(2/4) 

0.005 to 0.004 arginine repressor 

SAPIG2410 No Day 

1 

Day 

1 

3.2 to 

3.5 

(2/4) 

0.002 to 

<0.0001 

HTH-type transcriptional 

regulator TcaR 

 

The table shows genes representing mutants that were identified with a change in fitness in 

the porcine skin survival assay on Pig_1 and Pig_2 for 1 and/or 2 days incubation. Only 

genes with a significant change in fitness score at the P level ≤0.01 were included. The BHI 

column represents genes evaluated previously as essential/beneficial for survival under 

laboratory conditions (manuscript I Table S1 and S2).    
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Table S2. Adhesion assay with stationary grown mutants (Pig_1). 

Gene ID Fitness Score P value Description 

SAPIG1372 -3,02 0,016 N-(5'phosphoribosyl)anthranilate isomerase 

SAPIG1342 -2,74 0,037 hypothetical protein 

SAPIG2137 -2,55 0,019 tena/thi-4 family 

SAPIG1154 -2,52 0,025 fibrinogen-binding protein 

SAPIG2731 -2,37 0,001 ATP phosphoribosyltransferase regulatory subunit 

SAPIG0199 -2,22 0,001 N-acetyl-gamma-glutamyl-phosphate reductase 

SAPIG2510 -2,14 0,000 glutamate synthase-ferredoxin large subunit 

SAPIG1800 -2,12 0,037 metallo-beta-lactamase superfamily protein 

SAPIG0659 -2,12 0,006 hypothetical protein 

SAPIG0135 -2,10 0,010 pyridoxal-dependent decarboxylase decarboxylase 

SAPIG2262 -1,99 0,003 hyaluronate lyase (Hyaluronidase) (HYase) 

SAPIG2477 -1,90 0,005 aminotransferase, class II 

SAPIG0971 -1,84 0,006 Hydrolase 

SAPIG1383 -1,82 0,026 hypothetical protein 

SAPIG0489 -1,77 0,004 3-beta hydroxysteroid dehydrogenase/isomerase 

SAPIG1111 -1,65 0,011 pyruvate carboxylase 

SAPIG0643 -1,56 0,020 hypothetical protein 

SAPIG2500 -1,56 0,010 glycine betaine/carnitine/choline transport ATP-binding 

protein opuCA 

SAPIG0243 -1,56 0,016 acyl-CoA dehydrogenase family protein 

SAPIG2506 -1,55 0,029 hypothetical protein 

SAPIG2268 -1,54 0,013 acetolactate synthase, catabolic 

SAPIG0849 -1,50 0,009 hypothetical protein 

SAPIG2631 -1,49 0,026 hydrolase, alpha/beta hydrolase fold family 

SAPIG0437 -1,49 0,013 bifunctional homocysteine S-methyltransferase/5,10-

methylenetetrahydrofolate reductase protein 

SAPIG2426 -1,48 0,028 pyridine nucleotide-disulphide oxidoreductase family 

protein 

SAPIG0606 -1,47 0,018 cysteinyl-tRNA synthetase 

SAPIG1973 -1,44 0,017 hypothetical protein 

SAPIG0578 -1,43 0,043 chaperonin HslO 

SAPIG1482 -1,42 0,002 hypothetical protein 

SAPIG2231 -1,39 0,002 probable uridylyltransferase 

SAPIG0541 -1,37 0,041 alpha,alpha-phosphotrehalase 

SAPIG2563 -1,35 0,010 DedA family protein 

SAPIG0748 -1,32 0,001 hypothetical protein 

SAPIG2350 -1,30 0,013 staphylococcal secretory antigen ssaA2 

SAPIG0752 -1,29 0,029 Surface antigen 

SAPIG0010 -1,25 0,036 AzlC family protein 

SAPIG2238 -1,25 0,043 alanine racemase, N-domain family 

SAPIG2357 -1,24 0,004 bifunctional autolysin 

SAPIG1703 -1,22 0,028 S-adenosylmethionine:tRNA ribosyltransferase-isomerase 

SAPIG1075 -1,21 0,004 hypothetical protein 

SAPIG2343 -1,19 0,005 urease accessory protein UreG 

SAPIG2564 -1,13 0,050 multidrug-efflux transporter 

SAPIG2111 -1,12 0,008 alanine racemase 

SAPIG1996 -1,10 0,029 sodium/proline symporter 
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SAPIG2491 -1,10 0,004 sodium/hydrogen exchanger family protein 

SAPIG2352 -1,08 0,001 NAD/nadp octopine/nopaline dehydrogenase family 

protein 

SAPIG2485 -1,08 0,004 hypothetical protein 

SAPIG0441 -1,07 0,004 transporter, small conductance mechanosensitive ion 

channel (MscS) family 

SAPIG2703 -1,05 0,034 translocase, putative 

SAPIG2617 -1,04 0,048 staphylococcal secretory antigen ssaA1 

SAPIG2348 -1,02 0,045 transcriptional regulator, AraC family 

SAPIG0431 -1,01 0,020 ABC transporter ATP-binding protein 

SAPIG0800 -1,00 0,027 ABC transporter permease protein 

SAPIG2237 -0,92 0,010 ferrichrome ABC transporter lipoprotein 

SAPIG0456 -0,92 0,025 hypothetical protein 

SAPIG2679 -0,89 0,010 clumping factor B (Fibrinogen-binding protein B) 

(Fibrinogenreceptor B) 

SAPIG1100 -0,89 0,003 hypothetical protein 

SAPIG2264 -0,86 0,019 hypothetical protein 

SAPIG0122 -0,85 0,034 immunoGlobulin g binding protein a 

SAPIG2569 -0,84 0,049 hypothetical protein 

SAPIG0858 -0,82 0,037 Carboxylesterase 

SAPIG0795 -0,80 0,049 allophanate hydrolase subunit 2 

SAPIG0782 -0,79 0,009 Amino acid transport and metabolism 

SAPIG2335 -0,72 0,016 ferric hydroxamate receptor 1 

SAPIG2215 -0,71 0,016 truncated FmtB protein 

SAPIG0271 -0,65 0,013 glycosyl transferase, group 2 family protein 

SAPIG0046 -0,59 0,045 hypothetical protein 

SAPIG2589 -0,57 0,040 pyruvate oxidase 

 

The table shows the genes representing mutants identified with a change in fitness in the 

adhesion assay with stationary grown mutants. Only mutants, that showed a significant 

attenuation in fitness at P level ≤0.05, were included. These genes were not identified as 

essential/beneficial for growth under laboratory conditions (manuscript I) or with significant 

altered fitness in the skin survival assay.  
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Table S3. Adhesion assay with exponentially grown mutants (Pig_1). 

Gene ID Fitness Score P value Description 

SAPIG0883 -5,19 0,004 3-dehydroquinate dehydratase, type I 

PSAPIG030002 -4,57 0,014 transcriptional regulator 

SAPIG0772 -3,92 0,002 multidrug resistance protein 1 (Multidrug-efflux 

transporter 1) 

SAPIG2627 -3,84 0,006 hypothetical protein 

SAPIG1493 -3,72 0,005 Holin 

SAPIG1094 -3,42 0,045 hypothetical protein 

SAPIG0017 -3,27 <0,001 adenylosuccinate synthetase 

SAPIG1163 -3,07 0,039 ornithine carbamoyltransferase 

SAPIG2138 -3,02 0,035 SceD 

SAPIG0163 -2,96 0,026 capsular polysaccharide type 5 biosynthesis protein 

cap5A 

SAPIG2049 -2,76 0,050 hypothetical protein 

SAPIG0257 -2,62 0,036 phosphoenolpyruvate-dependent sugar 

phosphotransferase system, eiia 2, putative 

SAPIG2098 -2,55 0,023 3-isopropylmalate dehydratase, large subunit 

SAPIG1305 -2,53 0,048 tRNA delta(2)-isopentenylpyrophosphate transferase 

SAPIG1982 -2,46 0,014 protein in map 5'region 

SAPIG0166 -2,07 0,005 capsular polysaccharide biosynthesis protein Cap5D 

SAPIG0405 -2,05 0,023 protein in Tap1-dppD intergenic region 

SAPIG0105 -1,90 0,016 transport protein 

SAPIG2633 -1,74 0,040 ferrous iron transporter protein B 

SAPIG2248 -1,54 0,017 cell surface hydrolase 

SAPIG2651 -1,51 0,019 amino acid permease family protein 

SAPIG2671 -1,46 0,037 ABC transporter 

SAPIG1782 -1,45 0,017 penicillin-binding protein 1A 

SAPIG0062 -1,44 0,050 coenzyme A disulfide reductase/ disulfide bond 

regulator domain 

SAPIG0289 -1,38 0,035 transmembrane efflux pump protein 

SAPIG2168 -1,25 0,039 hypothetical protein 

SAPIG2386 -1,09 0,030 hypothetical protein 

SAPIG2419 -1,07 0,048 L-lactate permease 

 

The table shows the genes representing mutants identified with a change in fitness in the 

adhesion assay with exponentially grown mutants. Only mutants, that showed a significant 

attenuation in fitness at P level ≤0.05, were included. These genes were not identified as 

essential/beneficial for growth under laboratory conditions (manuscript I) or with significant 

altered fitness in the skin survival assay.  
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Abstract 

Staphylococcus aureus is an opportunistic pathogen that colonizes various animal hosts, including 

humans. Between 20-40 % of the human population are permanent or intermediate carriers of S. 

aureus (1, 2).  It can cause a variety of infections ranging from minor soft tissue and skin infections 

to life-threatening systemic infections. Successful infection in a giving host depends on virulence 

factors produced by the bacterium, which can promote adhesion, immune evasion as well as 

damage to host cells. Different S. aureus strains encode different sets of virulence genes that 

somewhat reflect the environment within the host. 

Tool for identification of specific virulence genes are important in diagnostics and surveillance. 

New approaches within diagnostics and surveillance for species identification, evolutionary 

clustering, and identification of resistance and virulence markers are based on whole genome 

sequencing (WGS).  The biggest challenge with the appliance of WGS is, however, to interpret the 

large amount of data retrieved with this technology. We constructed the S. aureus VirulenceFinder, 

a web server that can utilise WGS data from S. aureus genomes to extract a virulence profile. The 

database will be freely available through The Centre for Genomic Epidemiology (CGE) 

(www.genomicepidemiology.org) web services.  
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Introduction 

Staphylococcus aureus is a well know opportunistic pathogen that colonizes mucous membranes 

and skin surfaces of various animal species including humans (1, 3–5). S. aureus can cause a variety 

of infections ranging from minor soft tissue and skin infections to life-threatening systemic 

infections (6, 7). Successful infection in a giving host depends on virulence factors produced by S. 

aureus (4). Both secreted and cell surface associated proteins can promote adhesion to host 

extracellular matrices, damage host cells and evade the host immune system (5). S. aureus 

infections have become of increasing concern with the development of resistance to multiple 

antimicrobial drugs, including methicillin (methicillin-resistant S. aureus - MRSA). Different S. 

aureus strains encode different sets of virulence genes that somewhat reflect the environment within 

the host. Health care-associated MRSA (HA-MRSA) and community-associated MRSA (CA-

MRSA) are genetically distinct as their environmental niches differ and they display different 

virulence profiles. HA-MRSA infects immune compromised individuals often under antibiotic 

selective pressure, whereas CA-MRSA infects healthy individuals requiring a different set of 

virulence factors such as the Panton-Valentine leukocidin (PVL), which is thought to be an 

important toxin in the CA strains (8). In the early 2000s a new emerging CA linage was identified 

in livestock in Europe. The linage belongs to the Sequence Type 398 (ST398) and is referred to as a 

livestock-associated (LA) S. aureus (9, 10). ST398 is genetically distinct from other CA S. aureus 

and display a broader host spectrum compared to HA S. aureus and can colonize and infect 

livestock as well as humans (11). Additionally evidence has been shown, suggesting that ST398 

originated in humans, transmitted and adapted to pigs and are now transferring back to humans 

(12). All together S. aureus display a large set of virulence factors which is required for bacterial 

colonization and infection in different host under various conditions.  
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Identification of specific virulence genes as well as antibiotic resistance markers and bacterial 

typing are important tool in diagnostics and surveillance. Conventional typing is based on 

phenotypic methods some of which are verified by genotypic tests. However in recent years, whole 

genome sequencing (WGS) has become increasingly available. There have been huge 

improvements in sequencing technologies and the cost has gone down significantly. This gives rise 

to a new approach within diagnostics and surveillance, where WGS can be utilized for species 

identification, evolutionary clustering, identification of resistance and virulence markers just to 

mention a few of the many applications. The biggest challenge with the appliance of WGS is, 

however, to interpret the large amount of data retrieved with this technology. To translate large 

amounts of DNA sequences into functional information requires bioinformatics tools that are 

standardized and simple to use. The Centre for Genomic Epidemiology (CGE) 

(www.genomicepidemiology.org) aims at generating bioinformatic tools for handling WGS 

information, useful for outbreak investigation, epidemiological surveillance, source tracking and 

diagnostics. The service is publically available through web servers. 

In this study we present the construction of the S. aureus VirulenceFinder, a web server that utilises 

WGS data from S. aureus genomes to extract a virulence profile. The database will be freely 

available through the CGE web services.  

 

Methods 

Building the database. Data on virulence genes were retrieved from the publically available 

virulence database (http://www.mgc.ac.cn/VFs/) and published papers (1, 4, 5, 13). All DNA 

sequences were collected from the NCBI nucleotide database  

(http://www.ncbi.nlm.nih.gov/nuccore/). The virulence gene sequences included in the database 

were selected based on the annotation and gene description from 31 different S. aureus genomes 
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(supplementary material Table S1). The genes were selected based on the annotation and gene 

description defined in the NCBI gene database and the definition of the virulence genes included in 

the VirulenceFinder database are therefore dependent on the annotations and gene description 

accuracy found within the NCBI gene database. When two genes with the same annotation or gene 

description showed 100 % nucleotide identity when using NCBI’s nucleotide BLAST and had the 

same gene length, only one of the genes was included in the VirulenceFinder database. If two genes 

with the same annotation or gene description showed 100 % nucleotide identity using BLAST but 

were of different length, both genes were included in the database. If two genes with the same 

annotation or gene description showed less than 100 % nucleotide identity using BLAST, both 

genes were included in VirulenceFinder. No pseudo-genes were included in the database and 

minority variance found within the same S. aureus sample were also not included as the virulence 

genes were selected at the consensus level. Genotyping cannot be performed with S. aureus 

VirulenceFinder but other tools are available for typing on the CGE website  

(http://www.genomicepidemiology.org/).  

Prior to submission to the S. aureus VirulenceFinder, draft assembly of sequence reads need to be 

performed. The server can assemble short reads sequences to draft genomes or it can be done as 

described previously by Larsen et al. (2012) (15). Once the sequence is submitted for a run, the 

VirulenceFinder uses BLAST to identify virulence genes matching any gene sequence found within 

the database. It is possible to select a threshold of sequence identity (% ID) between 85 % - 100 %, 

where 100 % ID is default. Here, any gene found within the VirulenceFinder database must show a 

minimum nucleotide identity corresponding to the selected threshold over the full gene length to be 

included in the output. A gene will not be reported if the submitted sequence contains less than 60 

% of the full gene length of the matching virulence gene found within the database. If a virulence 
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gene is identified in a submitted sample the best-matching genes are given as output with 

corresponding GenBank accession number, correlating to the genome in which the gene matches. 

 

Initial evaluation of method. For an initial evaluation of the database the genome of the assembled 

LA-MRSA ST398 S0385 isolate (GenBank accession AM990992) was screened for virulence 

genes. This genome was one of the 31 genomes used for building the database and was therefore 

selected as a preliminary evaluation of the database. The fasta file of the completed S0385 genome 

was submitted to the S. aureus VirulenceFinder alpha version  

(http://cge.cbs.dtu.dk/services/VirulenceFinder/index2.php) and the threshold for nucleotide identity 

was set to ID=98 %. The virulence profile of S0385 was evaluated and compared to previous 

findings in ST398 strains (4, 11, 14).    

 

Further evaluation - identification of virulence genes in whole genome sequenced S. aureus 

strains. For further evaluation of S. aureus VirulenceFinder 89 previously sequenced ST398 

genomes originating from various hosts, were screened for virulence genes using the database (12). 

Fourteen representatives of these, originating from humans and pigs were subjects for further 

analysis. The 14 isolates were selected to represent, the three most dominant spa types in the Lance 

B. Price et al. (2012) study, different host origin, different resistance pattern and different country 

of isolation. In addition two strains from each of the seven clades given by the Minimum-parsimony 

tree generated by Lance B. Price et al. (2012) were included (12). All genes within the 

VirulenceFinder database were BLASTed against the assembled genomes and the best matching 

genes were given as output. The threshold was set to 95 % identity (ID=95 %) for evaluation of a 

less stringent nucleotide identity threshold. 
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Results 

The database accepts input as complete or partial, preassembled genomes. VirulenceFinder consists 

of different configurations and gives the option to select one or several species for a run and uses 

BLAST to identify virulence genes included in the database. It is possible to select a threshold of 

sequence identity (% ID) between 85 % - 100 % and the best-matching genes are given as output. If 

a virulence gene is identified in a submitted sample the output gives a GenBank accession number, 

correlating to the genome in which the gene matches.  

 

For initial evaluation of the output the annotated genome of S. aureus ST398 S0385 (GenBank 

accession AM990992) was tested with the VirulenceFinder. The whole genome sequence dataset of 

the S0385 isolate was used, amongst 30 other genomes, to build the VirulenceFinder database. The 

output consists of genes matching with 98 % identity to the 1053 GenBank files of which the 

database was created. The list of virulence genes identified in the ST398 S0385 genome can be 

found in Table 1. 63 genes defined as virulence genes in the database were identified in the ST398 

S0385 genome, of which 17 associated to adhesion, 7 exoenzymes, 20 genes involved in host 

immune evasion, 6 genes related to secretion systems and 13 toxins. Sixteen of the identified 

virulence genes showed <100 % identity to sequences from the database.  

 

Eighty-eight S. aureus ST398 genomes have been assembled and published previous by Lance B. 

Price et al. (2012) (12). 14 of these were selected and tested in the S. aureus VirulenceFinder. The 

isolates were selected to represent all the seven clades generated by a Maximum-parsimony tree. 

Isolates from different countries, different host origins and with different resistance pattern were 

included in this study. An overview of the virulence profiles at the 95 % identity level can be found 

in table 2. One isolate showed a somewhat different profile with fewer identified virulence genes 
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compared to the other 13 strains including in the comparison. Overall the virulence profiles were 

similar, but different virulence patterns in isolates from pig origin and human origin were identified, 

correlating to what was found by Price et al. (2012) (12).  

 

Discussion 

Resistance and virulence profiles can help elucidate the approach for optimal treatment and define 

the virulence capacity of the infectious agent. Such information is crucial at hospitals in diagnostics 

and such profiles can as well be applied in local and global surveillance studies.  

The S. aureus VirulenceFinder database generated and evaluated in this study comprises a 

bioinformatic tool for identifying virulence genes in S. aureus genomes using WGS data.  

 

The S. aureus ST398 S0385 genome, which has been sequenced and annotated previously, was 

evaluated with the S. aureus VirulenceFinder. Sixty-three different genes defined as virulence genes 

in the database were identified. The whole genome sequence dataset of S0385 was used to build the 

database and it was therefore expected that all the identified virulence genes would show 100 % 

identity to a sequence within database. However 16 of the identified virulence genes showed <100 

% identity. This indicates that even though not all gene variants are included in the database one can 

still identify the genes by lowering the default identity threshold. The NCBI nucleotide database 

contains many variants of the same gene and the gene annotation of the different genes does not 

always correlate, which makes it difficult to include all gene variants found within the NCBI 

nucleotide database. In addition the GenBank databases are continuously increasing and the 

addition of new complete annotated genomes can contribute to new gene annotations within older 

genomes.   
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Correlating with previous findings in ST398 isolates the VirulenceFinder identified fnbA, clfA, cna, 

cap5A and eap/map in the ST398 S0385 genome (4, 14). Enterotoxin P (sep) and exfoliative toxin 

type A (eta) were identified in the S0385 genome by the database, contradicting that ST398 does 

not contain enterotoxins and exfoliative toxin genes (14, 16). Both toxins are annotated in the 

ST398 S0385 genome in the GenBank gene database, which explains why these genes are identified 

when screening the S0385 genome using the VirulenceFinder.  

 

Virulence profiles of 14 selected ST398 strains from a previous study (12) were generated using the 

VirulenceFinder with the threshold for nucleotide identity set to 95 %. The assembled genomes 

were BLASTed against all gene sequences within the database and hits with at least 95 % 

nucleotide identity constituted the output. The ID threshold can be set by the user and a less 

stringent threshold is recommended as the alpha version of the database only contains the number 

variants of each virulence gene, originating from 31 different S. aureus genomes used in building 

the database. A stringent threshold may result in some variation missed when using the database. 

However a less stringent threshold will result in a considerably larger output that requires more 

analysis. Overall the profiles were similar except for one isolate (13349_6) which also was found to 

be an outlier by Price et al. (2012) (12). The four isolates originating from a human host were 

positive for the scn gene whereas none of the isolates originating from pigs contain the 

staphylococcal complement inhibitor. The scn and sak genes are both markers for strains of human 

origin (12, 17). Even though the scn was not identified in the isolates originating from pigs a 

staphylococcal complement inhibitor variant has been identified on a pathogenicity island in ST398 

S0385 which is considered a porcine originating strain (11). Two of the human originating isolates 

contained both the sak gene and the two Panton-Valentine leukocidin encoding genes lukF-PV and 
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lukS-PV. This is in agreement the finding in Price et al. (2012) showing that some LA S. aureus 

strains are highly virulent, as is common for many of the CA S. aureus strains (12).  

Different patterns in adhesins like the Ser-Asp rich fibrinogen-binding proteins SdrC and SdrD and 

the fibronectin binding protein B (fnbB gene) were observed. SdrC and SdrD have been shown to 

promote adhesion to human desquamated nasal epithelial cells together with other factor (18). The 

four isolates, originating from human hosts, contain SdrC and SdrD which could indicate that both 

genes are contributing to adhesion to the human nares (18), whereas only SdrC seems to be 

essential for adhesion to the porcine nares as all the porcine isolates contain SdrC and only some the 

SdrD gene.  All strains contain fibronectin binding protein A (fnbA gene) in agreement with a 

previous study (14). However some of the isolates also harboured fibronectin binding protein B 

(fnbB gene). A previous study showed that the fnbA gene product was more important in in vitro 

and in vivo infections, but cooperation between fibronectin binding proteins A and B is necessary 

for the induction of severe infections resulting in septic death (19).  

Previous studies have emphasized that S. aureus ST398 do not contain any enterotoxins and 

exfoliative toxins (4, 14, 16).  However all the ST398 strains tested, expect the outlier strain 

13349_6, showed a positive result for enterotoxins A and P (sea and sep gene respectively) and 

exfiliative toxin A (eta gene) when using the VirulenceFinder. The enterotoxin P gene identified in 

the ST398 isolates show 100% sequence identity to the annotated enterotoxin P gene found in 

ST398 S0385 genome (GenBank gene no. SAPIG1666). The definition of the genes, in the 

VirulenceFinder database, is dependent on the annotations within the genomes applied for building 

the database. The Enterotoxin P was originally defined after the full genome sequencing of S. 

aureus N315 (20). The sequence of the annotated enterotoxin P encoded in the ST398 S0385 

genome (gene SAPIG1666) was BLASTed against sequences in the NCBI nucleotide database and 

similarities with two different genes within the N315 genome were identified (GenBank gene 
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SA1429 and SA1430). These genes encode an enterotoxin homolog and a protein similar to 

enterotoxin A precursor. This indicates that the enterotoxin P (sep gene) identified in the ST398 

stains tested here is not the same as the original sep gene defined in S. aureus N315 (GenBank gene 

SA1761) and that the definition given by the VirulenceFinder is a consequence of the annotations 

given to the reference genomes used for building the database. The sep gene identified here in the 

ST398 show however similarity to other enterotoxins and might indicate that S. aureus ST398 

strains can contain enterotoxin like proteins that can be identified when using WGS data. This 

emphasises that as outputs from the S. aureus VirulenceFinder database relates to the annotations in 

the NCBI nucleotide database and for details beyond these annotations further investigation might 

be needed. 

  

Here we demonstrated how an informative tool for WGS data can be generated. The S. aureus 

VirulenceFinder database is part of the tool package found on the CGE webpage 

(www.genomicepidemiology.org). Here are tools like MLST and ResFinder already available (15, 

21) and additional tools for phylogenetic studies are under development.   
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Figures and Tables 

Table 1. Test run of the ST398 S0385 genome in the S. aureus VirulenceFinder. 

ID Gene Virulence factor 

100.00% atl Autolysin 

Adherence 

 (17 genes) 

100.00% clfA Clumping factor A 

100.00% clfB Clumping factor B 

100.00% cna Collagen adhesion 

100.00% ebpS Elastin binding protein 

98.83% eap/map Extracellular adherence protein/MHC analogous protein 

100.00% fib Fibrinogen binding protein 

100.00% efb Extracullelar Fibrinogen binding protein 

100.00% fnbA 
Fibronectin binding proteins 

100.00% fnbB 

100.00% icaR 

Intercellular adhesin 

 

100.00% icaA 

99.67% icaD 

100.00% icaB 

100.00% icaC 

100.00% spa Staphylococcal protein A 

100.00% vwb von Willebrand factor 

ID Gene Virulence factor  

99.14% sspB 
Cysteine protease 

Exoenzyme 

 (7 genes) 

100.00% sspC 

100.00% hysA Hyaluronate lyase 

100.00% lip 
Lipase 

100.00% geh 

100.00% coa Staphylocoagulase 

100.00% nuc Thermonuclease 

ID Gene Virulence factor  

100.00% isb IgG-binding protein 

Host Immune evasion 

 (20 genes) 

 

100.00% cap5A 

Capsule 

99.28% cap1B 

98.84% cap5B 

99.48% cap5C 

100.00% cap5D 

100.00% cap8E 

98.75% cap5F 

99.29% cap5G 

100.00% cap5H 

100.00% cap5I 

100.00% cap5J 

100.00% cap5K 

100.00% cap8L 

99.64% cap5M 

98.76% cap5N 

99.29% cap5O 

98.95% cap5P 

100.00% capA 

100.00% capC 

ID Gene Virulence factor  



Manuscript III 

15 

 

100.00% esaA 

Type VII secretion system 

 

Secretion system 

 (6 genes) 

 

100.00% esaB 

99.33% esaC 

100.00% essA 

100.00% essB 

100.00% essC 

100.00% esxA 

100.00% Gene Virulence factor  

100.00% hla Alpha hemolysin 

Toxin 

 (13 genes) 

 

100.00% hld Delta hemolysin 

100.00% sep Enterotoxin P (SEntP) 

100.00% eta Exfoliative toxin type A 

100.00% set1 

Exotoxin/superantigen-like proteins 

 

100.00% set3 

100.00% set4 

100.00% set5 

100.00% set6 

99.45% sal 

100.00% SExo Superantigen-like 

99.59% hlgA Exotoxin 

99.68% hlgC Gamma hemolysin 

 

The table illustrates the output from the ST398 S0385 genome (accession no. AM990992.1) test run 

in with the VirulenceFinder. The first column shows the sequence identity when all genes within the 

database were BLASTed against the assembled genomes and the best matching genes are given as 

output. The threshold was set to 98 % ID. Second column and third give the gene name and the 

encoding virulence factor. Fourth column defines the virulence group.  
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Table 2. Virulence profiles of 14 selected S. aureus ST398 strains. 

Country: FI DE IT PL IT US CA US US US DK CN US FR 

Spa type: t034 t034 t011 t011 t011 t034 t034 t034 t034 t034 t034 t571 t571 t571 

Host: pig pig pig pig pig pig pig pig pig pig human  human human human 

MET R S R R R S R R S S R S S S 

Clade IIa1i IIa1i IIa1ii IIa1ii IIa2 IIa2 IIa IIa IIa-GOI IIa-GOI II-GOI II-GOI I I 

Genes/St

rains 

2008-

60-

1662-5 

1061 
2913

9 

6919

/08 

1334

9_6 
F20 7-109 

P23-

02_S

W62.

1 

F38 F10 50148 

P23-

9_WZ-

1 

1953 

ST2009

1526 

SEnt                             

sea                             

sep                             

SExo                             

atl                             

cap1A                             

cap1B                             

cap1C                             

cap5A                             

cap5B                             

cap5C                             

cap5D                             

cap5F                             

cap5G                             

cap5H                             

cap5I                             

cap5J                             

cap5K                             

cap5M                             

cap5N                             

cap5O                             

cap5P                             

cap8E                             

cap8L                             

clfA                             

clfB                             

cna                             

coa                             

eap/map                             

ebh                             

ebpS                             

efb                             

esaA                             
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esaB                             

esaC                             

essA                             

essB                             

essC                             

esxA                             

eta                             

fib                             

fnbA                             

fnbB                             

geh                             

hla                             

hlb                             

hld                             

hlgA                             

hlgB                             

hlgC                             

hysA                             

icaA                             

icaB                             

icaC                             

icaD                             

icaR                             

iceA                             

iceC                             

lip                             

lukF-PV                             

lukS-PV                             

nuc                             

sak                             

sal                             

sbi                             

scn                             

sdrC                             

sdrD                             

sdrE                             

set1                             

set3                             

set4                             

set5                             

set6                             

spa                             

sspA                             
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sspB                             

sspC                             

vwb                             

 

The table illustrates the virulence profiles of 14 selected S. aureus ST398 strains given by the S. 

aureus VirulenceFinder. The threshold was set to 95 % ID. The strains have been published 

previous by Lance B. Price et al. (2012). A grey box indicates the presence of a gene at the 95% 

identity level and a white box illustrates that the gene is not present in the genome at the 95% 

identity level. The top five rows show country of isolation, spa type, hhost origin, resistant or 

sensitive to methicillin and clade in which the isolate cluster according to Lance B. Price et al. 

(2012).   
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Supporting figures 

Table S1. List of strains included in building of the database. 

Strain: GenBank accession no. 

Staphylocoocus aures subsp. aureus N315 BA000018.3 

Staphylocoocus aures subsp. aureus NCTC8325 CP000253.1 

Staphylocoocus aures subsp. aureus TW20 FN433596.1 

Staphylocoocus aures subsp. aureus 04-02981 CP001844.2 

Staphylocoocus aures subsp. aureus 08BA02176 CP003808.1 

Staphylocoocus aures subsp. aureus RF122 AJ938182.1 

Staphylocoocus aures subsp. aureus 11819-97 CP003194.1 

Staphylocoocus aures subsp. aureus 71193 CP003045.1 

Staphylocoocus aures subsp. aureus COL CP000046.1 

Staphylocoocus aures subsp. aureus ECT-R2  FR714927.1 

Staphylocoocus aures subsp. aureus ED133 CP001996.1 

Staphylocoocus aures subsp. aureus ED98 CP001781.1 

Staphylocoocus aures subsp. aureus HO 5096 0412 HE681097.1 

Staphylocoocus aures subsp. aureus JH1 CP000736.1 

Staphylocoocus aures subsp. aureus JH9 CP000703.1 

Staphylocoocus aures subsp. aureus JKD6159 CP002114.2 

Staphylocoocus aures subsp. aureus LGA251 FR821771.1 

Staphylocoocus aures subsp. aureus MSHR1132 FR821777.2 

Staphylocoocus aures subsp. aureus MSSA476 BX571857.1 

Staphylocoocus aures subsp. aureus MW2 BA000032.2 

Staphylocoocus aures subsp. aureus MU3 CP009324.1 

Staphylocoocus aures subsp. aureus MU50 BA000017.4 

Staphylocoocus aures subsp. aureus ST398 AM990992.1 

Staphylocoocus aures subsp. aureus T0131 CP002643.1 

Staphylocoocus aures subsp. aureus TCH60 CP002110.1 

Staphylocoocus aures subsp. aureus USA_300_FPR3757 CP000255.1 

Staphylocoocus aures subsp. aureus USA_300_TCH1516 CP000730.1 

Staphylocoocus aures subsp. aureus VC40 CP003033.1 

Staphylocoocus aures subsp. aureus JKD6008 CP002120.1 

Staphylocoocus aures subsp. aureus str. Newman AP009351.1 

Staphylocoocus aures subsp. aureus MRSA252 BX571856.1 
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Table S2. Virulence genes included in the S. aureus VirulenceFinder database. 

Virulence factors Related genes 

 Adherence (22 genes) 
 

Autolysin atl 

 
Cell wall associated 

fibronectin binding protein 
ebh 

 Clumping factor A clfA 

 Clumping factor B clfB 

 Collagen adhesion cna 

 Elastin binding protein ebpS 

 Extracellular adherence 
protein/MHC analogous 

protein 
eap/map 

 Fibrinogen binding protein fib 

 Extracullelar Fibrinogen 
binding protein 

efb 

 
Fibronectin binding proteins 

fnbA 

 fnbB 

 

Intercellular adhesin 

icaR 

 icaA 

 icaD 

 icaB 

 icaC 

 

Ser-Asp rich fibrinogen-
binding proteins 

sdrC 

 sdrD 

 sdrE 

 sdrH 

 Staphylococcal protein A spa 
 

von Willebrand factor vwb 22 

Exoenzyme (16 genes) 

 

Cysteine protease 

sspB 

 sspB2 

 sspC 

 Hyaluronate lyase hysA 

 
Lipase 

lip 

 geh 

 

Serine protease 

splA 

 splB 

 splC 

 splD 

 splE 

 splF 
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Serine V8 protease sspA 

 Staphylocoagulase coa 

 Staphylokinase sak 
 

Thermonuclease nuc 16 

Host Immune evasion (52 genes) 
 

Exoprotein SCIN scn 
 

IgG-binding protein isb 2 

Capsule Type 1(A-C), 5(A-P) 
and 8(A-M and P) 

capA 
 

capB 
 

capC 
 

capD 
 

capE 
 

capF 
 

capG 
 

capH 
 

capI 
 

capJ 
 

capK 
 

capL 
 

capM 
 

capN 
 

capO 
 

capP 50 

Secretion system (8 genes) 

 

Type VII secretion system 

esxA 
 

esaA 
 

essA 
 

esaB 
 

essB 
 

essC 
 

esaC 
 

esxB 8 

Toxins (59 genes) 

 Alpha hemolysin hla 

 Beta hemolysin hlb 

 Delta hemolysin hld 

 Enterotoxin A (SEntA) sea 

 Enterotoxin B (SEntB) seb 

 Enterotoxin C (SEntC) sec 

 Enterotoxin G (SEntG) seg 

 Enterotoxin H (SEntH) seh 

 Enterotoxin I (SEntH) sei 

 Enterotoxin K (SEntK) see 
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Enterotoxin L (SEntL) sel 

 Enterotoxin M (SEntM) sem 

 Enterotoxin N (SEntN) sen 

 Enterotoxin O (SEntO) seo 

 Enterotoxin P (SEntP) sep 

 Enterotoxin Q (SEntQ) seq 

 General Enterotoxin  SEnt 

 Enterotoxin Yent1 yent1 

 Enterotoxin Yent2 yent2 

 Enterotoxin-like   SEnt-like 

 Exfoliative toxin type A eta 

 

Exotoxin/superantigen-like 
proteins 

set1 

 set2 

 set3 

 set4 

 set5 

 set6 

 set7 

 set8 

 set9 

 set10 

 set11 

 set12 

 set13 

 set14 

 set15 

 set16 

 set17 

 set18 

 set19 

 set20 

 set21 

 set22 

 set23 

 set24 

 set25 

 set26 

 set30 

 Superantigen-like sal 

 Exotoxin SExo 

 

Gamma hemolysin 

hlgA 

 hlgB 

 hlgC 
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Leukocidin M lukM 

 Leukotoxin D lukD 

 Leukotoxin E lukE 

 
Panton-Valentine leukocidin 

lukS-PV 

 lukF-PV 

 
Toxic shock syndrome toxin tsst 

59 

  

151 
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