Characterization of methicillin-resistant Staphylococcus aureus Sequence Type 398

Characterization of methicillin-resistant Staphylococcus aureus Sequence Type 398

PhD thesis by
Mette Theilgaard Christiansen, cand.scient.techn.

Revised version
Submitted February 2014

National Food Institute
Technical University of Denmark
Division for Epidemiology and Microbial Genomics
Kemitorvet building 204, 2800 Kgs. Lyngby, DK

Preface

The thesis is a result of a three-year PhD project carried out at the national Food Institute at the Technical University of Denmark in the Division of Epidemiology and Microbial Genomics. The project was supervised by Professor Frank Møller Aarestrup as main supervisor and Senior Researchers Henrik Hasman and Yvonne Agersø as co-supervisors. The project was conducted from June 2010 to August 2013 and a six month external research stay was included from October 2011 to March 2012 at Department of Veterinary Medicine, University of Cambridge, UK under the supervision of Senior Lecturer Dr. Mark Holmes. The work was funded by the Danish Ministry of Food, Agriculture and Fisheries (Grant no.: 3304-FVFP-09-F-002-1) and The Technical University of Denmark.

The thesis consists of an introduction and three manuscripts all presented in three chapters. Chapter 1 includes a short introduction to Staphylococcus aureus and to some of the methods used for bacterial characterization. Studies characterizing S. aureus and especially S. aureus multilocus sequence type 398 (ST398) are presented. In chapter 2 the results obtained in the three manuscripts are summarized and discussed. Chapter 3 contains the three manuscripts (manuscript I-III). Manuscript I describes the generation, verification, and evaluation of a high-throughput approach for bacterial characterization. In manuscript II a genomic screen was performed to identify genes important for S. aureus ST398 survival in a porcine reservoir. Manuscript III represents the development of a bioinformatic tool that can be used for virulence profiling of S. aureus using whole genome sequence data.

Supervisors:

Professor Frank M. Aarestrup (main supervisor), Research Group of Microbial Genomics and Antimicrobial Resistance, Division of Epidemiology and Microbial Genomics, National food 'institute, Technical University of Denmark

Senior Scientist Henrik Hasman (co-supervisor), Research Group of Microbial Genomics and Antimicrobial Resistance, Division of Epidemiology and Microbial Genomics, National food 'institute, Technical University of Denmark

Senior Scientist Yvonne Agersø (co-supervisor), Research Group of Microbial Genomics and Antimicrobial Resistance, Division of Epidemiology and Microbial Genomics, National food 'institute, Technical University of Denmark

Assessment committee:

Senior Scientist Lina Cavaco, Research Group of Microbial Genomics and Antimicrobial Resistance, Division of Epidemiology and Microbial Genomics, National food 'institute, Technical University of Denmark

Professor Jody A. Lindsay, Research Centre for Infection and Immunity, Division of Clinical Sciences, St. George's University of London, UK

Professor Henrik Westh, Department of Clinical Microbiology, Hvidovre Hospital, DK

Acknowledgements

There are a lot of people I want to thank, who in one way or another have contributed to the completion of this work.

First of all I would like to thank my supervisor Frank Aarestrup for the last three years. It has been hard, fun, frustrating, challenging but most of all educational. Also thank you Henrik and Yvonne for your co-supervision and for, at times, putting Frank's ideas into a more realistic context. Another very important person I would like to thank is Mark Holmes, my external supervisor at Cambridge University. You opened up your lab for me without hesitation. You and your colleagues helped me through a though period where no experiments would work and you have opened a door of opportunity in the UK for me - thank you!

Acknowledgement and many thanks to all my colleagues at DTU Food! You have definitely made my stay at DTU a pleasant one and without your assistance I would have been lost.

Thanks to Maria and Rita for being the best officemates one could ever hope for. You have been great in every aspect. A special thanks goes to Rolf! You have helped me tremendously with my data analysis and you have contributed to my bioinformatic skills in a way that I'm now not afraid to take a job using bioinformatics on a daily basis.

I would also like to thank all my wonderful friends for putting up with me and my talk about MRSA the past years. It must have been tiring at times, but also very exciting, right? Anne, thank you so much for proof reading everything, it has really been a great help.

Thank you to my family, you're great and I love you. Mom and dad, thank you for always being supportive and proud of me no matter what!

Above all, thanks to my amazing husband. Kenneth, you have been more than any, the greatest support, suffering with me at times and celebrating at others. Your high expectations continue to push me and you make me feel like I can do anything. Thank you!

English summary

Staphylococcus aureus is an opportunistic pathogen that colonizes the nares and skin surfaces of several animal species, including man. S. aureus can cause a wide variety of infections ranging from superficial soft tissue and skin infections to severe and deadly systemic infections. Traditionally S. aureus and methicillin-resistant Staphylococcus aureus (MRSA) have been associated with hospitals, but during the past decades MRSA has emerged in the community and now a new branch of MRSA has been found in association with livestock (LA-MRSA). A specific lineage (multilocus sequence type 398 (ST398)) has been particularly successful in colonization of pigs and ST398 has become the most frequently reported MRSA strain found in associated with livestock.

Currently the understanding of the successful colonization and transmission of LA-MRSA ST398 in pigs are limited and mainly based on observational field surveys. The aim of this work was to develop a high-throughput approach for genotypic and phenotypic characterization of LA-MRSA ST398 in the porcine reservoir.

The thesis represents three studies (manuscript I-III). In manuscript I a genome-saturated transposon mutant library was generated and Transposon Directed Inserted site Sequencing (TraDIS) was for the first time assessed in an LA-MRSA ST398 strain. Using this high-throughput approach, genes essential for LA-MRSA ST398 survival under laboratory conditions and in whole porcine blood in vitro were identified. In manuscript II, genes important for LA-MRSA ST398 survival on porcine skin and nasal epithelium ex vivo were identified. These genes could represent targets for de-colonization, which could help prevent further spread and adaption of LA-MRSA ST398. Manuscript III describes the construction of the S. aureus VirulenceFinder database. The database can be applied for identification of virulence genes in S. aureus using whole genome
sequence data. The S. aureus VirulenceFinder will be part of the tool package generated for the Centre for Genomic Epidemiology (CGE) (www.genomicepidemiology.org).

Dansk resumé

Staphylococcus aureus er en opportunistisk patogen, der koloniserer næsen og huden hos forskellige dyrearter, inklusive mennesker. S. aureus kan forårsage en lang række forskellige infektioner, der bl.a. omfatter overfladiske hudinfektioner og mere alvorlige systemiske infektioner. Traditionelt har S. aureus og methicillin-resistente Staphylococcus aureus (MRSA) været associeret med hospitalserhvervet infektioner, men i de seneste årtier har MRSA spredt sig til resten af samfundet, og en ny gren af MRSA med association til produktionsdyr er blevet identificeret (LAMRSA). En specifik slægt har vist sig at være yderst succesfuld til at kolonisere grise, og denne slægt (ST398) er nu den hyppigst rapporterede MRSA stamme fundet i association med produktionsdyr.

Den nuværende viden, om hvorfor LA-MRSA ST398 er succesfuld i kolonisation og spredning hos grise, er begrænset og primært baseret på overvågnings-studier. Formålet med dette studie var at udvikle en metode til at udføre en omfattende genotypisk og fænotypisk karaktering af LA-MRSA ST398 i et grise-reservoir.

Denne afhandling repræsenterer tre studier (manuskript I-III). I manuskript I blev der genereret et genom-mættet transposon mutant bibliotek, og 'Transposon Directed Inserted site Sequencing (TraDIS)' blev for første gang anvendt på en LA-MRSA ST398 stamme. Ved brugen af disse metoder blev gener essentielle for LA-MRSA ST398s overlevelse under laboratorie forhold og i svine blod identificeret. I manuskript II blev gener vigtige for LA-MRSA ST398 overlevelse på svine hud og svine-næseepitel bestemt. Disse gener kan potentielt udgøre nye mål for afkolonisering og dermed forebygge videre spredning og tilpasning af LA-MRSA ST398. Manuskript III beskriver konstruktionen af en S. aureus VirulenceFinder database. Denne kan anvendes til identifikation af virulens gener i S. aureus hel-genom sekvens data. S. aureus

VirulenceFinder er en del af den redskabspakke, der bliver genereret for Center for Genomisk Epidemiologi (CGE) (www.genomicepidemiology.org).

Table of Contents

Preface 1
Acknowledgements 3
English summary 4
Dansk resumé 6
Table of Contents. 8
List of abbreviations. 10
Background 12
Objectives and research approach 13
Manuscript presentation. 14
Chapter 1 17
Introduction 17

1. Staphylococcus aureus 17
1.1 Methicillin-resistant Staphylococcus aureus (MRSA) 18
1.1.1 Hospital- and Community-associated MRSA 20
1.1.2 Livestock-associated MRSA 21
1.1.2.1 Clonal Complex 398 22
2. Methods for bacterial characterization 25
2.1 Model systems 25
2.1.1 Single gene knockout. 28
2.1.2 Transposon mutant libraries 30
2.2 Expression studies 36
2.3 Whole genome sequencing and comparative genomics. 38
3. Characterization of Staphylococcus aureus 38
3.1 Essential genes 39
3.2 Adhesion and colonization 40
3.2.1 The nares. 40
3.2.2 The Skin 42
3.3 Infection. 43
3.3.1 Toxins. 44
3.3.2 Host immune evasion 45
3.3.3 High-throughput screening of S. aureus virulence genes 48
3.4 Host specificity 49
Chapter 2 53
4. Summary and discussion of the results from the manuscripts 53
4.1 Manuscript I 53
4.1.1 Evaluation of a high-throughput screening in whole porcine blood 58
4.2 Manuscript II 62
4.2.1 Porcine ex vivo skin model 62
4.2.2 Porcine ex vivo nasal epithelial model 68
4.3 Manuscript III 71
5. Concluding remarks and future perspectives 75
References 78
Chapter 3 87
Manuscript IManuscript IIManuscript III

List of abbreviations

S. aureus	Staphylococcus aureus
MSSA	Methicillin-sensitive Staphylococcus aureus
MRSA	Methicillin-resistant Staphylococcus aureus
HA-MRSA	Healthcare-associated Methicillin-resistant Staphylococcus aureus
CA-MRSA	Community- associated Methicillin-resistant Staphylococcus aureus
LA-MRSA	Livestock-associated Methicillin-resistant Staphylococcus aureus
TMDH	Transposon Mediated Differential Hybridization
TraDIS	Transposon Directed Insertion site Sequencing
WGS	Whole genome sequencing
DNA	Deoxyribonucleic acid
${ }^{\circ} \mathrm{C}$	Degrees (Celsius)
g	Gram
rt	Room temperature
MIC	Minimum inhibitory concentration
min	Minutes
CC	Clonal complex
ST	Sequence Type
PCR	Polymerase Chain Reaction
Q-PCR	Real-time quantitative PCR
BLAST	Basic Local Alignment Search Tool
bp	Base pair
NCBI	National Center for Biotechnology Information
Mb	Megabases
NaCl	Sodium chloride
WT	Wild-Type
BHI	Brain Heart Infusion
TSB	Tryptic Soy Broth
TSA	Tryptic Soy Agar
LB	Luria Broth
mg	milligram
$\mu \mathrm{g}$	Microgram

CFU	Colony forming units
app.	Approximate
AAC6'-APH2'	6^{\prime}-acetyltransferase-2'-phosphotransferase (gentamicin resistance)
OD	Optical density
CaCl	Calcium chloride
M	Molar
mM	Millimolar
ml	Millilitre
$\mu 1$	Microlitre
rmp	Rounds per minute
EDTA	Ethylenediaminetetraacetic acid
gen	Gentamicin
ery	Erythromycin
tet	Tetracycline
chl	Chloramphenicol
ng	Nanogram
Tn	Transposon
Q	Quality
COG	Cluster of Orthologous groups
SCCmec	Staphylococcal Cassette Chromosome mec
RNA	Ribonucleic acid
mRNA	messenger RNA
PBS	Phosphate buffered saline
KCl	Potassium chloride
MgSO_{4}	Magnesium Sulphate
Hz	Hertz
DMEM	Dulbecco's Modified Eagle Medium
RPMI	Roswell Park Memorial Institute medium
U	Unit
CO_{2}	Carbon Dioxide
SMIT	Size Marker Identification Technology

Background

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most frequent cases of hospitaland community-associated infections and constitute a major burden on society world-wide (DeLeo et al., 2010; Otto, 2012). Resistance to beta-lactam antibiotics, which are the most widely used group of antibiotics, makes MRSA infections very difficult to treat and only very few alternative drugs are currently available for treatment. Vancomycin is the first-line treatment of severe MRSA infections (DeLeo et al., 2010), it is however less efficient, requires intravenous administration, and resistance has already been reported in the form of vancomycin-resistant Staphylococcus aureus (VRSA) (Robinson and Enright, 2003).

MRSA has primarily been considered as a hospital-associated (HA) pathogen but has emerged in the community in the recent decades (DeLeo et al., 2010; Verkade and Kluytmans, 2013). Community-associated (CA) MRSA differ from the HA-MRSA (Diep and Otto, 2008) as they show a more virulent phenotypic profile. They frequently produce the Panton-Valentine leukocidin, which is a toxin often associated with severe skin infections (Vandenesch et al., 2003).

More recently a third group of MRSA has emerged. This group has been associated with livestock and especially pigs (Smith and Pearson, 2011; Voss et al., 2005). These strains termed livestockassociated (LA) MRSA make up yet a different profile compared to HA- and CA-MRSA. LAMRSA has been identified to be less aggressive, not encoding many of the toxins often associated with S. aureus (Hallin et al., 2011). LA-MRSA is often found in related to colonization, but can in some cases cause illness of different severity in both animals and humans, and LA-MRSA is in fact the most frequent cause of porcine skin infections (Cuny et al., 2010; van Duijkeren et al., 2004). LA-MRSA differ in their resistance pattern compared to the human-associated MRSA, by expressing resistance to tetracycline (Price et al., 2012). Tetracycline is repeatedly used in the swine production industry and is most likely the driving force for tetracycline resistance in LA-MRSA
(Schijffelen et al., 2010). Many of the LA-MRSA strains belong to lineage multilocus sequence type 398 (ST398), and they show a broader host range compared to most other S. aureus lineages (Verkade and Kluytmans, 2013). A whole genome sequenced LA-MRSA ST398 isolate has shown genotypic traits that could imply increased ability to take up foreign DNA as it contains multiple integrative conjugative elements combined with the absence of a type I restriction and modification system (Schijffelen et al., 2010). It has been postulated, that LA-MRSA originated as methicillinsensitive S. aureus in humans and were transferred to pigs where they acquired methicillin and tetracycline resistance via the uptake of mobile genetic elements, and then transferred back to humans (Price et al., 2012).

Even though LA-MRSA has been the subject of several studies most of them are based on survey data (E M Broens et al., 2011b; Els M Broens et al., 2011) and only few have investigated bacterial ecology in the porcine reservoir (Moodley et al., 2012; Tulinski et al., 2013). The potential of LAMRSA transmission and adaption is still unknown and further investigations into why ST398 has successfully colonized so many different animal species are needed to help understand how we might prevent similar problems in the future.

Objectives and research approach

The overall objective of this study was to identify genes of importance for the emergence and spread of LA-MRSA in food animals. The focus was on lineage multilocus sequence type 398 (ST398) as it has become the most commonly reported MRSA strain associated with livestock in the recent years (Smith and Pearson, 2011). Identification of such genes could assist in a better understanding of the ecology of ST398 in the porcine reservoir and facilitate the identification of targets in intervention strategies. The following objectives were defined:

1. Develop high-throughput approach for bacterial characterization.
2. Perform a comprehensive phenotypic and genotypic characterization of LA-MRSA ST398.
3. Investigate genes important for LA-MRSA ST398 colonization in the porcine reservoir.

Most of the information on ST398 colonization known to date has been based on survey data. In this project a different approach has been taken. High-throughput methods were applied to simultaneously link all genes within a genome to phenotypes. This approach may facilitate the discovery of new gene function and can highlight which genes are essential for bacterial survival in specific environments.

Manuscript presentation

The thesis includes three manuscripts, each of which represents studies performed to answer the objectives. In manuscript I and II a high-throughput method was developed and used for investigation of genes important for LA-MRSA ST398 survival in the porcine reservoir, as this reservoir contributes to the on-going spread and adaptation of LA-MRSA. In manuscript III a bioinformatic tool was constructed to define virulence profiles of S. aureus using whole genome sequence data. This database will be freely available online and can contribute to the identification of virulence genes in LA-MRSA isolated from different host reservoirs.

Manuscript I entitled, Genome-wide high-throughput screening to investigate essential genes involved in methicillin-resistant Staphylococcus aureus Sequence Type 398 survival represents a method paper. The aim of the work was to generate a high complexity transposon mutant library and assess the application of Transposon directed inserted site sequencing (TraDIS) in LA-MRSA ST398. The manuscript describes the generation and verification of a genome-saturated transposon
mutant library. The data obtained in the manuscript verifies that the high-throughput genotypic approach TraDIS can be assed for transposon insertion site identification in S. aureus. Genes essential for LA-MRSA ST398 survival under laboratory conditions were identified. In addition the manuscript describes an evaluation of the approach, where the mutant library was screened in whole porcine blood in vitro and mutant composition pre- and post- selection was compared. Manuscript accepted for publication in PloS One (publication date Feb. $12^{\text {th }}$ 2014).

Manuscript II entitled, Genes important for survival of livestock-associated methicillin-resistant Staphylococcus aureus Sequence Type 398 in the porcine reservoir was carried out as part of an externship conducted at Department of Veterinary Medicine, University of Cambridge, UK. The aim of the study was to identify genes important for LA-MRSA ST398 survival on porcine skin and nasal epithelium, as these locations are believed to be relevant habitats for LA-MRSA ST398. Two ex vivo models, using porcine nasal epithelium and porcine skin tissue, were developed. By screening the transposon mutant library (generated in manuscript I) within the models, a number of genes important for bacterial survival on porcine explants, were identified. These genes could represent targets for de-colonization, which could help prevent further spread and adaptation of LAMRSA ST398. Manuscript in preparation.

Manuscript III entitled, Identification of virulence genes in whole genome sequenced Staphylococcus aureus describes the construction of the S. aureus VirulenceFinder database. The aim of the study was to develop a database which can define virulence profiles in S. aureus using sequence data. The generated database can be applied for identification of previous described virulence genes. S. aureus VirulenceFinder is part of the tool package generated for the Centre for Genomic Epidemiology (CGE) (www.genomicepidemiology.org). CGE aims at generating
bioinformatic tools for handling whole genome sequence information, useful for outbreak investigation, epidemiological surveillance, source tracking and diagnostics. The service is publically available through web servers. Manuscript in preparation.

Chapter 1

Introduction

1. Staphylococcus aureus

Staphylococcus aureus is a facultative anaerobic Gram-positive coccus that normally is arranged in grape-like clusters. They are non-motile and often golden-yellow pigmented cells. The primarily colonization sites are the anterior part of the nares and skin surfaces. The organism is non spore forming but is resistant to dry conditions and high salt concentrations, which is essential when colonising the skin surface. There are more than 50 species and sub-species of Staphylococci of which S. aureus is often associated with pathogenicity in humans. S. aureus is distinguished from the other species by its ability to clot blood plasma by the action of the enzyme coagulase (Foster, 2009; Harris et al., 2002).
S. aureus is a commensal commonly found to colonize several animal species, including humans. Around $20-40 \%$ of the human population are carriers and some humans are intermediate carriers whereas others are persistent carries (Foster, 2009; Williams, 1963). The difference in colonization implies that host factors are important elements for successful bacterial colonization.

If given the opportunity S. aureus can cause infection, most commonly at sites of lowered host resistance such as damaged skin or mucosal membranes. The bacteria possesses a large number of cell-associated and extracellular virulence factors, some of which contribute to the ability of the organism to overcome the host immune defence and to invade and colonize the tissue (Foster, 2009). S. aureus can cause a wide variety of infections ranging from superficial soft tissue and skin infections like pimples, boils and abscesses to severe systemic infections like bacteraemia, endocarditic, pneumonia and toxic shock syndrome (Otto, 2012).
S. aureus has a clonal population structure and it does not undergo extensive genomic recombination but rather random nucleotide mutations and horizontal gene transfer are the main factor for diversity (Holmes and Zadoks, 2011).

Due to the clinical relevance a large number of typing methods with different discriminative power, are being used to study the population genetics of S. aureus. Pulse-field gel electrophoresis (PFGE) is a method that can detect rapidly accumulating genetic variation by looking at a genetic fingerprint. The methods can be used to study outbreaks or the phylogeny of small populations (Tenover and Arbeit, 1995). spa-typing and multilocus sequence typing (MLST) are other methods looking at more slowly accumulating genetic variations and are used for the investigation of global epidemiology and population genetics. spa-typing is based on DNA sequencing of the polymorphic 24 base pair tandem repeat of the 3-prime end of the S. aureus-specific staphylococcal protein A (spa gene). In MLST typing, a bacterial isolate is assigned an allelic profile relating to nucleotide sequences of seven housekeeping genes and based on the allelic profile the isolate will be given a sequence type (ST). If isolates differs in only one allele they will be given different sequence types but are said to be in the same clonal complex (CC) (Urwin and Maiden, 2003; Fitzgerald et al. 2001). MLST is less discriminative than PFGE and spa-typing and a multilocus sequence type (ST) linage can contain several (often related) spa-types.

In the recent years next generation sequencing has become increasingly available. By using a whole genome sequencing approach, one will obtain all the genetic information, and this can potentially be translated into information about population structure, genetic variation, outbreak investigation, global epidemiology, typing, and diagnostics (Hall, 2007; Price et al., 2012; Zankari et al., 2012).

1.1 Methicillin-resistant Staphylococcus aureus (MRSA)

S. aureus is known for its potential to adapt to a selective pressure from antibiotics. In 1948 the first report of a penicillin-resistant S. aureus was published, which was only shortly after the introduction of penicillin in the clinical practice (Barber and Rozwadowska-dowzenko, 1948). In the late 1950s methicillin was introduced as treatment of infections with penicillin resistant strains and soon after, in 1961, methicillin-resistant S. aureus (MRSA) was identified in the UK, and was after that recognized as a hospital-associated pathogen worldwide (DeLeo et al., 2010; Jevons et al., 1963; Otto, 2012).

Methicillin-resistance is in staphylococci conferred by the carriage of the Staphylococcal Cassette Chromosome mec (SCCmec). The SCCmec cassette is a mobile genetic element that includes the $m e c A$ gene encoding the penicillin binding protein (PBP) 2 a , which shows low affinity for betalactam antibiotics such as penicillin and methicillin, and allows, even in the presence of such antibiotics, the cell to produce a functional cell wall and therefore survive beta-lactam treatment (Hartman and Tomasz, 1981). The structure of the SCCmec cassette is diverse and is classified based on the combination of the cassette chromosome recombinase (ccr) the mec-class. The ccr genes are responsible for mobility of the element, whereas the mec-class relates to beta-lactam resistance and its regulation. In addition to the ccr and mec genes some non-essential junkyard regions are included in SCCmec typing (Kondo et al., 2007). Some SCCmec cassettes include other resistance genes besides the mecA gene, which encode resistance to other antibiotics and/or heavy metals. Such genes are part of integrated copies of plasmids or transposons (Grundmann et al., 2006).

Recently a divergent $m e c A$ homologue, termed $m e c C$ (formerly mec $A_{\text {LGA251 }}$), was identified in S. aureus isolates from dairy cattle in United Kingdom (García-Álvarez et al., 2011). mecC shows 70 \% nucleotide identity to mecA and is located in a novel SCCmec element designated SCCmec type
XI. Routine culture and susceptibility testing will identify S. aureus isolates containing mecC, however, molecular confirmatory methods will not identify them as MRSA (García-Álvarez et al., 2011). S. aureus containing mecC has been found in a range of multilocus sequence type lineages isolated from humans and other animal species (Cuny et al., 2011; García-Álvarez et al., 2011; Harrison et al., 2013; Laurent et al., 2012).

Colonization with MRSA is normally asymptomatic in healthy individuals but elderly, immunecompromised people, and post-operation patients have a significant higher risk for developing symptomatic infections. It has been estimated that patients with MRSA have a pronounced higher risk of mortality compared to other patients (Grundmann et al., 2006; Memorial, 2005).

1.1.1 Hospital- and Community-associated MRSA

MRSA infections were traditionally hospital-associated (HA-MRSA) and have been a major public health issue for the last 50 years causing severe nososcomial infections worldwide. However in the past approximately 10-15 years, an increased number of infections due to community-associated MRSA (CA-MRSA) has been reported in Europe and the US (DeLeo et al., 2010; Verkade and Kluytmans, 2013). CA-MRSA infections are mainly seen in healthy individuals with no recent contact to the healthcare system.

There are about ten human multilocus lineages distributed globally (CC1, CC5, CC8, CC12, CC15 CC22, CC25, CC30, CC45, CC51) of which CC1, CC5, CC8, CC22, CC30 and CC45 contain the most common MRSA strains (Feil and Cooper, 2003; Holmes and Zadoks, 2011). Typically CA-MRSA is genetically distinct from HA-MRSA (Diep and Otto 2008). They frequently carry the SCCmec type IV or V and they often harbour the Planton-Valentine leukocidin
(PVL) that is associated with skin and soft tissue infections (DeLeo et al., 2010; Vandenesch et al., 2003). The SCCmec types IV and V are smaller in comparison to the SCCmec types I, II and III often carried by HA-MRSA, which may facilitate a lower metabolic cost and a more efficiently transferred element between CA strains.

The genetic differences seen between HA-MRSA and CA-MRSA correlate with the host environment (David and Daum, 2010; Diep and Otto, 2008). HA-MRSA often infects immunecompromised individuals in hospital settings where a high antibiotic selective pressure are present, whereas CA-MRSA, infecting healthy individuals, requires fewer resistance genes, additional virulence factors, and a growth advantage in the more competitive environment outside the hospital setting.

1.1.2 Livestock-associated MRSA

A third emerging branch of S. aureus has been identified in association with livestock animals. The isolation of MRSA from animals was first reported in 1972. This was following the detection of MRSA in milk from mastitic cows (Devriese et al., 1972) but was at that time most likely associated with human to animal transmission of an MRSA strain acquired by the farmer during hospitalisation. Since then livestock-associated MRSA (LA-MRSA) has been identified in various animals in several European countries, the US and Asia (Smith and Pearson, 2011). Population genetic studies have identified certain genotypes to be associated with specific host species. Multilocus sequence type ST71, ST97, ST126, ST133 and ST151 are often found among ruminants, and are the major course of bovine mastitis, whereas ST5 is often associated with poultry and ST9, ST433, ST398 are often found in pigs (Armand-Lefevre, 2005; Holmes and Zadoks, 2011; Lowder et al., 2009; Moodley et al., 2012; Nickerson, 2009).

1.1.2.1 Clonal Complex 398

The first LA-MRSA isolated from pigs was reported in France in 2005 (Armand-Lefevre, 2005) and the same clonal complex (CC398), was discovered as being widespread in pigs in the Netherlands (Voss et al., 2005). Multilocus sequence type 398 (ST398), belonging to CC398, has shown a broader host-spectrum compared to most other MRSA, and have until now been found in pigs, cattle, veal calves, horses, poultry, turkeys, companion animals as well as humans (Verkade and Kluytmans, 2013).

The main reservoir for LA-MRSA CC398, as well as for MSSA ST398 (Hasman et al., 2010), seems to be pigs and many of the early studies on swine LA-MRSA CC398 were carried out in the Netherlands. Here the prevalence of HA-MRSA is generally low but LA-MRSA CC398 is found to be widespread (Smith and Pearson, 2011; Voss et al., 2005). Dutch prevalence studies report that the number of CC398 positive farms varies from 23% to 81%, whereas the prevalence in individual pigs varies from 11 \% to 39 \% (E M Broens et al., 2011a; de Neeling et al., 2007; van Duijkeren et al., 2008). Only around five years after the first LA-MRSA isolate was found in pigs, a prevalence study examining swine breeding farms in Europe found swine MRSA to be present in pig facilities in Austria, Belgium, Cyprus, the Czech Republic, the Netherlands, Denmark, Finland, France, Germany, Hungary, Italy, Luxembourg, Poland, Portugal, Slovakia and Spain (Food and Authority, 2010). The prevalence of MRSA CC398 in pigs at slaughter in Denmark in 2012 was estimated to 77% (Agersø et al., 2012). LA-MRSA CC398 has also been found in high prevalence in veal calves, with 28% of the calves and 88% of the farms tested being positive (Graveland et al., 2010).

The main risk factors for human colonization with CC398 are direct exposure to pigs and veal calves or sharing a household with people who are in direct contact with these animals (Graveland
et al., 2011; van den Broek et al., 2009). In addition living in regions with high densities of livestock, has been proposed as a risk factor for human colonization with CC398, despite not having direct contact with pigs (Feingold et al., 2012). By the end of 2008, 42% of all newly identified MRSA strains in humans in the Netherlands belonged to CC398 (Verkade and Kluytmans, 2013). MRSA was found in 232 human cases in Denmark in 2012, which was an increase from the previous years (42 in 2009, 111 in 2010, and 164 in 2011) despite no targeted screening for CC398 in 2012. The majority of the human cases identified in Denmark were from persons with documented close contact to pigs or household members to pig handlers (Agersø et al., 2012).

ST398 do not typically cause illness in pigs but nonetheless, it is the most frequent cause of porcine skin infections (Cuny et al., 2010; van Duijkeren et al., 2004). In addition S. aureus is frequently isolated from lesions observed during post-mortem inspection, especially from abscesses in lungs and udder (O'Mahony et al., 2005; Strommenger et al., 2006).

LA-MRSA ST398 infections in human are rare compared to infections caused by HA- or CAMRSA, but has been seen of various severities. Human to human transmission is not as pronounced as for other MRSA types, but recently several studies have identified ST398 infections in humans with no previous contact to animals. These infections are primarily caused by methicillin-sensitive S. aureus (MSSA) ST398 (Agersø et al., 2012; Bhat et al., 2009).

The porcine reservoir constitutes an important niche for adaptation and transmission of LA-MRSA ST398. Therapeutic treatment of pigs with oxytetracycline and treatment of complete flocks with prophylactic oxytetracycline are both common practices in farming (van Duijkeren et al., 2004). The vast majority of S. aureus ST398 isolated from pigs show tetracycline resistance, and tetracycline resistance is most likely one of the responsible agents for the selection of ST398
isolates (Hasman et al., 2010; Schijffelen et al., 2010). A recent study has demonstrated that ST398 originated as MSSA in humans, was then transmitted to the pig reservoir where it acquired methicillin and tetracycline resistance and are now being transferred back to humans (Price et al., 2012). LA-MRSA CC398 harbors most often the smaller SCCmec cassette types IV or V. Specifically the SCCmec subtype Vc (2C5\&5) encoding the cadmium-zinc resistance gene czrC are often found among LA-MRSA (Cavaco et al., 2011; Price et al., 2012). This emphasizes that the industrialization of pig production with high livestock densities, frequent animal transmission between farms and the use of antibiotics and heavy metals generate an ideal environment for this highly adaptable opportunistic pathogen.

During the past decade, ST398 has been rapidly emerging and has now become the most commonly reported MRSA strain found in association with livestock (Smith and Pearson, 2011). This highlights that better intervention strategies to control the spread are needed. However, the transmission between animals and between farms is most likely multi factorial, which complicates efforts to control spread of LA-MRSA ST398.

Even though LA-MRSA ST398 has been subject of epidemiologic research on farms and hospitals, various central questions remain unanswered. Profession and geographic regional location have been recognized as risk factors for human colonization, but specific genetic factors facilitating zoonotic transmission remains unidentified. The potential of LA-MRSA transmission and adaptation are still unknown and further investigations into why ST398 have successfully colonized so many different animal species are needed to help understand how we might prevent similar problems in the future.

The porcine reservoir seems to constitute a very important environment for ST398 adaption and transmission, however, little is known about which genes in the ST398 genome are important for
persistent porcine carriage. Identification of essential genes for porcine colonization could constitute targets for decolonization in an attempt to control the spread of ST398. A comprehensive phenotypic and genotypic characterization of LA-MRSA ST398 may help to better understand how ST398 has become the most dominant MRSA strain within livestock. Essential genes for porcine colonization could constitute markers in future epidemiology, surveying pathogens associated with pig farming. In addition, as ST398 displays resistance to various antibiotics, identification of essential genes for bacterial infection could highlight new potential targets for therapeutic agents.

2. Methods for bacterial characterization

Comprehensive insight into bacterial behaviour is crucial to overcome and prevent bacterial infections. To gain a better understanding of bacterial ecology in specific environments various methods can be applied. Some characterize only bacterial phenotypes and some only the genotypes, but to gain the most comprehensive bacterial characterization, a combination must be applied.

2.1 Model systems

Model systems mimicking natural environments are essential to understand bacterial behaviour. Various in vitro, in vivo or ex vivo models to investigate bacterial colonization and infection have been described. Such models are used in different ways to study adhesion, colonization, virulence and differences between strains.

As mentioned above S. aureus colonizes the nares and skin surfaces of several animal species. In vitro adhesion and colonization studies have been performed using desquamated nasal epithelial cells, skin corneocytes, epidermal keratinocytes and keratin (Corrigan et al., 2009; Moodley and Espinosa-Gongora, 2012; O'Brien et al., 2002). Cells originating from different hosts has been used for investigating host specificity of different lineages (Corrigan et al., 2009; Moodley and Espinosa-

Gongora, 2012). Whole blood and immune cells isolated from blood have been used to evaluate gene expression, bacterial survival and invasion, and host immune evasion (den Reijer et al., 2013; Malachowa et al., 2011) (manuscript 1). In vitro models are useful however such models lack several host components present in a natural S. aureus environment.

Therefore animal models are often used and they are useful models to study colonization and infection. Murine and rat models have been developed to mimic S. aureus colonization in humans (Kiser et al., 1999; Kokai-Kun, 2008), but as the murine nasal cavity is not a natural habitat for S. aureus, this model system is not optimal to study S. aureus colonization (González-Zorn and Senna, 2005). Pigs are, however, natural hosts and piglets have also been applied in colonization and persistent carriage studies (Els M Broens et al., 2011; Crombé et al., 2012; Moodley and EspinosaGongora, 2012).

The nematode Caenorhabditis elegans constitutes an alternative model to mammalian animal models. A variety of bacteria, including S. aureus can kill C. elegans and there seems to be a high degree of correlation between virulence factors required for nematode killing and virulence in vertebrates (Sifri et al., 2005). It has been used as a simple surrogate model to study infection (Bae et al., 2004; Begun et al., 2005). A hallmark feature of invasive S. aureus disease is its ability to cause bacteraemia which can lead to severe systemic infections. Murine and rabbit models have been used for studying bacteraemia caused by S. aureus (Benton et al., 2004; Coulter et al., 1998; Diep et al., 2008a; Mei et al., 1997).

An alternative to the animal models is freshly isolated tissues from various animals, in which ex vivo adhesion, colonization and infection studies and be performed (Tulinski et al., 2013) (manuscript II). The advantages of using tissue explants are that it resembles the natural host environment to a higher degree than in vitro systems, it is easier to set up, and more cost effective compared to in vivo animal models. Tissue from larger animals than rodents can be applied and as
pigs constitute a large natural reservoir for S. aureus this approach can help to highlight bacterial features important for successful porcine colonization. Examples of porcine ex vivo models are illustrated in Figure 1.

Figure 1: Porcine ex vivo models.

The figure illustrates two ex vivo porcine models. On the left, porcine nasal epithelium tissue explants are placed on filter paper on agar plugs. The filter paper feeds the tissue with media to sustain tissue viability. The exterior surface of the nasal tissue is infected with S. aureus. On the right porcine skin tissue explants are embedded in HEPES agar, leaving the skin surface exposed. S. aureus is inoculated onto the skin surface. Both models are applied in manuscript II.

Wild-type strains can be tested in model systems to investigate and compare phenotypes. To associate a bacterial genotype with a phenotype, mutants, lacking specific gene function can be tested in these model systems. This approach is applied in the investigation of genes important for bacterial colonization and infection. For this purpose single gene knockouts or complex mutant
libraries can be generated. Single gene knockouts are primarily used for investigation of specific genes with an already known or hypothesized function, whereas genome saturated mutant libraries facilitate a high-throughput screening for investigation of all genes within a genome simultaneously. Both are strong tools to associate genes with phenotypes.

2.1.1 Single gene knockout

Gene knockout is a genetic technique that, via different approaches, makes a gene in an organism non-functional. Once the gene of interest has been "knocked out" the so-called knockout organism can be tested in various functional assays to gain knowledge about gene function. Conclusions are drawn from the difference between the knockout organism and the wild-type strain. The gene knockout approach is often used for investigation of pathogenic bacteria to show that a gene found in such strains encodes a product that contribute to the disease caused by the pathogen. The principal behind the use of genetic manipulation to investigate genes encoding virulence factors was first formulated by Standley Falkow in 1988 and was based on Koch's postulates (Falkow, 1988). The basic premise is that by using genetic manipulation a gene encoding a putative virulence factor can be inactivated and the mutant can be tested for loss of virulence capacity in a virulence model. In addition, Falkow described that it is necessary to demonstrate that by complementation the virulence capacity can be restored to wild-type level.

Gene manipulation in Gram-negative bacteria is generally easier compared to gene manipulation in Gram-positives, as the thick peptidoglycan cell wall harboured by Gram-positive bacteria hampers the manipulation. In addition, the majority of S. aureus strains possess a strong restriction modification barrier that hinders the uptake of foreign DNA (Monk et al., 2012; Monk and Foster, 2012). The first step in generation of knockout mutant is to introduce a vector, which includes a
sequence identical to the gene of interest or its flanking regions, into the strain of interest. For vector DNA to be transferred into S. aureus and not undergo destruction by the restriction and modification systems, the DNA must pass through a modified S. aureus laboratory strain (Bae et al., 2008). S. aureus RN4220 is a laboratory strain that has been mutated in one of the restriction systems, which allows it to take up foreign DNA, which has been cloned in for example E. coli. Once the foreign DNA has been replicated by RN4220 the methylation pattern will be of S. aureus origin and thereby acceptable for uptake by most wild-type S. aureus strains.

Introduction of DNA can be performed via for example transformation or transduction. The most widely used approach is transformation, which is the transfer of free DNA. Transformation can be difficult in S. aureus and have mostly been done in laboratory strains like in S. aureus RN4220 described above. However, new methods are being developed for S. aureus gene manipulation (Monk and Foster, 2012). Transduction is based on the usage of a virus that infects bacteria, a socalled bacteriophage. When a bacteriophage infects a bacterial cell, it utilises the cell machinery for viral DNA replication. Once viral DNA replication is complete, the virus transmits to other bacterial cells through a lytic cycle, killing the host cell. In this process bacterial DNA can, by accident, be packed into the viral capsid and once the bacteriophage infects a new cell, bacterial DNA can be transferred from one bacterium to another. Transduction is only an intra-species approach as bacteriophages are species specific and enter the bacterial cells by recognition specific surface bound receptors (Novick, 1991). Generally DNA transfers with low frequencies in S. aureus, complicating gene manipulation in this species.

Once the vector DNA has been introduced, homologous recombination can occur and the gene of interest can be replaced with a selection marker and in that way inactivated. The mutant is tested in parallel to the wild-type in for example an infection model. If the mutant displays reduced virulence compared to the wild-type, it can be postulated that the gene, which has been "knocked out",
encodes a virulence factor. In addition to testing the mutant in various assays, complementation experiments must be performed for a definitive conclusion. Such complementation can be done by reintroducing gene function in the mutant or by testing the gene function in a surrogate host lacking pathogenicity.

2.1.2 Transposon mutant libraries

Screening of a transposon mutant library is similar to the gene knockout approach. However, it is a high-throughput method that facilitates investigation of all genes within a genome simultaneously. A transposon mutant library is composed of numerous mutants, where each mutant has intergrated a transposon at a random position within the bacterial genome. The approach is based on a negative selection strategy, where transposon inserts into functional genes will result in mutants with attenuated fitness, or a complete inability to survive, and recovery of only those mutants with inserts in non-essential genes.

Transposon mutagenesis can be used for building a library of random mutants (Figure 2). Typically a two-plasmid-system is used for generation of transposon mutant libraries in S. aureus (Bae et al., 2004; Chaudhuri et al., 2009; Fey et al., 2013) (manuscript I). One of the plasmids carries a mariner transposon, which is required for insertion in S. aureus genomes, and another plasmid carries a transposase facilitating the transposition event. Both plasmids contain a temperature sensitive origin of replication, which allows for removal of the plasmids by increasing growth temperature (Bae et al., 2008).

The transposon inserts randomly into the bacterial genome and when a gene is inserted with a transposon the gene function is potentially disrupted. If a gene essential for cell survival is disrupted the mutant will die, and as a result no essential genes will be present in the mutant library.

The transposition event happens once per cell as only one transposon is present within each cell. Every cell in the library will by chance contain a transposon at a unique genomic position. The transposon will contain a selection marker which will enable selection of the transposon mutants. A transposon mutant library can be generated via liquid transposition (Figure 2) resulting in a pool of thousands of mutants or transposition can be conducted on solid phase. Solid phase transposition enables separation of the individual mutants but is more laborious than liquid transposition and often results in mutant libraries containing fewer mutants compared to mutant libraries generated by liquid transposition.

Figure 2: Generation of a transposon mutant library.

The figure illustrates a schematic presentation of how a transposon mutant library can be generated in S. aureus using a two-plasmid-system. Plasmid 1 carries the transposon which includes a resistance marker (Res1), a temperature sensitive origin of replication (Rep ts), and a second resistance marker (Res2) carried on the plasmid backbone. Plasmid 2 carries a transposase essential for the transposition event, a temperature sensitive origin of replication (Rep ts), and a resistance marker (Res3) carried on the plasmid backbone. The plasmids are carried by two different donor cells (Donor 1 and Donor 2) and are via two separate rounds of transduction introduced into the strain of interest.

After the transposition event (illustrated as liquid transposition) the culture is grown at high temperatures to facilitate plasmid loss (no plasmid replication $>30^{\circ} \mathrm{C}$). The result is a transposon mutant library consisting of mutants with one transposon inserted randomly once per bacterial genome.

Once the library is generated and validated the transposon insertion sites must be identified to characterize the mutant pool. Various genetic techniques can be applied to identify the flanking regions of the transposon insertion sites.

For an optimal output it is desirable that the genotypic approach is high-throughput to match the large number of mutants generated using transposon mutagenesis. A high-throughput genotypic approach has been developed by Chaudhuri et al. (Chaudhuri et al., 2009). It is a DNA microarray and PCR-based method called Transposon Mediated Differential Hybridization (TMDH). Once the mutant library has been generated, genomic DNA is digested with a restriction enzyme and labelled RNA run-offs are produced from outward facing promoters integrated into the flanking ends of the transposon. The labelled RNA is hybridized to a tiling oligonucleotide microarray. Probes that are downstream of the transposon give a positive "on" signal while other probes give an "off" signal. Small genes ($<300 \mathrm{bp}$) have fewer transposon insert possibilities compared to larger genes. Such small genes are only covered by a low number of probes resulting in a poor signal and they can be problematic to detect as "on" signals. For these genes a laborious PCR step using a transposon specific primer is necessary. In addition, in some microarray features the distinction between positive and negative signals can be difficult. The TMDH approach was applied in the first comprehensive study identifying essential genes in S. aureus (Chaudhuri et al., 2009).

Another genotypic strategy, superior to the microarray approach, is based on high-throughput sequencing. Langridge et al. developed a system named Transposon Directed Insertion site Sequencing (TraDIS), which uses a transposon specific primer, enabling sequencing of the genomic target region flanking the transposon insertion sites (Langridge et al., 2009). The primer is designed
in such a manner that the first 10 bp in each sequence read is of transposon origin. As the method is of a "digital" nature, any sequence read that have the 10 bp transposon tag sequence with adjacent genomic sequence is almost certainly an indication of the transposon insertion site. Importantly, this sequencing procedure not only identifies essential genes under different environmental conditions, but also provides an estimate of the relative importance of gene function (Langridge et al., 2009). Statistical analysis can be performed with tools like R for a quantitative comparisons between samples (Anders and Huber, 2012).

Figure 3: TraDIS approach.

The figure illustrates how the TraDIS approach was applied in manuscript 1 and 2. An input pool of the transposon mutant library was screened in a functional assay and an output mutant pool was recovered. DNA from both input and output, representing mutants pre- and post- selection, were purified and sequenced on the Illumina platform. Sequence reads from the input and output samples were mapped to a reference genome and compared. Mutants present in input but absent in output (pink) represent a gene that is essential for survival in the specific environment defined in the functional assay. Mutants recovered in decreased numbers in output compared to input (blue) represent a gene that is
to some degree important for survival in the defined environment. Whereas mutants present in comparable numbers in input and output (green) represent a gene that is non-essential in the functional assay.

The sequencing approach has been used by Langridge et al., Khatiwara et al., Pickard et al. and Chaudhuri et al. to study essential and conditional essential genes in Salmonella Typhi and Salmonella Typhimurium (Chaudhuri et al., 2013; Khatiwara et al., 2012; Langridge et al., 2009; Pickard et al., 2013). Manuscript I describes, for the first time, the use of TraDIS in an S. aureus isolates and Figure 3 illustrate how TraDIS was applied in manuscript I and II.

The optimal mutant library will compose a genome-saturated library. Such a library will consist of mutants, each containing one transposon insertion site at a unique position, increasing the likelihood of every functional gene being disrupted. To verify that the transposon has been inserted throughout the genome within the mutant pool, each insertion site can be identified and mapped against a reference genome, revealing potential "hot spots" or confirming that all the genes, within the genome have been inserted with a transposon. This can be visualized by a genome atlas as shown in Figure 4.

Figure 4: Visualization of genomic insertion sites - genome atlas.

The figure shows a visualisation of the genome-saturated transposon mutant library generated in manuscript 1. The LA-MRSA ST398 S0385 reference genome (GenBank accession no. AM990992) is illustrated by the green outer circle and the black spikes illustrate staked sequence reads aligned to the reference genome. Each sequence read represent a transposon insertion site. The figure illustrate that no "hot spots" for transposon insertion were identified and almost every region within the genome has been inserted with a transposon.

Both TMDH and TraDIS require a cut-off strategy separating essential and non-essential genes, as a transposon can insert into non-functional parts of the gene without disrupting gene function. In the TMDH approach, PCR foot-printing is used to evaluate the microarray screen to verify the true essential and true non-essential genes, if an exhaustive essential gene list is required (Chaudhuri et
al., 2009). Using TraDIS, a normalized insertion index can be calculated of each gene and plotted against insertion frequency. Such a plot will have a bimodal distribution with two peaks and the local minimum separating those can define a cut-off, separating essential from non-essential genes (Langridge et al., 2009) (illustrated in Figure 2 in manuscript I).

When interpreting the data it is important to recognize that environmental and experimental factors have unintended consequences for the output data. When comparing samples pre- and postselection, only non-essential genes can be studied, as mutants with inserts in essential genes will not be present in the mutant library. In addition, transposon insertions may affect the expression of downstream genes or operons, causing polar mutations that lead to incorrect identification of essential genes in a defined environment. For definitive identification of gene function it is necessary to generate single gene knockouts and test those in the same functional assays used for the screenings. However, since a large number of genes are listed as having no known function and there is inconsiderable value in generating evidence for the phenotypes resulting from the possession of these genes, high-throughput methods can help to narrow the pool of genes to be investigated further.

2.2 Expression studies

Gene function is an important bacterial characteristic. However as many genes are only expressed under certain conditions, expression studies and information about the bacterial transcriptome are equally important. Knowledge about when a gene is expressed provides a deeper insight into gene function and this can be crucial when investigating new targets for antimicrobial agents.

Microarray was first described in 1995 and since then, the method has been used extensively in various studies (Schena et al., 1995). Microarray is a high-throughput automated approach consisting of multiple probes deposited or directly synthesized on a surface in an ordered fashion. The probes can be made of nucleic acid, proteins, carbohydrates or antibodies. On a DNA microarray nucleic acid probes are deposited on a planar glass surface, which is coated with a chemical reactive group to ensure efficient binding of the probes to the surface. To identify target genes, DNA samples are labelled chemically or enzymatic. The labelled samples are hybridized onto the array and washed. The remaining signal from the bound nucleic acids, specifically interacting with the probes deposited on the array, is measured using a confocal microarray scanner. Only probes hybridized with target DNA will give a signal thus identifying the gene with the related DNA motif in the sample (Huyghe et al., 2009).

DNA microarray can be used for identification of genes in multiple regions within a bacterial genome, or it can be applied to samples consisting of different genomes. However, only the genes with a target probe will be identified. A variety of genes, e.g. genes encoding virulence factors, phylogenetic markers or antibiotic resistance, have been employed on microbial characterization microarrays (Hallin et al., 2011; Sung et al., 2008). Microarray have been applied widely in expression studies, where mRNA is isolated from a bacterial culture in a defined environment and translated back into cDNA before quantified on the microarray (den Reijer et al., 2013; Malachowa et al., 2011). The transcriptomic approach can emphasize if specific genes are up- or downregulated under specific physiological conditions. A significant change in transcript will highlight the importance of gene function under the environmental conditions. In addition, microarray can be used for other applications like comparative genome hybridization, microbial community characterization and single nucleotide polymorphism (SNP) analysis (Huyghe et al., 2009).

2.3 Whole genome sequencing and comparative genomics

Several bioinformatic tools have been developed to characterize bacteria. Such tools are primarily based on a homology strategy, where nucleotide identity to already defined genes are used to describe new gene function (Hall, 2007). In recent years, whole genome sequencing (WGS) has become increasingly available. There have been huge improvements in sequencing technologies and the cost has gone down significantly. This gives rise to a new approach within diagnostics and surveillance, where WGS can be utilized for species identification, evolutionary clustering (Price et al., 2012), identification of resistance (Zankari et al., 2012) and virulence markers, just to mention a few of the many applications. WGS has enormous potential as it contains all the information, however, the biggest challenge with the appliance of WGS is to interpret the large amount of data retrieved with this technology. To translate large amounts of DNA sequences into functional information requires bioinformatic tools that are standardized and simple to use.

The improvements within WGS have boosted the approach of comparative genomics, where bacteria, as well as other organisms, can be compared on a genome level (Price et al., 2012). A complete bacterial genotype obtained by WGS can stand alone (Schijffelen et al., 2010), but by comparing the complete genotype from different strains living in different environments, genetic traits can potentially be identified, which can explain the successful colonization of a given environment.

3. Characterization of Staphylococcus aureus

The methods introduced have been used for characterization of S. aureus and various results from previous studies will be presented in this section. The focus will mainly be on S. aureus CC398.

3.1 Essential genes

Transposon mutagenesis has been used to define essential genes in S. aureus (Bae et al., 2004; Chaudhuri et al., 2009; Fey et al., 2013) (manuscript I). A schematic overview of the results obtained in the different studies can be found in manuscript I supporting figures Table S2.

Bae et al. generated an unsaturated transposon mutant library consisting of 10,325 transposon mutants. The insertion sites were amplified by PCR and sequenced and 450-550 genes were identified as essential for S. aureus strain Newman under laboratory conditions (Bae et al., 2004). Chaurhuri et al. generated the first genome-saturated transposon mutant library generated in S. aureus. The library was generated in S. aureus strain SH1000 and 351 genes were proposed essential for growth under laboratory condition. The TMDH approach was used for identification of transposon insertion sites (Chaudhuri et al., 2009).

Fey et al. identified 579 open reading frames which were not disrupted by a transposon in S. aureus strain JE2 (derived from a USA300 isolate) and these genes were proposed as essential for growth under laboratory conditions. They used a high-throughput sequencing method to identify transposon insertion sites (Fey et al., 2013).

The proposed essential genes are classified into functional categories and represents genes involved in DNA and RNA metabolism, protein synthesis, cell envelope, carbon metabolism, respiratory pathways, nucleotide biosynthesis and metabolism and cofactors. A fairly large portion of the essential genes are of unknown function underlining the need for further investigations. Some differences are seen between the lists of proposed essential genes in S. aureus. Any attempt to define the minimum set of essential genes will inevitably be influenced by the conditions under
which the experiment is performed. A gene may be scored as essential in a particular experiment because it is required for survival following exposure to a particular stress inherent in the methods or because it is involved in uptake or metabolism of the particular nutrients provided in the growth media. The differences found in the studies presented could be a result of differences in methodology, experimental conditions or true differences between strains.

3.2 Adhesion and colonization

3.2.1 The nares.

Adhesion is the first step in colonization and infection. S. aureus colonizes both the nares and skin surfaces of several animal species, including humans, but the most frequent site of carriage is the moist squamous nasal epithelium of the anterior nares. It has been postulated that the ability of S. aureus to adhere to the nares is widely determined by its ability to adhere to desquamated cells on the epithelial surface of the nasal vestibules (Corrigan et al., 2009; Foster, 2009). As "only" 20-40\% of the human population are intermediate or persistent carriers of S. aureus, it is clear that host factors play an important role in colonization (Foster, 2009).

Clumping factor B (ClfB encoded by the $c l f B$ gene) and iron regulated surface determinant protein A (IdsA encoded by the isdA gene) are surface expressed proteins utilized by S. aureus for adhesion to desquamated epithelial cells in vitro. In addition, they have been shown to be important for colonization of the nares of rodents in vivo and in humans in the case of ClfB (Clarke et al., 2004; Schaffer et al., 2006; Wertheim et al., 2008). ClfB binds human type 1 cytokeratin 10 found on the surface of human nasal cells (O'Brien et al., 2002). IsdA is only expressed under iron-limited conditions, which the bacterium often encounters in a host environment. It binds a number of different substrates including fibronectin, fibrinogen and several proteins associated with the cell
envelope of desquamated nasal epithelial cells such as cytokeratin 10. Both proteins constitute attractive candidates as antigens for a colonization-blocking vaccine (Clarke et al., 2006, 2004). By testing gene knockouts in vitro Corrigan et al.demonstrated that S. aureus strain Newman adherence to human desquamated nasal epithelial cells is multifactorial and involves the serineaspartic acid repeat surface proteins SdrC and SdrD as well as ClfB and IsdA (Corrigan et al., 2009).

In addition to proteinaceous adhesins, cell wall teichoic acids (WTA) and capsular polysaccharides have been shown to be involved in nasal adhesion. Further investigations have shown by expression analysis that various adhesion factors are expressed at different stages in nasal colonization. Genes involved in WTA biosynthesis are primarily expressed in the initial stage of colonization whereas $c l f B$ and $i d s A$ are up-regulated at a later stage (Burian et al., 2010; Kiser et al., 1999).
S. aureus surface protein (Sas) G and X have also been demonstrated to bind nasal epithelial cells (Li et al., 2012; Roche et al., 2003). SasX is encoded on a mobile genetic element (MGE) occurring predominantly in ST239 MRSA strains, which are the most frequent source of MRSA infections in Asia. It has been shown to contribute to colonization, biofilm formation, immune evasion and virulence in animal infection models (Li et al., 2012; Otto, 2012).

Pigs constitute an important reservoir for the spread and adaption of S. aureus ST398. Current knowledge on colonization and transmission of LA-MRSA in pigs is limited and mainly based on observational field surveys, but recently, in vivo pig colonization models have been applied (E M Broens et al., 2011b; Els M Broens et al., 2011; Crombé et al., 2012; Moodley and EspinosaGongora, 2012). Transmission quantification studies indicated that LA-MRSA ST398 easily spread among pigs and once a pig is colonized, there is a high probability of persistence, even without antimicrobial use (Els M Broens et al., 2011; Crombé et al., 2012).

Incubation in pigs yielded however variable results, which is possibly due to unstable colonization. To obtain stable colonization, porcine ex vivo model systems constitute an excellent alternative to animal experiments. Ex vivo models mimics the natural host environment but under more controlled conditions. In addition, several explants from one animal can be derived allowing for replicates within the same genetic background. Such models have been developed by Tulinski et al. as well as in manuscript II (Tulinski et al., 2013) (manuscript II).

Tulinski et al. studied MRSA ST398 colonization of porcine nasal epithelial explants. Three different isolates were tested. One of the MRSA isolates was isolated from a carrier pig (S0462), one from a human case of endocarditis (S0385) and a beta hemolysin (Hlb) laboratory mutant ($\mathrm{\Delta} \mathrm{hlb}$ $=$ S0385-2) derived from the S0385 isolate. Different porcine colonization properties were observed suggesting differences in interaction of the different isolates and the tissue. All isolates showed an initial decline in attached cells, which could indicate bacterial adaptation to the environment. After prolonged incubation, the isolate from the carrier pig showed an increase in cell number. However, the bacteria number was unaltered for the isolate from the humane case of endocarditis and decreased for the corresponding $h l b$ mutant (Tulinski et al., 2013).

Hlb is an exotoxin produced by S. aureus for complete lyses of red blood cells. Hlb production has also been demonstrated to damage keratinocytes and subsequent lead to colonization of skin (Katayama et al., 2013). MRSA Mu50, a human derived MRSA isolate, showed a similar pattern in porcine nasal colonization as the MRSA ST398 S0385 isolate. The similarity between the isolate Mu50 and S0385 suggests that the S0385 isolate potentially has lost some porcine specificity despite being of porcine origin. This underlines the adaptive potential of ST398.

3.2.2 The Skin

The skin surface constitutes a harsh environment and S. aureus must overcome surroundings that are constantly changing. Sweating and drying of the skin mean considerable changes in osmolarity, salt concentration and pH , in addition to mechanical stress. Host defence plays a significant role for bacterial survival and resistance to antimicrobial peptides produced by the host is likely to be of major importance for the ability of S. aureus to survive on skin surfaces (Foster, 2009; Otto, 2012). Fatty acids present in sebum are part of the anti-bacterial defence of the skin and in order to defend itself S. aureus produces IsdA which makes the cell surface more resistance to these molecules. It has been shown that IsdA mutants are more sensitive to killing in vitro by bactericidal lipids and the mutants survive poorly on human skin compared to wild-type (Clarke et al., 2007).

In some CA-MRSA strains the presence of the arginine catabolic mobile element (ACME), which is linked to the SCCmec element, has been proposed to be important for pH haemostasis in the acid environment of the skin (Diep et al., 2008b; Foster, 2009). ACME has been identified in S. epidermidis, a commensal of the skin in humans, but was not identified in all the CA-MRSA isolates investigated by Diep et al. (Diep et al., 2006). In addition Hallin et al. did not find ACME in 16 LA-MRSA ST398 isolates using a microarray approach (Hallin et al., 2011). This indicates that other factors, than the ACME which was identified as important for human skin colonization, are important for skin colonization of animals.

3.3 Infection

S. aureus is an opportunistic pathogen that is capable of causing a variety of infections ranging from minor soft tissue and skin infections to life-threatening systemic infections (Ekkelenkamp et al., 2006; Hasman et al., 2010; Huijsdens et al., 2006). Successful infection in a specific host is multifactorial and depends on virulence factors produced by S. aureus. Both secreted and cell surface-associated proteins can promote adhesion to host extracellular matrices, damage host cells,
and facilitate host immune evasion (Fluit, 2012; Foster, 2005). Manuscript III, supporting material Table S2 shows an overview of the virulence factors that have been described in S. aureus. The genes are categorized based on functionality like adherence, exoenzymes, host immune evasion, secretion system and toxins.

The LA-MRSA ST398 lineage is mainly associated with porcine colonization and porcine skin infections (Cuny et al., 2010; van Duijkeren et al., 2008) and encodes generally not as many of the traditionally human described virulence genes compared to HA-MRSA and CA-MRSA lineages. Table 1 in manuscript III illustrates a virulence profile of the whole genome sequenced LA-MRSA ST398 S0385 genome using the S. aureus VirulenceFinder generated and described in manuscript III (manuscript III Table 1).

3.3.1 Toxins

S. aureus encodes toxin like hemolysins, enterotoxins, exotoxins, exfoloative toxins, toxic shock syndrome toxin (tsst) and leukotoxins as the Panton-Valentine leukocidin (PVL) (Foster, 2009). Different S. aureus strains encode different toxins. Exfoliative toxins, tsst and PVL are only present in some clones, because they are encoded on MGEs, whereas alpha and gamma hemolysin are encoded in the core-genome and produced by most strains. Differential expression of core-genome encoded genes will nevertheless result in differences in pathogenesis (Novick et al., 1993).

Generally, the ST398 lineage is not associated with any of the human-associated enterotoxins (Golding et al., 2012; Hallin et al., 2011). A reduced toxicity could to some extent hide the bacteria from the immune system and may therefore facilitate a more stable and successful colonization of the host. This could explain why this particular lineage shows a broader host capacity compared to
most other S. aureus lineages. However, there are a number of un-described genes in the LA-MRSA stains which could encode virulence factors associated with infections in animals.

The world-wide emergence of CA-MRSA has been linked to the carriage of the PVL genes (DeLeo et al., 2010). The specific role of PVL in pathogenesis has been much debated. Based on a gene knockout screen, the PVL genes have been identified as contributing transiently to CA-MRSA pathogenesis in a rabbit bacteraemia model (Diep et al., 2008a). In addition there is a strong association between PVL and severe skin infections in humans (Lina et al., 1999). By comparative genomics the PLV genes have been identified in some human-associated MSSA ST398 isolates (Price et al., 2012) (manuscript III), which could contribute to increased virulence in these strains.

3.3.2 Host immune evasion

S. aureus produces several surface-associated components that increase bacterial resistance to phagocytosis (Foster, 2005). This is primarily obtained via anti-opsonic means disguising the bacterium from immune cell recognition. If S. aureus is recognized and potentially engulfed by phagocytic cells it is equipped with mechanisms promoting intracellular survival in addition to killing of host cells and manipulation of the adaptive immune response. Some of the S. aureus host immune evasion factors are presented in the following section.

Resistance to phagocytosis is an important bacterial feature to avoid being killed by the host immune system. S. aureus expressed various factors that contribute to a reduction in phagocytosis. The surface protein A, which is encoded by the spa gene, has demonstrated anti-phagocytic effects in vitro (Foster, 2009). It contains several domains that each binds to the Fc region of IgG (Forsgren and Sjöquist, 1966). This interaction coats the bacterium with IgG molecules in the incorrect
direction, which prevents any recognition by the neutrophil Fc receptor and activation of the complement system. Neutrophils and the complement system are both important candidates in an innate immune response. In addition, protein A has been identified as a virulence factor in vivo (Palmqvist et al., 2002).

The surface-associated clumping factor A (ClfA) binds fibrinogen and enhances virulence in vivo (Josefsson et al., 2001). This is most likely due to impaired recognition of opsonins resulting in increased resistance to phagocytosis (Higgins et al., 2006). Most S. aureus strains express a microcapsule that is composed of capsular polysaccharides (O'Riordan and Lee, 2004; Roghmann et al., 2005). Capsular serotype 5 and 8 is associated with increased virulence in animal infection models and the presence of a capsule has been shown to reduce bacterial uptake by human neutrophils in vitro (Luong and Lee, 2002; Nilsson et al., 1997; Thakker et al., 1998). In a microarray study both clumping factor (clfA) and capsular type 5 (cap5A) were identified in ST398 isolates (Hallin et al., 2011).
S. aureus displays several mechanisms to evade the host immune system. Beside anti-phagocytotic capacities the pathogen encodes virulence factors that can kill host immune cells, modulate the immune response and facilitate bacterial survival within phagocytotic cells.

Leukotoxins are cytotoxins that target leukocytes. S. aureus expresses different leukotoxins, of which only gamma hemolysin can lyse the membrane of both humane erythrocytes and humane leukocytes. The staphylococcal gamma hemolysins are bi-component and two active toxin (AB or CB) can be formed by combining the class-S components (HlgA or HlgC) with the class-Fcomponent HlgB (Dalla Serra et al., 2005). An expression study showed that the gamma hemolysin components in S. aureus were up-regulated during short-term incubation in human blood in vitro. $h l g \mathrm{ABCgene}$ knockouts did, however, show similar virulence as the wild-type in a murine skin
infection model, and bacterial survival and neutrophil lysis after phagocytosis were similar between mutants and wild-type (Malachowa et al., 2011). The gamma-hemolysin components were not identified within the ST398 isolates investigated by Hallin et al. (Hallin et al., 2011).

The bacterial encoded MHC class II-analogue protein Map (also called Eap) can bind the T-cell receptor on T cells resulting in alteration in T cell function and causing a reduction in T cell proliferation. The protein can also manipulate the adaptive immune response by shifting a Th1 response to a Th2 response. This manipulation could explain why map/eap mutants are rapidly cleared compared to wild-type in vivo (Haggar et al., 2005). In addition, a high concentration of Map protein can have similar effect as a superantigen, stimulating apoptosis of B and T cells (Foster, 2009). A previously published study has identified the mapleap gene in MRSA ST398 isolates (Hallin et al., 2011).

When engulfed by phagocytes the bacterium encounter negatively charged antimicrobial defensins, which are secreted into the phagosome. S. aureus secretes proteins that can neutralise cationic defensins. The staphylokinase (sak), which is a prothrombin activator, can dissolve fibrin clots and cleave IgG and complement factor C 3 , both of which have potent defensin-binding effects (Foster, 2009). The sak gene has been associated with S. aureus host specificity (Sung et al., 2008).
S. aureus is an opportunistic pathogen shifting from being a colonising agent to cause infection in response to changes to host environments. It has the capacity to switch on selective sets of genes to enhance its chance for survival. This includes the regulation of virulence genes, which needs to be differentially expressed at different stages of infection. The expression is controlled by global regulatory systems, such as Agr, $\mathrm{SarA}, \mathrm{SaeRS}$ and the alternative transcription factor sigmaB $\left(\sigma^{\mathrm{B}}\right)$
(Otto, 2012; Pané-Farré et al., 2006). Inactivation of the sarA and agr loci has been shown to result in reduced virulence in several staphylococcal in vivo infection models (Abdelnour et al., 1993; Cheung et al., 2004; Nilsson et al., 1997).

3.3.3 High-throughput screening of S. aureus virulence genes

Various studies have used S. aureus transposon mutant libraries to screen for genes involved in infection. A collection of $6,300 \mathrm{~S}$. aureus mutants were screened in vivo in a murine systemic infection model (Benton et al., 2004). 24 attenuated mutants were identified. The transposon inserts were identified by DNA size marker identification technology (SMIT). The mutants grouped into four functional classes, small molecule biosynthetic enzymes, cell surface binding and transport proteins, signal transduction systems, and anaerobic energy generation, as well as several conserved hypothetical proteins of unknown function. Mutations in genes encoding secreted virulence factors, such as hemolysins were not isolated (Benton et al., 2004).

Another study screening 1,248 S. aureus transposon mutants in vivo, in a murine bacteraemia model, did not identify previous described virulence genes as important for bacterial survival (Mei et al., 1997). Fifty attenuated mutants were identified and approximately half represented genes with unknown function. They recovered several mutants with insertion in the femAB operon. FemA and FemB are involved in methicillin resistance and femA mutants have shown a reduced cell wall turnover in growing cells, reduced whole-cell autolysis under non-growing conditions and increased methicillin sensitivity (Maidhof et al., 1991). In addition they recovered mutants with mutations in other cell surface components, like components of cell wall peptidoglycan, surface adhesion integrity, membrane transport, lipoprotein modification and genes affecting the capsule. Mutations affecting the tricarboxylic acid (TCA) cycle were also identified as important for survival in the
bacteraemia model. Such mutations were correlated to capsule production by Mei et al., as respiratory activity is essential for capsule production during some stages of S. aureus growth in vitro and capsule size can have a significant effect on virulence (Dassy and Fournier, 1996; Mei et al., 1997).

Begun et al. screened 2,950 transposon S. aureus mutants in a C. elegans-killing model and identified 10 unique mutants with mutations in TCA cycle components, nucleic acid metabolism/DNA replication, transporter, and miscellaneous proteins (Begun et al., 2005).

These findings underlines that the TCA cycle has a critical role in S. aureus pathogenesis and that the maintenance of the bacterial cell wall and cell wall transport are essential for successful colonization and infection.

3.4 Host specificity

It is generally believed that clones display a high degree of host specialization. Phylogeny has indicated that clones isolated from one host species tend to be uncommon in other species. There has however been increasing evidence that some lineages have a broader host-spectrum (McCarthy et al., 2012).

To study host specificity Moodley et al. used an in vitro skin corneocytes model to quantify adhesion in five S. aureus lineages (Moodley and Espinosa-Gongora, 2012). The human specific lineage ST36 showed preferred adhesion to human derived corneocytes whereas the pig-associated lineage ST433 showed preferred adhesion to porcine derived corneocytes. This was confirmed by in
vivo colonization of piglets, where ST433 was better at colonising than ST36. No differences were found in adhesion properties between a human and a pig derived ST398 isolate.

Uhlemann et al. compared adhesion properties of MRSA ST398 isolates derived from pigs and MSSA ST398 isolates, isolated from humans with no previous pig contact. The MSSA ST398 adhered significantly better to human derived skin keratinocytes in vitro compared to the MRSA ST398 isolates. However, no significant difference was observed in adhesion of the MRSA ST398 isolates to human- or pig-derived skin keratinocytes. The genomes differed in the content of mobile genetic elements (MGEs) and in surface-associated adhesion genes (Uhlemann et al., 2012)..

To elucidate the molecular mechanism underlying S. aureus host specificity several studies comparing human and animal derived strains have been performed. A micro-array based study revealed that six livestock-associated S. aureus ST398 isolates were distinct from more than 2,000 S. aureus isolates from humans (Belkum et al., 2008). Another study used a microarray-based comparative genomic approach to study genes associated with host specificity (Sung et al., 2008). Sung et al. found fibronectin binding protein A (fnbA), coagulase (coa) and cell wall-associated fibronectin binding protein (ebh) to be of most significance in relation to host specificity. They emphasized that it is likely that minor variation in other surface proteins are important as well, but these are too small to be detected by microarray. They also found a low incidence of the scn, chp and sak genes in the animal isolates. These genes are typically found as part of a prophage and implicate immune evasion in the human host. The staphylococcal complement inhibitor (scn) reduces phagocytosis by neutrophils and has been found to be specific to humans (Rooijakkers et al., 2005). chp encodes a chemotaxis inhibitory protein that modulates the chemokine response preventing neutrophil chemotaxis and activation, whereas sak encodes an anti-opsonin and inhibitor of defensins (Wamel, 2006).

Price et al. compared 89 MRSA and MSSA ST398 strains isolated from different hosts using WGS (Price et al., 2012). They identified a prophage encoding innate immune modulators specific for the human-derived isolates. scn was identified in all, chp in the majority, and sak in a third of the human originating isolates. In addition, only one of the 70 pig originating isolates contained the prophage. The tetracycline resistance gene $\operatorname{tet} M$, encoded on an MGE, was identified in all the pig originating isolates and none of the human isolates. Price et al. suggests that ST398 originated in humans as MSSA and acquired methicillin (primarily SCCmec type Vc 5C2\&5) and tetracycline resistance after the introduction to livestock (Price et al., 2012). This indicates the use of antibiotics (like tetracycline and beta-lactams) and heavy metals (like mercury) in food animal production is likely selecting for MRSA ST398 in pigs.

The S. aureus ST398 isolate S0385 isolated from a human case of endocarditis has been genome sequenced and annotated and can be found in GenBank under the accession no. AM990992 (Schijffelen et al., 2010). The ϕ SA3 prophage found to be associated to S. aureus of human origin was not identified in this isolate and it has therefore been defined as a LA-MRSA isolate (Price et al., 2012; Schijffelen et al., 2010). The S03985 isolate harbour a scn homolog encoded on a pathogenecity island, which could be specific for the porcine host. Schijffelen et al. stress that this could mean that genes targeting animal immune systems could be found in S. aureus strains isolated from animals. However, there may only be relatively few conserved differences between human and animal isolates and that genes determining host specificity are difficult to identify even though most S. aureus lineages seem to be host specific (Sung et al., 2008).

The sequence analysis of the S 0385 genome showed that the isolate was relatively different to other non-ST398 S. aureus genome sequences. These differences were identified in unique MGEs and
most of the elements harboured determinants for virulence and antimicrobial resistance. In addition, this isolate lacked one of the restriction and modification systems, which could make it more prone to up-take of foreign DNA (Schijffelen et al., 2010). These features may allow ST398 to adapt to new niches and could explain, at least in part, the broad host range this lineage is able to colonize.

Chapter 2

4. Summary and discussion of the results from the manuscripts

4.1 Manuscript I

The aim of this study was to generate a high complexity transposon mutant library and assess the application of TraDIS in S. aureus Sequence Type 398 (ST398), belonging to CC398. The generated transposon mutant library was screened in BHI and porcine blood in order to identify genes essential for ST398 to survive under these conditions.

The strain LA-MRSA ST398 S0385 was selected for this study because this isolate was the first CC398 isolate to be whole genome sequenced and annotated. The TraDIS method is based on next generation sequencing for comparing mutant composition pre and post selection. This approach requires an annotated reference strain to identify transposon insertions into open reading frames. The S0385 isolate was isolated from a human case of endocarditis but is considered a livestockassociated strain as it contains the Tn 916 transposon encoding tetracycline resistance and the strain do not contain any of the phage associated genes often found in S. aureus isolated from humans.

The transposon mutant library was generated using a two plasmid system. One of the plasmids carried a Tn5-derived transposon with an erythromycin resistance marker (erm) and mariner mosaic ends. The mariner mosaic ends constitute inverted repeats, which is required for transposon insertion into the S. aureus genome. In addition the plasmid backbone contains a chloramphenicol resistance marker (cat). The other plasmid contains a transposase that is responsible for the insertion and excision of the mariner transposon. The transposase-carrying plasmid was modified in this study to contain gentamicin resistance (AAC6'-APH2') as the selection marker because the original selection marker was based on tetracycline resistance (tet). Thus, the new tool is also
available for future genetic manipulation in other tetracycline resistant strains. Both plasmids contain temperature-sensitive origins of replication only allowing plasmid replication at $30^{\circ} \mathrm{C}$ or below. The plasmids have previously been used to generate a high complexity transposon mutant library in an S. aureus laboratory strain (Chaudhuri et al., 2009). Both plasmids were transduced into the strain of interest using the S. aureus specific bacteriophage $\phi 11$, which has been described for genetic manipulation previously (Novick, 1991). After transduction the cells will contain one set of plasmids and within these cells the transposition event were conducted. During transposition the mariner transposon was inserted at a random TA di-nucleotide position in the S. aureus genome. Once the transposon insertion mutants were generated the mutant pool was grown at $43^{\circ} \mathrm{C}$ to facilitate plasmid loss. To eliminate the plasmids the mutant pool was passaged up to four times at $43^{\circ} \mathrm{C}$ and serial dilution and plating were used to determine the mutant library size and plasmid loss. At this temperature the plasmids will not replicate and thus their presence in the mutant population will be diluted. After each passage, mutant library aliquots were diluted and cultured on BHI agar plates containing erythromycin, chloramphenicol or gentamicin. Approximately 10^{6} CFU/ml showed erythromycin resistance but chloramphenicol sensitivity. This showed chromosomal integration of the transposon and 100% plasmid loss of the transposon-carrying plasmid. After growth at $43^{\circ} \mathrm{C}$ for two generations, 70% of the erythromycin resistant mutants showed sensitivity to gentamicin, indicating that approximately 30% of the mutants still contained the transposase-carrying plasmid. To increase the plasmid loss two additional passage at $43^{\circ} \mathrm{C}$ were conducted. This resulted in approximately 93% plasmid loss after both the third and fourth growth passages. Growth at high temperatures will induce selection on the mutant library and will influence the specificity of further downstream screenings and therefore, the passage at high temperatures was terminated after three passages. However, due to the incomplete plasmid loss, around 7% of the mutants will contain a transposase. The transposase could facilitate excision and re-insertion of the
transposon and thereby influence the stability of the mutant library. To avoid relocation of the transposon nutrient-rich broth was supplemented with erythromycin at each growth step and thus, the mutants were in that way continuously exposed to erythromycin. This will aid stability of the transposon insertions as the erythromycin resistance gene will not be transcribed in an excised transposon which will make the mutants sensitive to erythromycin. After generating the mutant library, various screenings assays where performed, where the mutant composition in an input pool was compared to a mutant composition in an output pool. If any genomic transposon relocation had taken place despite the presence of erythromycin, the mutant composition would have altered unintentionally. Such potential alterations could however only take place in a minor proportion of the mutants and would only be included in the analysis if the change in mutant composition happens at the output pool level, as only mutants present in the input pool will be considered in the final evaluation. Additionally this will only influence the results if the unintended transposon relocation happens with a similar frequency in all biological replicates.

The transposon mutant library was validated using Linker-PCR and sequencing. Linker-PCR is a method to validate if the transposon had inserted randomly throughout the genome. A transposonspecific forward primer facing outwards and a linker-specific reverse primer were used. The reverse primer will not recognize its target before after the first round of amplification with the transposonspecific primer and therefore, only transposon insertion sites will be exponentially amplified. Random mutants from the mutant library were selected and the transposon insertion site was amplified using linker-PCR, sequenced, and mapped against the reference genome to identify the genomic insertion site (see manuscript I supporting Figures S2 and S3).

Once the genome-saturated mutant library was generated and validated, the library was screened for genes important for bacterial survival under specific condition. Genomic DNA from mutant pools were sequenced using Transposon Directed Insertion site Sequencing (TraDIS). The sequencing was performed using a custom sequencing primer, sequencing from the 5^{\prime} end of the transposon and into the genomic DNA flanking the transposon insert. In a sequencing run, one lane from an Illumina flow cell generated a minimum of 40 million reads of 43 bp plus index reads. The first 10 bp of each read constitute the Tn sequence, which were stripped from the reads. The remaining reads were between $10-23 \mathrm{bp}$ in length. The sequence reads were mapped to the reference strain (Accession no. AM990992). Reads of down to 10 pb in length were allowed in this analysis, as all the sample genomes were identical to the reference genome. It is very likely that when comparing two identical genomes even small reads of 10 bp will map correctly. However, it might be more likely that a 10 bp read will map to more than one position within the reference strain. The aligner tool Bowtie 2.0 was used for mapping the sequence reads to the reference genome. By default, all reads mapping more than once to the reference genome will randomly be mapped to only one position and such reads will be given a low mapping quality score. When defining the number of unique insertion sites only reads with a high quality score will be taken into account and this number will therefore be based on reads mapping only once to the reference genome.

It is known that the S. aureus genome contains duplicate regions, which is important to recognize when evaluating essential genes with zero transposon insertion sites. For this evaluation all reads was considered despite mapping quality score and only the genes with zero reads mapping was proposed as essential in this study.

The high-throughput approach is based on a negative selection strategy. If an essential gene has been disrupted by a transposon insertion the mutant will not be viable and thereby not present in the
mutant pool. This strategy was used in the study to identify essential genes under laboratory conditions. A total of 152 genes had zero transposon inserts and were proposed as essential for LAMRSA ST398 survival under laboratory conditions (manuscript I supporting figures Table S1). As gene function can be maintained with few inserts in non-functional parts of a gene, genes with a low number of inserts was also considered as essential or advantageous. In manuscript I, 526 genes with only few transposon inserts were identified and therefore evaluated as beneficial for growth under the laboratory conditions (manuscript I supporting figures Table S2).

A comparison between previous studies all identifying S. aureus essential genes under laboratory conditions using high-throughput approaches was performed (Bae et al., 2004; Chaudhuri et al., 2009; Fey et al., 2013). Some differences between the lists of proposed essential genes in S. aureus were identified and can be found in manuscript I supporting figures Table S3.

Any attempt to define the minimum set of essential genes will inevitably be influenced by the conditions under which the experiment is performed. A gene may be scored as essential in a particular experiment because it is required for survival following exposure to a particular stress inherent in the methods or because it is involved in uptake or metabolism of the particular nutrients provided in the growth media. An example of this is the requirement for extended incubation of S. aureus at high temperatures $\left(>43^{\circ} \mathrm{C}\right)$ to facilitate loss of the temperature-sensitive plasmids. Consequently, genes required for high temperature survival will be scored as putative essential. Thus the differences found in the studies presented in Table S3 could either be a result of differences in methodology and experimental conditions or true differences between strains. In this study an insertion index was calculated and a cut-off was defined to identify genes with a low number of transposon inserts as beneficial for growth under laboratory conditions. The application of the insertion index was introduced by the authors of the original TraDIS paper (Langridge et al., 2009) but was not applied in the previous studies identifying S. aureus essential genes (Bae et al.,

2004; Chaudhuri et al., 2009; Fey et al., 2013). The selection of the cut-off separating essential/beneficial from non-essential genes is an important consideration. The cut-off defined in this study may not be optimal and could in part be the reason for the difference seen in the comparison with previous studies (manuscript I supporting figures Table S3).

A complex transposon mutant library is a very sensitive system and even small differences in library generation and experimental conditions may influence the output. To generate a true comparison of S. aureus essential genes in various strains the transposon mutant library should be generated under the same conditions using the same approach for identification of the transposon insertion sites and for the sake of clarity, it might be better to use less complex libraries containing a lower number of mutants.

4.1.1 Evaluation of a high-throughput screening in whole porcine blood

To assess the appliance of the high-throughput screening approach, the transposon mutant library was screened in whole porcine blood in vitro. Two 50 ml falcon tubes were filled with approximately 10 ml heparinised whole porcine blood and each tube was inoculated with 0.5 ml of the mutant pool (8.8×10^{7} cells). DNA was extracted from the input mutant pool ($\sim 10^{9}$ cells) representing the mutant composition before screening the library in whole porcine blood. The blood samples were incubated for 24 hours at $37^{\circ} \mathrm{C}$ with aeration. The following day the blood cultures were tested for viable counts ($1.4 \times 10^{7} \mathrm{CFU} / \mathrm{ml}$) and $500 \mu \mathrm{l}\left(\sim 10^{7}\right.$ cells) from each blood-culture were inoculated into $2 \times 10 \mathrm{ml} \mathrm{BHI}$ supplemented with $5 \mathrm{mg} / \mathrm{l}$ erythromycin, to increase the bacterial/blood cell ratio prior to DNA extraction, and incubated over night at $37^{\circ} \mathrm{C}$ with aeration. This resulted in two rounds of growth selection: one selection round in whole porcine blood followed by a selection round in BHI. After the second round of selection, DNA was extracted from $\sim 10^{9}$ of the mutants from each blood culture and stored as output pools representing two biological
replicates. No specific cell viability tests were performed on the blood cells, but it has been shown previously that whole-blood units stored at room temperature maintain cellular counts and coagulation activity for up to 72 hours (Hughes et al., 2007). In addition, in previous experiments an initial decrease in bacterial cell counts was observed when incubating the transposon mutant library in whole porcine blood, which could reflect neutrophil killing (see manuscript I Figure S4).

To identify genes representing mutants with altered fitness after screening in whole porcine blood in vitro, gDNA from the input pool and the output pools were extracted and sequenced. The number of reads corresponding to each transposon insertion site in the input pool was compared to the number of reads mapping to the equivalent position in the output pools using the DESeq package in R The raw read counts were expected to follow an approximately normal distribution. However, based on a frequency distribution plot, read counts below 2^{4} showed inconsistency with this assumption and were therefore considered as noise and not used in the analysis ($<0.05 \%$ of the reads were discarded). The reason for this noise is not understood but was seen repeatedly in all the samples. The sequence reads could potentially be chimeric reads that contains a Tn sequence and a part of a genomic position, but do not correspond to a true insertion site. A potential way of avoiding such chimeric reads could be to use paired end sequencing where both ends of the transposon are used for defining a transposon insertion site.

The read counts, corresponding to transposon insertion sites, were normalized with a size factor to account for variation in the total number of reads obtained from each samples. The ratio of input:output reads counts were determined and referred to as a $\log _{2}$ fold change. A negative $\log _{2}$ fold change reflects an attenuated mutant and was determined when the number of read counts from input pool to output pool decreased and thereby illustrated a decrease in mutant clones after selection. For strongly attenuated mutants, zero clones were present in the output pools and the $\log _{2}$
fold change was defined as minus infinity for such mutants. For each individual mutant, the hypothesis that the fitness score was equal to zero and thereby that the mutant was present at equivalent levels in the input and output pools was tested for, using a negative binomial distribution as implemented in DESeq (Chaudhuri et al., 2013). DESeq models variance under the assumption that mutants with comparable levels of sequence coverage exhibit similar levels of dispersion. The model was fitted only from those mutants from which replicate data was available and the resultant model was then applied to data derived from all mutants to estimate P values.

Twenty-three mutants were identified with a specific significant reduction in fitness after selection in whole blood (manuscript I Table 3). Some mutations related to carbon metabolism via regulation of the TCA cycle, enzymes involved in gluconeogenesis and galactose metabolism. Several mutants could be linked to the cell wall and pH shock, in the form of amino acid metabolism, transport, pigmentation and cell wall repair. Mutations involved in regulation, which could affect the transcription of virulence genes, were also identified. Eight of the 23 genes representing attenuated mutants were of unknown function. Mutation in one gene of unknown function resulted in a hypercompetitive mutant. For an overview of the genes see manuscript I Table 4.

The transposon mutant library was incubated in whole porcine blood in vitro for 24 hours. This could partly reflect why many metabolic genes were identified as important for whole porcine blood survival in this study. However, an incubation period of 24 hours was specifically selected based on initial growth experiments performed in whole porcine blood in vitro (manuscript I Figure S4). These experiments showed an initial decrease in bacterial population size, which could be explained by phagocytosis and potential bacterial killing by host immune cells. The mutant population size returned to an equivalent size of the inoculated population after 24 hours, and at this point the
mutants had potentially seen all the selective elements within whole blood. Genes important for immune evasion will have undergone selection in a similar manner as the metabolic genes but as S. aureus encodes a larger variety of immune evasion genes it is justifiable to conclude that none of these are singlehandedly responsible for survivin the immune response. This may explain why no immune evasion genes were identified as important for whole blood survival.

The results indicate that key genes for survival in porcine blood cultures may not be genes involved for iron uptake, such as hemolysins and sideophors, and immune evasion but may be genes associated with the ability to utilize the available carbon hydrates in blood, which is supported to by previous studies (den Reijer et al., 2013; Malachowa et al., 2011; Mei et al., 1997). In two of these studies it was observed, that up- or down-regulated genes were mainly involved in cellular metabolism or had an unknown function (den Reijer et al., 2013; Malachowa et al., 2011). A previous study screening 1248 transposon S. aureus mutants in an in vivo murine bacteraemia model identified 50 genes as being important for whole blood survival, half of which had unknown function and the rest with an involvement in nutrient biosynthesis and surface metabolism (Mei et al., 1997). Furthermore, they identified genes important for the tricarboxylic acid cycle (TCA cycle) and in this study we identified the icd gene, a TCA cycle regulator, as important for in vitro survival in porcine blood. This indicates that the TCA cycle and carbon metabolism have important functions for bacterial survival in blood from different hosts in vivo and in vitro. The femA and fem B genes were previously identified as important for whole blood survival in vivo (Mei et al., 1997). However, we found femA and femB mutants to have a growth disadvantage under laboratory conditions which is consistent with other studies identifying S. aureus essential genes (Bae et al., 2004; Chaudhuri et al., 2009; Fey et al., 2013).

In this study, a high complexity transposon mutant library was successfully generated in an LAMRSA ST398 WT isolate and evaluated using the TraDIS system. S. aureus ST398 essential genes were identified and comparable with previous studies. Twenty-four genes were evaluated as being important for specific in vitro whole porcine blood survival, of which carbon metabolism, pH shock and regulation were related. For further evaluation of the genes identified as important for whole porcine blood survival it is necessary to generate single knock-out mutants and test these in the same assay as used in the high-throughput screening. In addition, it could be valuable to evaluate the single mutants in blood from different donor and under in vivo conditions.

4.2 Manuscript II

In this study, a transposon mutant library consisting of approximately one million LA-MRSA ST398 mutants was screened to identify genes important for survival in the porcine environment. The mutant library was generated and validated as described in manuscript I. The mutant library was screened in an ex vivo porcine skin model and an ex vivo porcine nasal epithelial model. For this purpose, two 6-month-old pigs, a male (Pig_1) and a female (Pig_2) were collected from the same farm with two weeks in between. They were euthanized by intravenous overdose of pentobarbitone and the tissue was collected immediately postmortem after obtaining the farm owner's permission for the use of their pigs in this study.

4.2.1 Porcine ex vivo skin model

The ex vivo porcine skin model was prepared as described previously (Maisch et al., 2007). Briefly, the skin areas behind the ears were washed with chlorhexidine soap and disinfected with 70% ethanol before epilation with a sterile razor. A squared skin piece of around $8 \times 8 \mathrm{~cm}$ was removed from the pigs and the adipose tissue beneath the dermis was removed with a scalpel. The skin was
dissected under sterile conditions into $2 \mathrm{~cm}^{2}$ pieces, placed in 6-well plates and embedded in Hepes agar leaving the skin surface uncovered (manuscript II Figure 1). The skin pieces were disinfected with 70 \% ethanol followed by washing with PBS three times. Swabs were taken from the washed skin surface to test for surface contamination and no such was found on any of the prepared skin explants.

Aliquots, of the transposon mutant library generated as described in manuscript I were grown over night in BHI broth supplemented with erythromycin. gDNA was extracted from the mutant culture ($\sim 10^{9}$ cells) representing the input mutant pool.

In the porcine skin survival assay, $10 \mu \mathrm{l}$ of up-concentrated stationary mutant culture ($\sim 10^{11}$ cells) were inoculated onto the porcine skin surface and incubated under atmospheric conditions at $32^{\circ} \mathrm{C}$ for ~ 24 or ~ 48 hours and duplicates were generated for each incubation period from both Pig_1 and Pig_2. After incubation the skin explants were homogenized and $9 \times 10^{7}-2.5 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$ was recovered after ~ 24 hours and $2.1 \times 10^{8}-4.1 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$ was recovered after ~ 48 hours incubation on the skin explants. A decrease in mutant cell count was observed suggesting an initial selection on the mutant pool. A slight increase in cell counts were observed between ~ 24 and ~ 48 hours incubation from an average of $\sim 2 \times 10^{8}$ to $\sim 3 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$, which propose that the mutants that are present on the skin explants are viable.
S. aureus expresses different surface proteins depending on growth phase (Foster, 2009) and therefore both exponentially and stationary grown cell were used in the skin adhesion assay. gDNA was extracted from an exponentially $\left(\mathrm{OD}_{600} 0.5-0.8\right)$ and stationary grown transposon mutant culture ($\sim 10^{9}$ cells from each growth phase), representing mutant input pools. $10 \mu \mathrm{l}$ of upconcentrated exponentially grown and stationary grown cells ($\sim 10^{11}$ from each growth phase) were
inoculated onto the porcine skin surface and incubated under atmospheric conditions at $32^{\circ} \mathrm{C}$ for ~20 hours. Four replicates for each growth phase were performed on tissue explants from Pig_1. A decrease in cell counts was observed between the cells recovered in the adhesion assay (an average of $\sim 5.4 \times 10^{7} \mathrm{CFU} / \mathrm{ml}$) compared to the cells recovered in the survival assay after 24 hours incubation (an average of $\sim 2 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$). This indicates that some mutants were lost in the washing step preformed in the adhesion assay. A lower number of mutants were recovered after porcine skin adhesion with exponential cells compared to stationary cells (an average of $\sim 1.3 \times 10^{7}$ and $\sim 5.4 \times 10^{7} \mathrm{CFU} / \mathrm{ml}$ respectively), which could point to that the stationary grown mutants adhere better to the porcine skin explants.

The cell suspensions, recovered from all the skin explants from both the survival and the adhesion assays were re-inoculated into 10 ml fresh BHI supplemented with $5 \mathrm{mg} / \mathrm{l}$ erythromycin to select for transposon mutant and reduce growth of the natural porcine skin microbiota. gDNA was extracted and sequenced from all the output replicates.

The mutant composition in input and output was evaluated using the DESeq package in R. The read counts corresponding to transposon insertion sites were normalized to account for variation in the total number of reads obtained from each sample. The ratio of input:output read counts were determined and referred to as a $\log _{2}$ fold change, which will be referred to as a fitness score. A negative fitness score reflects an attenuated mutant. An attenuated mutant was determined when the number of read counts from input pool to output pool decreased and thereby illustrated a decrease in mutant clones after selection. For strongly attenuated mutants, zero clones will be present in the output pools and the $\log _{2}$ fold change was defined as minus infinity and a fitness-score of -12 was assigned to such mutants. For each individual mutant, the hypothesis that the fitness score was equal to zero, e.i. the mutant was present at equivalent levels in the input and output pools, was
tested for using a negative binomial distribution as implemented in DESeq, as has been done previously (Chaudhuri et al., 2013). DESeq models variance under the assumption that the mutants with comparable levels of sequence coverage exhibit similar levels of dispersion. The model was fitted only from those mutants from which replicate data was available, which was in this case primarily sequence read counts from output pools, as no biological replicates were available from input pools. The resultant model was then applied to data derived from all mutants to estimate P values.

In the porcine skin survival study 27 genes were identified to be associated with alteration in fitness and therefore defined as important for LA-MRSA ST398 isolate S0385 survival on porcine skin. The genes selected represent mutants that had a significant change in fitness (P level ≤ 0.01) when screened on skin explants isolated from both pigs (two replicates from Pig_1 and from Pig_2). The genes are listed in manuscript II Table S1. Twenty-two genes illustrated attenuated mutants and fourteen of these genes have been identified as essential/beneficial for growth under laboratory conditions previously (manuscript I Table S1 and S2). Eight genes represent mutants with a reduced fitness specifically in the porcine skin survival assay and they are described as hypothetical proteins, regulators and transporters mainly. The S0385 strain contains 3 circular plasmids (Schijffelen et al., 2010) and after two days incubation on the porcine skin explants, mutants with transposon insert into the replication protein Rep located in plasmid 3 (PSAPIG030001) showed a drop in fitness. The plasmid is annotated to encode two different genes, the replication protein and a transcriptional regulator (SAPIG030002), one of which might be important for porcine skin survival. In addition, there were five genes representing hypercompetitive mutants in the porcine skin survival assay, of which two a reductase, one encodes a phage integrase and two encode repressors. These functions might not be important in porcine skin survival ex vivo but could be
essential in other more natural environments were competition and selection, are important factors for bacterial survival.

The transposon mutant library was also screened in a porcine skin adhesion assay to identify genes important for skin surface attachment. Only the genes specifically important for skin attachment were of interest and therefore genes identified as essential/beneficial for growth under laboratory conditions (manuscript I Table S1 and S2) were removed from the gene lists.

Sixty-eight genes were identified as representing mutants with significant reduced fitness (P level \leq 0.05) when the transposon mutant library was selected in the adhesion assay as stationary grown cells (manuscript II Table S2). Twenty-nine genes representing mutants with attenuated fitness were identified when screening the transposon mutant library as exponentially grown cells in the adhesion assay (manuscript II Table S3).

In general various genes encoding enzymes, secreted proteins and surface-proteins represented the mutants with the most profound loss in fitness in the skin adhesion assays (manuscript II Table S2 and S3). Clumping factor B (clfB) and another fibrinogen-binding protein (SAPIG1154) were evaluated as important for skin adhesion. ClfB has previously been evaluated to be involved in human nasal adhesion and carriage (Corrigan et al., 2009). Immunoglobulin G binding protein A and staphylococcal secretory antigen ssA1 and ssA2 were identified as important for skin adhesion in addition to cap5A and cap5D, which are involved in capsular polysaccharide biosynthesis.

Protein A and capsular polysaccharide inhibit phagocytosis (Foster, 2009) and the staphylococcal secretory antigens have predicted immunogenic function. This indicates that immune evasion and modulation are important features for the initial S. aureus ST398 colonization of porcine skin.

When comparing the list of genes obtained in the porcine skin survival and adhesion assay using stationary grown cells, eight genes were evaluated as important for both adhesion and survival in the skin model. Of these, six genes represent attenuated mutants and two genes hypercompetitive mutants (manuscript II Table 1). Eight genes were identified as important for porcine skin survival and adhesion using exponential grown cells, two of which showed increased fitness and six attenuated mutants with reduced fitness (manuscript II Table 2). Three genes showed inconsistency between the skin survival assay after 1 day of incubation and the skin adhesion assay using exponentially grown mutants.

Three genes, encoding a DNA-binding response regulator (BecR), an ABC transporter (BecB) and an export ATP-binding protein (BecA) were proposed as important for ST398 porcine skin survival (manuscript II Table 3). The genes, which are part of the BecAB transporter system, each showed a significant reduction in fitness when inserted with a transposon. The BecAB transporter system is similar to a Bacillus subtilis ABC transporter, which was previously defined as responsible for bacitracin efflux in Bacillus (Ohki et al., 2003). However, it could be that this ABC transporter system has other functions than bacitracin resistance as a becS (bacitracin sensing) mutant was not identified with reduced fitness in the skin survival model.

Another gene that was evaluated as important for porcine skin survival was esa B (manuscript II Table 3), which is a negative regulator of esaC. EsaC production and secretion is increased when Staphylococci replicate in serum or infected hosts (Burts et al., 2008). EsaB and EsaC are defined as being involved in S. aureus virulence and are required for persistent infection, esa B mutants fail to repress esaC and bacteria lacking esaB function will overproduce EsaC. Even though overexpression of EsaC is the natural response when S. aureus is replicating in host tissue, animals and humans mount an immune response to EsaC during infection (Burts et al., 2008), which could
explain why a constitutive overexpression of EsaC, in the esaB mutants, might not be in favour of the pathogen. In addition, a constitutive expression can have a metabolic cost on the mutant. Enzymes involved in membrane lipid metabolism and galactose metabolism were also identified as important for porcine skin survival in manuscript 2 (manuscript II Table 3).

4.2.2 Porcine ex vivo nasal epithelial model

The genome-saturated ST398 transposon mutant library was screened in a porcine ex vivo nasal epithelial survival model. The library was tested on explants from two different pigs. For isolation of nasal epithelial tissue, the pig head was removed from the carcass and immediately used for isolation of the nasal septum, leaving the lining nasal epithelial tissue intact. The tissue was washed in Dulbecco's Modified Eagle Medium (DMEM) supplemented enrofloxacin, streptomycin, and Fungizone to remove that natural microbiota. The antibiotic wash was followed by antibiotic-free washes in DMEM (for details, see method section in manuscript II). The nasal epithelium was dissected from the underlying cartilage of the nasal septum and divided into pieces of approximate $0.5 \times 0.5 \mathrm{~cm}^{2}$, in a sterile environment. Antibiotic residual test was performed on a bacterial lawn of LA-MRSA ST398 S0385 and here no growth clear zone was observed. The tissue pieces were placed on filter-paper overlying agar-plugs with the external side facing up-wards. The agar-plugs were arranged in 6-Well plates with a DMEM reservoir, moistening the filter paper and in that way nourishing the tissue (manuscript II Figure 1).

Aliquots of the transposon mutant library generated in manuscript I, were grown over night in BHI broth supplemented with erythromycin and gDNA was extracted from the mutant culture $\left(\sim 10^{9}\right.$ cells), representing the input mutant pool. From the mutant input culture, 5-10 $\mu \mathrm{l}$ of up-concentrated cells ($\sim 10^{11}$ cells) were inoculated onto the prepared nasal epithelium and incubated at $37^{\circ} \mathrm{C}$ plus 5
$\% \mathrm{CO}_{2}$ for ~ 24 hours (duplicates from $\operatorname{Pig} _1$ and Pig_2). After incubation, the epithelial tissue was homogenized and $2.7 \times 10^{8}-4.2 \times 10^{10} \mathrm{CFU} / \mathrm{ml}$ was recovered after ~ 24 hours incubation on the nasal explants. A decrease in mutant cell count was observed suggesting selection on the mutant pool. The cell suspensions were re-inoculated into 10 ml fresh BHI supplemented erythromycin and incubated over night and gDNA was extracted ($\sim 10^{9}$ cells), representing mutant output pools. gDNA from input and output pools were sequenced and mutant composition in input and output was evaluated like described for the porcine skin assay.

Four genes with specific importance for nasal epithelial survival were found in this study, two of which showed decrease in fitness and two with increased fitness. Manuscript II Table 3 shows the genes that were identified with a significant change in fitness score (P level ≤ 0.05) on both pigs.

Sixteen genes were identified as important for nasal epithelial survival, encoding proteins involved in regulation, metabolic enzymes, cell wall components and hypothetical proteins.

An aminoacyltransferase gene (femA) was identified as specifically important for ST398 nasal survival in both pigs (manuscript II Table 4). The isolate S0385 used in the screen contains four different genes of various lengths all described as encoding aminoacyltransferase FemA (SAPIG1375, SAPIG1248, SAPIG1250, SAPIG2462). In manuscript I, one of the four FemA encoding genes (SAPIG1375) was identified as advantageous for S. aureus survival under laboratory conditions (manuscript I Table S1). However, a different FemA-encoding gene (SAPIG1248) was identified as important for survival in the porcine ex vivo nasal epithelium survival model. FemA is involved in methicillin resistance and femA mutants have shown a reduced cell wall turnover in growing cells, reduced whole-cell autolysis under non-growing conditions and increased methicillin sensitivity (Maidhof et al., 1991). The alteration in the cell wall in femA mutants could reduce bacterial resistance to the host immune response.

A previous study using porcine nasal explant identified beta-toxin gene hlb as a S. aureus S 0385 nasal colonization factor, based on CFU quantifications of S0385 wild type and S0385 beta hemolysin mutant (Tulinski et al., 2013). SAPIG2471 encoding beta hemolysin was not among the genes identified as most significant for nasal epithelium survival in this study. When inspecting the raw count data, a decrease in read count from input to output for the beta hemolysin genes was indentified in three of the four replicates (data not shown), but this reduction was not defined as significant using the DESeq package in R. In the genome-wide screening approach, all mutants are compared relatively to each other and only the mutants with the most significant change will be identified. This could explain at least in part the inconsistency between the findings when using a high-throughput approach compared to a single mutant knockout strategy. Both methodologies are very useful for combining phenotypes to genotypes.

Some consistency was found between the genes identified as important for nasal epithelial survival when comparing the results obtained from the two pigs. It is known that many host factors are involved in S. aureus colonization (Foster, 2009) and the differences seen between the two pigs could be related to several factors, like genetic host variation, immune status, gender or simple differences between pig-replicates obtained when using this model system. Unfortunately, it was not possible to repeat the experiments on explants isolated from other pigs. However, as the genes presented here only illustrate genes which were identified as important for survival on several replicate explants isolated from both pigs, they should be considered as genes relevant for survival in the porcine reservoir. They constitute good gene candidates for generation of single knockout mutants, which should be tested within the same assays for a complete definition of the genes.

Pigs are important for the spread of ST398 and the identification of genes important for bacterial survival in the porcine reservoir could contribute to a better understanding of LA-MRSA ST398 ecology. Genes encoding transporters and metabolic enzymes were identified as relevant for porcine skin survival and genes encoding regulatory proteins, metabolic enzymes and cell wall components were proposed important for porcine nasal epithelium survival in this study. The genes could constitute targets for MRSA decolonization in pigs and thereby prevent further spread and adaption within the ST398 lineage. However, further investigations are needed to gain a more specific understanding of their role in bacterial survival.

4.3 Manuscript III

In this study the construction of the S. aureus VirulenceFinder is presented. The database is a web server that utilises whole genome sequence data from S. aureus genomes to extract a virulence profile and will be freely available through the Centre of Genomic Epidemiology (CGE) web services.

The database was built from sequences obtained from the NCBI nucleotide database. All known S. aureus virulence genes were listed (manuscript III Table 1) and sequences from these genes were used for building the database. The sequences were selected from 31 different S. aureus strains, which have been whole genome sequenced and annotated and can be found in GenBank (manuscript III Table S1). The sequences representing the virulence genes included in the S. aureus VirulenceFinder database were selected based on the annotations and gene descriptions found in the NCBI gene database and it can therefore not be excluded that virulence genes with a complex annotation or description were not included in the database.

For the first evaluation of the database the genome of the assembled LA-MRSA ST398 S0385 isolate (accession no. AM990992) was screened for virulence genes. The fasta file of the completed S0385 genome was submitted to an S. aureus VirulenceFinder alpha version and the threshold for nucleotide identity was set to $\mathrm{ID}=98 \%$. The virulence profile of S 0385 was evaluated. Sixty-three different genes defined as virulence genes in the database were identified. The whole genome sequence dataset of S0385 isolate was used in building the database and it was therefore expected that all the identified virulence genes would show 100% identity to a sequence within database. However, 16 of the identified virulence genes showed $<100 \%$ identity. This indicates that the annotation of these 16 genes was not recognized as virulence genes and these sequences were therefore not included in the database. Despite the incomplete collection of sequences from this genome the virulence genes were identified by lowering the default identity threshold to 98% nucleotide identity. The ID threshold is by default set to 100% nucleotide identity but by lowering the threshold, gene variants not included in to the database can be identified.

Correlating with previous findings in ST398 isolates, the VirulenceFinder identified fnbA, clfA, cna, cap5A and eap/map in the ST398 S0385 genome (Fluit, 2012; Hallin et al., 2011).

For further evaluation of the database previously whole genome sequenced S. aureus ST398 isolates, originating from various host origins, were screened for virulence profiles (Price et al., 2012). All together 89 S. aureus ST398 isolates were screened using the database but only 14 representatives were included in manuscript III (Table 2). The 14 isolates represent different clusters of the 89 isolates and both human- and porcine-originating isolates were analyzed. The 14 S. aureus ST398 isolates constitute useful candidates for initial screenings using the VirulenceFinder as they have been analyzed in a previous study (Price et al., 2012). A threshold of 95% nucleotide identity ($\mathrm{ID}=95 \%$) was selected for this evaluation. The ID threshold can be set by
the user and a less stringent threshold is recommended as the alpha version of the database only contains variants of each virulence gene originating from 31 different S. aureus genomes used in building the database. A stringent threshold may result in some variation missed when using the database. However, a less stringent threshold will result in a considerably larger output that requires more analysis and potentially includes false positives.

Overall, the profiles of the 14 ST398 isolates were similar except for one isolate (13349_6), which also has been found to be an outlier previously (Price et al., 2012). The four isolates originating from a human host were positive for the scn gene, whereas none of the isolates originating from pigs contain the staphylococcal complement inhibitor. The scn and sak genes are both markers for strains of human origin (Price et al., 2012; Sung et al., 2008). Even though the scn was not identified in the isolates originating from pigs, a staphylococcal complement inhibitor variant has been identified on a pathogenicity island in ST398 S0385 (Schijffelen et al., 2010). Two of the human originating isolates contained both the sak gene and the two Panton-Valentine leukocidin encoding genes $l u k F-P V$ and $l u k S-P V$. This is in agreement with the finding in Price et al. (2012) showing that some LA S. aureus strains are highly virulent, as is common for many of the CA S. aureus strains (Price et al., 2012).

Four of the 14 ST398 isolates originated from a human host. They all contained the $S d r C$ and $S d r D$ gene, whereas only $S d r C$ was identified in all the ten isolates from porcine origin, when using the defined threshold (manuscript III Table 2). This might indicate that only $S d r C$ is essential for adhesion to the porcine nares. However, phenotypic studies are needed for conformation. Even though previous studies have emphasized that S. aureus ST398 do not contain any enterotoxins, two enterotoxin-encoding genes (sep and sea) were identified in 13 ST398 isolates using the VirulenceFinder (manuscript III Table 2). sep was identified in all 13 ST398 isolates with
100% nucleotide identity to an annotated sep gene from the whole genome sequenced ST398 S0385 isolate, whereas sea was identified with only $\sim 96 \%$ nucleotide identify to an annotated sea gene from a ST80 CA-MRSA isolate. The enterotoxin P (sep) was originally defined after the full genome sequencing of S. aureus N315 (Omoe et al., 2005), however, the sep gene identified within the 13 ST398 isolates using the S. aureus Virulence Finder (GenBank gene SAPIG1666) showed similarity to two different genes within the N315 genome (GenBank gene SA1429 and SA1430). These genes encode an enterotoxin homolog and a protein similar to enterotoxin A precursor. This indicates that the sep gene identified in the 13 ST398 isolates is not the same as the original sep gene defined in S. aureus N315 (GenBank gene SA1761). However, ST398 might contain enterotoxin-like proteins that can be identified when using whole genome sequence data. Results obtained with the S. aureus Virulence Finder will reflect sequence and annotation quality found in the NCBI nucleotide database and might sometimes require further investigation.

Clumping factor A (clfA), protein A (spa) and capsular serotype 5 (cap5A) were found in all 14 ST398 isolates (manuscript III Table 2). The gamma-hemolysin components were not identified within the ST398 isolates investigated previously (Hallin et al., 2011). However, using the VirulenceFinder the gamma-components were identified in the 14 ST398 isolates. $h \lg A$ and $h l g C$ were identified with $>99 \%$ identity to the sequences included in the database, whereas $h l g B$ was identified with $>95 \%$ identity to a sequence from the database.

The mapleap gene was also identified in all the ST398 MRSA and MSSA isolates investigated. The sak gene was identified in two of the 14 ST398 isolates. These two isolates were MSSA ST398 of human origin. Two other MSSA ST398 isolates of human origin did not test positive for the sak gene when using the S. aureus VirulenceFinder.

Resistance and virulence profiles can help elucidate the approach for optimal treatment and define the virulence capacity of the infectious agent. Such information is crucial at hospitals in diagnostics and such profiles can as well be applied in local and global surveillance studies.

The S. aureus VirulenceFinder database generated in this study comprises an informative tool for whole genome sequence data to identify virulence genes in S. aureus genomes. The current version of the S. aureus VirulenceFinder is an alpha version and some adjustments of the included sequences are needed. The S. aureus Virulence Finder database will be part of the tool package found on the CGE webpage (www.genomicepidemiology.org). Here, tools like MLST and ResFinder are already available and additional tools for phylogenetic studies are under development.

5. Concluding remarks and future perspectives

S. aureus has multiple ways of thwarting the host immune system. The bacterium is able to colonize various hosts silently and under certain conditions cause infections of different severity. Various methods have been used to characterize S. aureus both as colonizer and as infectious agent. S. aureus and especially MRSA have been of world-wide importance for many years. The latest branch of MRSA is the LA-MRSA, which have been emerging the past decade. This group shows a broader host-spectrum compared to most other MRSA and a different virulence profile with fewer toxin-encoding genes. Little is known about the ecology of ST398 on farms, however, it is assumed that the use of antibiotics in the production animal industry has been the key force, driving emerge and spread of MRSA ST398. Even though some studies have shown that ST398 transmits less frequent among humans than human S. aureus strains, the transmissibility of ST398 still needs further investigation. ST398 has been the most commonly reported MRSA strain associated with livestock in recent years (Smith and Pearson, 2011), but knowledge on colonization and
transmission of LA-MRSA in pigs is limited and mainly based on observational field surveys (E M Broens et al., 2011b; Els M Broens et al., 2011). We are only in the beginning of understanding the role of these strains in the epidemiology of human S. aureus ST398 colonization and disease.

The three manuscripts that should be regarded as the main body of this thesis supplement the current knowledge about LA-MRSA ST398 characterization. It was demonstrated how highthroughput approaches can be utilized to perform a comprehensive phenotypic and genotypic characterization of a ST398 isolate.

Overall, the results showed that essential genes in ST398 seem to be similar to other S. aureus lineages, with few exceptions. Genes involved in the TCA cycle, membrane transport and pH shock are potentially important for ST398 survival in whole porcine blood in vitro. These findings correlate with previous studies investigating genes important for S. aureus survival in vitro in human blood and in vivo in a bacteraemia murine model. Membrane transport was identified as one of the main factors for ST398 survival on porcine skin and a FemA encoding gene was identified as essential for nasal epithelial survival ex vivo. The ex vivo nasal survival studies showed variations between explants isolated from two different porcine hosts, which underlines that host factors are important for nasal survival. Even though ST398 is not generally associated with enterotoxins, ST398 appears to contain some enterotoxin-like encoding genes. The staphylococcal complement inhibitor (scn) was, as shown previously, identified as a marker for host specificity of ST398, separating isolates of porcine and human origin. Additional serine-aspartic acid repeat surface proteins SdrC and SdrD may be of different importance for nasal colonization in pigs and humans.

The high-throughput approach applied in this work should be considered as a screen identifying genes that are potentially essential/beneficial for bacterial survival in a defined environment. For
definitive identification of gene function, it is necessary to generate single knockout mutants and test those in the same assays as used in the high-throughput screening. However, since a large number of genes are listed as having unknown function and there is a lack of correlation between phenotype and genotype, high-throughput methods, like the once developed and used in this work, will help to narrow the pool of genes to be investigated further.

The genes identified here as important for porcine survival could potentially constitute targets for MRSA decolonization within the porcine reservoir. By blocking transcription of these genes, LAMRSA isolates will be attenuated in fitness, which could result in a reduction of LA-MRSA spread between pigs.

References

Abdelnour, a, Arvidson, S., Bremell, T., Rydén, C., Tarkowski, a, 1993. The accessory gene regulator (agr) controls Staphylococcus aureus virulence in a murine arthritis model. Infect. Immun. 61, 3879-85.

Agersø, Y., Hald, T., Helwigh, B., 2012. DANMAP 2012-use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. DANMAP 2012 101-102.

Anders, S., Huber, W., 2012. Differential expression of RNA-Seq data at the gene level - the DESeq package (No. DESeq version 1.13.0), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany. European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.

Armand-Lefevre, L., 2005. Clonal comparison of Staphylococcus aureus isolates from healthy pig farmers, human controls, and pigs. Emerg. Infect. Dis. 11, 711-714.

Bae, T., Banger, A.K., Wallace, A., Glass, E.M., Aslund, F., Schneewind, O., Missiakas, D.M., 2004. Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc. Natl. Acad. Sci. U. S. A. 101, 12312-7.

Bae, T., Glass, E.M., Schneewind, O., Missiakas, D., 2008. Generating a collection of insertion mutations in the Staphylococcus aureus genome using bursa aurealis. Methods Mol. Biol. 416, 103-16.

Barber, M., Rozwadowska-dowzenko, M., 1948. Infection by penicicllin-resisatnt staphylocooci. Lancet 641-644.

Begun, J., Sifri, C.D., Goldman, S., Stephen, B., Ausubel, F.M., Calderwood, S.B., 2005. Staphylococcus aureus Virulence Factors Identified by Using a High-Throughput Caenorhabditis elegans-Killing Model. Infect. Immun. 73, 872-877.

Belkum, A. Van, Melles, D.C., Peeters, J.K., Leeuwen, W.B. Van, Spalburg, E., Neeling, A.J. De, 2008. MethicillinResistant and -Susceptible Staphylococcus aureus Sequence Type 398 in Pigs and Humans. Emerg. Infect. Dis. 14, 479-483.

Benton, B.M., Zhang, J.P., Bond, S., Pope, C., Lee, L., Winterberg, K.M., Molly, B., Buysse, J.M., Christian, T., Schmid, M.B., 2004. Large-Scale Identification of Genes Required for Full Virulence of Staphylococcus aureus. Infect. Immun. 186, 8478-8489.

Bhat, M., Dumortier, C., Taylor, B.S., Miller, M., Vasquez, G., Yunen, J., Brudney, K., Rodriguez-Taveras, C., Rojas, R., Leon, P., Lowy, F.D., 2009. Staphylococcus aureus ST398, New York City and Dominican Republic. Emerg. Infect. Dis. 15, 285-287.

Broens, E M, Graat, E. a M., Van der Wolf, P.J., Van de Giessen, a W., De Jong, M.C.M., 2011a. Prevalence and risk factor analysis of livestock associated MRSA-positive pig herds in The Netherlands. Prev. Vet. Med. 102, 41-9.

Broens, E M, Graat, E. a M., van der Wolf, P.J., van de Giessen, a W., van Duijkeren, E., Wagenaar, J. a, van Nes, a, Mevius, D.J., de Jong, M.C.M., 2011b. MRSA CC398 in the pig production chain. Prev. Vet. Med. 98, 182-9.

Broens, Els M, Graat, E. a M., Van der Wolf, P.J., Van de Giessen, A.W., De Jong, M.C.M., 2011. Transmission of methicillin resistant Staphylococcus aureus among pigs during transportation from farm to abattoir. Vet. J. 189, 302-5.

Burian, M., Rautenberg, M., Kohler, T., Fritz, M., Krismer, B., Unger, C., Hoffmann, W.H., Peschel, A., Wolz, C., Goerke, C., 2010. Temporal expression of adhesion factors and activity of global regulators during establishment of Staphylococcus aureus nasal colonization. J. Infect. Dis. 201, 1414-21.

Burts, M., DeDent, A., Missiakas, D., 2008. EsaC substrate for the ESAT-6 secretion pathway and its role in persistent infections of Staphylococcus aureus. Mol. Microbiol. 69, 736-46.

Cavaco, L.M., Hasman, H., Aarestrup, F.M., 2011. Zinc resistance of Staphylococcus aureus of animal origin is strongly associated with methicillin resistance. Vet. Microbiol. 150, 344-8.

Chaudhuri, R.R., Allen, A.G., Owen, P.J., Shalom, G., Stone, K., Harrison, M., Burgis, T. a, Lockyer, M., Garcia-Lara, J., Foster, S.J., Pleasance, S.J., Peters, S.E., Maskell, D.J., Charles, I.G., 2009. Comprehensive identification of essential Staphylococcus aureus genes using Transposon-Mediated Differential Hybridisation (TMDH). BMC Genomics 10, 291.

Chaudhuri, R.R., Morgan, E., Peters, S.E., Pleasance, S.J., Hudson, D.L., Davies, H.M., Wang, J., van Diemen, P.M., Buckley, A.M., Bowen, A.J., Pullinger, G.D., Turner, D.J., Langridge, G.C., Turner, a. K., Parkhill, J., Charles, I.G., Maskell, D.J., Stevens, M.P., 2013. Comprehensive Assignment of Roles for Salmonella Typhimurium Genes in Intestinal Colonization of Food-Producing Animals. PLoS Genet. 9, e1003456.

Cheung, A.L., Bayer, A.S., Zhang, G., Gresham, H., Xiong, Y.-Q., 2004. Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus. FEMS Immunol. Med. Microbiol. 40, 1-9.

Clarke, S.R., Brummell, K.J., Horsburgh, M.J., McDowell, P.W., Mohamad, S.A.S., Stapleton, M.R., Acevedo, J., Read, R.C., Day, N.P.J., Peacock, S.J., Mond, J.J., Kokai-Kun, J.F., Foster, S.J., 2006. Identification of in vivoexpressed antigens of Staphylococcus aureus and their use in vaccinations for protection against nasal carriage. J. Infect. Dis. 193, 1098-108.

Clarke, S.R., Mohamed, R., Bian, L., Routh, A.F., Kokai-Kun, J.F., Mond, J.J., Tarkowski, A., Foster, S.J., 2007. The Staphylococcus aureus surface protein IsdA mediates resistance to innate defenses of human skin. Cell Host Microbe 1, 199-212.

Clarke, S.R., Wiltshire, M.D., Foster, S.J., 2004. IsdA of Staphylococcus aureus is a broad spectrum, iron-regulated adhesin. Mol. Microbiol. 51, 1509-19.

Corrigan, R.M., Miajlovic, H., Foster, T.J., 2009. Surface proteins that promote adherence of Staphylococcus aureus to human desquamated nasal epithelial cells. BMC Microbiol. 9, 22.

Coulter, S.N., Schwan, W.R., Ng, E.Y., Langhorne, M.H., Ritchie, H.D., Westbrock-Wadman, S., Hufnagle, W.O., Folger, K.R., Bayer, a S., Stover, C.K., 1998. Staphylococcus aureus genetic loci impacting growth and survival in multiple infection environments. Mol. Microbiol. 30, 393-404.

Crombé, F., Vanderhaeghen, W., Dewulf, J., Hermans, K., Haesebrouck, F., Butaye, P., 2012. Colonization and transmission of methicillin-resistant Staphylococcus aureus ST398 in nursery piglets. Appl. Environ. Microbiol. 78, 1631-4.

Cuny, C., Friedrich, A., Kozytska, S., Layer, F., Nübel, U., Ohlsen, K., Strommenger, B., Walther, B., Wieler, L., Witte, W., 2010. Emergence of methicillin-resistant Staphylococcus aureus (MRSA) in different animal species. Int. J. Med. Microbiol. 300, 109-17.

Cuny, C., Layer, F., Strommenger, B., Witte, W., 2011. Rare occurrence of methicillin-resistant Staphylococcus aureus CC130 with a novel mecA homologue in humans in Germany. PLoS One 6, e24360.

Dalla Serra, M., Coraiola, M., Viero, G., Comai, M., Potrich, C., Ferreras, M., Baba-Moussa, L., Colin, D. a, Menestrina, G., Bhakdi, S., Prévost, G., 2005. Staphylococcus aureus bicomponent gamma-hemolysins, HlgA, HlgB , and HlgC , can form mixed pores containing all components. J. Chem. Inf. Model. 45, 1539-45.

Dassy, B., Fournier, J.M., 1996. Respiratory activity is essential for post-exponential-phase production of type 5 capsular polysaccharide by Staphylococcus aureus. Infect. Immun. 64, 2408-14.

David, M.Z., Daum, R.S., 2010. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin. Microbiol. Rev. 23, 616-87.

De Neeling, a J., van den Broek, M.J.M., Spalburg, E.C., van Santen-Verheuvel, M.G., Dam-Deisz, W.D.C., Boshuizen, H.C., van de Giessen, a W., van Duijkeren, E., Huijsdens, X.W., 2007. High prevalence of methicillin resistant Staphylococcus aureus in pigs. Vet. Microbiol. 122, 366-72.

DeLeo, F.R., Otto, M., Kreiswirth, B.N., Chambers, H.F., 2010. Community-associated meticillin-resistant Staphylococcus aureus. Lancet 375, 1557-68.

Den Reijer, P.M., Lemmens-den Toom, N., Kant, S., Snijders, S. V, Boelens, H., Tavakol, M., Verkaik, N.J., van Belkum, A., Verbrugh, H. a, van Wamel, W.J.B., 2013. Characterization of the humoral immune response during Staphylococcus aureus bacteremia and global gene expression by Staphylococcus aureus in human blood. PLoS One 8, e53391.

Devriese, L., Van Damme, R., Fameree, L., 1972. Methicillin (cloxacillin)-resistant Staphylocoocus aureus strains isolated from bovine mastitis cases. Vet. Med. 19, 598-605.

Diep, B., Gill, S., Chang, R., Phan, T., 2006. Complete genome sequence of USA300, an epidemic clone of communityacquired meticillin-resistant Staphylococcus aureus. Lancet 367, 731-739.

Diep, B., Otto, M., 2008. The role of virulence determinants in community-associated MRSA pathogenesis. Trends Microbiol. 16, 361-369.

Diep, B.A., Palazzolo-Ballance, A.M., Tattevin, P., Basuino, L., Braughton, K.R., Whitney, A.R., Chen, L., Kreiswirth, B.N., Otto, M., DeLeo, F.R., Chambers, H.F., 2008a. Contribution of Panton-Valentine leukocidin in communityassociated methicillin-resistant Staphylococcus aureus pathogenesis. PLoS One 3, e3198.

Diep, B.A., Stone, G.G., Basuino, L., Graber, C.J., Miller, A., des Etages, S.-A., Jones, A., Palazzolo-Ballance, A.M., Perdreau-Remington, F., Sensabaugh, G.F., DeLeo, F.R., Chambers, H.F., 2008b. The arginine catabolic mobile element and staphylococcal chromosomal cassette mec linkage: convergence of virulence and resistance in the USA300 clone of methicillin-resistant Staphylococcus aureus. J. Infect. Dis. 197, 1523-30.

Ekkelenkamp, M.B., Sekkat, M., Carpaij, N., Troelstra, A., Bonten, M.J.M., 2006. [Endocarditis due to meticillinresistant Staphylococcus aureus originating from pigs]. Ned. Tijdschr. Geneeskd. 150, 2442-7.

Falkow, S., 1988. Molecular Koch's postulates applied to microbial pathogenicity. Rev. Infect. Dis. 10 Suppl 2, S2746.

Feil, E., Cooper, J., 2003. How clonal is Staphylococcus aureus? J. Bacteriol. 185, 3307-3316.
Feingold, B.J., Silbergeld, E.K., Curriero, F.C., Cleef, B.A.G.L. Van, Heck, M.E.O.C., Kluytmans, J.A.J.W., 2012. Livestock Density as Risk Factor for Resistant Staphylococcus aureus , the Netherlands. Emerg. Infect. Dis. 18, 1841-1849.

Fey, P.D., Endres, J.L., Yajjala, V.K., Yajjala, K., Widhelm, T.J., Boissy, R.J., Bose, J.L., Bayles, W., 2013. A Genetic Resource for Rapid and Comprehensive Phenotype. MBio 4, e00537-12.

Fitzgerald, J.R., Sturdevant, D.E., Mackie, S.M., Gill, S.R., Musser, J.M., 2001. Evolutionary genomics of Staphylococcus aureus: insights into the origin of methicillin-resistant strains and the toxic shock syndrome epidemic. Proc. Natl. Acad. Sci. U. S. A. 98, 8821-6.

Fluit, a C., 2012. Livestock-associated Staphylococcus aureus. Clin. Microbiol. Infect. 18, 735-44.

Food, E., Authority, S., 2010. Analysis of the baseline survey on the prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in holdings with breeding pigs , in the EU , 20081 Part B \square : factors associated with MRSA contamination of holdings 8, 1-67.

Forsgren, a, Sjöquist, J., 1966. "Protein A" from S. aureus. I. Pseudo-immune reaction with human gamma-globulin. J. Immunol. 97, 822-7.

Foster, T.J., 2005. Immune evasion by staphylococci. Nat. Rev. Microbiol. 3, 948-58.
Foster, T.J., 2009. Colonization and infection of the human host by staphylococci: adhesion, survival and immune evasion. Vet. Dermatol. 20, 456-70.

García-Álvarez, L., Holden, M.T.G., Lindsay, H., Webb, C.R., Brown, D.F.J., Curran, M.D., Walpole, E., Brooks, K., Pickard, D.J., Teale, C., Parkhill, J., Bentley, S.D., Edwards, G.F., Girvan, E.K., Kearns, A.M., Pichon, B., Hill, R.L.R., Larsen, A.R., Skov, R.L., Peacock, S.J., Maskell, D.J., Holmes, M. a, 2011. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect. Dis. 11, 595-603.

Golding, G.R., Bryden, L., Levett, P.N., McDonald, R.R., Wong, A., Graham, M.R., Tyler, S., Van Domselaar, G., Mabon, P., Kent, H., Butaye, P., Smith, T.C., Kadlec, K., Schwarz, S., Weese, S.J., Mulvey, M.R., 2012. wholegenome sequence of livestock-associated st398 methicillin-resistant staphylococcus aureus Isolated from Humans in Canada. J. Bacteriol. 194, 6627-8.

González-Zorn, B., Senna, J., 2005. Bacterial and host factors implicated in nasal carriage of methicillin-resistant Staphylococcus aureus in mice. Infect. Immun. 73, 1847-1851.

Graveland, H., Wagenaar, J. a, Bergs, K., Heesterbeek, H., Heederik, D., 2011. Persistence of livestock associated MRSA CC398 in humans is dependent on intensity of animal contact. PLoS One 6, e16830.

Graveland, H., Wagenaar, J. a, Heesterbeek, H., Mevius, D., van Duijkeren, E., Heederik, D., 2010. Methicillin resistant Staphylococcus aureus ST398 in veal calf farming: human MRSA carriage related with animal antimicrobial usage and farm hygiene. PLoS One 5, e10990.

Grundmann, H., Aires-de-Sousa, M., Boyce, J., Tiemersma, E., 2006. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet 368, 874-85.

Haggar, A., Shannon, O., Norrby-Teglund, A., Flock, J.-I., 2005. Dual effects of extracellular adherence protein from Staphylococcus aureus on peripheral blood mononuclear cells. J. Infect. Dis. 192, 210-7.

Hall, N., 2007. Advanced sequencing technologies and their wider impact in microbiology. J. Exp. Biol. 210, 1518-25.
Hallin, M., De Mendonça, R., Denis, O., Lefort, A., El Garch, F., Butaye, P., Hermans, K., Struelens, M.J., 2011. Diversity of accessory genome of human and livestock-associated ST398 methicillin resistant Staphylococcus aureus strains. Infect. Genet. Evol. 11, 290-9.

Harris, L.G., Foster, S.J., Richards, R.G., 2002. An introduction to Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesins in relation to adhesion to biomaterials: review. Eur. Cell. Mater. 4, 39-60.

Harrison, E.M., Paterson, G.K., Holden, M.T.G., Larsen, J., Stegger, M., Larsen, A.R., Petersen, A., Skov, R.L., Christensen, J.M., Bak Zeuthen, A., Heltberg, O., Harris, S.R., Zadoks, R.N., Parkhill, J., Peacock, S.J., Holmes, M. a, 2013. Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel mecA homologue mecC. EMBO Mol. Med. 5, 509-15.

Hartman, B., Tomasz, A., 1981. Altered penicillin-binding proteins in methicillin-resistant strains of Altered PenicillinBinding Proteins in Methicillin-Resistant Strains of Staphylococcus aureus. Antimicrob. Agents Chemother. 19, 726-735.

Hasman, H., Moodley, a, Guardabassi, L., Stegger, M., Skov, R.L., Aarestrup, F.M., 2010. Spa type distribution in Staphylococcus aureus originating from pigs, cattle and poultry. Vet. Microbiol. 141, 326-31.

Higgins, J., Loughman, A., van Kessel, K.P.M., van Strijp, J. a G., Foster, T.J., 2006. Clumping factor A of Staphylococcus aureus inhibits phagocytosis by human polymorphonuclear leucocytes. FEMS Microbiol. Lett. 258, 290-6.

Holmes, M. a, Zadoks, R.N., 2011. Methicillin resistant S. aureus in human and bovine mastitis. J. Mammary Gland Biol. Neoplasia 16, 373-82.

Hughes, J.D., Macdonald, V.W., Hess, J.R., 2007. Warm storage of whole blood for 72 hours. Transfusion 47, 2050-6.
Huijsdens, X.W., Dijke, B.J. Van, Spalburg, E., Van, M.G., Heck, M.E.O.C., Pluister, G.N., Voss, A., Wannet, W.J.B., Neeling, A.J. De, 2006. Community-acquired MRSA and pig-farming. Ann. Clin. Microbiol. Antimicrob. 5, 1-4.

Huyghe, A., Francois, P., Schrenzel, J., 2009. Characterization of microbial pathogens by DNA microarrays. Infect. Genet. Evol. 9, 987-95.

Jevons, M., Coe, A., Parker, M., 1963. Methicillin resistance in staphylococci. Lancet 904-907.
Josefsson, E., Hartford, O., O’Brien, L., Patti, J.M., Foster, T., 2001. Protection against experimental Staphylococcus aureus arthritis by vaccination with clumping factor A, a novel virulence determinant. J. Infect. Dis. 184, 157280.

Katayama, Y., Baba, T., Sekine, M., Fukuda, M., Hiramatsu, K., 2013. Beta-hemolysin promotes skin colonization by Staphylococcus aureus. J. Bacteriol. 195, 1194-203.

Khatiwara, A., Jiang, T., Sung, S.-S., Dawoud, T., Kim, J.N., Bhattacharya, D., Kim, H.-B., Ricke, S.C., Kwon, Y.M., 2012. Genome scanning for conditionally essential genes in Salmonella enterica Serotype Typhimurium. Appl. Environ. Microbiol. 78, 3098-107.

Kiser, K.B., Cantey-Kiser, J.M., Lee, J.C., 1999. Development and characterization of a Staphylococcus aureus nasal colonization model in mice. Infect. Immun. 67, 5001-6.

Kokai-Kun, J.F., 2008. The cotton rat as a model for Staphylococcus aureus nasal colonization in humans. Methods Mol. Biol. 431, 241-242.

Kondo, Y., Ito, T., Ma, X.X., Watanabe, S., Kreiswirth, B.N., Etienne, J., Hiramatsu, K., 2007. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system for $\mathrm{mec}, \mathrm{ccr}$, and major differences in junkyard regions. Antimicrob. Agents Chemother. 51, 264-74.

Langridge, G.C., Phan, M., Turner, D.J., Perkins, T.T., Parts, L., Haase, J., Charles, I., Maskell, D.J., Peters, S.E., Dougan, G., Wain, J., Parkhill, J., Turner, A.K., 2009. Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res. 2308-2316.

Laurent, F., Chardon, H., Haenni, M., Bes, M., Reverdy, M., Madec, J., Lagier, E., Vandenesch, F., Tristan, A., 2012. MRSA harboring mec A Variant Gene. Emerg. Infect. Dis. 18, 1465-1467.

Li, M., Du, X., Villaruz, A.E., Diep, B.A., Wang, D., Song, Y., Tian, Y., Hu, J., Yu, F., Lu, Y., Otto, M., 2012. MRSA epidemic linked to a quickly spreading colonization and virulence determinant. Nat. Med. 18, 816-9.

Lina, G., Piémont, Y., Godail-Gamot, F., Bes, M., Peter, M.O., Gauduchon, V., Vandenesch, F., Etienne, J., 1999. Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin. Infect. Dis. 29, 1128-32.

Lowder, B. V, Guinane, C.M., Ben Zakour, N.L., Weinert, L. a, Conway-Morris, A., Cartwright, R. a, Simpson, a J., Rambaut, A., Nübel, U., Fitzgerald, J.R., 2009. Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus. Proc. Natl. Acad. Sci. U. S. A. 106, 19545-50.

Luong, T., Lee, C., 2002. Overproduction of type 8 capsular polysaccharide augments Staphylococcus aureus virulence. Infect. Immun. 70, 3389-3395.

Maidhof, H., Reinicke, B., Blümel, P., Berger-Bächi, B., Labischinski, H., 1991. femA, which encodes a factor essential for expression of methicillin resistance, affects glycine content of peptidoglycan in methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains. J. Bacteriol. 173, 3507-13.

Maisch, T., Bosl, C., Szeimies, R.-M., Love, B., Abels, C., 2007. Determination of the antibacterial efficacy of a new porphyrin-based photosensitizer against MRSA ex vivo. Photochem. Photobiol. Sci. 6, 545-51.

Malachowa, N., Whitney, A.R., Kobayashi, S.D., Sturdevant, D.E., Kennedy, A.D., Braughton, K.R., Shabb, D.W., Diep, B.A., Chambers, H.F., Otto, M., DeLeo, F.R., 2011. Global changes in Staphylococcus aureus gene expression in human blood. PLoS One 6, e18617.

McCarthy, A.J., Lindsay, J. a, Loeffler, A., 2012. Are all meticillin-resistant Staphylococcus aureus (MRSA) equal in all hosts? Epidemiological and genetic comparison between animal and human MRSA. Vet. Dermatol. 23, 26775, e53-4.

Mei, J.M., Nourbakhsh, F., Ford, C.W., Holden, D.W., 1997. Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. Mol. Microbiol. 26, 399-407.

Memorial, N., 2005. The Burden of Staphylococcus aureus Infections on Hospitals in the United States. Arch Intern Med 165, 1756-1761.

Monk, I., Shah, I., Xu, M., Tan, M., Foster, T., 2012. Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis. MBio 3, 1-11.

Monk, I.R., Foster, T.J., 2012. Genetic manipulation of Staphylococci-breaking through the barrier. Front. Cell. Infect. Microbiol. 2, 49.

Moodley, A., Espinosa-Gongora, C., 2012. Comparative host specificity of human-and pig-associated Staphylococcus aureus clonal lineages. PLoS One 7, 1-7.

Moodley, A., Espinosa-Gongora, C., Nielsen, S.S., McCarthy, A.J., Lindsay, J. a, Guardabassi, L., 2012. Comparative host specificity of human- and pig- associated Staphylococcus aureus clonal lineages. PLoS One 7, e49344.

Nickerson, S.C., 2009. Control of heifer mastitis: antimicrobial treatment-an overview. Vet. Microbiol. 134, 128-35.
Nilsson, I., Lee, J., Bremell, T., 1997. The role of staphylococcal polysaccharide microcapsule expression in septicemia and septic arthritis. Infect. Immun. 65, 4216-4221.

Novick, R., 1991. Genetic systems in Staphylococci. Methods Enzymol. 204.

Novick, R.P., Ross, H.F., Projan, S.J., Kornblum, J., Kreiswirth, B., Moghazeh, S., 1993. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J. 12, 3967-75.

O'Brien, L.M., Walsh, E.J., Massey, R.C., Peacock, S.J., Foster, T.J., 2002. Staphylococcus aureus clumping factor B (ClfB) promotes adherence to human type I cytokeratin 10: implications for nasal colonization. Cell. Microbiol. 4, 759-70.

O'Mahony, R., Abbott, Y., Leonard, F.C., Markey, B.K., Quinn, P.J., Pollock, P.J., Fanning, S., Rossney, a S., 2005. Methicillin-resistant Staphylococcus aureus (MRSA) isolated from animals and veterinary personnel in Ireland. Vet. Microbiol. 109, 285-96.

O'Riordan, K., Lee, J., 2004. Staphylococcus aureus capsular polysaccharides. Clin. Microbiol. Rev. 17.
Ohki, R., Tateno, K., Masuyama, W., Moriya, S., Kobayashi, K., Ogasawara, N., 2003. The BceRS two-component regulatory system induces expression of the bacitracin transporter, Bce AB , in Bacillus subtilis. Mol. Microbiol. 49, 1135-1144.

Omoe, K., Imanishi, K., Hu, D., Kato, H., Fugane, Y., Abe, Y., Hamaoka, S., Watanabe, Y., Nakane, A., Uchiyama, T., Shinagawa, K., 2005. Characterization of Novel Staphylococcal Enterotoxin-Like Toxin Type P. Infect. Immun. 73, 5540-5546.

Otto, M., 2012. MRSA virulence and spread. Cell. Microbiol. 14, 1513-21.

Palmqvist, N., Foster, T., Tarkowski, A., Josefsson, E., 2002. Protein A is a virulence factor in Staphylococcus aureus arthritis and septic death. Microb. Pathog. 33, 239-249.

Pané-Farré, J., Jonas, B., Förstner, K., Engelmann, S., Hecker, M., 2006. The sigmaB regulon in Staphylococcus aureus and its regulation. Int. J. Med. Microbiol. 296, 237-58.

Pickard, D., Kingsley, R. a, Hale, C., Turner, K., Sivaraman, K., Wetter, M., Langridge, G., Dougan, G., 2013. A Genomewide Mutagenesis Screen Identifies Multiple Genes Contributing to Vi Capsular Expression in Salmonella enterica Serovar Typhi. J. Bacteriol. 195, 1320-6.

Price, L., Stegger, M., Hasman, H., Aziz, M., 2012. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. MBio 3, e00305-11.

Robinson, D., Enright, M., 2003. Evolutionary models of the emergence of methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 47, 3926-3934.

Roche, F.M., Meehan, M., Foster, T.J., 2003. The Staphylococcus aureus surface protein SasG and its homologues promote bacterial adherence to human desquamated nasal epithelial cells. Microbiology 149, 2759-67.

Roghmann, M., Taylor, K.L., Gupte, a, Zhan, M., Johnson, J. a, Cross, a, Edelman, R., Fattom, a I., 2005. Epidemiology of capsular and surface polysaccharide in Staphylococcus aureus infections complicated by bacteraemia. J. Hosp. Infect. 59, 27-32.

Rooijakkers, S.H.M., Ruyken, M., Roos, A., Daha, M.R., Presanis, J.S., Sim, R.B., van Wamel, W.J.B., van Kessel, K.P.M., van Strijp, J. a G., 2005. Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat. Immunol. 6, 920-7.

Schaffer, A.C., Solinga, R.M., Cocchiaro, J., Portoles, M., Kiser, K.B., Risley, A., Randall, S.M., Valtulina, V., Speziale, P., Walsh, E., Foster, T., Lee, J.C., 2006. Immunization with Staphylococcus aureus clumping factor B, a major determinant in nasal carriage, reduces nasal colonization in a murine model. Infect. Immun. 74, 2145-53.

Schena, M., Shalon, D., Davis, R., Brown, P., 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science (80-.). 270, 467-470.

Schijffelen, M.J., Boel, C.H.E., van Strijp, J.A.G., Fluit, A.C., 2010. Whole genome analysis of a livestock-associated methicillin-resistant Staphylococcus aureus ST398 isolate from a case of human endocarditis. BMC Genomics 11, 376.

Sifri, C.D., Begun, J., Ausubel, F.M., 2005. The worm has turned--microbial virulence modeled in Caenorhabditis elegans. Trends Microbiol. 13, 119-27.

Smith, T.C., Pearson, N., 2011. The emergence of Staphylococcus aureus ST398. Vector Borne Zoonotic Dis. 11, 32739.

Strommenger, B., Kehrenberg, C., Kettlitz, C., Cuny, C., Verspohl, J., Witte, W., Schwarz, S., 2006. Molecular characterization of methicillin-resistant Staphylococcus aureus strains from pet animals and their relationship to human isolates. J. Antimicrob. Chemother. 57, 461-5.

Sung, J.M.-L., Lloyd, D.H., Lindsay, J. a, 2008. Staphylococcus aureus host specificity: comparative genomics of human versus animal isolates by multi-strain microarray. Microbiology 154, 1949-59.

Tenover, F., Arbeit, R., 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J. Clin. Microbiol. 33, 2233-2239.

Thakker, M., Park, J., Carey, V., Lee, J., 1998. Staphylococcus aureus serotype 5 capsular polysaccharide is antiphagocytic and enhances bacterial virulence in a murine bacteremia model. Infect. Immun. 66, 5183-5189.

Tulinski, P., Fluit, A.C., van Putten, J.P.M., de Bruin, A., Glorieux, S., Wagenaar, J. a, Duim, B., 2013. An ex vivo porcine nasal mucosa explants model to study MRSA colonization. PLoS One 8, e53783.

Uhlemann, A., Porcella, S., Trivedi, S., 2012. Identification of a highly transmissible animal-independent Staphylococcus aureus ST398 clone with distinct genomic and cell adhesion properties. MBio 3, e00027-12.

Urwin, R., Maiden, M.C.J., 2003. Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol. 11, 479-487.

Van den Broek, I.V.F., van Cleef, B. a G.L., Haenen, A., Broens, E.M., van der Wolf, P.J., van den Broek, M.J.M., Huijsdens, X.W., Kluytmans, J. a J.W., van de Giessen, a W., Tiemersma, E.W., 2009. Methicillin-resistant Staphylococcus aureus in people living and working in pig farms. Epidemiol. Infect. 137, 700-8.

Van Duijkeren, E., Box, a T. a, Heck, M.E.O.C., Wannet, W.J.B., Fluit, a C., 2004. Methicillin-resistant staphylococci isolated from animals. Vet. Microbiol. 103, 91-7.

Van Duijkeren, E., Ikawaty, R., Broekhuizen-Stins, M.J., Jansen, M.D., Spalburg, E.C., de Neeling, a J., Allaart, J.G., van Nes, a, Wagenaar, J. a, Fluit, a C., 2008. Transmission of methicillin-resistant Staphylococcus aureus strains between different kinds of pig farms. Vet. Microbiol. 126, 383-9.

Vandenesch, F., Naimi, T., Enright, M.C., Lina, G., Nimmo, G.R., Heffernan, H., Liassine, N., Bes, M., Greenland, T., Reverdy, M.-E., Etienne, J., 2003. Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg. Infect. Dis. 9, 978-84.

Verkade, E., Kluytmans, J., 2013. Livestock-associated Staphylococcus aureus CC398: Animal reservoirs and human infections. Infect. Genet. Evol.

Voss, A., Loeffen, F., Bakker, J., 2005. Methicillin-resistant Staphylococcus aureus in pig farming. Emerg. Infect. Dis. 11, 2004-2005.

Wamel, W. van, 2006. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on β-hemolysin-Convertin Bactiophages. J. Bacteriol. 188, 13101315.

Wertheim, H.F.L., Walsh, E., Choudhurry, R., Melles, D.C., Boelens, H.A.M., Miajlovic, H., Verbrugh, H.A., Foster, T., van Belkum, A., 2008. Key role for clumping factor B in Staphylococcus aureus nasal colonization of humans. PLoS Med. 5, e17.

Williams, R., 1963. Healthy carriage of Staphylococcus aureus: its prevalence and importance. Bacteriol. Rev. 27, 5671.

Zankari, E., Hasman, H., Cosentino, S., Vestergaard, M., Rasmussen, S., Lund, O., Aarestrup, F.M., Larsen, M.V., 2012. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67, 2640-4.

Chapter 3

Genome-Wide High-Throughput Screening to Investigate Essential Genes Involved in MethicillinResistant Staphylococcus aureus Sequence Type 398 Survival

 Frank M. Aarestrup ${ }^{1 *}$
1 National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark, 2 Department of Veterinary Medicine, University of Cambridge, Cambridge, England, United Kingdom

Abstract

Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) Sequence Type 398 (ST398) is an opportunistic pathogen that is able to colonize and cause disease in several animal species including humans. To better understand the adaptation, evolution, transmission and pathogenic capacity, further investigations into the importance of the different genes harboured by LA-MRSA ST398 are required. In this study we generated a genome-wide transposon mutant library in an LA-MRSA ST398 isolate to evaluate genes important for bacterial survival in laboratory and host-specific environments. The transposon mutant library consisted of approximately 1 million mutants with around 140,000 unique insertion sites and an average number of unique inserts per gene of 44.8. We identified LA-MRSA ST398 essential genes comparable to other high-throughput S. aureus essential gene studies. As ST398 is the most common MRSA isolated from pigs, the transposon mutant library was screened in whole porcine blood. Twenty-four genes were specifically identified as important for bacterial survival in porcine blood. Mutations in 23 of these genes resulted in attenuated bacterial fitness. Seven of the 23 genes were of unknown function, whereas 16 genes were annotated with functions predominantly related to carbon metabolism, pH shock and a variety of regulations and only indirectly to virulence factors. Mutations in one gene of unknown function resulted in a hypercompetitive mutant. Further evaluation of these genes is required to determine their specific relevance in blood survival.

Citation: Christiansen MT, Kaas RS, Chaudhuri RR, Holmes MA, Hasman H, et al. (2014) Genome-Wide High-Throughput Screening to Investigate Essential Genes Involved in Methicillin-Resistant Staphylococcus aureus Sequence Type 398 Survival. PLoS ONE 9(2): e89018. doi:10.1371/journal.pone.0089018

Editor: Stefan Bereswill, Charité-University Medicine Berlin, Germany
Received October 30, 2013; Accepted January 14, 2014; Published February 12, 2014
Copyright: © 2014 Christiansen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Funding: This work was funded in part by the Danish Ministry of Food, Agriculture and Fisheries (Grant no. 3304-FVFP-09-F-002-1) and The Technical University of Denmark. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Competing Interests: The authors have declared that no competing interests exist.

* E-mail: m.christiansen@ucl.ac.uk (MTC); fmaa@food.dtu.dk (FMA)
ma Current address: Immunity and Infection, University College London, London, United Kingdom
ab Current address: Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom

Introduction

Bacterial genomes contain between 470 to more than 9,000 different genes [1,2], many of which have unknown function. Detailed information on the importance and function of all genes within the genome is essential to understand bacterial survival and adaptation, especially for bacteria that may change between ecological stages as colonizers and pathogens and for those that may infect multiple hosts. Homology studies and other bioinformatic analyses of bacterial genomes have enabled prediction of gene function for many genes. However, there is still a shortage of data associating gene function with uncharacterized genes and characterized genes with phenotypes [3], as well as data on the relative importance of different genes for bacterial isolates living in different niches.

Transposon mutagenesis is a high-throughput method for functional phenotypic studies that can be utilised to associate genes to phenotypes. The method has been used to generate
genome-saturated mutant libraries in several bacterial genomes [4-12]. The approach is based on a negative selection strategy, where transposon inserts into functional genes will result in mutants with attenuated fitness, or a complete inability to survive, and subsequent recovery of only those mutants with inserts in nonessential genes. The flanking regions of the transposon inserts can be identified and the composition of mutant libraries can be compared, pre- and post selection, resulting in identification of essential genes in a defined environment.

One genotypic approach for identifying transposon insertion sites, developed by Chaudhuri et al. (2009), is a DNA microarray and PCR-based method called Transposon Mediated Differential Hybridization (TMDH) [8]. This approach was applied in the first comprehensive study identifying essential genes in Staphylococcus aureus. Another genotypic strategy is based on high-throughput sequencing. Langridge et al. (2009) developed a system named Transposon Directed Insertion site Sequencing (TraDIS) which uses a transposon specific primer, enabling sequencing of the
genomic target region flanking the transposon insertion sites [9]. The sequencing approach has been used by Langridge et al. (2009), Khatiwara et al. (2012), Pickard et al. (2013) and Chaudhuri et al. (2013) to study essential and conditionally essential genes in Salmonella Typhi and Salmonella Typhimurium [9-11,13], but has not been applied previously to study S. aureus or other Gram positive bacteria. Importantly, this procedure not only identifies essential genes under different environmental conditions, but also provides an estimate of the relative importance of the presence or absence of genes.
S. aureus is an opportunistic pathogen that normally colonizes the host asymptomatically but given the opportunity, may cause a variety of pathogenic infections [14]. Some S. aureus clones are more successful human pathogens than others, and some show a high degree of host specificity for different animal species [15,16]. Recently, a specific linage belonging to clonal complex 398 (CC398), most likely of human origin, has spread among livestock globally, acquired methicillin resistance and is now transferring back to humans leading to both colonization and disease [17]. Pigs constitute a large reservoir for livestock-associated methicillinresistant S. aureus (LA-MRSA) CC398 and contribute to an ongoing spread and genetic adaptation. Comparative genomic studies have identified a few phage associated genes that appear to be correlated with virulence in humans, but no genes of importance for successful colonization or infection in livestock or other animals have been identified [18]. A greater understanding of the pathogenicity and transmission of CC398 requires further investigations into the survival mechanisms utilized by this lineage.

The aim of this study was to generate a high complexity transposon mutant library and assess the application of TraDIS in S. aureus Sequence Type 398 (ST398), belonging to CC398. The generated transposon mutant library was screened in laboratory and host specific environments in order to identify genes essential for ST398 to survive under the given conditions. Even though ST398 is mainly associated with pig colonization and skin infections [19,20], S. aureus has potential to cause bacteraemia in pigs as well as in humans [15]. In this study whole porcine blood was applied for evaluation of the method.

Materials and Methods

Bacterial strains and culture conditions

The whole genome sequenced wild type (WT) livestockassociated methicillin-resistant S. aureus ST398 (Genbank accession AM990992) [21] and S. aureus RN4220 were grown in Brain Heart Infusion (BHI) (Oxoid, Difco) broth at $37^{\circ} \mathrm{C}$ with aeration. S. aureus SH1000 pMARGH2b, S. aureus SH1000 pFA545 and S. aureus RN4220 pFA545gen were grown in BHI or Tryptic Soy Broth (TSB) (Oxoid) with $5 \mathrm{mg} / \mathrm{l}$ erythromycin (Sigma), $5 \mathrm{mg} / \mathrm{l}$ tetracycline (Sigma) and $16 \mathrm{mg} / \mathrm{l}$ gentamicin (Sigma) respectively, at $30^{\circ} \mathrm{C}$ with aeration. For solid growth BHI agar, sheep blood agar plates (Oxoid) or Tryptic Soy Agar (TSA) (Oxoid) were applied and supplemented with the appropriate antibiotic if needed. Escherichia coli DH10 was cultured in Luria Broth (LB) at $37^{\circ} \mathrm{C}$ with aeration or on LB agar plates (Sigma).

Plasmids

The plasmids pMARGK2b and pFA545 previously described by Chaudhuri et al. (2009) were used for generating a transposon mutant library in the whole genome sequenced LA-MRSA ST398 S0385 isolate. The pMARGK2b plasmid contains a mariner transposon which includes an erythromycin resistance selection marker. The plasmid backbone holds a chloramphenicol resistance selection marker and a temperature-sensitive origin replica-
tion (replication at $\leq 30^{\circ} \mathrm{C}$). The pFA545 encodes a transposase, a temperature-sensitive origin of replication (replication at $\leq 30^{\circ} \mathrm{C}$) and a tetracycline resistance selection marker [8]. As the LAMRSA ST398 S0385 isolate displays natural tetracycline resistance the pFA545 plasmid was purified (Qiagen tipl00) and modified. Forward primer KpnI and reverse primer SpeI (see Table 1) were used for amplification of the AAC6'-APH2' gene encoding gentamicin resistance from MRSA MU50 DNA, The PCR product and the original pFA545 were digested with SpeI and $K p n I$ (New England Biolabs). The digested products were ligated using T4 DNA ligase (Fermentas). The modified pFA545 including the AAC6'-APH2' gene (pFA545gen) was transformed into E. coli DH10 competent cells (Invitrogen), amplified (selected on ampicillin $100 \mathrm{mg} / \mathrm{l}$ or gentamicin $4-8 \mathrm{mg} / \mathrm{l}$) and purified using the QIAprep spin column (Qiagen). An EcoRV (Fermentas) digest was performed on the purified original pFA545 (predicted digest products $7729 \mathrm{bp}, 2038 \mathrm{bp}, 312 \mathrm{bp} \rightarrow$ giving a total size of $10,079 \mathrm{bp}$) and the modified pFA545gen (predicted digest products $10,432 \mathrm{bp}, 312 \mathrm{bp} \rightarrow 10,744 \mathrm{bp}$ in total) and band patterns were compared on a 0.8% agarose gel (data not shown). pFA545gen was transformed into S. aureus RN4220 by electroporation.

Construction of transposon mutant library

pMARGK2b and pFA 545 gen were transduced into S. aureus ST398 S0385 in two separate rounds of transduction using the S. aureus bacteriophage $\$ 11$. Donor cells (SH1000 pMARGH2b or RN4220 pFA545gen) grown to mid-exponential phase OD_{600} $0.5-0.8$ were mixed in a $1: 1$ ratio with two fold dilutions of phage in a $0.9 \% \mathrm{NaCl}$ solution enriched with $10 \mathrm{mM} \mathrm{CaCl}{ }_{2}$. Following 5 min absorption at room temperature (rt.), the cells were plated in a TSB-top-agar solution (TSB, $0.5 \mathrm{mM} \mathrm{CaCl} 2,0.5 \%$ agar) onto TSA plates supplemented with the appropriate antibiotics and incubated at $30^{\circ} \mathrm{C}$ over night. Top agar from plates with high phage titre were isolated, centrifuged ($7,000 \mathrm{rpm}, 10 \mathrm{~min}$.) and sterile filtered using a $0.45 \mu \mathrm{~m}$ Millipore filter. Recipient cells (S. aureus ST398 S0385) were grown to $\mathrm{OD}_{600} 1-1.2$, cells harvested by centrifugation ($11,000 \mathrm{rpm}, 10 \mathrm{~min}$.) and re-suspended in TSB with 0.5 mM CaCl 2 . Prepared recipient cells and phage lysate were mixed in different ratios ($100: 1-100: 15$), incubated at rt . for 5 min , followed by the addition of 0.5 mM CaCl 2 and incubated additionally 20 min . at rt. 0.02 M ice cold sodium citrate was added and mixed by vortexing. Cells were isolated by centrifugation ($4000 \mathrm{rpm}, 20 \mathrm{~min}, 4^{\circ} \mathrm{C}$), re-suspended in 0.02 M sodium citrate, plated and incubated on BHI agar enriched with 0.2 mM sodium citrate and the appropriate antibiotic at $30^{\circ} \mathrm{C}$ over night. Transductants were sub-cultivated on selective plates containing the appropriate antibiotics and tested in an ermB and AAC6'APH2' PCR. Transductant, MRSA ST398 S0385 pMARGK2b pFA545gen was cultured at $30^{\circ} \mathrm{C}$ (plasmid replication at $\leq 30^{\circ} \mathrm{C}$) with aeration in BHI supplemented with $5 \mathrm{mg} / \mathrm{l}$ erythromycin and $16 \mathrm{mg} / \mathrm{l}$ gentamicin and stored at $-80^{\circ} \mathrm{C}$ in 0.5 ml aliquots $\left(>10^{6}\right.$ cells) with 50% glycerol.

The transposon mutant library was generated as described by Chaudhuri et al. (2009) with some modifications [8]. A 0.5 ml aliquot was inoculated into 100 ml BHI containing $5 \mathrm{mg} / \mathrm{l}$ erythromycin and chloramphenicol (Sigma) and $16 \mathrm{mg} / \mathrm{l}$ gentamicin and incubated at $30^{\circ} \mathrm{C}$ with aeration until the culture reaches $\mathrm{OD}_{600} 0.4$. Cells were recovered from 30 ml culture by centrifugation ($4000 \mathrm{rpm}, 10 \mathrm{~min}$) and re-suspended in 600 ml BHI containing $5 \mathrm{mg} / \mathrm{l}$ erythromycin pre-warmed to $43^{\circ} \mathrm{C}$. The culture was grown at $43^{\circ} \mathrm{C}$ with aeration until the culture reached an $\mathrm{OD}_{600} 0.4 .30 \mathrm{ml}$ culture was recovered by centrifugation (4000 rpm for 10 min) and re-suspended in 600 ml BHI

Table 1. Primers.

Name	Sequence (orientation 5' $\mathbf{3}^{\prime}$ ')	Source
Forward primer Kpnl	GTGGGTACCTTAAFCCTAGAGCTTGCCATGTATATG	This study
Reverse primer Spel	CTCACTAGTGTCTGGACTTGACTCACTTCC	This study
254 oligo	CGACTGGACCTGGA	J. H. Wang
256 oligo	GATAAGCAGGGATCGGAACCTCCAGGTCCAGTCG	J. H. Wang
ForwardTnL	CTTAAGTTTGCTTCGATGACTGG	This study
Reverse primer 258	GATAAGCAGGGATCGGAACC	J. H. Wang
ErmB forward 26	GGAACATCTGTGGTATGGCG	This study
ErmB reverse 27	CATTTAACGACGAAACTGGC	This study
Transposon-specific primer	AATGATACGGCGACCACCGAGATCTACACCTGAATTACCCTGTTATCCCTATTTAGGTGAC	Langridge et al. (2009)
P5	AATGATACGGCGACCACCGA	Illumina
P7	CAAGCAGAAGACGGCATACGA	Illumina
Sequencing primer	GACACTATAGAAGAGACCGGGGACTTATCAGC	This study

The table lists the primers used in the experimental approach. It includes primer name, nucleotide sequence and orientation, and source. doi:10.1371/journal.pone.0089018.t001
containing $5 \mathrm{mg} / \mathrm{l}$ erythromycin pre-warmed to $43^{\circ} \mathrm{C}$ and the culture was grown at $43^{\circ} \mathrm{C}$ with aeration over night. The following day 30 ml culture was recovered and re-suspended in 600 ml BHI containing $5 \mathrm{mg} / \mathrm{l}$ erythromycin pre-warmed to $43^{\circ} \mathrm{C}$ and grown at $43^{\circ} \mathrm{C}$ with aeration over night and the same procedure was repeated one more day resulting in a $3^{\text {rd }}$ generation transposon mutant library. Each day cells were plated on BHI plates containing $5 \mathrm{mg} / \mathrm{l}$ erythromycin, $5 \mathrm{mg} / \mathrm{l}$ chloramphenicol or $16 \mathrm{mg} / \mathrm{l}$ gentamicin and grown at $37^{\circ} \mathrm{C}$ over night. The growth pattern demonstrated a 100% cure of pMARGK $2 \mathrm{~b}, \sim 93 \%$ cure of pFA 545 gen and successful transposition of the transposon. Transposon mutants were stored in 0.5 ml ($>10^{6}$ cells) 50% glycerol aliquots at $-80^{\circ} \mathrm{C}$ until further use.

Mutant library verification

Linker PCR was used to verify the complexity of the generated transposon mutant library. DNA was extracted (Gram positive DNA extraction Epicentre - lysing the cells with Ready-Lyse Lysozyme over night) from the transposon mutant pool in addition to DNA from 15 randomly isolated colonies (BHI plates containing $5 \mathrm{mg} / \mathrm{l}$ erythromycin) representing 15 random transposon mutants from the library. The DNA was digested with RsaI (Promega) and purified using a Minielute PCR purification kit (Qiagen). Adaptor molecules were made by mixing a $1: 1$ ratio $(100 \mu \mathrm{M})$ of oligo 254 and 256 (see Table 1), denatured at $95^{\circ} \mathrm{C}$ for 3 min . in annealing buffer ($10 \times$ annealing buffer $=100 \mathrm{mM}$ Tris $\mathrm{pH} 8,500 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ EDTA) and annealed at room temperature for 1 hour (store at $-20^{\circ} \mathrm{C}$). Adaptors and digested DNA were ligated using a Quick DNA Ligase (New England Biolabs) followed by purification using a PCR purification kit (Qiagen). A PCR with primers ForwardTnL and reverse primer 258 (see Table l) and Hotstar taq polymerase (Qiagen) was conducted with the following conditions: Hot-start 15 min at $95^{\circ} \mathrm{C}, 30$ cycles of denaturation for 45 sec at $94^{\circ} \mathrm{C}$, annealing 1 min at $55^{\circ} \mathrm{C}$ and elongation for 2 min at $72^{\circ} \mathrm{C}$ and a final elongation for 5 min at $72^{\circ} \mathrm{C}$. The PCR products were visualised on a 2% NuSieve GTG Agarose gel (Lonza) (3 hours, 100 volts).

Passage of transposon mutant library in broth

A 0.5 ml mutant library aliquot $\left(>10^{6}\right.$ cells) was inoculated in 10 ml BHI supplemented with $5 \mathrm{mg} / \mathrm{l}$ erythromycin and incubat-
ed over night at $37^{\circ} \mathrm{C}$ with aeration. $500 \mu \mathrm{l}$ of the culture was reinoculated into fresh BHI supplemented with $5 \mathrm{mg} / \mathrm{l}$ erythromycin and incubated over night at $37^{\circ} \mathrm{C}$ with aeration. The passage of the transposon mutant library was repeated three times. After each passage the library was tested for viable counts (results not shown) and DNA (from $\sim 10^{9}$ cells) was extracted using Easy-DNA kit (Invitrogen) which was stored at $-20^{\circ} \mathrm{C}$.

Ethical statement

The study protocol was submitted to the ethical review committee at the University of Cambridge, Department of Veterinary Medicine, who reported that post mortem collection of blood following the slaughter of male pigs, surplus to a breeding program, is not a regulated procedure and provided ethical approval. The UK Animals (Scientific Procedures) Act 1986 allows for the use of animal tissues and blood in research that comes from animals not regulated by the Act. These animals were slaughtered by a method of killing identified in Schedule 1 of the Act. In this case, a 6-month-old male pig was euthanized by intravenous overdose of pentobarbitone and the blood was collected immediately postmortem into heparinised containers after obtaining the farm owner's permission for the use of their pigs in this study.

Whole porcine blood survival

Two 50 ml falcon tubes were filled with approximately 10 ml heparinised whole porcine blood and each tube was inoculated with 0.5 ml mutant library aliquot $\left(8.8 \times 10^{7}\right.$ cells). DNA was extracted from pooled mutant library aliquots $\left(\sim 10^{9}\right.$ cells) using MasterPure Gram Positive Purification Kit (Epicentre) and stored as input pools (replicates) at $-20^{\circ} \mathrm{C}$. The blood samples were incubated for 24 hours at $37^{\circ} \mathrm{C}$ with aeration. The following day the blood cultures were tested for viable counts $\left(1.4 \times 10^{7} \mathrm{CFU} /\right.$ $\mathrm{ml})$ and $500 \mu \mathrm{l}\left(\sim 10^{7}\right.$ cells) from each blood-culture were inoculated into $2 \times 10 \mathrm{ml}$ BHI supplemented with $5 \mathrm{mg} / \mathrm{l}$ erythromycin, to increase the bacterial/blood cell ratio prior to DNA extraction, and incubated over night at $37^{\circ} \mathrm{C}$ with aeration. This resulted in two rounds of growth selection, one selection round in whole porcine blood followed by a selection round in BHI . After the second round of selection DNA was extracted from $\sim 10^{9}$ of the mutants and stored at $-20^{\circ} \mathrm{C}$ as output pools (replicates).

Library preparation for Illumina sequencing

For the TraDIS approach the library preps were prepared as described by Langridge et al. (2009) with modifications [9]. 3-5 $\mu \mathrm{g}$ of DNA from input and output pools were fragmented to an average size of approximately 200 bp by Covaris E210. The size profile was evaluated with Agilent 2100 Bioanalyzer on a DNA1000 chip. The fragmented DNA was prepared for sequencing on an Illumina platform using the SureSelect XT Library Prep Kit-ILM (Agilent). The ligated fragments were amplified using a transposon-specific primer (see Table 1) and the multiplexing PCR primer index 1-8 supplied in the SureSelect Library Prep Kit. The PCR was run for 22 cycles with 200-400 ng template-DNA per reaction to amplify the transposon insert and junction sites. The PCR products were cleaned using $0.8 \times$ Agencourt AMPure XP beads (Ramcon) to remove DNA fragments below 200 bp . The quality of the amplified products was assessed using an Agilent 2100 bioanalyzer on a high Sensitivity DNA chip and quantified by Q-PCR with primers P5 and P7 (see Table 1). The libraries were pooled in a 1:1 molar ratio and sequenced on an Illumina Hiseq2000 platform for 43 cycles plus index read using a custom sequencing primer (see Table 1) resulting in reads with the initial 10 bp being transposon insert specific followed by the junction region.

Sequencing analysis and statistics

Sequence reads from the Illumina FASTQ files were sorted by index and evaluated for the 10 bp transposon (Tn) sequence CAACCTGTTA allowing 1 mismatch, using the program Sabre (https://github.com/najoshi/sabre). The Tn and adapter sequences, as well as short reads (<10 nucleotides) and nucleotides with poor base call quality $(<$ Q15), were stripped using Cutadapt [22] and the junction regions were extracted and mapped to the reference genome (AM990992) using Bowtie 2.0 [23]. An in-house script was used to identify the precise transposon insertion sites and quantify the number of reads mapping to the open reading frames within the reference genome. The program Circos [24] was applied for a genome wide visualization of the transposon mutant library.

The number of unique transposon insertion sites for any given gene was calculated and divided by the average gene length using an in-house script (insertion index calculation). Genes with zero or few transposon insertions sites were categorised based on function using the COG (Cluster of Orthologous groups) database [27,28], as described in Khatiwara et al. (2012) [10]. They were plotted as a percentage of all the COG categorised genes encoded by the reference genome.

The transposon mutant library was screened in whole porcine blood in vitro and mutants from input and output pools were compared using the DESeq package in R [25] enabling identification of significant differences in mutant composition pre- and post- selection. The approach was as described in Anders and Huber (2012) [26] and the settings are defined in Figure S1. The read counts, corresponding to transposon insertion sites were normalized to account for variation in the total number of reads obtained from each samples. The ratio of input:output read counts were determined and referred to as a $\log _{2}$ fold change. A negative $\log _{2}$ fold change reflects an attenuated mutant whereas a positive $\log _{2}$ fold change mirror a hypercompetitive mutant. For each individual mutant, the hypothesis that the fitness score was equal to zero and thereby that the mutant was present at equivalent levels in the input and output pools was tested for, using a negative binomial distribution as implemented in DESeq. The model was fitted only from those mutants from which replicate data was available and the resultant model was then applied to data derived
from all mutants to estimate P values. An attenuated mutant was determined when the number of read counts from input pool to output pool significantly decreased and a hypercompetitive mutant was determined when the number of read counts from input to output pool significantly increased.

The raw sequence data will be available in the NCBI Sequence Read Archive (SRA) upon publication (Accession: SRR1056406SRR1056422).

Results

A construct for manipulation of LA-MRSA ST398

The transposon mutant library was generated in the whole genome sequenced wild type LA-MRSA ST398 S0385 isolate using a two plasmid system. One of the plasmids carried a Tn5 derived transposon with an erythromycin resistance marker and mariner mosaic ends, which was required for use in S. aureus. As most LA-MRSA ST398 harbour natural resistance to tetracycline, the tetracycline resistance marker in the transposase-bearing plasmid was substituted with a gentamicin resistance cassette, as S0385 was found, by susceptibility testing to be susceptible to gentamicin (Minimal Inhibitory Concentration, $\mathrm{MIC}=0.5 \mathrm{mg} / \mathrm{l}$). The tetracycline resistance gene was removed from the plasmid and the AAC6'-APH2' gene originating from MRSA MU50 encoding gentamicin resistance was inserted into the plasmid at a position that facilitate the usage of the tetracycline resistance gene promoter. The plasmids were successfully transduced into the S0385 isolate.

Transposon mutant library

A high complexity mariner transposon mutant library was generated in the whole genome sequenced wild type LA-MRSA ST398 S0385 isolate. Serial dilution and plating on BHI agar plates containing the appropriate antibiotic determined a mutant library size of $\sim 10^{6}$ mutants, a 100% plasmid loss of the transposon carrying plasmid and approximately 93% plasmid loss of the transposase-carrying plasmid. Due to the incomplete loss of the transposase bearing plasmid, nutrient-rich broth was supplemented with erythromycin at each growth step to ensure that the genomic insertion of the transposon was maintained. Linker PCR and DNA sequencing was used to verify transposon insert throughout the bacterial genome (Figures S2 and S3).

Validation of the mutant library

DNA was isolated from the raw transposon mutant library and prepared for Illumina sequencing and sequenced on the HiSeq2000 platform. The sequencing was performed using a custom sequencing primer, sequencing from the 5^{\prime} end of the transposon and into the genomic DNA flanking the transposon insert.

In a sequencing run, one lane from an Illumina flow cell generated a minimum of 40 million reads of 43 bp plus index reads. The first 10 bp of each read constitutes the Tn sequence. Each lane was multiplexed with seven or eight samples, resulting in a minimum of 165 million nucleotides that represent the actual target DNA per sample. S. aureus S0385 has a total of 2777 annotated genes with an average length of 874 bp resulting in an average of 67 x gene-coverage.

One mismatch was allowed when matching the Tn sequence. When using the HiSeq platform a lower quality of the Tn sequence was obtained in comparison to the quality of the target regions, as the Tn sequence is identical in all the reads. The sample used for validation had a total output of ~ 7.1 million reads and of these the Tn sequence was identified in ~ 6 million reads.

Tn sequence and adapter sequence were stripped and the reads (10-23 bp in length) were mapped to the reference genome. ~ 4.5 million reads were mapped exactly one time and 140,330 unique insertion sites were identified. The average distance between unique insertion sites was 20.5 bp and by utilising an average gene length of 911 bp (average gene length for genes containing an insert), the average number of unique inserts per gene was 44.8 . The top row of Table 2 shows an overview of the transposon inserts recovered from the raw mutant library.

The distribution of the reads aligned to the reference chromosome is illustrated in Figure 1 by the right semicircle of the genome atlas. Reads are demonstrated as black spikes that are aligned to the reference genome, which is illustrated by the outermost green circle. The distribution of the aligned reads shows a high complexity transposon mutant library with inserts throughout the chromosome and no specific hotspots for transposon insertion.

Transposon insertion into a non-functional part of a gene may not disrupt gene function so it is necessary to define a threshold to separate essential/beneficial genes from non-essential genes. An insertion index was calculated by dividing the number of unique insertion sites for any given gene by the average gene length for genes containing an insert. Figure 2 illustrates a density plot based on the calculated insertion index for each gene. This plot separates genes with a low number of transposon inserts from genes with a high number of inserts (see Figure 2). The left most peak shows genes with a low number of inserts representing mutants with a decrease in fitness, which could lead to total loss of cellular survival or an arrested cell cycle, whereas the right most peak illustrates genes with a high number of inserts, representing viable mutants. The local minimum separating the peaks suggests that a cut-off value of around 0.02 would be suitable to distinguish essential/ beneficial genes from non-essential genes.

The seven housekeeping genes $a r o E, g l p K, g m k$, pta, tpiA, $y q i L$ and $\operatorname{arc} C$ used for Multi Locus Sequence Typing (MLST), shown in red in the left semicircle of Figure 1, represent potential candidates of essential genes within the S. aureus genome. One of the MLST genes (tpiA (SAPIG0853)) mapped zero reads, four genes mapped few reads (pta (SAPIG0662), gmk (SAPIG1207), yqiL (SAPIG0434) and $g l h K$ (SAPIG1302)) resulting in insertion indices below the cutoff (<0.02), identifying five of the MLST genes as essential/ beneficial using this system. aroE (SAPIG1661) and $\operatorname{arc} C$ had insertion indices above the cut-off defining them as non-essential.

SAPIG2704 and SAPIG2129 (see Figure 1), shown in the left semicircle of Figure 1, encode serine-rich adhesin for platelets and cardiolipin synthetase, respectively, and are examples of two nonessential genes from the S0385 genome. A high number of reads
mapped to these open reading frames, indicating that there was no significant loss of fitness when these genes were disrupted by transposon insertions.

LA-MRSA ST398 genes important for growth

The mutant library was grown for three passages in nutrientrich broth at $37^{\circ} \mathrm{C}$ to identify genes essential for growth in this substrate. Table 2 shows an overview of the sequence analysis from passage 0 to passage $3.71-75 \%$ of the reads containing the Tn tag sequence were found to map the reference genome. The number of unique insertion sites was between 97,000 and 162,000 with 3151 unique insertion sites per gene. The number of unique insertion sites showed an initial decrease between passage 0 and passage 1 . The decrease could illustrate that the transposon mutant library contains slow growing mutants, which will not be identified in the first growth passage. The passages were performed 3 times to increase selection sensitivity and to reduce the presence of arrested and dead cells.

A total of 152 genes mapping zero reads were identified from the mutant pool after three passages under laboratory conditions of these, 100 were protein-coding genes, 4 encoded ribosomal RNAs (rRNA) and 48 transfer-RNAs (tRNAs). These genes are proposed to be essential for bacterial survival under laboratory conditions. In addition, 526 genes had only a few mapped reads and had an insertion index below the calculated cut-off of 0.02 , indicating that these may also be important for growth (Tables S1 and S2). Genes with few transposon insertion sites may have maintained gene but cannot be identified as true essential genes and are therefore referred to as genes beneficial for bacterial survival under laboratory conditions. The protein coding genes were categorised based on functionality using the COG database and plotted as percentage of all the COG categorised genes in the WT (see Figure 3). Some genes were categorised as belonging to several COGs. The proposed essential gene list includes representatives of all the major functional COGs except group B (chromatin structure and dynamics) and N (cell motility). Representatives in V (defence mechanisms) were only identified when including the genes with few inserts (insertion index <0.02). Protein-coding genes involved in translation (COG group J), cell division (COG group D), coenzyme transport and metabolism (COG group H), and intracellular trafficking, secretion and vascular transport (COG group U) had the largest number of representatives in the proposed essential and beneficial gene sets. Approximately 9% of the proposed essential and beneficial protein-coding genes were of unknown function or not related to any COG group.

Table 2. Overview of the raw Transposon mutant Library and the passages in BHI - Illumina sequence data.

The table shows the output from the raw transposon mutant library and the three passages in BHI. The number of reads recovered after trimming and alignment were identified and the number of unique insertion sites per gene was calculated. The sequence data of the raw mutant library was obtained from one lane of a flow cell which was multiplexed with eight samples. The sequence data from the three passages were obtained from one lane of a flow cell that was multiplexed with seven samples. The sequencing was performed on a Hiseq2000 platform.
doi:10.1371/journal.pone.0089018.t002

Figure 1. Genome atlas. Right semicircle: The green band in the outermost part of the semicircle illustrates the reference chromosome (AM990992) with the size of $2,872,582 \mathrm{bp}$. The three circular plasmids harboured by the reference are not included. The black spikes connected to the green semicircle shows the distribution of the reads from the raw transposon mutant library aligned to the reference strain. The black and red dots indicate positions within the reference with large number of reads (insertion index >0.02) and low number of reads (insertion index <0.02) respectively. Left semicircle: The red colours show of zoom of the seven MLST genes (arcC represented twice due to two copies of this particular gene) and the black spikes illustrated in some of the genes show reads mapping within the open reading frame. The arrows indicate transcription direction. The zoom of SAPIG2704 and SAPIG2129, visualised in blue colours, show examples of two genes with a large number of read mapping throughout the open reading frames.
doi:10.1371/journal.pone.0089018.g001

Survival in whole porcine blood

The mutant library was grown in porcine blood and DNA from mutants pre- and post- selection was prepared as input and output pools, respectively. The blood samples were inoculated with the transposon mutant library and incubated for 24 hours. Previous growth experiments in whole porcine blood showed an initial decrease in cell counts but after 24 hours of incubation the number of mutants returned to a population size equivalent to the inoculums (see Figure S 4 for more details). The total number of
reads corresponding to transposon insertion sites in the input pool was compared to the total number of reads mapping to the equivalent position in the output data. The read counts are expected to follow an approximately normal distribution but the data showed some noise in the lower end and read counts below 2^{4} were considered as noise based on a frequency distribution plot (data not shown). Using the DESeq package in R the effective size of each sequence library was estimated based on the read counts and the estimated size factors were used for normalization of the

Figure 2. Density plot - Insertion index distribution. The figure shows a density plot illustrating the distribution of insertion indices (number of transposon inserts per gene divided by an average gene length). The plot indicates the density according to which the insertion indices are distributed and it shows that the insertion indices have a bimodal frequency distribution. The leftmost peak represents the genes with zero or very few insertions, whereas the rightmost peak represents the genes with a large number of insertions. The vertical line piercing the local minimum and separating the two peaks, defines the cut-off sorting genes as either, essential/beneficial or non- essential/neutral for bacterial fitness in a given environment.
doi:10.1371/journal.pone.0089018.g002
data. To contrast the two conditions and highlight a possible differential composition in mutants, recovered pre- and postselection, the variance of reads mapping each gene was estimated and subsequently tested using a negative binomial test. Ratios of normalized read counts in the input and output samples were determined and expressed as a $\log _{2}$ fold change. A negative $\log _{2}$ fold change corresponds to a decrease in read counts from input to output and indicates attenuated mutants, whereas a positive $\log _{2}$ fold change reflects an increase in read counts from input to output.

Only the mutants that were uniquely attenuated under the selective conditions were of interest. The mutant composition preselection in whole porcine blood was compared to the mutant composition post-selection. The genes representing the mutants with the most significant change in clone number were identified. To eliminate general selection due to growth in BHI the mutant library was selected for an equivalent number of growth rounds in BHI and genes representing mutants with the most significant change in clone number were identified. The two gene lists were compared and the genes specific for survival in whole porcine blood were identified (see Figure S5).

Transposon inserts in 23 genes induced a significant decrease in fitness (negative $\log _{2}$ fold change) and transposon inserts in one gene induced a significant hypercompetitive mutant (positive $\log _{2}$ fold change), all as a consequence of being selected in porcine blood (see Table 3). Six of the mutants, illustrated with a minus infinity (-inf) $\log _{2}$ fold change in Table 3, were represented in the
input pool but totally absent, with zero read counts, in the output pools. Seven of the 23 genes are defined as encoding hypothetical proteins with unknown function. Additionally two genes were of unknown function, whereas fifteen could be assigned a potential function (see Table 3 and Table 4).

Discussion

The purpose of the work was to generate a high complexity transposon mutant library and assess the application of TraDIS in S. aureus ST398. LA-MRSA ST398 was selected for this study as it shows different host infection/colonization patterns compared to most other MRSA strains. The isolation of MRSA from animals was first reported in 1972 [29], but was at that time most likely associated with human to animal transmission of an MRSA strain acquired by the farmer during hospitalisation. More recently, a specific lineage belonging to CC398, most likely of human origin, has spread among livestock globally, acquired methicillin resistance and is now transferring back to humans leading to both colonisation and disease [17,30]. ST398 is able to adapt to various host environments and continues to emerge worldwide both in livestock and also to some extent in hospital settings [31].

When interpreting the data it is important to recognize that the environment and other factors resulting from the experimental design can have unintended consequences on the output data. Nutrient-broth was supplemented with erythromycin to maintain the genomic insertion of the transposon and high temperatures

Figure 3. Proposed essential genes classified by functionality. The proposed essential genes for growth under laboratory conditions were classified by functionality and plotted as a percentage of all genes within each functional group encoded by the reference strain. The genes were assigned a functionality based on the COG database and these groups are illustrated on the vertical axis. The dark grey columns represent the proposed essential protein-coding genes with zero inserts, whereas the light grey columns add the protein-coding genes with few inserts (insertion index <0.02), which were proposed beneficial for growth under laboratory conditions.
doi:10.1371/journal.pone.0089018.g003
were applied to promote plasmid loss, both of which may influence the output when screening for essential genes. For example it has been reported that incubation at high temperatures in the presence of erythromycin enriches for mutants of the sae system, which is a two-component system involved in regulation of some virulence genes [32]. Enrichment of a regulatory system could have an unattended effect on the transposon mutant composition. In addition, transposon insertions may affect the expression of downstream genes or operons, causing polar mutation that leads to incorrect identification of essential genes in a defined environment. For definitive identification of gene function it is necessary to generate single knockout mutants and test those in the same functional assays used in the screenings. However, since a large number of genes are listed as having no known function and there is inconsiderable value in generating evidence for the phenotypes resulting from the possession of these genes, high-throughput methods can help to narrow the pool of genes to be investigated further.

In our study we generated a transposon mutant library consisting of $\sim 10^{6}$ mutants and we identified around 140,000 unique insertion sites. The transposon mutant library generated in Salmonella Typhi by Langridge et al. (2009) [9] yielded 370,000 unique insertion sites, which may be explained by the fact that the Salmonella genome is more than 2 Mb larger than the S. aureus genome and so provides the potential for a higher number of unique insertion sites. Langridge et al. showed an average of one insertion site for every 15-20 bp, which was similar in this study showing an average insertion site for every 20.5 bp . The sequence
data (Table 2), linker PCR data (Figures S2 and S3) and the coverage atlas (Figure 1) showed a successful generation of a high complexity mutant library with transposon inserts throughout the bacterial genome, comparable to the mutant library generation in Salmonella Typhi [9].

The MLST genes are housekeeping genes and are expected to be essential for cell viability [33]. However not all seven MLST genes were defined as essential in this study. The $g l p K, g m k$, $p t a, ~ t p i A$ and yqiL MLST genes were identified as essential or beneficial with zero or few transposon inserts, whereas $\operatorname{aro} E$ and $\operatorname{arc} C$ were defined as non-essential. tpiA, pta, gmk and yqiL have all been identified as essential previously (see Table S3) $[6,8,12]$. The $\operatorname{arc} C$ gene encoding carbamate kinase has a paralogous gene at a different locus within the S0385 genome, which also encodes carbamate kinase. When one of the $\operatorname{arc} C$ homologues is disrupted by the transposon insert the transcript of the other may take over and this could explain an insertion index above the cut-off for both $\operatorname{arc} C$ genes (SAPIG1164 and SAPIG2682).

Gene SAPIG2704 and SAPIG2129, which encode serine-rich adhesin for platelets and cardiolipin synthetase respectively, constitute two examples of genes defined as non-essential for S0385 survival under laboratory conditions in this study. Figure 1 illustrates that a high number of reads mapped within these open reading frames. Serine-rich adhesins are postulated to be important for bacterial binding to platelets as part of the pathogenesis in infective endocarditis in humans [34]. The S0385 isolate was isolated from a human case of endocarditis [35], where serine-rich adhesins may be essential, but when

Table 3. Genes representing 23 attenuated mutants and 1 hypercompetitive mutant when selected in whole porcine blood.

ID (gene)	Read Count Input	Read Count Output		
Mean	Mean	Log2	Fold Change	P-value
SAPIG2099	428.16	0.00	-inf	0.0237
SAPIG1465	317.79	0.00	-inf	0.0156
SAPIG2108	203.34	0.00	-inf	0.0288
SAPIG0429	196.84	0.00	-inf	0.0298
SAPIG1848	164.21	0.00	-inf	0.0354
SAPIG0633	143.38	0.00	-inf	0.0398
SAPIG0142	726.16	1.10	-9.3631	0.0024
SAPIG1650	492.68	1.10	-8.8088	0.0128
SAPIG1041	799.62	2.20	-8.5048	0.0025
SAPIG1748	352.17	1.10	-8.3244	0.0249
SAPIG1921	306.01	1.10	-8.1163	0.0430
SAPIG0315	605.24	2.21	-8.1003	0.0090
SAPIG2670	256.41	1.10	-7.8613	0.0406
SAPIG2057	469.89	2.21	-7.7351	0.0203
SAPIG1726	853.28	4.40	-7.5998	0.0038
SAPIG1977	526.66	3.30	-7.3165	0.0272
SAPIG0258	446.43	3.31	-7.0762	0.0426
SAPIG1054	1430.32	12.11	-6.8836	0.0019
SAPIG1096	694.20	6.60	-6.7168	0.0137
SAPIG2156	529.71	5.51	-6.5882	0.0296
SAPIG0647	1739.26	31.92	-5.7678	0.0497
SAPIG2568	751.50	15.43	-5.6056	0.0259
SAPIG2639	1449.27	77.16	-4.2314	0.0360
SAPIG0185	120.11	2868.20	4.5777	0.0328

The table lists the mutants that significantly changed in clone number from input to output (pre- and post-selection in whole porcine blood). The top 23 genes represent the mutants that were significantly reduced in number of clones after selection in whole porcine blood. The lowermost gene represents the mutant that significantly increased in clone number after selection in whole porcine blood. Mean read count input and Mean read count output represent the mean number of reads mapping within the defined gene. The differences between the mean values are illustrated by a log fold change from input to output and a negative $\log _{2}$ fold change indicating changes in fitness. A negative $\log _{2}$ fold change defines attenuation in fitness whereas a positive $\log _{2}$ fold change defines increase in fitness. The p-value shows the level of significance.
doi:10.1371/journal.pone.0089018.t003
transferring the isolate to a laboratory environment, these adhesins might lose their importance for bacterial survival. Cardiolipin synthetase are involved in conversion of bacterial membrane phosphatidylglycerol (PG) to cardiolipin (CL) when the bacteria progress from exponential growth phase to stationary and when phagocytosed by human neutrophils [36]. The S. aureus S0385 genome contains two open reading frames (Cls1: SAPIG1324 and Cls2: SAPIG2129) encoding cardiolipin synthetases. Cls2 is primarily responsible for CL accumulation under stationary phase [36], but when SAPIG2129 encoding Cls2 is disrupted by transposon insert, the homologous Cls1 may take over. The examples above illustrate the sensitivity of this methodology for identifying essential/beneficial or non-essential genes.
A total of 152 S. aureus S 0385 genes had zero transposon inserts and were therefore proposed as essential genes, while 526 genes, with a low number of transposon inserts, were proposed as beneficial for growth under laboratory conditions. Table S1 shows the lists of proposed essential genes and Table S2 the list of proposed beneficial genes. Table S3 shows a comparison with previously described S. aureus essential genes using high complexity transposon mutant libraries [6,8,12].

Of the 526 genes (insertion index <0.02) proposed here as beneficial, 268 genes have been described as essential in S. aureus previously (see Table S2). The 258 proposed beneficial genes that have not been described as essential previously encode proteins involved in DNA repair, replication and recombination, which indicate that the high temperatures applied to promote plasmid loss under the mutant library construction induced as expected bacterial stress conditions. These genes are therefore evaluated as beneficial for ST398 survival in this study due to the specific conditions applied in the experimental setup. When ranking the genes with insertion indices <0.02, it is clear that, as the insertion index increases and approaches the cut-off (0.02), there is an increase in number of genes that have not been described as essential in S. aureus previously (see Table S2). The ranking and knowledge from previous studies could indicate an insertion index cut-off of approximate 0.007 instead of 0.02 . This shows that the selection of the cut-off separating essential/beneficial from nonessential genes is an important consideration.

The differences found between this study and previous studies defining essential genes could be due to differences in methodology, sensitivity of the methods, environmental conditions or true differences between bacterial strains. However, the results need to

Table 4. Description of the genes identified as important for S. aureus ST398 survival in whole porcine blood.

ID (gene)	Description	Process	Whole blood survival
SAPIG2099 (leuD)	3-isopropylmalate dehydratase, small subunit	Leucine biosynthesis (amino acid biosynthesis)	Oxidative stress and pH shock. Stringent response (cellular adaptation to nutrient limiting conditions).
SAPIG1465 (arob)	3-dehydroquinate synthase	Nucleotide and amino acid metabolism (aromatic amino acid metabolism)	Oxidative stress and pH shock.
SAPIG0429	Hypothetical protein	Unknown	?
SAPIG2108	Phosphoserine phosphatase, RsbU	Up-regulation of σ^{B} (alternative sigma factor)	σ^{B} influences expression of a variety of genes including virulence genes under stress and specific environmental conditions.
SAPIG1848	Hypothetical protein	Unknown	?
SAPIG0633	tRNA-specific adenosine deaminase	Unknown	?
SAPIG0142	NAD dependent epimerase/dehydratase family protein	Galactose metabolism	Glucose depletion. Galactose metabolism (galactose molecules compose important components of the surface bound antigens located on red blood cells).
SAPIG1650 (lepA)	GTP-binding protein	Specific function unknown	LepA protein homologous to translation factors that binds ribosomes.
SAPIG1041 (menD)	2-succinyl-6-hydroxy-2, 4-cyclohexadiene-1-carboxylic acid synthase/2-oxoglutarate decarboxylase	Menaquinone biosynthetic pathway	Respiration. Involved in protection against haem toxicity
SAPIG1748 (icd)	Isocitrate dehydrogenase (IDH), NADP-dependent (icd gene)	Regulation of tricarboxylic acid (TCA) cycle	Icd up-regulation under acidic conditions. Regulation of the TCA cycle.
SAPIG1921	RNA methyltransferase, TrmH family, group 2	RNA metabolism	Regulation - balance between transcript and degradation of mRNA.
SAPIG0315	Hypothetical protein	Unknown	?
SAPIG2670	Hypothetical protein	Unknown	?
SAPIG2057	Aspartate transaminase	Aminoacid metabolism.	Decrease in pH .
SAPIG1726	HemA concentration negative effector hemX	Transport	ABC-type transport system. C ytochrome c biogenesis.
SAPIG1977	Response regulator protein VraR	Regulator of cell wall damage stress response	Response to cell wall damage.
SAPIG0258	PTS system galactitol-specific enzyme II B component	Galactose metabolism	Glucose depletion. Galactose metabolism (galactose molecules compose important components of the surface bound antigens located on red blood cells).
SAPIG1054	Beta-lactamase		
SAPIG1096	Spermidine/putrescine ABC transporter ATP-binding subunit	$A B C$ transporter involved in ion homeostasis	pH shock/changes.
SAPIG2156	Hypothetical protein	Unknown	?
SAPIG0647	Indigoidine systhesis protein	Secondary metabolite composing a blue pigment.	Oxidative stress - ph shock.
SAPIG2568 (fbp)	Fructose-1,6-bisphosphatase	Gluconeogenesis	Response to depletion of glucose.
SAPIG2639 (pyrD)	Dihydroorotate oxidase	Pyrimidine biosynthesis	Nucleic acids biosynthesis.
SAPIG0185	pANL51	Unknown function	?

doi:10.1371/journal.pone.0089018.t004
be verified by additional studies to provide further evidence of the essential nature of these genes.

None of the proposed essential genes were defined within the group of Defence mechanisms (COG group V), but four of the proposed beneficial genes were categorised as belonging to COG group V. These four genes, SAPIG1054, SAPIG1375, SAPIG1376 and SAPIG2314, encode beta-lactamase ampC and aminoacyltransferase fem A, fem B and fem X respectively. fem A, fem B and $f e m X$ have been identified as essential genes in previous studies $[6,8]$ and it has been shown that $f e m A$ and $f e m B$ mutants have a reduced peptidoglycan (PG) glycin content compared with fem A^{+} and $\mathrm{fem} B^{+}$strains $[37,38]$. The staphylococcal cell wall plays an important role in infection and pathogenicity, but based on our
data these cell-wall impairments may also have wider influence on cell growth and survival in general. However, it has also been demonstrated that fem $A B$ null mutants harbouring an erythromycin resistance marker lead to a low level of erythromycin resistance, which may be due to a higher uncontrolled influx of erythromycin through the impaired cell-wall [39]. The presence of erythromycin in the nutrient-broth used in this study could explain the decreased fitness identified for the fem A, fem B and fem X mutants.

Overall 24 genes were identified with a significant change in fitness after whole porcine blood incubation. Twenty-three of these genes were identified as giving a significant reduction in bacterial fitness when inserted with a transposon and selected in vitro in
porcine blood. Mutation in one gene resulted in a hypercompetitive mutant post-selection in whole porcine blood.

No specific cell viability tests were performed on the blood cells, but it has been shown previously that whole-blood units stored at room temperature maintained cellular counts and coagulation activity for up to 72 hours [40]. In addition, in previous experiments an initial decrease in bacterial cell counts was observed when incubating the transposon mutant library in whole porcine blood, which could reflect neutrophil killing. It is therefore reasonable in this case to believe that the genes identified are important for survival in whole porcine blood under in vitro conditions.
The 23 genes identified in the attenuated mutants represent mutants showing the greatest reduction in cell count when comparing input and output pools. However, they are unlikely to be the only genes important for survival in porcine blood. For example, mutants with transposon inserts in essential genes are absent in the input pools and a potential difference between input and output pools for those essential genes will not be detected and they can therefore not be considered as important for whole porcine blood survival in this experiment.
Seven of the 24 genes are defined as hypothetical genes of unknown function and two other proteins were annotated with unknown function. Fifteen genes were annotated to be predominantly involved in carbon metabolism, pH shock, regulation and transport (see Table 4) [41-47]. This indicates that key genes for survival in porcine blood cultures may not be genes involved in iron uptake such as hemolysins and sideophors, but may be genes associated with the ability to utilize the available carbon hydrates in blood, regulation at different levels as well as survival under extreme pH conditions. This is supported by previous studies analysing global gene expression of S. aureus under in vitro conditions of short-term culture in human blood [48,49]. In these studies, it was observed that up- or down regulated genes were mainly involved in cellular metabolism or had an unknown function. A previous study screening 1248 transposon S. aureus mutants in an in vivo murine bacteraemia model identified 50 genes as being important for whole blood survival, half of which had unknown function and the rest with an involvement in nutrient biosynthesis and surface metabolism [50]. Furthermore they identified genes important for the tricarboxylic acid cycle (TCA cycle) and in this study we identified the icd gene, a TCA cycle regulator, as important for in vitro survival in porcine blood. This indicates that the TCA cycle and carbon metabolism, have important functions for bacterial survival in blood in vivo and in vitro and in blood from different hosts. The fem \mathbf{A} and fem \mathbf{B} genes were previously identified as important for whole blood survival in vivo [50]. However, we found femA and fem \mathbf{B} mutants to have a growth disadvantage under laboratory conditions which is in correlation with other studies identifying S. aureus essential genes $[6,12,13]$.

The transposon mutant library was incubated in whole porcine blood in vitro for 24 hours. This could partly reflect why many metabolic genes were identified as important for whole porcine blood survival in this study. However, an incubation period of 24 hours was specifically selected based on initial growth experiments in whole porcine blood in vitro (Figure S4). These experiments showed an initial decrease in bacterial population size, which could be explained by phagocytosis and potential bacterial killing by host immune cells. The mutant population size returned to an equivalent size of the inoculated population after 24 hours, and at this point the mutants had potentially seen all the selective elements within whole blood. Genes important for immune evasion will have undergone selection in a similar manner as the metabolic genes. S. aureus encodes however various
immune evasion genes and it is justifiable to conclude that none of these are singlehandedly responsible for survival of the immune response, which could explain why none of these genes were identified as important for whole blood survival. Even though no specific virulence genes were identified as being important for blood survival in this study they might have important functions in more specific infection models.

In this study, we successfully generated a high complexity transposon mutant library in an LA-MRSA ST398 WT isolate and evaluated it using the TraDIS system. We identified S. aureus ST398 essential genes comparable with previous studies. Twentyfour genes were evaluated as being important for specific in vitro whole porcine blood survival, of which carbon metabolism, pH shock and regulation were related. For further evaluation of these genes, we aim to generate single knockout mutants and test these for survival in porcine blood, as well as in blood from other relevant donors. In addition, the generated transposon mutant library will be used in a screen for survival and colonization in other host relevant environments such as on porcine skin and nasal epithelium.

Supporting Information

Figure S1 Commands and settings used in R for the statistical analysis.
(TIF)
Figure S2 Whole mutant library and single colony verification. The gels show the result of the linker PCR used for library validation. The left gel shows squared in red a low complexity mutant library with a laddering of the smears. The blue squared lanes illustrate the same high complexity transposon mutant library from passage 0 (lane 2) to passage 3 (lane 5). The third generation transposon mutant library shows a smear with no specific bands. The right gel represents 15 randomly picked single mutant colonies isolated from the third generation transposon mutant library, each giving a band of different size indicating that the transposon has inserted at different locations with the genome. (TIF)
Figure S3 Genome atlas identifying transposon inserts of 11 random isolated mutants. The genome atlas illustrates by black marks in the outer most circle 11 different transposon insertion sites within the reference genome. The insertion sites were identified based on sequencing 11 of the 15 randomly picked mutant colonies described in figure S1. The fragments from the 11 mutants were sequenced and aligning to the reference genome. The blue and red parts of the atlas indicate forward and reverse transcriptional direction of the open reading frames within the reference genome.
(TIF)
Figure S4 Growth profile of transposon mutant library in whole porcine blood in vitro. The figure shows the growth profile of the transposon mutant population in whole porcine blood in vitro. Mutant population size was determined at specific time-points to identify functionality of the blood immune cells. After 24 hours incubation in vitro the mutant population size was equivalent to the inoculated population size (indicated by the red circle).
(TIF)
Figure S5 Experimental setup for identification of genes important for bacterial growth in whole porcine blood. The mutant composition in input pool pre-selection in whole porcine blood (Input pool - library aliquot) were compared with mutant composition in output pool post-selection in porcine blood
(output pool BHI - second generation library). The mutants identified with a significant change in number of clones represent genes important for whole porcine blood survival in addition to growth BHI. The mutant composition in output pool postselection in porcine blood (output pool BHI - second generation library) was compared to mutant composition after growth in BHI (BHI - second generation library). The mutants identified with a significant change in number of clones in both of the comparisons were evaluated as specific for survival in whole porcine blood in vitro.
(TIF)

Table S1 Proposed essential genes. (XLSX)

Table S2 Proposed beneficial genes. (XLSX)

Table S3 Comparison of essential gene lists of S. aureus.

References

1. Fraser CM, Gocayne JD, White O, Adams MD, Rebecca A, et al. (2013) The Minimal Gene Complement Mycoplasma genitalium of. Science 270: 397-403.
2. Schneiker S, Perlova O, Kaiser O, Gerth K, Alici A, et al. (2007) Complete genome sequence of the myxobacterium Sorangium cellulosum. Nature biotechnology 25: 1281-1289.
3. Hall N (2007) Advanced sequencing technologies and their wider impact in microbiology. The Journal of experimental biology 210: 1518-1525.
4. Salama N, Shepherd B, Falkow S (2004) Global transposon mutagenesis and essential gene analysis of Helicobacter pylori. Journal of bacteriology 186: 79267935.
5. Liberati NT, Urbach JM, Miyata S, Lee DG, Drenkard E, et al. (2006) An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proceedings of the National Academy of Sciences of the United States of America 103: 2833-2838.
6. Bae T, Banger AK, Wallace A, Glass EM, Aslund F, et al. (2004) Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proceedings of the National Academy of Sciences of the United States of America 101: 12312-12317.
7. Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Molecular microbiology 48: 77-84.
8. Chaudhuri RR, Allen AG, Owen PJ, Shalom G, Stone K, et al. (2009) Comprehensive identification of essential Staphylococcus aureus genes using Transposon-Mediated Differential Hybridisation (TMDH). BMC genomics 10: 291.
9. Langridge GC, Phan M, Turner DJ, Perkins TT, Parts L, et al. (2009) Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome research 19: 2308-2316. doi:10.1101/gr.097097.109
10. Khatiwara A, Jiang T, Sung S-S, Dawoud T, Kim JN, et al. (2012) Genome scanning for conditionally essential genes in Salmonella enterica Serotype Typhimurium. Applied and environmental microbiology 78: 3098-3107.
11. Pickard D, Kingsley RA, Hale C, Turner K, Sivaraman K, et al. (2013) A Genomewide Mutagenesis Screen Identifies Multiple Genes Contributing to Vi Capsular Expression in Salmonella enterica Serovar Typhi. Journal of bacteriology 195: 1320-1326.
12. Fey PD, Endres JL, Yajjala VK, Yajjala K, Widhelm TJ, et al. (2013) A Genetic Resource for Rapid and Comprehensive Phenotype. MBio 4: e00537-12. doi: $10.1128 / \mathrm{mBio} .00537-12$. Editor
13. Chaudhuri RR, Morgan E, Peters SE, Pleasance SJ, Hudson DL, et al. (2013) Comprehensive Assignment of Roles for Salmonella Typhimurium Genes in Intestinal Colonization of Food-Producing Animals. PLoS Genetics 9: el003456.
14. Plata K, Rosato AE, Wegrzyn G (2009) Staphylococcus aureus as an infectious agent: overview of biochemistry and molecular genetics of its pathogenicity. Acta biochimica Polonica 56: 597-612.
15. Hasman H, Moodley A, Guardabassi L, Stegger M, Skov RL, et al. (2010) Spa type distribution in Staphylococcus aureus originating from pigs, cattle and poultry. Veterinary microbiology 141: 326-331.
16. Sung JM-L, Lloyd DH, Lindsay JA (2008) Staphylococcus aureus host specificity: comparative genomics of human versus animal isolates by multi-strain microarray. Microbiology (Reading, England) 154: 1949-1959.
17. Price L, Stegger M, Hasman H, Aziz M (2012) Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. MBio 3: e00305-11.
18. Uhlemann A, Porcella S, Trivedi S (2012) Identification of a highly transmissible animal-independent Staphylococcus aureus ST398 clone with distinct genomic and cell adhesion properties. MBio 3: e00027-12.
(XLSX)

Acknowledgments

We thank Alex Hurd from University of Sheffield, UK for the plasmids used in the cloning construct. We acknowledge Morten Rasmussen at Copenhagen University, DK for indispensable help in the library preparation setup and the staff at the Sequencing Centre at Copenhagen University, DK for generating the sequences. In addition we thank J. H. Wang and Dan Tucker from the Department of Veterinary Medicine, University of Cambridge, UK for help with the transposon mutant library verification and collection of porcine blood.

Author Contributions

Conceived and designed the experiments: MTC HH FMA. Performed the experiments: MTC. Analyzed the data: MTC RSK RRC FMA. Contributed reagents/materials/analysis tools: MTC RSK RRC MAH HH FMA. Wrote the paper: MTC RSK RRC MAH HH FMA.
19. Van Duijkeren E, Ikawaty R, Broekhuizen-Stins MJ, Jansen MD, Spalburg EC, et al. (2008) Transmission of methicillin-resistant Staphylococcus aureus strains between different kinds of pig farms. Veterinary microbiology 126: 383-389.
20. Cuny C, Friedrich A, Kozytska S, Layer F, Nübel U, et al. (2010) Emergence of methicillin-resistant Staphylococcus aureus (MRSA) in different animal species. International journal of medical microbiology: IJMM 300: 109-117.
21. Schijffelen MJ, Boel CHE, van Strijp JAG, Fluit AC (2010) Whole genome analysis of a livestock-associated methicillin-resistant Staphylococcus aureus ST398 isolate from a case of human endocarditis. BMC genomics 11: 376.
22. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet journal 17: 10-12.
23. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nature methods 9: 357-359.
24. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, et al. (2009) Circos: an information aesthetic for comparative genomics. Genome research 19: 16391645.
25. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome biology 11: R106.
26. Anders S, Huber W (2012) Differential expression of RNA-Seq data at the gene level - the DESeq package. Heidelberg, Germany: European Molecular Biology Laboratory (EMBL).
27. Tatusov RL (1997) A Genomic Perspective on Protein Families. Science 278: 631-637.
28. Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic acids research 28: 33-36.
29. Devriese L, Van Damme R, Fameree L (1972) Methicillin (cloxacillin)-resistant Staphylocoocus aureus strains isolated from bovine mastitis cases. Vet Med 19: 598605.
30. Verkade E, Kluytmans J (2013) Livestock-associated Staphylococcus aureus CC398: Animal reservoirs and human infections. Infection, genetics and evolution.
31. Smith TC, Pearson N (2011) The emergence of Staphylococcus aureus ST398. Vector borne and zoonotic diseases (Larchmont, NY) 11: 327-339.
32. Sun F, Cho H, Jeong D-W, Li C, He C, et al. (2010) Aureusimines in Staphylococcus aureus are not involved in virulence. PloS one 5: el5703.
33. Saunders NA, Holmes A (2007) Multilocus Sequence Typing (MLST) of Staphylococcus aureus. Methods in molecular biology (Clifton, NJ) 391: 71-85.
34. Siboo I, Chambers H, Sullam P (2005) Role of SraP, a serine-rich surface protein of Staphylococcus aureus, in binding to human platelets. Infection and immunity 73: 2273-2280.
35. Fluit AC (2012) Livestock-associated Staphylococcus aureus. Clinical Microbiology and Infection 18: 735-744.
36. Koprivnjak T, Zhang D, Ernst CM, Peschel A, Nauseef WM, et al. (2011) Characterization of Staphylococcus aureus cardiolipin synthases 1 and 2 and their contribution to accumulation of cardiolipin in stationary phase and within phagocytes. Journal of bacteriology 193: 4134-4142.
37. Henze U, Sidow T, Wecke J, Labischinski H, Berger-Bächi B (1993) Influence of fem B on methicillin resistance and peptidoglycan metabolism in Staphylococcus aureus. Journal of bacteriology 175: 1612-1620.
38. Maidhof H, Reinicke B, Blümel P, Berger-Bächi B, Labischinski H (1991) femA, which encodes a factor essential for expression of methicillin resistance, affects glycine content of peptidoglycan in methicillin-resistant and methicillinsusceptible Staphylococcus aureus strains. Journal of bacteriology 173: 3507-3513.
39. Rohrer S, Ehlert K, Tschierske M, Labischinski H, Berger-Bächi B (1999) The essential Staphylococcus aureus gene $f m h B$ is involved in the first step of
peptidoglycan pentaglycine interpeptide formation. Proceedings of the National Academy of Sciences of the United States of America 96: 9351-9356.
40. Hughes JD, Macdonald VW, Hess JR (2007) Warm storage of whole blood for 72 hours. Transfusion 47: 2050-2056.
41. Somerville G, Morgan C (2002) Staphylococcus aureus aconitase inactivation unexpectedly inhibits post-exponential-phase growth and enhances stationaryphase survival. Infection and immunity 70: 6373-6382.
42. Prasad UV, Vasu D, Kumar YN, Kumar PS, Yeswanth S, et al. (2013) Cloning, Expression and Characterization of NADP-Dependent Isocitrate Dehydrogenase from Staphylococcus aureus. Applied biochemistry and biotechnology 169: 862-869.
43. Rigby KM, DeLeo FR (2012) Neutrophils in innate host defense against Staphylococcus aureus infections. Seminars in immunopathology 34: 237-259.
44. Anderson K, Roux C (2010) Characterizing the effects of inorganic acid and alkaline shock on the Staphylococcus aureus transcriptome and messenger RNA turnover. FEMS Immunol Med Microbiol 60: 208-250.
45. Pané-Farré J, Jonas B, Förstner K, Engelmann S, Hecker M (2006) The sigmaB regulon in Staphylococcus aureus and its regulation. International journal of medical microbiology: IJMM 296: 237-258.
46. Somerville GA, Cockayne A, Dürr M, Peschel A, Otto M, et al. (2003) Synthesis and deformylation of Staphylococcus aureus delta-toxin are linked to tricarboxylic acid cycle activity. Journal of bacteriology 185: 6686-6694.
47. Wakeman CA, Hammer ND, Stauff DL, Attia AS, Anzaldi LL, et al. (2012) Menaquinone biosynthesis potentiates haem toxicity in Staphylococcus aureus. Molecular microbiology 86: 1376-1392.
48. Den Reijer PM, Lemmens-den Toom N, Kant S, Snijders SV, Boelens H, et al. (2013) Characterization of the humoral immune response during Staphylococcus aureus bacteremia and global gene expression by Staphylococcus aureus in human blood. PloS one 8: e53391.
49. Malachowa N, Whitney AR, Kobayashi SD, Sturdevant DE, Kennedy AD, et al. (2011) Global changes in Staphylococcus aureus gene expression in human blood. PloS one 6: el8617.
50. Mei JM, Nourbakhsh F, Ford CW, Holden DW (1997) Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. Molecular microbiology 26: 399-407.

Supporting figures

Figure S1. Commands and settings used in \mathbf{R} for the statistical analysis.

```
Description of the sample
> BloodDesign <- data.frame(
    row.names = colnames( CountTable7.4 ),
    condition = c( "untreated", "untreated", "treated", "treated" ),
    libType = c( "single-end", "single-end", "single-end","single-end"
) )
Create a condition factor
> conds <- factor( c( "untreated", "untreated", "treated", "treated"
))
```

Examplify a CountDataSet (cds) which is the central structure in the DESeq package

```
> library( DESeq )
> cds <- newCountDataSet( CountTable7.4, conds )
Acess counts
> head( counts(cds) )
Histogram to check for noise in data
> hist(log2(CountTable7.4$sample_46),100)
Romoval of noise
> cds <- newCountDataSet( CountTable7.5[CountTable7.5$sample_46>16,
], conds )
Access the count data
> head( counts(cds) )
Estimate the size factor (coverage)
> cds <- estimateSizeFactors( cds )
> sizeFactors ( cds )
Normalize count data according to size factor
> head( counts( cds, normalized=TRUE ) )
Estimate dispersion
> cds <- estimateDispersions( cds, fitType="local" )
Inspect the intermediate steps for the dispersion estimation
> str( fitInfo(cds) )
```

To visualize these steps plot the per-gene estimates against the normalized mean expressions per gene and then overlay the fitted curve

```
> plotDispEsts <- function( cds )
{
plot(
rowMeans( counts( cds, normalized=TRUE ) ),
fitInfo(cds)$perGeneDispEsts,
pch = '.', log="xy" )
xg <- 10^seq( -.5, 5, length.out=300 )
lines( xg, fitInfo(cds)$dispFun( xg ), col="red" )
}
```

Calling the function preduces the plot
> plotDispEsts(cds)
Dispersion values used by the subsequent testing are stored in the
feature data slot of cds
> head(fData(cds))
Fit to model based on the negative binomial distribution
> res <- nbinomTest(cds, "untreated", "treated")
$>$ head (res)

Plot the $\log 2$ fold change against the base means, colouring in red those genes that are significant at 5\% level

```
> plotDE <- function( res )
    plot(
    res$baseMean,
    res$log2FoldChange,
    log="x", pch=20, cex=.3,
    col = ifelse( res$pval < .05, "red", "black" ) )
> plotDE( res )
```

Filter for significant genes according to some chosen threshold
> resSig <- res[res\$pval < 0.05,]
List the most significantly differentially expressed genes
> head(resSig[order(resSig\$pval),])

To save the output file use the R functions write.table and write.csv

Export to excel
> write.csv(resSig, "datafile7.4_0.05.csv")

Figure S2. Whole mutant library and single colony verification.

Low complexity mutant library
High complexity mutant library

100 pb ladder from Promega

The gels show the result of the linker PCR used for library validation. The left gel shows squared in red a low complexity mutant library with a laddering of the smears. The blue squared lanes illustrate the same high complexity transposon mutant library from passage 0 (lane 2) to passage 3 (lane 5). The third generation transposon mutant library shows a smear with no specific bands. The right gel represents 15 randomly picked single mutant colonies isolated from the third generation transposon mutant library, each giving a band of different size indicating that the transposon has inserted at different locations with the genome.

Figure S3. Genome atlas identifying transposon inserts of 11 random isolated mutants.

The genome atlas illustrates by black marks in the outer most circle 11 different transposon insertion sites within the reference genome. The insertion sites were identified based on sequencing 11 of the 15 randomly picked mutant colonies described in figure S1. The fragments from the 11 mutants were sequenced and aligning to the reference genome. The blue and red parts of the atlas indicate forward and reverse transcriptional direction of the open reading frames within the reference genome.

Figure S4. Growth profile of transposon mutant library in whole porcine blood in vitro.

Growth profile of S0385 transposon mutant library in whole porcine blood in vitro

The figure shows the growth profile of the transposon mutant population in whole porcine blood in vitro. Mutant population size was determined at specific time-points to identify functionality of the blood immune cells. After 24 hours incubation in vitro the mutant population size was equivalent to the inoculated population size (indicated by the red circle).

Figure S5. Experimental setup for identification of genes important for bacterial growth in whole porcine blood.

The mutant composition in input pool pre-selection in whole porcine blood (Input pool library aliquot) were compared with mutant composition in output pool post-selection in porcine blood (output pool BHI - second generation library). The mutants identified with a significant change in number of clones represent genes important for whole porcine blood survival in addition to growth BHI. The mutant composition in output pool post-selection in porcine blood (output pool BHI - second generation library) was compared to mutant composition after growth in BHI (BHI - second generation library). The mutants identified with a significant change in number of clones in both of the comparisons were evaluated as specific for survival in whole porcine blood in vitro.

Table S1. Proposed essential genes.
Table S2. Proposed beneficial genes.
Table S3. Comparison of essential gene lists in S. aureus.
Table S1. Proposed essential genes

ID $=$ SAPIG2286	CDS	0	rpsE	y		J	
ID=SAPIG2287	CDS	0	rpIR	y		no related COG	
ID=SAPIG2289	CDS	0	rpsH	y		no related COG	
ID =SAPIG2290	CDS	0	rpsN	y		J	
ID = SAPIG2294	CDS	0	rpsQ	y		J	
ID =SAPIG2295	CDS	0	rpmC	y		no related COG	
ID=SAPIG2298	CDS	0	rpIV	y		J	
ID=SAPIG2299	CDS	0	rpsS	y		no related COG	
ID=SAPIG2300	CDS	0	rplB	y		J	
ID=SAPIG2554	CDS	0	SAPIG2554	y		no related COG	
ID=SAPIG2758	CDS	0	SAPIG2758	y		J	
ID = SAPIG2759	CDS	0	rpmH	y		no related COG	100
ID=SAPIG2762	rRNA	0	SAPIG2762	y			
ID=SAPIG2772	rRNA	0	SAPIG2772	y			
ID=SAPIG2774	rRNA	0	SAPIG2774	y			
ID $=$ SAPIG2775	rRNA	0	SAPIG2775	y	4		
ID $=$ SAPIG0018	tRNA	0	SAPIG0018	y			
ID=SAPIG0019	tRNA	0	SAPIG0019	y			
ID=SAPIG0584	tRNA	0	SAPIG0584	y			
ID=SAPIG0586	tRNA	0	SAPIG0586	y			
ID=SAPIG0587	tRNA	0	SAPIG0587	y			
ID=SAPIG0588	tRNA	0	SAPIG0588	y			
ID=SAPIG0589	tRNA	0	SAPIG0589	y			
ID $=$ SAPIG0590	tRNA	0	SAPIG0590	y			
ID=SAPIG0591	tRNA	0	SAPIG0591	y			
ID $=$ SAPIG0592	tRNA	0	SAPIG0592	y			
ID=SAPIG1021	tRNA	0	SAPIG1021	y			
ID=SAPIG1169	tRNA	0	SAPIG1169	y			
ID=SAPIG1889	tRNA	0	SAPIG1889	y			
ID=SAPIG1890	tRNA	0	SAPIG1890	y			
ID=SAPIG1891	tRNA	0	SAPIG1891	y			
ID=SAPIG1892	tRNA	0	SAPIG1892	y			
ID=SAPIG1894	tRNA	0	SAPIG1894	y			

Table S2. Proposed beneficial genes

Insertion index

Gene ID

Gene description (protein coding)

ID=SAPIG1146	0,00125 muri	y	M	
ID=SAPIG1756	0,00125 SAPIG1756	y	L	
ID=SAPIG1290	0,00125 SAPIG1290	n	S	hypothetical protein Unknown
ID=SAPIG2147	0,00133 atpA	y	C	transcriptional regulatory protein Res Transcription regulator
ID=SAPIG1736	0,00134 SAPIG1736	y	E	
ID=SAPIG1014	0,00135 SAPIG1014	y	M	
ID=SAPIG1240	0,00136 trmD	y	J	
ID=SAPIG0915	0,00137 ditA	y	E	
ID=SAPIG1558	0,00138 SAPIG1558	n	K, T	
ID=SAPIG0618	0,00138 rpoC	y	K	
ID=SAPIG1260	0,00138 pyrH	y	F	
ID=SAPIG1234	0,00140 smc	y	D	
ID=SAPIG0808	0,00142 SAPIG0808	y	F	
ID=SAPIG1460	0,00143 SAPIG1460	y	R	
ID=SAPIG1664	0,00146 mtnN	y	R	
ID=SAPIG1592	0,00147 accC	y	I	
ID=SAPIG1311	0,00149 glnA	y	E	
ID=SAPIG1476	0,00152 cmk	y	F	
ID=SAPIG1682	0,00152 alaS	y	J	
ID=SAPIG1985	0,00152 SAPIG1985	y	M	
ID=SAPIG0014	0,00152 SAPIG0014	y	T	
ID=SAPIG1473	0,00153 engA	y	R	
ID=SAPIG2297	0,00153 rpsC	y	no related COG	
ID=SAPIG2283	0,00155 SAPIG2283	y	no related COG	
ID=SAPIG1737	0,00155 thrS	y	J	
ID=SAPIG1221	0,00155 rpe	y	G	
ID=SAPIG1722	0,00155 hemL	n	H	glutamate-1-semialdehyde-2,1-amin Metabolic pathways
ID=SAPIG0604	0,00156 cysE	y	E	
ID=SAPIG1222	0,00156 SAPIG1222	y	H	
ID=SAPIG1717	0,00157 SAPIG1717	y	H	
ID=SAPIG1647	0,00159 grpe	y	\bigcirc	
ID=SAPIG0980	0,00161 fabF	y	I, Q	
ID=SAPIG0899	0,00161 SAPIG0899	y	E	

Transcription regulator
catabolite control protein A
delta-aminolevulinic acid dehydratas Metabolic pathways

,

$\begin{array}{ll}\text { DNA polymerase } & \text { DNA replication } \\ \text { ribonuclease hiii } & \text { DNA replication }\end{array}$
DNA-directed RNA polymerase, alpha RNA polymerase 0
regulatory protein YIbF Replication, recombination and repair
Metabolic pathways
Replication, recombin
dihydrolipoyllysine-residue acetyltran carbon metabolism MFS-type transporter Transport
glutamate-1-semialdehyde-2,1-amin، Metabolic pathways
penicillin-binding Protein dimerisatior Peptidoglycan biosynthesis

protoporphyrinogen oxidase Metabolic pathways
Metabolic pathways
Transcription regulator
protoporphyrinogen oxidase
uroporphyrinogen decarboxylase

egative regulator of genetic compete Posttranslational modification
Regulatory protein
SpoVG superfamily
I

W
$\Sigma ゅ \circlearrowleft エ \Sigma$
iron dependent repressor
cell division protein

$\stackrel{\circ}{\circ}$

ribosomal protein S10
©

DNA replication, recombination, and repair

DNA replication, recombination, and repair
ID=SAPIG2125 ID $=$ SAPIG2464
ID $=$ SAPIG2546
ID $=$ SAPIG1584
ID $=$ SAPIG0844
ID $=$ SAPIG1757
ID $=$ SAPIG1908
ID $=$ SAPIG1267
ID $=$ SAPIG1232
ID=SAPIG1898
ID $=$ SAPIG1588
ID $=$ SAPIG1112 ID $=$ SAPIG2123
ID $=$ SAPIG1625 ID $=$ SAPIG1625
ID $=$ SAPIG2153 ID=SAPIG0559 ID=SAPIG1090 ID=SAPIG1087 ID=SAPIG2281 ID=SAPIG0567 ID=SAPIG2572 ID=SAPIG0822 ID=SAPIG2084 ID=SAPIG1712 ID=SAPIG1352 ID=SAPIG1742 ID=SAPIG1480

 ID=SAPIG0916 ID $=$ SAPIG1002 ID=SAPIG2750

$\mathrm{Na}(+) / \mathrm{H}(+)$ antiporter subunit $\mathrm{E}(\mathrm{Mu} \mathrm{Na/H}$ transport

cystathionine gamma-lyase (Gamma
glycolytic operon regulator

$\mathrm{y} \quad$ no related COG
n
K
no relate

hypothetical protein protein YvcK

Unknown
Defense mechanisms Transport DNA and RNA unwinding transcriptional regulator, AraC family
LytN protein
Unknown
galactose-6-phosphate isomerase, Le Metabolic pathways hypothetical protein Defense mechanisms tRNA pseudouridine synthase B hypothetical protein
Recombination regulator anthranilate phosphoribosyltransfera: Metabolic pathways
Nucleotide transport and metabolism Unknown Nucleotide metabolism Metabolic pathways unknown
Cell envelope biogenesis Transcriptional regulator Unknown
Ch Transport
cobalt import ATP-binding protein Cb Transport
770RF023 Cell envelope biogenesis
hypothetical protein
peptidase, M16 family regulatory protein RecX
$\rightarrow<$

$\begin{array}{llll}\text { ID }=\text { SAPIG0270 } & 0,01066 \text { SAPIG0270 } & \text { y } & \text { M }\end{array}$
$n \propto$

I
ATP-dependent Clp protease ATP-bin Metabolic pathways phage regulatory protein, Rha family purine metabolism phosphate-binding protein PstS (PBP Unknown protein BCE33L4443 S-adenosyl-methyltransferase MraW Unknown isocitrate dehydrogenase, NADP-depı Unknown is
pirimidine metabolism
Adhesion
Metabolic pathways
Cell division
unknown hypothetical protein
aspartokinase 2 (Aspartokinase II) ($/$ Unknown
aspartate carbamoyltransferase Metabolic pathways

> immunodominant staphylococcal antigen A
low-affinity inorganic phosphate tran:Transport
Unknown
$\mathrm{Na}+/ \mathrm{H}+$ antiporter family protein
conjugative transposon protein

ID=SAPIG1201	0,01293 pyrF	n	F	orotidine 5'-phosphate decarboxylas	Unknown
ID=SAPIG0741	0,01294 SAPIG0741	n	P	protein YkaA	Inorganic ion transport and metabolism
ID=SAPIG2552	0,01316 SAPIG2552	n	no related COG	hypothetical protein	Unknown
ID=SAPIG1939	0,01316 SAPIG1939	n	no related COG	tRNA	Unknown
ID=SAPIG2223	0,01316 SAPIG2223	n	no related COG	tRNA	
ID=SAPIG1950	0,01316	n	P	tRNA	
ID=SAPIG1951	0,01316	n	no related COG	tRNA	
ID=SAPIG1618	0,01333 SAPIG1618	n	P	superoxide dismutase [Mn] (General	Unknown
ID=SAPIG2101	0,01351 SAPIG2101	n	no related COG	tRNA	Vitamin B6 metabolism
ID=SAPIG1844	0,01352 menE	y	I, Q		
ID=SAPIG1200	0,01355 carB	n	E, F	carbamoyl-phosphate synthase, large	\& Recombination
ID=SAPIG0669	0,01361 SAPIG0669	n	K	probable DNA-binding protein	Transport
ID=SAPIG1893	0,01370 SAPIG1893	n	no related COG	tRNA	Unknown
ID=SAPIG2755	0,01389 gidB	n	no related COG	methyltransferase GidB	TCA cycle
ID=SAPIG1380	0,01421 SAPIG1380	n	E, P	oligopeptide transport ATPase	Unknown
ID=SAPIG1062	0,01449 purE	n	F	phosphoribosylaminoimidazole carbo:	Metabolic pathways
ID=SAPIG2126	0,01449 SAPIG2126	n	no related COG	hypothetical protein	Unknown
ID=SAPIG0594	0,01464 SAPIG0594	n	H	pyridoxine biosynthesis protein	
ID=SAPIG0922	0,01471 SAPIG0922	n	S	hypothetical protein	
ID=SAPIG1970	0,01476 SAPIG1970	n	R	conserved protein YfkA	Unknown
ID=SAPIG1053	0,01478 SAPIG1053	n	K	cell envelope-related transcriptional a	attenuator domain family
ID=SAPIG2072	0,01481 SAPIG2072	y	no related COG		
ID=SAPIG1559	0,01491 rluB	y	J		
ID=SAPIG2274	0,01510 SAPIG2274	n	P	cobalt import ATP-binding protein Cb	Metabolic pathways
ID=SAPIG0572	0,01515 SAPIG0572	n	J	heat shock protein 15	Transport
ID=SAPIG1621	0,01527 SAPIG1621	n	P	ABC transporter, ATP-binding protein	RNA or DNA unwinding
ID=SAPIG2107	0,01529 SAPIG2107	n	T	anti-sigma-B factor antagonist (Anti-	regulators of anti-sigma factors
ID=SAPIG0747	0,01534 SAPIG0747	n	S	hypothetical protein	
ID=SAPIG1499	0,01538	n	no related COG	hypothetical protien	unknown
ID=SAPIG2446	0,01545 SAPIG2446	n	no related COG	NreA	
ID=SAPIG0738	0,01563 SAPIG0738	n	no related COG	sensor protein BceS	
ID=SAPIG0563	0,01575 SAPIG0563	n	J	endoribonuclease L-PSP, putative	DNA-binding repressors and activators
ID=SAPIG0281	0,01587 SAPIG0281	n	no related COG	hypothetical protein	Protease

glutamine amidotransferase subunit PdxT (Glutamineamidotransferase glutaminase subu lipoprotein, putative tRNA-dihydrouridine synthase Cell division Unknown

Surface antigen Unknown
Pentose-phosphate pathway Signal transduction
Unknown Unknown
Vitamin B6 Vitamin B6 metabolism
Unknown Unknown
Transcripti stage 0 sporulation protein YaaT
hypothetical phage-related protein hypothetical protein pur operon repressor

H
related
o related S
F
$=\gg$
n
n
no re
protein Stu0508
putative primase homolog
tRNA-specific adenosine deaminase hypothetical protein fprl1 inhibitory protein (flipr) stage 0 sporulation protein Yaa uracil phosphoribosyltransferase DNA repair protein RadC
hypothetical protein
stress
anthranilate synthase glutamine amidotransferase
lpxtg-motif cell wall anchor domain Transport
hypothetical protein cell wall hypothetical protein
putative transcriptional regulator sup Unknown
hypothetical protein Metabolic pathways hypothetical protein
iron-regulated heme-iron binding pro Unknown GntR family regulatory protein Unknown
E, H
no related COG no related COG no related COG
K
no related COG COG K

86S0פId甘S $\angle 8$ STO^0

0,01604 SAPIG0595
0,01613 SAPIG1211 0,01621 SAPIG0103 0,01626 SAPIG1351 0,01634
0,01639 SAPIG1296
0,01641 purR
0,01667 SAPIG1343 0,01676 SAPIG0558
folk
0,01679 fhs
0,01699 SAPIG0633 0,01707 SAPIG1868 0,01728 SAPIG1151 0,01741 SAPIG0551
12935 SAPIG1177
0,01746 upp
0,01747 SAPIG1715
0,01754 SAPIG2110
0,01754 SAPIG1369 0,01767 SAPIG0867 0,01778 SAPIG2206 0,01786 SAPIG1149 0,01786 SAPIG2165 0,01812 SAPIG1975 0,01812 SAPIG2640 0,01823 SAPIG1125 0,01837 SAPIG2055
ID=SAPIG0598

ID=SAPIG0595 ID=SAPIG1211 ID $=$ SAPIG0103 ID = SAPIG1351 ID=SAPIG1497 ID=SAPIG1296 ID=SAPIG0562 ID=SAPIGO859 ID=SAPIG1343 ID=SAPIG0558
ID=SAPIG1784 ID=SAPIG0633 ID=SAPIG1868 ID=SAPIG1151 ID=SAPIG0551 ID=SAPIG1177
ID=SAPIG2154 ID=SAPIG1715 ID=SAPIG2110 ID=SAPIG1369 ID=SAPIG0867 ID=SAPIG2206 ID=SAPIG1149 ID=SAPIG2165 ID=SAPIG1975 ID=SAPIG2640 ID=SAPIG1125 ID=SAPIG2055
pai operon repiesso
DNA replication, recombination, and repair
Unknown
ATP-dependent chaperone ClpB hypothetical protein glutamyl endopeptidase (Staphylococ Unknown
hypothetical protein
GTP-binding protein LepA
galactose-6-phosphate isomerase, LacA subunit glutamyl endopeptidase (Staphylococ Unknown
hypothetical protein
GTP-binding protein LepA
galactose-6-phosphate isomerase, LacA subunit glycerol kinase
hypothetical pro hypothetical protein regulatory protein hypothetical protien unknown acetoin utilization protein AcuA Unknown transcriptional regulator, Cro/CI family
$\mathrm{Na}+$ transporting ATP synthase

-
lipoprotein, putative Unknown
fmn-dependent NADPH-azoreductase cell-divisio initiation protein Unknown
exodeoxyribonuclease VII, large subunit
Translation
excinuclease ABC, C subunit Unknown
ComE operon protein 2 Translation, ribosomal structure
excinuclease $A B C, C$ subunit
methyltransferase small domain sup ϵ pyrimidine metabolism pyruvate formate-lyase 1-activating i transcriptional regulators
cold shock protein, CSD family

	lipoprotein, putative Unknown
fmn-dependent NADPH-azoreductase	
	cell-divisio initiation protein Unknown
exodeoxyribonuclease VII, large subunit	
	ComE operon protein 2 Translation, ribosomal structure
	excinuclease ABC, C subunit Unknown
	methyltransferase small domain sup \in pyrimidine metabolism
	pyruvate formate-lyase 1-activating itranscriptional regulators
	cold shock protein, CSD family

Description

Essential in S. aureus Fey et al. 2013
Essential in S. aureus Bae et al. 2004
JE2 (USA300)
Newman

Essential by Automated TMDH Chaudhuri et al. 2009	Newman NCTC8325 (SH1000)
Essential or advantageous by TraDIS This study	S0385

Table S3. Comparison of essential gene lists of s. aureus

ST398 genes

NCTC8325 genes
Category

rimM
trmD
RNA-metabolising cca-adding enzyme ribonuclease Z tRNA methyl transte (SAOUHSC_01725)
$\stackrel{\rightharpoonup}{5}$
trmH
톤 $\stackrel{\square}{\square}$

ID=SAPIG1239 ID=SAPIG1240 ID=SAPIG1277 | N |
| :--- |
| |
| |
| 0 |
| 0 |
| \vdots |
| \vdots |
| II |
| 0 | ID=SAPIG1570

ID=SAPIG1685 ID $=$ SAPIG1685 ID=SAPIG2757 ID $=$ SAPIG2758 ID=SAPIG0020 ID=SAPIG0021 ID=SAPIG1268 ID=SAPIG1564 ID=SAPIG0697 ID=SAPIG0859 ID=SAPIG0993 ID=SAPIG1310 ID=SAPIG1363 ID=SAPIG1341 ID=SAPIG1674

ID=SAPIG0015 ID=SAPIG0445 ID=SAPIG0447.p ID=SAPIG0612 ID=SAPIG0613 ID=SAPIG0614 ID=SAPIG0615 ID=SAPIG0620

RNA modification SAOUHSC_01209 SAOUHSC_01210 SAOUHSC_01252 SAOUHSC_01474 SAOUHSC_01598

SAOUHSC_01725 SAOUHSC_01726
 SAOUHSC_03053 SAOUHSC_03054

SAOUHSC_00020 SAOUHSC_00021 SAOUHSC_01243 SAOUHSC_01592 SAOUHSC_00620 SAOUHSC_00803 SAOUHSC_00934 SAOUHSC_01285 SAOUHSC_01361 SAOUHSC_01333 SAOUHSC_01714

Protein synthesis Ribosomal proteins Ribosomal proteins

ID=SAPIG1214
ID=SAPIG0610 ID=SAPIG0829 ID=SAPIG0948 ID=SAPIG1235 ID=SAPIG1237 ID=SAPIG1700 ID=SAPIG1907 ID=SAPIG2133 ID = SAPIG2283 SAOUHSC_00516 SAOUHSC_00769 SAOUHSC_00903 SAOUHSC_01205 SAOUHSC_01207 SAOUHSC_01746 SAOUHSC_01972 SAOUHSC_02327 SAOUHSC_02491
Protein modification ?

Cell envelope/Cell wall and associated proteins

Phospholipids
Phospholipids
Phospholipids

 dependent

ID=SAPIG0979 ID=SAPIG0980 ID=SAPIG1006 ID=SAPIG1228 ID=SAPIG1229 ID = SAPIG1230 ID=SAPIG1232 ID=SAPIG1456 ID=SAPIG1592 ID=SAPIG1593 ID=SAPIG1753 ID=SAPIG1754 ID=SAPIG2112
 ID=SAPIG2141
ID=SAPIG0927 SAOUHSC_00881 ID=SAPIG0927 ID $=$ SAPIG1263
ID $=$ SAPIG1285 ID=SAPIG1472
 SAOUHSC_01238 SAOUHSC_01260
$\overrightarrow{7}$
\vdots
-
0
0
0
3
0
0
0

ID=SAPIG1779
ID=SAPIG1991
ID=SAPIG0169 ID=SAPIG0178 ID = SAPIG0565 ID=SAPIG2153 ID=SAPIG2209

ID=SAPIG2216
ID=SAPIG1395 ID=SAPIG1396
 ID=SAPIG1398

ID=SAPIG0814 ID=SAPIG1985 ID=SAPIG1146 ID=SAPIG1179 0
\cdots
\vdots
0
0
0
0
11
0
0 ID=SAPIG1262 ID=SAPIG1400 ID=SAPIG1419 ID=SAPIG1178 n
0
0
0
0
0
0
4
11
0
0

ID=SAPIG2123
 ID=SAPIG1014 ID=SAPIG2124 ID=SAPIG2142 ID=SAPIG2314

SAOUHSC_01837
 SAOUHSC_00471 SAOUHSC_02352

SAOUHSC_02399 SAOUHSC_02405

Diaminopimelate biosynthesis SAOUHSC_01395

 Diaminopimelate biosynthesis SAOUHSC_01396 Diaminopimelate biosynthesis SAOUHSC_01397 Diaminopimelate biosynthesis SAOUHSC_01398Peptidoglycan biosynthesis SAOUHSC_00752 Peptidoglycan biosynthesis SAOUHSC_00954 Peptidoglycan biosynthesis SAOUHSC_01106 Peptidoglycan biosynthesis SAOUHSC_01146 SAOUHSC_01147 SAOUHSC_01237 SAOUHSC_01400 SAOUHSC_01424 SAOUHSC_01467 SAOUHSC_01739 SAOUHSC_01856 SAOUHSC_02107 SAOUHSC_02305 SAOUHSC_02317 SAOUHSC_02318 SAOUHSC_02337 SAOUHSC_02527

Cell wall/amino sugar
 Cell wall/amino sugar Cell wall/amino sugar

 Peptidoglycan biosynthesis Peptidoglycan biosynthesisPeptidoglycan biosynthesis SAOUHSC_01373 ID=SAPIG1375 y y y y femA
$\begin{array}{lll}\text { Peptidoglycan biosynthesis } & \text { SAOUHSC_01373 } & \text { ID=SAPIG1375 } \\ \text { Peptidoglycan biosynthesis } & \text { SAOUHSC_01374 } & \text { ID=SAPIG1376 }\end{array}$
ID=SAPIG0270
?
ID=SAPIG0715
ID=SAPIG0716
ID=SAPIG0717 ID=SAPIG0718

 ID=SAPIG0915

 ID=SAPIG0918

ID=SAPIG0573 ID=SAPIG1177 ID=SAPIG1186 ID=SAPIG1187 | N |
| :--- |
| |
| |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 | ID=SAPIG1183 ID=SAPIG1770

 ID=SAPIG1445 ID=SAPIG1110 ID=SAPIG1450 ID=SAPIG2756 ID=SAPIG1712
SAOUHSC_00223 SAOUHSC_00227
SAOUHSC_00640
SAOUHSC_00641
SAOUHSC_00642 SAOUHSC_00643 SAOUHSC_00645 SAOUHSC_00762 SAOUHSC_00869 SAOUHSC_00870 SAOUHSC_00871 SAOUHSC_00872 SAOUHSC_00482 SAOUHSC_01144
SAOUHSC_01154 SAOUHSC_01149 SAOUHSC_01150 SAOUHSC_01827 SAOUHSC_03049 SAOUHSC_01148 SAOUHSC_01462 SAOUHSC_01063 n
7
\vdots
0
0
0
1
0
0
\vdots
4 SAOUHSC_03052

[^0]Teichoic acid biosynthesis Teichoic acid biosynthesis
Cell division Cell division
rod shape determining protein RodA protein BLi01701
> $\mathrm{Na}(+) / \mathrm{H}(+)$ antiporter subunit A $\mathrm{Na}(+) / \mathrm{H}(+)$ antiporter subunit B $\mathrm{Na}(+) / \mathrm{H}(+)$ antiporter subunit C $\mathrm{Na}+/ \mathrm{H}+$ antiporter

multisubunit $\mathrm{Na}+/ \mathrm{H}+$ antiporter, MnhF subunit $\mathrm{Na}(+) / \mathrm{H}(+)$ antiporter subunit F $\mathrm{Na}(+) / \mathrm{H}(+)$ antiporter subunit D $\mathrm{Na}(+) / \mathrm{H}(+)$ antiporter subunit C

ID=SAPIG0702 ID = SAPIG0703 ID=SAPIG0704 ID=SAPIG0706

ID=SAPIG0707 ID=SAPIG0930 ID=SAPIG0932 ID=SAPIG0933 ID=SAPIG0934 ID=SAPIG0935

Cell envelope - other SAOUHSC_00998 SAOUHSC_01359 SAOUHSC 01501 68800^{-}JSH
88800^{-}JSHOO
$\angle 8800^{-}$JSHOO
98800^{-}JSH
ع880 SAOUHSC_00625 SAOUHSC_00626 SAOUHSC_00627 SAOUHSC_00628

SAOUHSC_00884 SAOUHSC_00883 ๓

Na / H transporter

Na / H transporter

Na / H transporter Na / H transporter
Na / H transporter Na / H transporter Na / H transporter Na / H transporter
Na / H transporter Na / H transporter
Na / H transporter
SAOUHSC_02319
 Cell envelope - other
Cell envelope - other Cell envelope - other

ID=SAPIG1215 ID=SAPIG1361 ID=SAPIG1480

ID=SAPIG0566 ID=SAPIG0852 ID=SAPIG0853 ID=SAPIG0854 ID=SAPIG0855
 ID=SAPIG1344

 ID=SAPIG2167 i
0
0
0
0
0
\vdots
\vdots
0
0

ID=SAPIG1221

Carbon metabolism Glycolysis SAOUHSC_00472
SAOUHSC_00796 SAOUHSC_00797 SAOUHSC_00798 SAOUHSC_00799 SAOUHSC_00900 SAOUHSC_01337 SAOUHSC_01806 SAOUHSC_01807 SAOUHSC_02366 SAOUHSC_00795

Pentose phosphate SAOUHSC_01189

ID $=$ SAPIG1571	y	n	y	y
zwf				

 ID=SAPIG1576 ID=SAPIG2388

ID=SAPIG1245 ID=SAPIG1311 ?

ID=SAPIG0836 ID=SAPIG1081 Pentose phosphate SAOUHSC_01599 SAOUHSC_01605 SAOUHSC_02612 Pentose phosphate Intermediary metabolism SAOUHSC_01216 SAOUHSC_01287 SAOUHSC_00788

SAOUHSC_00781
SAOUHSC 01028

Respiratory pathways
Isoprenoid/Mevalonate biosyntr SAOUHSC_00225 Isoprenoid/Mevalonate biosyntr SAOUHSC_00336 Isoprenoid/Mevalonate biosyntr SAOUHSC_00466 Isoprenoid/Mevalonate biosyntr SAOUHSC_00577 Isoprenoid/Mevalonate biosyntr SAOUHSC_00578 Isoprenoid/Mevalonate biosyntr SAOUHSC_00579 Isoprenoid/Mevalonate biosyntr SAOUHSC_01618 ~.
ID $=$ SAPIG0268 ID=SAPIG0434 ID=SAPIG0561 ID=SAPIG0664 ID=SAPIG0665 ID=SAPIG0666 ID=SAPIG1587 ID=SAPIG1588 ID=SAPIG2398

ID=SAPIG2595 ID=SAPIG2596

ID=SAPIG1039 ID=SAPIG1041 ID=SAPIG1043

ID=SAPIG1468
ID=SAPIG1469

 SAOUHSC_00980 SAOUHSC_00983 SAOUHSC_00985

SAOUHSC_01486
SAOUHSC_01487 SAOUHSC_01488 SAOUHSC_01915 Menaquinone biosynthesis Isoprenoid/Mevalonate biosyntr SAOUHSC_02623 Isoprenoid/Mevalonate biosyntr SAOUHSC_02859 Isoprenoid/Mevalonate biosyntr SAOUHSC_02860 Menaquinone biosynthesis Menaquinone biosynthesis Menaquinone biosynthesis Menaquinone biosynthesis Menaquinone biosynthesis Menaquinone biosynthesis

nrdI
ribon
ribonucleoside-diphosphate reductase, alpha subunit
rıbonucleosıde-dıphosphate reductase, beta subunit

Menaquinone biosynthesis SAOUHSC_01916 ID=SAPIG1844
ID=SAPIG0840
ID=SAPIG1141
ID = SAPIG0467 ID=SAPIG0468 ID=SAPIG0576 ID=SAPIG1207 ID=SAPIG2282
ID=SAPIG1697
ID=SAPIG0807
ID=SAPIG0808
ID=SAPIG0809
ID=SAPIG0548 ID=SAPIG1260 ID=SAPIG1428 ID=SAPIG1476 ID=SAPIG2169 ID=SAPIG0662 ID=SAPIG1121 ID=SAPIG1209 ID=SAPIG1742 ID=SAPIG2172
ID=SAPIG0581

Purine biosynthesis SAOUHSC_00374 Purine biosynthesis SAOUHSC_00375 Purine biosynthesis SAOUHSC_00485 Purine biosynthesis SAOUHSC_01176 SAOUHSC_02490

Purine/Pyrimidine biosynthesis SAOUHSC_00741 Purine/Pyrimidine biosynthesis SAOUHSC_00742
Purine/Pyrimidine biosynthesis SAOUHSC_00743

Pyrimidine biosynthesis SAOUHSC_00451 SAOUHSC_01235 SAOUHSC_01435 SAOUHSC_01496 SAOUHSC 02368 | Cofactors | |
| :--- | ---: |
| Acetyl CoA/CoA | SAOUHSC_00574 |
| Acetyl CoA/CoA | SAOUHSC_01075 |
| Acetyl CoA/CoA | SAOUHSC_01178 |
| Acetyl CoA/CoA | SAOUHSC_01795 |
| Acetyl CoA/CoA | SAOUHSC_02371 |

\section*{SAOUHSC 00490

FeS assembly ATPase SufC FeS assembly protein SufD cysteine desulfurase
SUF system FeS assembly protein, NifU family FeS assembly protein SufB cysteine desulfurase

 ID=SAPIG1632 ID=SAPIG1473
 SAOUHSC_00549 SAOUHSC_01007 SAOUHSC_01434 SAOUHSC_01766 SAOUHSC_02354 SAOUHSC_00491

NAD biosynthesis SAOUHSC_00943 NAD biosynthesis SAOUHSC_01697 SAOUHSC_02132 SAOUHSC_02133
 SAOUHSC_00848 SAOUHSC_00849 SAOUHSC_00850 SAOUHSC_00851 SAOUHSC_01727 SAOUHSC_01504
Riboflavin biosynthesis SAOUHSC_01249
Other/Unknown

conserved hypothetical protein secretory antigen SsaA S4 domain protein YaaA
conserved hypothetical p conserved hypothetical protein
lipoate-protein ligase A protein conserved hypothetical protein
lipoate-protein ligase A protein conserved hypothetical protein conserved hypothetical protein general stress protein 13 conserved hypothetical protein toxic anion resistance protein conserved domain protein conserved hypothetical protein conserved hypothetical protein
conserved hypothetical protein conserved hypothetical protein
thiamine pyrophosphokinase conserved hypothetical protein ribosomal protein L7AE family lipoprotein, putative protein Stu1959
conserved hypothetical protein

conserved hypothetical protein

y

conserved hypothetical protein
hypothetical protein
aminoglycoside phosphotransterase tamily protein
transposase
probable exported protein
 conserved hypothetical protein conserved domain protein conserved domain protein hypothetical protein conserved hypothetical protein conserved hypothetical protein

ID=SAPIG2218 ID=SAPIG2594 ID=SAPIG0003 ID=SAPIG0545 ID=SAPIG0663 ID=SAPIG0849 ID=SAPIG0914 ID=SAPIG0938 ID=SAPIG0981 ID=SAPIG1017
 ID=SAPIG1100 ID=SAPIG1123
 ID=SAPIG1222 ID=SAPIG1269 ID=SAPIG1270 ID=SAPIG1596

$-\infty$
0
0
0
0
\vdots
0

ID=SAPIG1802
 $-\infty$
∞
0
0
0
0
\vdots
0
$\|$
0
0 ID=SAPIG2554 ID=SAPIG0442 ID=SAPIG1364 ID=SAPIG2072
$\stackrel{n}{n}$

SAOUHSC_02407 SAOUHSC_02571 SAOUHSC_00003 SAOUHSC_00444 SAOUHSC_00575 SAOUHSC_00793 SAOUHSC_00868 て6800${ }^{\text {JSHOOVS }}$ SAOUHSC_00922 SAOUHSC_00957 SAOUHSC_01036 SAOUHSC_01050 SAOUHSC_01077 SAOUHSC_01119 SAOUHSC_01190 SAOUHSC_01244 SAOUHSC_01245 SAOUHSC_01627 SAOUHSC_01672 SAOUHSC_01721 SAOUHSC_01756 SAOUHSC_01770

SAOUHSC_01866
 SAOUHSC_01930 SAOUHSC_02757 SAOUHSC_02805 SAOUHSC_00345 SAOUHSC_01362 SAOUHSC_02260 SAOUHSC_02572

 Unknown Unknown Unknown

Unknown
Unknown Unknown

Unknown Unknown
n.

Unknown SAOUHSC_02720

Title: Genes important for survival of livestock-associated methicillin-resistant Staphylococcus aureus Sequence Type 398 in the porcine reservoir.

Running title: LA-MRSA ST398 survival in the pig reservoir.

Keywords: LA-MRSA ST398, livestock, porcine reservoir, high-throughput methods, adhesion and survival.

Authors: Mette T. Christiansen ${ }^{\text {a (\#) }}$, J. Inhong Wang ${ }^{\text {b }}$, Dan Tucker ${ }^{\text {b }}$, Henrik Hasman ${ }^{\text {a }}$ and Frank M. Aarestrup ${ }^{\text {a (\#) }}$

National Food Institute, Technical University of Denmark, DK ${ }^{\text {a }}$; Department of Veterinary Medicine, University of Cambridge, UK $^{\text {b }}$

Corresponding authors: Mette T. Christiansen email: mtso@food.dtu.dk and Frank M. Aarestrup fmaa@food.dtu.dk

Abstract

Staphylococcus aureus is an important opportunistic pathogen that colonizes the upper respiratory tract and the skin surface of several animal species, including humans.

Comparative genomic studies have identified a few phage associated genes that appears to be correlated with virulence in humans, but have not been able to identify genes of importance for successful colonization or infection in livestock or other animals. The porcine reservoir is important for the spread of S. aureus sequence type 398 (ST398) and the identification of genes important for survival of ST398 in pigs could contribute to a better understanding of transmission and adaptation. In this study we screened a transposon mutant library consisting of approximately one million livestock-associated methicillin-resistant S. aureus (LAMRSA) ST398 mutants to identify genes important for porcine survival. Seventeen genes were identified as important for porcine skin adhesion and survival. Ten genes represent mutants with reduced fitness and they primarily encode transporters and enzymes involved in metabolic pathways. In addition four mutants with increased fitness were identified and they encode DNA binding proteins involved in regulation. Sixteen genes were identified as important for nasal epithelial survival, encoding proteins involved in regulation, metabolic enzymes, cell wall components and hypothetical proteins. The genes identified here can constitute targets for MRSA decolonization in pigs, which could prevent further spread of the ST398 linage. Additional investigations into the specific function of the genes identified in this study as important for porcine survival are needed.

Introduction

Staphylococcus aureus is an important opportunistic pathogen that colonizes the upper respiratory tract and the skin surface of several animal species, including humans (1-3). During the past decade a livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) linage, belonging to clonal complex 398 (CC398), has become of increasing concern. CC398 is the predominant clonal complex in pigs (4). It has been suggested that sequence type 398, belonging to CC398, originated as MSSA in humans and from there transmitted to livestock, where it acquired mobile genetic elements like SCCmec and Tn916 facilitating methicillin and tetracycline resistance and in addition lost a prophage, carrying genes potentially important for survival in the human host (5).

Pigs constitute a large reservoir for LA-MRSA ST398 and contribute to an ongoing spread and genetic adaptation. However the bacterial mechanisms underlying successful colonization and survival in pigs are poorly understood. To better understand the adaptation and interspecies transmission potential of LA-MRSA ST398, genes important for porcine survival needs to be determined.

Previous studies have applied porcine nasal epithelial cells, porcine and human skin corneocytes and keratinocytes, porcine nasal mucosa explants and live pigs to study S. aureus nasal and skin colonization (1, 6-8). All studies used wild type strains or single knockout mutants. Corrigan et al. (2009) concluded that the ability of S. aureus to adhere to human desquamated nasal epithelial cells was multifactorial and involved the serine-aspartic acid repeat proteins SdrC and SdrD as well as iron regulated surface determine protein A (IsdA) and clumping factor $\mathrm{B}(\mathrm{ClfB})(6)$. IsdA and clfB have also been suggested as important for nasal adhesion in other studies (9-11). Tulinski et al. (2013) demonstrated that a beta-toxin (hlb) S. aureus ST398 mutant, showing a different hemolysis pattern, had reduced colonization properties to porcine nasal epithelial explants compared to wild type (1).

Different S. aureus clonal lineages show different adhesion patterns. Some lineages demonstrate preferred adhesion to corneocytes isolated from pigs and some to skin corneocytes isolated from humans. These patterns were confirmed by in vivo colonization experiments in piglets (12). LA-MRSA ST398 did not show preferred binding to corneocytes from either pigs or humans (7), but human associated methicillin-sensitive S. aureus (MSSA) ST398 showed enhanced adhesion to human isolated skin keratinocytes and keratin (8).

Mutants applied in previous adhesion and colonization studies were generated based on previous knowledge about S. aureus, but this approach cannot help to highlight other potential gene candidates, which has not previously been associated with S. aureus colonization. In this study we use a transposon mutant library consisting of approximately one million LA-MRSA ST398 mutants to identify genes important for porcine survival. The mutant library was generated and previously verified by us (manuscript I) and was used in a comprehensive screening of genes important for adhesion to and survival on porcine skin explants and survival on porcine nasal epithelial tissue.

Materials and methods

Bacterial strains and culture conditions. A mariner transposon mutant library was generated in a previous study in the whole genome sequenced LA-MRSA ST398 isolate S0385 (manuscript I). The transposon mutant library consisted of approximately 1 million mutants with around 140,000 unique insertion sites and the average number of unique inserts per gene was calculated to $44.8 .>10^{6}$ mutant cells from frozen aliquots were inoculated into BHI broth (Oxoid) supplemented with $5 \mathrm{mg} / \mathrm{l}$ erythromycin (Sigma) and incubated at $37^{\circ} \mathrm{C}$ with aeration overnight. Mutants were harvested, washed twice in phosphate buffered saline (PBS) and re-suspended in PBS. To obtain mutant from exponential growth phase, 2 ml from the o/n culture was re-inoculated into fresh BHI supplemented with $5 \mathrm{mg} / \mathrm{l}$ erythromycin and
grown to mid-exponential phase $\mathrm{OD}_{600} 0.5$ before the cells were harvested, washed and resuspended in PBS.

Ethics statement. The study protocol was submitted to the ethical review committee at the University of Cambridge, Department of Veterinary Medicine, who reported that post mortem collection of tissue following the slaughter of male pigs, surplus to a breeding program, is not a regulated procedure and provided ethical approval. The UK Animals (Scientific Procedures) Act 1986 allows for the use of animal tissues and blood in research that come from animals not regulated by the Act. These animals were slaughtered by a method of killing identified in Schedule 1 of the Act. In this case, two 6-month-old pigs, a male (Pig_1) and a female (Pig_2), were collected at different days with two weeks in between. They were euthanized by intravenous overdose of pentobarbitone and the tissue was collected immediately postmortem after obtaining the farm owner's permission for the use of their pigs in this study.

Preparation of porcine skin. The pig skin was prepared as described previously (13). The skin areas behind the ears were washed with chlorhexidine soap and disinfected with 70% ethanol before epilation with a sterile razor. A squared skin piece of around $8 \times 8 \mathrm{~cm}$ was removed from the pigs and the adipose tissue beneath the dermis was removed with a scalpel. The skin was dissected under sterile conditions into $2 \mathrm{~cm}^{2}$ pieces, placed in 6 -well plates (NUNC) and embedded in Hepes agar ($145 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{KCl}, 1 \mathrm{mM} \mathrm{MgSO} 4,10 \mathrm{mM}$ Hepes, 10 mM glucose, 5% Agarose) leaving the skin surface uncovered (see Figure 1). The skin pieces were disinfected with 70% ethanol for 5 min at room temperature followed by washing with PBS three times. Swabs were taken from the washed skin surface, streaked on blood agar plates and incubated overnight at $37^{\circ} \mathrm{C}$ to test for surface contamination.

Ex vivo porcine skin survival. Genomic DNA (gDNA) was extracted from a transposon mutant overnight culture ($\sim 10^{9}$ cells) using MasterPure Gram Positive Purification Kit (Epicentre) and stored at $-20^{\circ} \mathrm{C}$ as input pool. $10 \mu \mathrm{l}$ of up-concentrated mutant culture $\left(\sim 10^{11}\right.$ cells) were inoculated onto the porcine skin surface and incubated under atmospheric conditions at $32^{\circ} \mathrm{C}$ for ~ 24 or ~ 48 hours (duplicates were generated for each incubation period from Pig_1 and Pig_2). After incubation the skin explants were homogenized (with a ball bearing and $2 \times 5 \mathrm{~min}, 20 \mathrm{~Hz}$) in 1 ml PBS. $9 \times 10^{7}-2.5 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$ was recovered after ~ 24 hours and $2.1 \times 10^{8}-4.1 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$ were recovered after ~ 48 hours incubation on the skin explants. The cell suspensions from each tissue explants were re-inoculated into 10 ml fresh BHI supplemented $5 \mathrm{mg} / \mathrm{l}$ erythromycin (to select for transposon mutant and reduce growth of the natural porcine skin microbiota) and incubated overnight at $37^{\circ} \mathrm{C}$ with aeration. From the overnight cultures gDNA was extracted from $\sim 10^{9}$ cells and stored at $20^{\circ} \mathrm{C}$ as output pools.

Ex vivo porcine skin adhesion. S. aureus expresses different surface proteins depending on growth phase (3) and therefore both exponentially and stationary grown cell were used in the skin adhesion assay. The exponentially grown cells were harvested at $\mathrm{OD}_{600} 0.5-0.8$. gDNA was extracted from an exponentially and stationary grown transposon mutant culture $\left(\sim 10^{9}\right.$ cells from each growth phase) and stored at $-20^{\circ} \mathrm{C}$ as input pools. $10 \mu \mathrm{l}$ of up-concentrated exponentially grown and stationary grown cells $\left(\sim 10^{11}\right.$ from each growth phase) were inoculated onto the porcine skin surface and incubated under atmospheric conditions at $32^{\circ} \mathrm{C}$ for ~ 20 hours (four replicates for each growth phase were performed on tissue from Pig_1). After the tissue pieces were inoculated they were placed into a clean and sterile Eppendorf tube with 1 ml PBS and washed once by vigorously vortexing for 5 seconds (to remove
loosely adhered/attached bacterial cells). The washed tissue was transferred to a clean and sterile Eppendorf tube with 1 ml of 0.1 \% Triton-X (to facilitate detachment of adhered bacterial cells) and the skin tissue was homogenized (with a ball bearing and $2 \times 5 \mathrm{~min}, 20$ $\mathrm{Hz}) .3 \times 10^{7}-8 \times 10^{7} \mathrm{CFU} / \mathrm{ml}$ were recovered of the stationary cells and $1.1 \times 10^{7}-1.5 \times 10^{7}$ $\mathrm{CFU} / \mathrm{ml}$ were recovered of the exponential cells. The cell suspensions from each tissue explants were re-inoculated into 10 ml fresh BHI supplemented $5 \mathrm{mg} / \mathrm{l}$ erythromycin (to select for transposon mutant and reduce growth of the natural porcine skin microbiota) and incubated overnight at $37^{\circ} \mathrm{C}$ with aeration. From the overnight cultures gDNA was extracted from $\sim 10^{9}$ cells and stored at $-20^{\circ} \mathrm{C}$ as output pools.

Preparation of nasal epithelial tissue. For isolation of nasal epithelial tissue, the pig head was removed from the carcass and immediately used for isolation of the nasal septum, leaving the lining nasal epithelial tissue intact. The tissue was washed in Dulbecco's Modified Eagle Medium (DMEM - Sigma) supplemented with $2 \mu \mathrm{~g} / \mathrm{ml}$ enrofloxacin, 50 $\mu \mathrm{g} / \mathrm{ml}$ streptomycin, $100 \mathrm{U} / \mathrm{ml}$ penicillin, and $2.5 \mu \mathrm{~g} / \mathrm{ml}$ Fungizone for 15 min . at $37^{\circ} \mathrm{C}$ at 80 rpm followed by a 2 hours wash in DMEM with $2 \mu \mathrm{~g} / \mathrm{ml}$ enrofloxacin at the same incubation conditions. The antibiotic wash was followed by an antibiotic free wash using 500 ml DMEM $2 \times 15 \mathrm{~min}$. plus $4 \times 30 \mathrm{~min}$. in 250 ml DMEM (changing to fresh media 6 times) at $37^{\circ} \mathrm{C}$ at 80 rpm . After washing, the tissue was kept in 50:50 ratio of DMEM and Roswell Park Memorial Institute medium (RPMI) (Sigma) supplemented with $50 \mu \mathrm{M}$ glutamine. The nasal epithelium was dissected from the underlying cartilage of the nasal septum and divided into pieces of approximate $0.5 \times 0.5 \mathrm{~cm}^{2}$, in a sterile environment. Antibiotic residual test was performed on a bacterial lawn of LA-MRSA ST398 S0385. The tissue pieces were placed on filter-paper overlying agar-plugs with the external side facing up-wards. The agar-plugs were
arranged in 6-Well plates (NUNC) with a DMEM reservoir, moistening the filter paper and in that way nourishing the tissue (see Figure 1).

Porcine nasal epithelial survival. Genomic DNA was extracted from a transposon mutant overnight culture ($\sim 10^{9}$ cells) and stored at $-20^{\circ} \mathrm{C}$ as input pool. Five to ten $\mu \mathrm{l}$ of upconcentrated mutants ($\sim 10^{11}$ cells) were inoculated onto the prepared nasal epithelium and incubated at $37^{\circ} \mathrm{C}$ plus $5 \% \mathrm{CO}_{2}$ for ~ 24 hours (duplicates from Pig_1 and Pig_2). After incubation the epithelial tissue was homogenized (with a ball bearing and $2 \times 5 \mathrm{~min}, 20 \mathrm{~Hz}$) in 1 ml PBS. $2.7 \times 10^{8}-4.2 \times 10^{10} \mathrm{CFU} / \mathrm{ml}$ was recovered after ~ 24 hours incubation on the nasal epithelium explants. The cell suspensions were re-inoculated into 10 ml fresh BHI supplemented $5 \mathrm{mg} / \mathrm{l}$ erythromycin and incubated overnight at $37^{\circ} \mathrm{C}$ with aeration. From the overnight cultures gDNA was extracted from $\sim 10^{9}$ cells and stored at $-20^{\circ} \mathrm{C}$ as output pools.

Library preparation for Illumina sequencing. The approach, Transposon directed insertion-site sequencing (TraDIS) described previously (14) was used for identification of genomic transposon insertions sites. The library preparations were performed as described in manuscript I. The libraries were pooled in a 1:1 molar ratio with 7 or 8 samples per flow cell lane. The samples were sequenced on an Illumina Hiseq2000 platform for 43 cycles plus index read using a custom sequencing primer
(5-GACACTATAGAAGAGACCGGGGACTTATCAGC-3) resulting in reads with 10 transposon insert specific nucleotides (Tn sequence) followed by the junction region.

Sequence analysis and statistics. Sequence reads from the Illumina FASTQ files were sorted by index and by using the program Sabre (https://github.com/najoshi/sabre), evaluated for the Tn sequence (CAACCTGTTA) allowing 1 mismatch. The Tn sequence and adapter
sequences were stripped using Cutadapt (15) in addition to short reads (<10 nucleotides) and nucleotides with poor base call quality ($<\mathrm{Q} 15$). The junction regions were extracted and mapped to the reference genome (accession no. AM990992) using Bowtie 2.0 (16).

The number of reads corresponding to each transposon insertion site in the input pools was compared to the number of reads mapping to the equivalent position in the output pools using the DESeq package in $\mathrm{R}(17,18)$. The read counts corresponding to transposon insertion sites were normalized to account for variation in the total number of reads obtained from each samples. The ratio of input:output reads counts were determined and referred to as a $\log _{2}$ fold change, which will be referred to as a fitness score. A negative fitness score reflected an attenuated mutant. An attenuated mutant was determined when the number of read counts from input pool to output pool decreased and thereby illustrated a decrease in mutant clones after selection. For strongly attenuated mutants zero clones will be present in the output pools and the $\log _{2}$ fold change was defined as minus infinity and a fitness-score of -12 was assigned to such mutants. Like done by Chaudhuri et al. (2013) for each individual mutant, the hypothesis that the fitness score was equal to zero and thereby that the mutant was present at equivalent levels in the input and output pools was tested for using a negative binomial distribution as implemented in DESeq (19). DESeq models variance under the assumption that the mutants with comparable levels of sequence coverage exhibit similar levels of dispersion. The model was fitted only from those mutants from which replicate data was available which was in this case primarily sequence read counts from output pools, as no biological replicates were available from input pools. The resultant model was then applied to data derived from all mutants to estimate P values.

Results

Porcine skin adhesion and survival. An ex vivo porcine skin model was generated using freshly isolated porcine skin from the rear of the ears of two different pigs. The skin surface was washed and disinfected before inoculation to remove dirt and the surface associated natural microbiota. Skin swabs were taken to test the sterilization approach and all the tissue samples tested negative for surface contamination. The transposon mutant library was screened in the porcine skin model and the skin samples were incubated for approximately 20 (adhesion assay), 24 (survival assay) or 48 (survival assay) hours. DNA was isolated from the transposon mutant library input sample and from output samples. The mutant compositions in the input and output pools were quantified and compared based on number of sequence reads mapping to open reading frames encoded in the reference genome.

When the transposon mutant library was selected on porcine skin explants a decrease in cell counts (from $\sim 10^{11}$ to an average of $\sim 10^{8} \mathrm{CFU} / \mathrm{ml}$) were observed suggesting an initial selection on the mutant pool. In the skin survival assay a slight increase in cell counts were observed between 24 and 48 hours incubation (from an average of $\sim 2 \times 10^{8}$ to $\sim 3 \times 10^{8}$ $\mathrm{CFU} / \mathrm{ml}$) which propose that the mutants that are present on the skin explants are viable. A decrease in cell counts was observed between the stationary cells recovered in the adhesion assay (an average of $\sim 5.4 \times 10^{7} \mathrm{CFU} / \mathrm{ml}$) compared to the cells recovered in the survival assay after 24 hours incubation (an average of $\sim 2 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$). This indicates that some mutants were lost in the washing step preformed in the adhesion assay. A lower number of mutants were recovered after porcine skin adhesion with exponential cells compared to stationary cells (an average of $\sim 1.3 \times 10^{7}$ and $\sim 5.4 \times 10^{7} \mathrm{CFU} / \mathrm{ml}$ respectively), which could point to that the stationary grown mutants adhere better to the porcine skin explants.

In the porcine skin survival assay 27 genes were identified to be associated with alteration in fitness and therefore defined as important for LA-MRSA ST398 isolate S0385 survival on
porcine skin. The genes represent mutants that had a significant (P level ≤ 0.01) change in fitness when screened on skin explants isolated from both pigs (two replicates from Pig_1 and Pig_2). The genes are listed in Table S2 in supplementary materials. Twenty-two mutants were identified as attenuated whereas five mutants were hypercompetitive within the specific environment. Fourteen of the attenuated mutants also showed a reduction in fitness when grown under laboratory conditions (genes important for LA-MRSA ST398 isolate S0385 survival under laboratory conditions can be found in manuscript I supplementary Table S1 and S2).

The transposon mutant library was also screened in a porcine skin adhesion assay to identify genes that were important for skin surface attachment. The mutant pool was screened both in the stationary and exponential growth phase as it is known that S. aureus displays a different set of surface proteins in the different growth phases. As only the genes specifically important for skin attachment were of interest, genes identified as important for survival under laboratory conditions (data not shown) and survival in porcine skin assay were removed. Only the genes representing mutants with a significant (P level ≤ 0.05) reduction in fitness were selected. Sixty-eight genes were identified as representing mutants with reduced fitness when the transposon mutant library was selected in the adhesion assay as stationary grown cells (see Table S2). These genes correspond to genes encoding adhesion factors displayed by S. aureus when grown to a stationary phase and screened in the porcine skin adhesion model in the study. Twenty-nine genes representing mutants with attenuated fitness were identified based on the same criteria as stated above and when screening the transposon mutant library as exponentially grown culture in the adhesion assay (see Table S3).

When comparing the list of genes obtained in the porcine skin survival and adhesion assay screened with stationary grown cells, eight genes were evaluated as important for both
adhesion and survival in the skin model and of these six genes represent attenuated mutants and two genes hypercompetitive mutants (see Table 1). Eight genes were identified as important for adhesion in the exponential growth phase and survival in the porcine skin model, two of which showed hypercompetitive mutants with increased fitness in both assays and six attenuated mutants with reduced fitness in both assays (see Table 2). Three genes showed inconsistency within the two assays. However the genes were only identified with fitness changes in skin survival assay for Pig_1 after 1 day of incubation.

Porcine nasal epithelial survival. Another ex vivo model based on porcine nasal epithelial tissue was generated to screen for S. aureus genes important for nasal survival. The tissue was collected from two different pigs and was washed extensively with antibiotics to remove the natural bacterial microbiota. The absence of residual antibiotics in the tissue was confirmed. The transposon mutant library was screened on the porcine nasal explants for 1 day and DNA was isolated from input and output samples. The mutant composition in the input and output pools were quantified and compared.

When the transposon mutant library was selected on porcine nasal epithelium explants a decrease in cell counts (from $\sim 10^{11}$ to an average of $\sim 10^{9} \mathrm{CFU} / \mathrm{ml}$) were observed like in the porcine skin model, suggesting an initial selection on the mutants.

Four genes with specific importance for nasal epithelium survival were found in this study, two of which showed decrease in fitness and two with increased fitness. Table 3 shows the genes that were identified with a significant change in fitness score (P level ≤ 0.05) on both pigs.

Discussion

The purpose of this study was to identify genetic factors that are important for LA-MRSA ST398 survival in the pig reservoir. S. aureus porcine colonization studies have been performed previously using different wild type S. aureus strains or mutants that were generated based on already know colonization factors (1, 6-8). These types of studies will however not be able to identify unknown colonization factors utilized by S. aureus and will not give an estimate of the relative importance of the different genes. In this study, a genomewide screening of a previously generated transposon mutant library in the LA-MRSA ST398 S0398 isolate, was performed in an ex vivo porcine skin and nasal epithelial model. The models were based on freshly isolated porcine tissue to mimic an in vivo environment where host factors play important parts for bacterial attachment and persistence (3). Such models can be studied under controlled conditions and requires fewer pigs to be sacrificed compared to in vivo studies. The combination of ex vivo models and high complexity transposon mutant libraries constitutes strong screening tools for identification of unknown genetic factors important for bacterial survival in various environments.

Some consistency was found between the genes identified as important for porcine nasal epithelial survival when comparing the results obtained from the two pigs. It is know that many host factors are involved in S. aureus colonization because only around $20-40 \%$ of the human population are persistent carries of S. aureus (3,20). The differences seen between the two pigs used in this study could be related to genetic variation, immune status of the host, gender or simple differences between pig replicates when using this model system. To get more conclusive data the screen should have been repeated on more explants isolated from other pigs but this was unfortunately not possible in this study. However, as the genes presented here only illustrate genes which were identified as important for survival on several replicate explants isolated from both pigs, they should be considered as genes relevant for
survival in the porcine reservoir. They constitute good gene candidates for generation of single knockout mutants which should be tested within the same assays for a complete definition of gene essentiality.

Genes identified with a significant change in fitness when screened in porcine skin survival model on tissue samples from both pigs are illustrated in Table S1. Some of the genes identified as important for skin survival were also identified as important for survival under laboratory conditions. Eight genes representing mutant with a reduced fitness score were defined as important for porcine skin survival only and they are described as hypothetical proteins, regulators and transporters mainly. The S0385 strain contains 3 circular plasmids (21) and after two days incubation on the porcine skin explants, mutants with transposon insert into the replication protein Rep located in plasmid 3 (PSAPIG030001) showed a drop in fitness. The plasmid is annotated to encode two different genes, the replication protein and a transcriptional regulator (SAPIG030002), one of which might be important for porcine skin survival. In addition five genes representing hypercompetitive mutants were defined as important for porcine skin survival only. Two of which encode a reductase, one phage integrase and two repressors. These functions might not be important in porcine skin survival ex vivo but could be essential in other more natural environments were competition and selection, are important factors for bacterial survival.

The adhesion assays identified a large number of attenuated mutants which are presented in supplementary Table S2 and Table S3. Overall only smaller changes in fitness score were identified in the adhesion assays which could be due to low selection pressure in these specific models. The washing to remove non-adherent or loosely attached cells was only performed once and repetition of this step could increase the selective pressure. Generally
various enzymatic encoding genes and genes encoding secreted protein and surface proteins represented the mutants with the most profound loss in fitness in the skin adhesion assays. Clumping factor $\mathrm{B}(\mathrm{ClfB})$ and another fibrinogen-binding protein (SAPIG1154) were evaluated as important for skin adhesion when screening stationary grown cells. ClfB has previous been evaluated to be involved in human nasal adhesion and carriage (6). ClfB is predominantly expressed in the exponential growth phase and clumping factor A (ClfA) is mainly expressed on the surface of cells from the stationary growth phase (3). In this study $c l f B$ mutants are identified with attenuated fitness when screening stationary grown cells for skin adhesion in vitro and clfA (SAPIG0866) was not identified with attenuated fitness. The cells were incubated for ~ 24 hours on the skin surface before washing. During incubation, the mutants could have continued to grow at an unknown rate, resulting in a switch from stationary to exponential growth at some point.

Immunoglobulin G binding protein A and staphylococcal secretory antigen ssA1 and ssA2 were identified as important for skin adhesion. In addition cap5A and cap5D (both involved in capsular polysaccharide biosynthesis) mutants were identified with attenuated fitness in the skin adhesion assay using exponentially grown cells. Protein A and capsular polysaccharide inhibit phagocytosis (3) and the staphylococcal secretory antigens have predicted immunogenic function. This indicates that immune evasion and modulation are important features for the initial S. aureus ST398 colonization of porcine skin.

Genes with either a fitness reduction or increase (negative or positive fitness score) in both the porcine skin adhesion and survival models are defined as the genes of interest (see Table 1 and 2). The genes were selected if they showed a significant reduction or increase in read counts at the P level ≤ 0.01 in both the adhesion and the survival assay after 1 or 2 days of infection. Table 3 shows an overview and descriptions of the genes evaluated as important for
porcine skin adhesion and survival. SAPIG0737 and SAPIG0740, encoding a DNA-binding response regulator and an ABC transporter respectively, represent mutants with significant attenuated fitness in the adhesion assay, using either stationary or exponentially grown cells, and the skin survival assay after 1 and 2 days of infection. In addition SAPIG0739, encoding the export ATP-binding protein BceA known to be involved in S. aureus infection, showed a reduced fitness in the adhesion assay screened with a stationary culture and in the skin survival assay. These three proteins are encoded just next to each other in the S 0385 genome with just one gene, SAPIG0738, in between them. BceA (SAPIG0739) and BceB (SAPIG0740) make up an ABC transporter whereas the BceR (SAPIG0737) and BceS (SAPIG0738) are the regulatory and sensing part located just upstream of the transporter genes (22). BceAB transporter shows similarity with Bacillus subtilis ABC transporter with the same annotation and was previously defined as responsible for bacitracin efflux in Bacillus (23). Bacitracin is a polypeptide antibiotic produced by B. subtilis and B. licheniformis $(24,25)$ and these polypeptides disrupt cell wall and peptidoglycan synthesis in Gram positive and Negative bacteria. It has been shown previously that mutation in bceRS and $b c e \mathrm{AB}$ reduced the resistance to bacitracin and in addition inactivation of $b c e \mathrm{AB}$ reduced oxacillin resistance slightly, indicating that the ABC transporter might be involved in cell wall biosynthesis (22). As bceS (SAPIG0738) mutants were not identified as relevant for porcine skin adhesion and survival and as the model environment was supposedly bacitracin free, this ABC transporter system may have other functions relating to the survival on porcine skin. In general ABC transporters constitute a large family of membrane transporters contributing to import and export of various substances such as proteins, peptides, polysaccharides and antibiotics (26). Therefore the specific bceAB transporter system identified here as important for porcine skin survival could have several functions relevant for bacterial survival. Another gene that showed importance for adhesion and survival on
porcine skin, though only evaluated as important for survival on one of the pigs, was EsaB, which is a negative regulator of EsaC. EsaC production and secretion is increased when Staphylococci replicate in serum or infected hosts (27). EsaB and EsaC are defined as being involved in S. aureus virulence and are required for persistent infection, EsaB mutants fail to repress EsaC and bacteria lacking EsaB function will overproduce EsaC. The over-expression of EsaC is also the natural response when S. aureus is replicating in host tissue. Animals and humans mount however an immune response to EsaC during infection (27), which could explain why a constitutive over-expression of EsaC, in the EsaB mutants, might not be in the favour of the pathogen in the long run. Enzymes involved in membrane lipid metabolism and galactose metabolism were also identified as important for porcine skin adhesion and survival. Tn916 integrase mutants were evaluated to be hypercompetitive in the porcine skin screening assays. Tn916 encodes tetracycline resistance which most likely is responsible for selection of ST398 in the pig reservoir as tetracycline often is used for therapeutic treatment in pigs. The Tn916 integrase is part of the conjugation transfer system of the transposon (21). The mobility of the Tn916 is disrupted in the integrase mutant, which might give the mutant a competitive advantage under the experimental conditions applied.

A previous study using porcine nasal explants identified beta-toxin gene hlb as a S. aureus S0385 nasal colonization factor, based on CFU quantifications of S0385 wild type and S0385 beta haemolysin mutant (1). SAPIG2471 encoding beta haemolysin was not among the genes identified as most significant for nasal epithelium survival in this study. When inspecting the raw count data a decrease in read count from input to output for the beta haemolysin genes was indentified in three of the four replicates (data not shown), but this reduction was not defined as significant using the DESeq package in R. To verify the significance of the gene in nasal survival more tissue replicates should have been included in the analysis. Only four genes with specific importance for nasal epithelium survival were found in this study, two of
which showed decrease in fitness and two with increased fitness. SAPIG1248 encoding an aminoacyltransferase FemA, which is essential for expression of $m e c \mathrm{~A}$, was identified with reduced fitness in the nasal survival model. S0385 genome is annotated with four different aminoacyltransferase FemA encoding genes, one of which (SAPIG1375) was identified by us previous as essential for growth under laboratory conditions (manuscript 1). This essential femA gene is 1263 nucleotides whereas the femA gene found as important for nasal survival in this study is only 486 and they show 88% identity. FemA is involved in methicillin resistance and $f e m \mathrm{~A}$ mutants have shown a reduced glycine content in the peptidoglycan layer, a reduced cell wall turnover in growing cells, reduced whole-cell autolysis under nongrowing conditions and increased methicillin sensitivity (28). The alteration in the cell wall could reduce bacterial resistance to the host immune response. Two genes representing hypercompetitive mutants when screened in the nasal survival model, encode a cell wall anchor domain and a transpeptidase which anchors surface proteins to the cell wall. The S. aureus sortase attaches surface proteins to the cell wall and the lpxtg-mediated anchoring domain also mediates attachment of proteins to the cell wall. These could be important for bacterial adhesion, but also facilitate a immune recognition site and as the nasal tissues were not washed post infection, genes important for adhesion to these tissue samples were not tested in this study.

Conclusion

Comparative genomic studies have identified a few phage associated genes that appears to be correlated with virulence in humans, but have not been able to identify genes of importance for successful colonization or infection in livestock or other animals (8). The pig reservoir is important for the spread of ST398 and the identification of genes important for survival of

ST398 in pigs could contribute to a better understanding of transmission and adaptation. In this study we screened a previously generated genome saturated LA-MRSA ST398 transposon mutant library, in ex vivo porcine skin and nasal epithelium survival and adhesion assays. Seventeen genes were identified as important for porcine skin adhesion and survival. Ten genes represent attenuated mutants with reduced fitness. They primarily encode transporters and enzymes involved in metabolic pathways. In addition four hypercompetitive mutants with increased fitness were identified and they encode DNA binding proteins involved in regulation. Sixteen genes were identified as important for nasal epithelial survival, encoding proteins involved in regulation, metabolic enzymes, cell wall components and hypothetical proteins. The genes identified in this study could constitute targets for MRSA decolonization in pigs and thereby prevent further spread and the potential adaption within the ST398 lineage which takes place in the pig reservoir. However the genes need further investigation to understand the specific function in porcine survival.

Acknowledgements

The work funded in part by the Danish Ministry of Food, Agriculture and Fisheries (Grant no.: 3304-FVFP-09-F-002-1). We thank the staff at the Sequencing Centre at Copenhagen University, DK for generating the sequences and DTU Multi-Assay Core (DMAC) for assistance with the sequence library preparations.

1. Tulinski P, Fluit AC, van Putten JPM, de Bruin A, Glorieux S, Wagenaar J a, Duim B. 2013. An ex vivo porcine nasal mucosa explants model to study MRSA colonization. PloS one 8:e53783.
2. Fluit a C. 2012. Livestock-associated Staphylococcus aureus. Clinical Microbiology and Infection 18:735-44.
3. Foster TJ. 2009. Colonization and infection of the human host by staphylococci: adhesion, survival and immune evasion. Veterinary dermatology 20:456-70.
4. Hasman H, Moodley a, Guardabassi L, Stegger M, Skov RL, Aarestrup FM. 2010. Spa type distribution in Staphylococcus aureus originating from pigs, cattle and poultry. Veterinary microbiology 141:326-31.
5. Price L, Stegger M, Hasman H, Aziz M. 2012. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. MBio 3:e00305-11.
6. Corrigan RM, Miajlovic H, Foster TJ. 2009. Surface proteins that promote adherence of Staphylococcus aureus to human desquamated nasal epithelial cells. BMC microbiology 9:22.
7. Moodley A, Espinosa-Gongora C. 2012. Comparative host specificity of human-and pig-associated Staphylococcus aureus clonal lineages. PloS one 7:1-7.
8. Uhlemann A, Porcella S, Trivedi S. 2012. Identification of a highly transmissible animal-independent Staphylococcus aureus ST398 clone with distinct genomic and cell adhesion properties. MBio 3:e00027-12.
9. Clarke SR, Wiltshire MD, Foster SJ. 2004. IsdA of Staphylococcus aureus is a broad spectrum, iron-regulated adhesin. Molecular microbiology 51:1509-19.
10. Schaffer AC, Solinga RM, Cocchiaro J, Portoles M, Kiser KB, Risley A, Randall SM, Valtulina V, Speziale P, Walsh E, Foster T, Lee JC. 2006. Immunization with Staphylococcus aureus clumping factor B, a major determinant in nasal carriage, reduces nasal colonization in a murine model. Infection and immunity 74:2145-53.
11. Wertheim HFL, Walsh E, Choudhurry R, Melles DC, Boelens HAM, Miajlovic H, Verbrugh HA, Foster T, van Belkum A. 2008. Key role for clumping factor B in Staphylococcus aureus nasal colonization of humans. PLoS medicine 5:e17.
12. Moodley A, Espinosa-Gongora C, Nielsen SS, McCarthy AJ, Lindsay J a, Guardabassi L. 2012. Comparative host specificity of human- and pig- associated Staphylococcus aureus clonal lineages. PloS one 7:e49344.
13. Maisch T, Bosl C, Szeimies R-M, Love B, Abels C. 2007. Determination of the antibacterial efficacy of a new porphyrin-based photosensitizer against MRSA ex vivo. Photochemical \& photobiological sciences: Official journal of the European Photochemistry Association and the European Society for Photobiology 6:545-51.
14. Langridge GC, Phan M, Turner DJ, Perkins TT, Parts L, Haase J, Charles I, Maskell DJ, Peters SE, Dougan G, Wain J, Parkhill J, Turner AK. 2009.
Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome research 2308-2316.
15. Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. journal 17:10-12.
16. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature methods 9:357-9.
17. Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome biology 11:R106.
18. Anders S, Huber W. 2012. Differential expression of RNA-Seq data at the gene level - the DESeq package. U.S. Patent DESeq version 1.13.0European Molecular Biology Laboratory (EMBL), Heidelberg, Germany. European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
19. Chaudhuri RR, Morgan E, Peters SE, Pleasance SJ, Hudson DL, Davies HM, Wang J, van Diemen PM, Buckley AM, Bowen AJ, Pullinger GD, Turner DJ, Langridge GC, Turner a. K, Parkhill J, Charles IG, Maskell DJ, Stevens MP. 2013. Comprehensive Assignment of Roles for Salmonella Typhimurium Genes in Intestinal Colonization of Food-Producing Animals. PLoS Genetics 9:e1003456.
20. Williams R. 1963. Healthy carriage of Staphylococcus aureus: its prevalence and importance. Bacteriological Reviews 27:56-71.
21. Schijffelen MJ, Boel CHE, van Strijp JAG, Fluit AC. 2010. Whole genome analysis of a livestock-associated methicillin-resistant Staphylococcus aureus ST398 isolate from a case of human endocarditis. BMC genomics 11:376.
22. Yoshida Y, Matsuo M, Oogai Y, Kato F, Nakamura N, Sugai M, Komatsuzawa H. 2011. Bacitracin sensing and resistance in Staphylococcus aureus. FEMS microbiology letters 320:33-9.
23. Ohki R, Tateno K, Masuyama W, Moriya S, Kobayashi K, Ogasawara N. 2003. The BceRS two-component regulatory system induces expression of the bacitracin transporter, BceAB, in Bacillus subtilis. Molecular Microbiology 49:1135-1144.
24. Azevedo E, Rios E, Fukushima K, GM C-T. 1993. Bacitracin production by a new strain of Bacillus subtilis. Applied biochemistry and biotechnology 42.
25. Johnson B, Anker H, Meleney F. 1945. Bacitracin: A new antibiotic produced by a member of the B. subilis group. Science 102:376-377.
26. Higgins CF. 1992. ABC transporters: from microorganisms to man. Annual review of cell biology 8:67-113.
27. Burts M, DeDent A, Missiakas D. 2008. EsaC substrate for the ESAT-6 secretion pathway and its role in persistent infections of Staphylococcus aureus. Molecular microbiology 69:736-46.
28. Maidhof H, Reinicke B, Blümel P, Berger-Bächi B, Labischinski H. 1991. femA, which encodes a factor essential for expression of methicillin resistance, affects glycine content of peptidoglycan in methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains. Journal of bacteriology 173:3507-13.

Figures and Tables
Figure 1. Illustration of the porcine ex vivo nasal epithelial and skin models.

The figure shows photos and schematic presentations of the porcine ex vivo nasal epithelial model and the porcine ex vivo skin model.

Table 1. Genes important for porcine skin adhesion (stationary cells) and survival.

Gene ID	Pig_1 Adhesion (stationary cells)	Pig_1 Survival	Pig_2 Survival	Fitness Score	P value
SAPIG0287	Yes	Day 1+2	Day 2	$\begin{array}{r} -3.8 \text { to }-12 \\ (4 / 5) \end{array}$	0.001 to <0.0001
SAPIG0300	Yes	Day 1	-	$\begin{array}{r} -4.3 \text { to }-5.3 \\ (2 / 5) \end{array}$	<0.0001
SAPIG0737	Yes	Day 1+2	Day 1	$\begin{array}{r} -2.7 \text { to }-3.7 \\ (4 / 5) \end{array}$	0.009 to <0.0001
SAPIG0739	Yes	Day 1	Day 1	$\begin{array}{r} -2.5 \text { to }-2.9 \\ (3 / 5) \end{array}$	$\begin{array}{r} 0.0009 \text { to } \\ <0.0001 \end{array}$
SAPIG0740	Yes	Day 1+2	Day 1	$\begin{array}{r} -1.8 \text { to }-2.7 \\ (4 / 5) \end{array}$	0.001 to < 0.0001
SAPIG1303	Yes	Day 1+2	Day 1	$\begin{array}{r} -1.7 \text { to }-3.1 \\ (4 / 5) \end{array}$	0.007 to <0.0001
SAPIG1425	Yes	Day 1+2	Day 1	2.0 to $3.2(4 / 5)$	0.005 to 0.0001
SAPIG2410	Yes	Day 1	Day 1	2.6 to 3.5 (3/5)	0.002 to <0.0001

The table shows the genes which represent mutants with altered fitness after selection on porcine skin explants. Only mutant found with altered fitness in both the adhesion assay using stationary grown cells and the survival assay (survival after day 1 and/or day 2) are represented. A negative fitness score correspond to mutants with attenuated fitness and a positive fitness score correspond to mutants with increase fitness. All together 5 assays were conducted with 2-4 biological replicates in each assay. The genes selected showed a significant change in mutant clones from input to output at P level ≤ 0.01.

Table 2. Genes important for porcine skin adhesion (exponential cells) and survival.

Gene ID	Pig_1 Adhesion (exponential cells)	Pig_1 Survival	Pig_2 Survival	Fitness Score	P value
SAPIG0737	Yes	Day 1+2	Day 1	$\begin{array}{r} \hline-2.5 \text { to }-4.6 \\ (4 / 5) \end{array}$	$\begin{array}{r} 0.009 \text { to }<~ \\ 0.0001 \end{array}$
SAPIG0740	Yes	Day 1+2	Day 1	$\begin{array}{r} -1.8 \text { to }-2.5 \\ (4 / 5) \end{array}$	$\begin{array}{r} 0.004 \text { to < } \\ 0.0001 \end{array}$
SAPIG0837	Yes	-	Day 1	$\begin{array}{r} -2.7 \text { to }-3.3 \\ (2 / 5) \end{array}$	$\begin{array}{r} 0.0003 \text { to } \\ 0.0007 \end{array}$
SAPIG1193	Yes	Day 1+2	-	$\begin{array}{r} -1.7 \text { to }-2.6 \\ (3 / 5) \end{array}$	$\begin{array}{r} 0.0003 \text { to } \\ 0.0002 \end{array}$
SAPIG1300	Yes	Day 1+2	Day 1	$\begin{array}{r} -2.0 \text { to }-3.3 \\ (4 / 5) \end{array}$	$\begin{array}{r} 0.01 \text { to > } \\ 0.0001 \end{array}$
SAPIG1964	Yes	Day 1+2	-	$\begin{array}{r} -2.2 \text { to }-2.9 \\ (3 / 5) \end{array}$	$\begin{array}{r} 0.009 \text { to }<~ \\ 0.0001 \end{array}$
SAPIG1825	Yes	Day 1	-	$\begin{array}{r} -1.6 \text { to } 1.4 \\ (2 / 5) \end{array}$	0.003 to 0.0006
SAPIG0721	Yes	Day 1	-	-1.4 to 2.3	0.004 to 0.0008

		$(2 / 5)$			
	Yes		-2.3 to 3.3		0.002 to 0.0004
SAPIG1418		Day 1	-	$(2 / 5)$	
SAPIG0953	Yes	-	Day 1	2.1 to $3.2(2 / 5)$	0.008 to 0.0006
SAPIG1586	Yes	Day 1	Day 1	1.7 to $3.4(3 / 5)$	0.006 to 0.003

The table shows the genes which represent mutants with altered fitness after selection on porcine skin explants. Only mutant found with altered fitness in both the adhesion assay using exponentially grown cells and the survival assay (survival after day 1 and/or day 2) are represented. A negative fitness score correspond to mutants with attenuated fitness and a positive fitness score correspond to mutants with increase fitness. All together 5 assays were conducted with 2-4 biological replicates in each assay. The genes selected showed a significant change in mutant clones from input to output at P level ≤ 0.01.

Table 3. Description of the genes identified as important for porcine skin adhesion and survival.

Gene ID	Relative fitness	Description	KEGG
		Attachment (stationary cells) and Survival	
SAPIG0287	Attenuated	Hypothetical protein	-
SAPIG0300	Attenuated	Protein EsaB	Virulence protein/Secretion system
SAPIG0737	Attenuated	DNA-binding response regulator	Bacitracin transport
SAPIG0739	Attenuated	Bacitracin export ATP-binding protein BceA	Bacitracin transport/S. aureus infection
SAPIG0740	Attenuated	ABC transporter, permease protein	S. aureus infection

The genes found to represent mutants with altered fitness when screened in the porcine skin survival and adhesion assay are shown in Table 2. Gene ID corresponding to the NCBI gene database, relative fitness, gene description, and KEGG are illustrated. The genes marked in
purple were identified with attenuated fitness in the adhesion assay regardless of growth phase.

Table 4. Porcine nasal epithelium survival.

Gene ID	Nasal	BHI	Skin	Fitness Score	P value	Description
SAPIG2163	Yes	Yes	Yes	-5.7 and -12	0.005 to < 0.0001	Transcription termination factor Rho
SAPIG0562	Yes	Yes	Yes	-3.0 and -5.2	0.04 to 0.005	Pur operon repressor
SAPIG2016	Yes	Yes	Yes	-3.8 and -4.9	0.03 to 0.01	YkgB
SAPIG1363	Yes	Yes	Yes	-3.2 and -4.7	0.02 to 0.01	Regulatory protein MsrR
SAPIG1248	Yes	No	No	-3.7 and 4.2	0.04 to 0.02	Aminoacyltransferase FemA (Factor essential for expression of methicillin resistance A)
SAPIG2147	Yes	Yes	Yes	-4.0 and -12	0.02 to 0.0006	ATP synthase F1, alpha subunit
SAPIG2568	Yes	No	Yes	-3.2 and -3.9	0.05 to 0.0002	Fructose-1,6-bisphosphatase
SAPIG1302	Yes	Yes	Yes	-3.9 and -4.5	0.04 to 0.004	Glycerol kinase
SAPIG1833	Yes	Yes	Yes	-3.9 and -4.9	0.003 to 0.002	Hypothetical protein
SAPIG0738	Yes	Yes	Yes	-2.6 and -3.8	0.007 to 0.0001	Sensor protein BceS
SAPIG2002	Yes	Yes	No	-3.5 and -7.8	0.04 to 0.03	Adenylosuccinate lyase
SAPIG0814	Yes	Yes	No	-3.3 and -6.2	0.02 to 0.0003	UDP-Nacetylenolpyruvoylglucosamine reductase
SAPIG0287	Yes	No	No	-2.9 and -5.8	0.02	Hypothetical protein
SAPIG0786	Yes	Yes	Yes	-2.3 and -2.6	0.04 to 0.02	Hypothetical protein
SAPIG1809	Yes	No	No	2.5 and 3.2	0.04 to 0.02	lpxtg-motif cell wall anchor domain
SAPIG2578	Yes	No	No	4.4 and 6.4	0.03 to 0.0003	Sortases are cysteine transpeptidases, found in grampositive bacteria, that anchor surface proteins to peptidoglycans of the bacterial cell wall envelope

Table 4 illustrates the genes representing mutants identified with significant altered fitness in the nasal epithelial survival assay (P level ≤ 0.05). Information about whether these genes were essential/beneficial for growth under laboratory conditions (manuscript I Table S1 and S2) and for porcine skin survival was included in the table (P level ≤ 0.05).

Supplementary materials

Table S1. Porcine skin survival.

Gene ID	BHI	Pig_1	Pig_2	Fitness Score	P value	Description
PSAPIG030001	No	$\begin{aligned} & \text { Day } \\ & 2 \end{aligned}$	$\begin{aligned} & \text { Day } \\ & 2 \end{aligned}$	$\begin{array}{r} \hline-3.5 \text { to }- \\ 4.2 \\ (2 / 4) \end{array}$	<0.0001	replication protein Rep
SAPIG0004	Yes	$\begin{aligned} & \text { Day } \\ & 2 \end{aligned}$	Day 2	$\begin{array}{r} -2.5 \text { to }- \\ 3.6 \\ (2 / 4) \end{array}$	<0.0001	DNA replication and repair protein RecF
SAPIG0287	No	$\begin{aligned} & \text { Day } \\ & 1+2 \end{aligned}$	$\begin{aligned} & \text { Day } \\ & 2 \end{aligned}$	$\begin{aligned} & -3.8 \text { to }- \\ & 12(3 / 4) \end{aligned}$	$\begin{aligned} & 0.001 \text { to } \\ & <0.0001 \end{aligned}$	hypothetical protein
SAPIG0737	No	$\begin{aligned} & \text { Day } \\ & 1+2 \end{aligned}$	$\begin{aligned} & \text { Day } \\ & 1 \end{aligned}$	$\begin{array}{r} -2.5 \text { to } \\ 3.7 \\ (3 / 4) \end{array}$	0.01 to <0.0001	DNA-binding response regulator
SAPIG0738	Yes	$\begin{aligned} & \text { Day } \\ & 1+2 \end{aligned}$	Day 1	$\begin{array}{r} -2.0 \text { to }- \\ 3.6 \\ (3 / 4) \end{array}$	$\begin{aligned} & 0.005 \text { to } \\ & <0.0001 \end{aligned}$	sensor protein BceS
SAPIG0739	No	$\begin{aligned} & \text { Day } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Day } \\ & 1 \end{aligned}$	$\begin{array}{r} -2.9 \\ (2 / 4) \end{array}$	$\begin{aligned} & 0.001 \text { to } \\ & <0.0001 \end{aligned}$	bacitracin export ATP-binding protein BceA
SAPIG0740	No	$\begin{aligned} & \text { Day } \\ & 1+2 \end{aligned}$	Day 1	$\begin{array}{r} -1.6 \text { to - } \\ 2.8 \\ (3 / 4) \end{array}$	$\begin{aligned} & 0.001 \text { to } \\ & >0.0001 \end{aligned}$	$A B C$ transporter, permease protein
SAPIG0786	Yes	$\begin{aligned} & \text { Day } \\ & 1+2 \end{aligned}$	$\begin{aligned} & \text { Day } \\ & 1 \end{aligned}$	$\begin{array}{r} -2.2 \text { to }- \\ 4.5 \\ (3 / 4) \end{array}$	$\begin{aligned} & 0.001 \text { to } \\ & <0.0001 \end{aligned}$	hypothetical protein
SAPIG0814	Yes	$\begin{aligned} & \text { Day } \\ & 1+2 \end{aligned}$	$\begin{aligned} & \text { Day } \\ & 2 \end{aligned}$	$\begin{array}{r} -3.2 \text { to }- \\ 5.1 \\ (3 / 4) \end{array}$	$\begin{aligned} & 0.002 \text { to } \\ & <0.0001 \end{aligned}$	UDP-Nacetylenolpyruvoylglucosamine reductase
SAPIG1198	Yes	$\begin{aligned} & \text { Day } \\ & 1 \end{aligned}$	Day 1	$\begin{array}{r} -4.5 \text { to }- \\ 4.6 \\ (2 / 4) \end{array}$	$\begin{array}{r} 0.0004 \text { to } \\ <0.0001 \end{array}$	dihydroorotase (DHOase)
SAPIG1300	No	$\begin{aligned} & \text { Day } \\ & 1+2 \end{aligned}$	$\begin{aligned} & \text { Day } \\ & 1 \end{aligned}$	$\begin{array}{r} -2.4 \text { to }- \\ 3.3 \\ (3 / 4) \end{array}$	$\begin{aligned} & 0.002 \text { to } \\ & <0.0001 \end{aligned}$	glycerol uptake operon antiterminator regulatory protein
SAPIG1302	Yes	$\begin{aligned} & \text { Day } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Day } \\ & 1+2 \end{aligned}$	$\begin{array}{r} -2.4 \text { to }- \\ 5.3 \\ (3 / 4) \end{array}$	0.005 to 0.004	glycerol kinase
SAPIG1303	No	$\begin{aligned} & \text { Day } \\ & 1+2 \end{aligned}$	Day 1	$\begin{array}{r} -1.7 \text { to }- \\ 3.1 \\ (3 / 4) \end{array}$	$\begin{aligned} & 0.007 \text { to } \\ & <0.0001 \end{aligned}$	aerobic glycerol-3-phosphate dehydrogenase
SAPIG1309	Yes	$\begin{aligned} & \text { Day } \\ & 1+2 \end{aligned}$	Day 2	$\begin{array}{r} -1.8 \text { to }- \\ 4.0 \\ (3 / 4) \end{array}$	0.007 to 0.0004	aluminium resistance protein
SAPIG1464	No	$\begin{aligned} & \text { Day } \\ & 1+2 \end{aligned}$	$\begin{aligned} & \text { Day } \\ & 2 \end{aligned}$	$\begin{array}{r} -3.0 \text { to }- \\ 5.0 \\ (3 / 4) \end{array}$	0.02 to <0.0001	3-phosphoshikimate 1carboxyvinyltransferase
SAPIG1756	Yes	Day	Day	-4.1 to -	0.0003 to	DNA polymerase III subunit

		1	2	7.3	<0.0001 alpha	
				(2/4)		
SAPIG1788	Yes	Day 2	Day 1	-5.3 to 5.5 (2/4)	<0.0001	catabolite control protein A
SAPIG1833	Yes	Day 1	Day 1	-2.3 to 4.7 (2/4)	$\begin{array}{r} 0.0004 \text { to } \\ <0.0001 \end{array}$	hypothetical protein
SAPIG2016	Yes	$\begin{aligned} & \text { Day } \\ & 1+2 \end{aligned}$	$\begin{aligned} & \text { Day } \\ & 1+2 \end{aligned}$	$\begin{array}{r} -5.2 \text { to }- \\ 7.9 \\ (4 / 4) \end{array}$	$\begin{aligned} & 0.005 \text { to } \\ & <0.0001 \end{aligned}$	YkgB
SAPIG2090	Yes	Day 2	Day 1	$\begin{array}{r} -1.2 \text { to }- \\ 4.5 \\ (2 / 4) \end{array}$	0.005 to 0.002	peptidase M22, glycoprotease
SAPIG2147	Yes	$\begin{aligned} & \text { Day } \\ & 1+2 \end{aligned}$	$\begin{aligned} & \text { Day } \\ & 1+2 \end{aligned}$	$\begin{array}{r} -4.2 \text { to }- \\ 6.6 \\ (4 / 4) \end{array}$	$\begin{array}{r} 0.0002 \text { to } \\ <0.0001 \end{array}$	ATP synthase F1, alpha subunit
SAPIG2163	Yes	$\begin{aligned} & \text { Day } \\ & 1+2 \end{aligned}$	$\begin{aligned} & \text { Day } \\ & 1+2 \end{aligned}$	$\begin{array}{r} -4.8 \text { to }- \\ 8.6 \\ (4 / 4) \end{array}$	$\begin{aligned} & 0.001 \text { to } \\ & <0.0001 \end{aligned}$	transcription termination factor Rho
SAPIG0457	No	Day 1	$\begin{aligned} & \text { Day } \\ & 1 \end{aligned}$	$\begin{array}{r} 1.4 \text { to } \\ 2.0 \\ (2 / 4) \end{array}$	0.01 to 0.006	alkyl hydroperoxide reductase, F subunit
SAPIG0701	No	Day 2	Day 1	$\begin{array}{r} 1.5 \text { to } \\ 2.5 \\ (2 / 4) \end{array}$	0.008 to 0.0003	phage integrase family protein
SAPIG1425	No	$\begin{aligned} & \text { Day } \\ & 1+2 \end{aligned}$	Day 1	$\begin{array}{r} 2.1 \text { to } \\ 4.9 \\ (3 / 4) \end{array}$	0.005 to 0.002	methionine-S-sulfoxide reductase
SAPIG1586	No	$\begin{aligned} & \text { Day } \\ & 1 \end{aligned}$	Day 1	$\begin{array}{r} 1.7 \text { to } \\ 3.4 \\ (2 / 4) \end{array}$	0.005 to 0.004	arginine repressor
SAPIG2410	No	Day 1	Day 1	$\begin{array}{r} 3.2 \text { to } \\ 3.5 \\ (2 / 4) \\ \hline \end{array}$	$\begin{aligned} & 0.002 \text { to } \\ & <0.0001 \end{aligned}$	HTH-type transcriptional regulator TcaR

The table shows genes representing mutants that were identified with a change in fitness in the porcine skin survival assay on Pig_1 and Pig_2 for 1 and/or 2 days incubation. Only genes with a significant change in fitness score at the P level ≤ 0.01 were included. The BHI column represents genes evaluated previously as essential/beneficial for survival under laboratory conditions (manuscript I Table S1 and S2).

Table S2. Adhesion assay with stationary grown mutants (Pig_1).

Gene ID	Fitness Score	P value	Description
SAPIG1372	-3,02	0,016	N -(5'phosphoribosyl)anthranilate isomerase
SAPIG1342	-2,74	0,037	hypothetical protein
SAPIG2137	-2,55	0,019	tena/thi-4 family
SAPIG1154	-2,52	0,025	fibrinogen-binding protein
SAPIG2731	-2,37	0,001	ATP phosphoribosyltransferase regulatory subunit
SAPIG0199	-2,22	0,001	N -acetyl-gamma-glutamyl-phosphate reductase
SAPIG2510	-2,14	0,000	glutamate synthase-ferredoxin large subunit
SAPIG1800	-2,12	0,037	metallo-beta-lactamase superfamily protein
SAPIG0659	-2,12	0,006	hypothetical protein
SAPIG0135	-2,10	0,010	pyridoxal-dependent decarboxylase decarboxylase
SAPIG2262	-1,99	0,003	hyaluronate lyase (Hyaluronidase) (HYase)
SAPIG2477	-1,90	0,005	aminotransferase, class II
SAPIG0971	-1,84	0,006	Hydrolase
SAPIG1383	-1,82	0,026	hypothetical protein
SAPIG0489	-1,77	0,004	3-beta hydroxysteroid dehydrogenase/isomerase
SAPIG1111	-1,65	0,011	pyruvate carboxylase
SAPIG0643	-1,56	0,020	hypothetical protein
SAPIG2500	-1,56	0,010	glycine betaine/carnitine/choline transport ATP-binding protein opuCA
SAPIG0243	-1,56	0,016	acyl-CoA dehydrogenase family protein
SAPIG2506	-1,55	0,029	hypothetical protein
SAPIG2268	-1,54	0,013	acetolactate synthase, catabolic
SAPIG0849	-1,50	0,009	hypothetical protein
SAPIG2631	-1,49	0,026	hydrolase, alpha/beta hydrolase fold family
SAPIG0437	-1,49	0,013	bifunctional homocysteine S-methyltransferase/5,10methylenetetrahydrofolate reductase protein
SAPIG2426	-1,48	0,028	pyridine nucleotide-disulphide oxidoreductase family protein
SAPIG0606	-1,47	0,018	cysteinyl-tRNA synthetase
SAPIG1973	-1,44	0,017	hypothetical protein
SAPIG0578	-1,43	0,043	chaperonin HsIO
SAPIG1482	-1,42	0,002	hypothetical protein
SAPIG2231	-1,39	0,002	probable uridylyltransferase
SAPIG0541	-1,37	0,041	alpha,alpha-phosphotrehalase
SAPIG2563	-1,35	0,010	DedA family protein
SAPIG0748	-1,32	0,001	hypothetical protein
SAPIG2350	-1,30	0,013	staphylococcal secretory antigen ssaA2
SAPIG0752	-1,29	0,029	Surface antigen
SAPIG0010	-1,25	0,036	AzIC family protein
SAPIG2238	-1,25	0,043	alanine racemase, N -domain family
SAPIG2357	-1,24	0,004	bifunctional autolysin
SAPIG1703	-1,22	0,028	S-adenosylmethionine:tRNA ribosyltransferase-isomerase
SAPIG1075	-1,21	0,004	hypothetical protein
SAPIG2343	-1,19	0,005	urease accessory protein UreG
SAPIG2564	-1,13	0,050	multidrug-efflux transporter
SAPIG2111	-1,12	0,008	alanine racemase
SAPIG1996	-1,10	0,029	sodium/proline symporter

SAPIG2491	-1,10	0,004	sodium/hydrogen exchanger family protein
SAPIG2352	-1,08	0,001	NAD/nadp octopine/nopaline dehydrogenase family protein
SAPIG2485	-1,08	0,004	hypothetical protein
SAPIG0441	-1,07	0,004	transporter, small conductance mechanosensitive ion channel (MscS) family
SAPIG2703	-1,05	0,034	translocase, putative
SAPIG2617	-1,04	0,048	staphylococcal secretory antigen ssaA1
SAPIG2348	-1,02	0,045	transcriptional regulator, AraC family
SAPIG0431	-1,01	0,020	ABC transporter ATP-binding protein
SAPIG0800	-1,00	0,027	$A B C$ transporter permease protein
SAPIG2237	-0,92	0,010	ferrichrome ABC transporter lipoprotein
SAPIG0456	-0,92	0,025	hypothetical protein
SAPIG2679	-0,89	0,010	clumping factor B (Fibrinogen-binding protein B) (Fibrinogenreceptor B)
SAPIG1100	-0,89	0,003	hypothetical protein
SAPIG2264	-0,86	0,019	hypothetical protein
SAPIG0122	-0,85	0,034	immunoGlobulin g binding protein a
SAPIG2569	-0,84	0,049	hypothetical protein
SAPIG0858	-0,82	0,037	Carboxylesterase
SAPIG0795	-0,80	0,049	allophanate hydrolase subunit 2
SAPIG0782	-0,79	0,009	Amino acid transport and metabolism
SAPIG2335	-0,72	0,016	ferric hydroxamate receptor 1
SAPIG2215	-0,71	0,016	truncated FmtB protein
SAPIG0271	-0,65	0,013	glycosyl transferase, group 2 family protein
SAPIG0046	-0,59	0,045	hypothetical protein
SAPIG2589	-0,57	0,040	pyruvate oxidase

The table shows the genes representing mutants identified with a change in fitness in the adhesion assay with stationary grown mutants. Only mutants, that showed a significant attenuation in fitness at P level ≤ 0.05, were included. These genes were not identified as essential/beneficial for growth under laboratory conditions (manuscript I) or with significant altered fitness in the skin survival assay.

Table S3. Adhesion assay with exponentially grown mutants (Pig_1).

Gene ID	Fitness Score	P value	Description
SAPIG0883	-5,19	0,004	3-dehydroquinate dehydratase, type I
PSAPIG030002	-4,57	0,014	transcriptional regulator
SAPIG0772	-3,92	0,002	multidrug resistance protein 1 (Multidrug-efflux transporter 1)
SAPIG2627	-3,84	0,006	hypothetical protein
SAPIG1493	-3,72	0,005	Holin
SAPIG1094	-3,42	0,045	hypothetical protein
SAPIG0017	-3,27	<0,001	adenylosuccinate synthetase
SAPIG1163	-3,07	0,039	ornithine carbamoyltransferase
SAPIG2138	-3,02	0,035	SceD
SAPIG0163	-2,96	0,026	capsular polysaccharide type 5 biosynthesis protein cap5A
SAPIG2049	-2,76	0,050	hypothetical protein
SAPIG0257	-2,62	0,036	phosphoenolpyruvate-dependent sugar phosphotransferase system, eiia 2, putative
SAPIG2098	-2,55	0,023	3-isopropylmalate dehydratase, large subunit
SAPIG1305	-2,53	0,048	tRNA delta(2)-isopentenylpyrophosphate transferase
SAPIG1982	-2,46	0,014	protein in map 5'region
SAPIG0166	-2,07	0,005	capsular polysaccharide biosynthesis protein Cap5D
SAPIG0405	-2,05	0,023	protein in Tap1-dppD intergenic region
SAPIG0105	-1,90	0,016	transport protein
SAPIG2633	-1,74	0,040	ferrous iron transporter protein B
SAPIG2248	-1,54	0,017	cell surface hydrolase
SAPIG2651	-1,51	0,019	amino acid permease family protein
SAPIG2671	-1,46	0,037	ABC transporter
SAPIG1782	-1,45	0,017	penicillin-binding protein 1A
SAPIG0062	-1,44	0,050	coenzyme A disulfide reductase/ disulfide bond regulator domain
SAPIG0289	-1,38	0,035	transmembrane efflux pump protein
SAPIG2168	-1,25	0,039	hypothetical protein
SAPIG2386	-1,09	0,030	hypothetical protein
SAPIG2419	-1,07	0,048	L-lactate permease

The table shows the genes representing mutants identified with a change in fitness in the adhesion assay with exponentially grown mutants. Only mutants, that showed a significant attenuation in fitness at P level ≤ 0.05, were included. These genes were not identified as essential/beneficial for growth under laboratory conditions (manuscript I) or with significant altered fitness in the skin survival assay.

Title: Identification of virulence genes in whole genome sequenced Staphylococcus aureus.

Running title: Staphylococcus aureus VirulenceFinder.
Keywords: Staphylococcus aureus, virulence genes identification, database, virulence profile, whole genome sequencing, genotype.

Authors: Mette T. Christiansen ${ }^{1(\#)}$, Henrik Hasman ${ }^{1}$ and Frank M. Aarestrup ${ }^{1(\#)}$
${ }^{1}$ National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

Corresponding authors: Mette T. Christiansen, email: mtso@food.dtu.dk and Frank M. Aarestrup, email: ffma@food.dtu.dk

Abstract

Staphylococcus aureus is an opportunistic pathogen that colonizes various animal hosts, including humans. Between 20-40 \% of the human population are permanent or intermediate carriers of S. aureus (1,2). It can cause a variety of infections ranging from minor soft tissue and skin infections to life-threatening systemic infections. Successful infection in a giving host depends on virulence factors produced by the bacterium, which can promote adhesion, immune evasion as well as damage to host cells. Different S. aureus strains encode different sets of virulence genes that somewhat reflect the environment within the host.

Tool for identification of specific virulence genes are important in diagnostics and surveillance. New approaches within diagnostics and surveillance for species identification, evolutionary clustering, and identification of resistance and virulence markers are based on whole genome sequencing (WGS). The biggest challenge with the appliance of WGS is, however, to interpret the large amount of data retrieved with this technology. We constructed the S. aureus VirulenceFinder, a web server that can utilise WGS data from S. aureus genomes to extract a virulence profile. The database will be freely available through The Centre for Genomic Epidemiology (CGE) (www.genomicepidemiology.org) web services.

Introduction

Staphylococcus aureus is a well know opportunistic pathogen that colonizes mucous membranes and skin surfaces of various animal species including humans (1,3-5). S. aureus can cause a variety of infections ranging from minor soft tissue and skin infections to life-threatening systemic infections (6, 7). Successful infection in a giving host depends on virulence factors produced by S. aureus (4). Both secreted and cell surface associated proteins can promote adhesion to host extracellular matrices, damage host cells and evade the host immune system (5). S. aureus infections have become of increasing concern with the development of resistance to multiple antimicrobial drugs, including methicillin (methicillin-resistant S. aureus - MRSA). Different S. aureus strains encode different sets of virulence genes that somewhat reflect the environment within the host. Health care-associated MRSA (HA-MRSA) and community-associated MRSA (CAMRSA) are genetically distinct as their environmental niches differ and they display different virulence profiles. HA-MRSA infects immune compromised individuals often under antibiotic selective pressure, whereas CA-MRSA infects healthy individuals requiring a different set of virulence factors such as the Panton-Valentine leukocidin (PVL), which is thought to be an important toxin in the CA strains (8). In the early 2000s a new emerging CA linage was identified in livestock in Europe. The linage belongs to the Sequence Type 398 (ST398) and is referred to as a livestock-associated (LA) S. aureus $(9,10)$. ST398 is genetically distinct from other CA S. aureus and display a broader host spectrum compared to HA S. aureus and can colonize and infect livestock as well as humans (11). Additionally evidence has been shown, suggesting that ST398 originated in humans, transmitted and adapted to pigs and are now transferring back to humans (12). All together S. aureus display a large set of virulence factors which is required for bacterial colonization and infection in different host under various conditions.

Identification of specific virulence genes as well as antibiotic resistance markers and bacterial typing are important tool in diagnostics and surveillance. Conventional typing is based on phenotypic methods some of which are verified by genotypic tests. However in recent years, whole genome sequencing (WGS) has become increasingly available. There have been huge improvements in sequencing technologies and the cost has gone down significantly. This gives rise to a new approach within diagnostics and surveillance, where WGS can be utilized for species identification, evolutionary clustering, identification of resistance and virulence markers just to mention a few of the many applications. The biggest challenge with the appliance of WGS is, however, to interpret the large amount of data retrieved with this technology. To translate large amounts of DNA sequences into functional information requires bioinformatics tools that are standardized and simple to use. The Centre for Genomic Epidemiology (CGE) (www.genomicepidemiology.org) aims at generating bioinformatic tools for handling WGS information, useful for outbreak investigation, epidemiological surveillance, source tracking and diagnostics. The service is publically available through web servers.

In this study we present the construction of the S. aureus VirulenceFinder, a web server that utilises WGS data from S. aureus genomes to extract a virulence profile. The database will be freely available through the CGE web services.

Methods

Building the database. Data on virulence genes were retrieved from the publically available virulence database (http://www.mgc.ac.cn/VFs/) and published papers (1, 4, 5, 13). All DNA sequences were collected from the NCBI nucleotide database
(http://www.ncbi.nlm.nih.gov/nuccore/). The virulence gene sequences included in the database were selected based on the annotation and gene description from 31 different S. aureus genomes
(supplementary material Table S1). The genes were selected based on the annotation and gene description defined in the NCBI gene database and the definition of the virulence genes included in the VirulenceFinder database are therefore dependent on the annotations and gene description accuracy found within the NCBI gene database. When two genes with the same annotation or gene description showed 100 \% nucleotide identity when using NCBI's nucleotide BLAST and had the same gene length, only one of the genes was included in the VirulenceFinder database. If two genes with the same annotation or gene description showed 100% nucleotide identity using BLAST but were of different length, both genes were included in the database. If two genes with the same annotation or gene description showed less than 100% nucleotide identity using BLAST, both genes were included in VirulenceFinder. No pseudo-genes were included in the database and minority variance found within the same S. aureus sample were also not included as the virulence genes were selected at the consensus level. Genotyping cannot be performed with S. aureus VirulenceFinder but other tools are available for typing on the CGE website (http://www.genomicepidemiology.org/).

Prior to submission to the S. aureus VirulenceFinder, draft assembly of sequence reads need to be performed. The server can assemble short reads sequences to draft genomes or it can be done as described previously by Larsen et al. (2012) (15). Once the sequence is submitted for a run, the VirulenceFinder uses BLAST to identify virulence genes matching any gene sequence found within the database. It is possible to select a threshold of sequence identity ($\%$ ID) between $85 \%-100 \%$, where 100% ID is default. Here, any gene found within the VirulenceFinder database must show a minimum nucleotide identity corresponding to the selected threshold over the full gene length to be included in the output. A gene will not be reported if the submitted sequence contains less than 60 \% of the full gene length of the matching virulence gene found within the database. If a virulence
gene is identified in a submitted sample the best-matching genes are given as output with corresponding GenBank accession number, correlating to the genome in which the gene matches.

Initial evaluation of method. For an initial evaluation of the database the genome of the assembled LA-MRSA ST398 S0385 isolate (GenBank accession AM990992) was screened for virulence genes. This genome was one of the 31 genomes used for building the database and was therefore selected as a preliminary evaluation of the database. The fasta file of the completed S0385 genome was submitted to the S. aureus VirulenceFinder alpha version
(http://cge.cbs.dtu.dk/services/VirulenceFinder/index2.php) and the threshold for nucleotide identity was set to $\mathrm{ID}=98 \%$. The virulence profile of S 0385 was evaluated and compared to previous findings in ST398 strains (4, 11, 14).

Further evaluation - identification of virulence genes in whole genome sequenced S. aureus strains. For further evaluation of S. aureus VirulenceFinder 89 previously sequenced ST398 genomes originating from various hosts, were screened for virulence genes using the database (12). Fourteen representatives of these, originating from humans and pigs were subjects for further analysis. The 14 isolates were selected to represent, the three most dominant spa types in the Lance B. Price et al. (2012) study, different host origin, different resistance pattern and different country of isolation. In addition two strains from each of the seven clades given by the Minimum-parsimony tree generated by Lance B. Price et al. (2012) were included (12). All genes within the VirulenceFinder database were BLASTed against the assembled genomes and the best matching genes were given as output. The threshold was set to 95% identity (ID=95 \%) for evaluation of a less stringent nucleotide identity threshold.

Results

The database accepts input as complete or partial, preassembled genomes. VirulenceFinder consists of different configurations and gives the option to select one or several species for a run and uses BLAST to identify virulence genes included in the database. It is possible to select a threshold of sequence identity (\% ID) between $85 \%-100 \%$ and the best-matching genes are given as output. If a virulence gene is identified in a submitted sample the output gives a GenBank accession number, correlating to the genome in which the gene matches.

For initial evaluation of the output the annotated genome of S. aureus ST398 S0385 (GenBank accession AM990992) was tested with the VirulenceFinder. The whole genome sequence dataset of the S0385 isolate was used, amongst 30 other genomes, to build the VirulenceFinder database. The output consists of genes matching with 98% identity to the 1053 GenBank files of which the database was created. The list of virulence genes identified in the ST398 S0385 genome can be found in Table 1. 63 genes defined as virulence genes in the database were identified in the ST398 S0385 genome, of which 17 associated to adhesion, 7 exoenzymes, 20 genes involved in host immune evasion, 6 genes related to secretion systems and 13 toxins. Sixteen of the identified virulence genes showed $<100 \%$ identity to sequences from the database.

Eighty-eight S. aureus ST398 genomes have been assembled and published previous by Lance B. Price et al. (2012) (12). 14 of these were selected and tested in the S. aureus VirulenceFinder. The isolates were selected to represent all the seven clades generated by a Maximum-parsimony tree. Isolates from different countries, different host origins and with different resistance pattern were included in this study. An overview of the virulence profiles at the 95% identity level can be found in table 2. One isolate showed a somewhat different profile with fewer identified virulence genes
compared to the other 13 strains including in the comparison. Overall the virulence profiles were similar, but different virulence patterns in isolates from pig origin and human origin were identified, correlating to what was found by Price et al. (2012) (12).

Discussion

Resistance and virulence profiles can help elucidate the approach for optimal treatment and define the virulence capacity of the infectious agent. Such information is crucial at hospitals in diagnostics and such profiles can as well be applied in local and global surveillance studies.

The S. aureus VirulenceFinder database generated and evaluated in this study comprises a bioinformatic tool for identifying virulence genes in S. aureus genomes using WGS data.

The S. aureus ST398 S0385 genome, which has been sequenced and annotated previously, was evaluated with the S. aureus VirulenceFinder. Sixty-three different genes defined as virulence genes in the database were identified. The whole genome sequence dataset of S 0385 was used to build the database and it was therefore expected that all the identified virulence genes would show 100% identity to a sequence within database. However 16 of the identified virulence genes showed <100 \% identity. This indicates that even though not all gene variants are included in the database one can still identify the genes by lowering the default identity threshold. The NCBI nucleotide database contains many variants of the same gene and the gene annotation of the different genes does not always correlate, which makes it difficult to include all gene variants found within the NCBI nucleotide database. In addition the GenBank databases are continuously increasing and the addition of new complete annotated genomes can contribute to new gene annotations within older genomes.

Correlating with previous findings in ST398 isolates the VirulenceFinder identified fnbA, clfA, cna, cap5A and eap/map in the ST398 S0385 genome (4, 14). Enterotoxin P (sep) and exfoliative toxin type A (eta) were identified in the S0385 genome by the database, contradicting that ST398 does not contain enterotoxins and exfoliative toxin genes (14, 16). Both toxins are annotated in the ST398 S0385 genome in the GenBank gene database, which explains why these genes are identified when screening the S0385 genome using the VirulenceFinder.

Virulence profiles of 14 selected ST398 strains from a previous study (12) were generated using the VirulenceFinder with the threshold for nucleotide identity set to 95%. The assembled genomes were BLASTed against all gene sequences within the database and hits with at least 95% nucleotide identity constituted the output. The ID threshold can be set by the user and a less stringent threshold is recommended as the alpha version of the database only contains the number variants of each virulence gene, originating from 31 different S. aureus genomes used in building the database. A stringent threshold may result in some variation missed when using the database. However a less stringent threshold will result in a considerably larger output that requires more analysis. Overall the profiles were similar except for one isolate (13349_6) which also was found to be an outlier by Price et al. (2012) (12). The four isolates originating from a human host were positive for the scn gene whereas none of the isolates originating from pigs contain the staphylococcal complement inhibitor. The scn and sak genes are both markers for strains of human origin (12, 17). Even though the scn was not identified in the isolates originating from pigs a staphylococcal complement inhibitor variant has been identified on a pathogenicity island in ST398 S0385 which is considered a porcine originating strain (11). Two of the human originating isolates contained both the sak gene and the two Panton-Valentine leukocidin encoding genes $l u k F-P V$ and
lukS-PV. This is in agreement the finding in Price et al. (2012) showing that some LA S. aureus strains are highly virulent, as is common for many of the CA S. aureus strains (12).

Different patterns in adhesins like the Ser-Asp rich fibrinogen-binding proteins $S d r C$ and $S d r D$ and the fibronectin binding protein B ($f n b B$ gene) were observed. SdrC and SdrD have been shown to promote adhesion to human desquamated nasal epithelial cells together with other factor (18). The four isolates, originating from human hosts, contain $S d r C$ and $S d r D$ which could indicate that both genes are contributing to adhesion to the human nares (18), whereas only $S d r C$ seems to be essential for adhesion to the porcine nares as all the porcine isolates contain $S d r C$ and only some the $S d r D$ gene. All strains contain fibronectin binding protein A (fnbA gene) in agreement with a previous study (14). However some of the isolates also harboured fibronectin binding protein B (fnbB gene). A previous study showed that the fnbA gene product was more important in in vitro and in vivo infections, but cooperation between fibronectin binding proteins A and B is necessary for the induction of severe infections resulting in septic death (19).

Previous studies have emphasized that S. aureus ST398 do not contain any enterotoxins and exfoliative toxins $(4,14,16)$. However all the ST398 strains tested, expect the outlier strain 13349_6, showed a positive result for enterotoxins A and P (sea and sep gene respectively) and exfiliative toxin A (eta gene) when using the VirulenceFinder. The enterotoxin P gene identified in the ST398 isolates show 100% sequence identity to the annotated enterotoxin P gene found in ST398 S0385 genome (GenBank gene no. SAPIG1666). The definition of the genes, in the VirulenceFinder database, is dependent on the annotations within the genomes applied for building the database. The Enterotoxin P was originally defined after the full genome sequencing of S. aureus N315 (20). The sequence of the annotated enterotoxin P encoded in the ST398 S0385 genome (gene SAPIG1666) was BLASTed against sequences in the NCBI nucleotide database and similarities with two different genes within the N315 genome were identified (GenBank gene

SA1429 and SA1430). These genes encode an enterotoxin homolog and a protein similar to enterotoxin A precursor. This indicates that the enterotoxin P (sep gene) identified in the ST398 stains tested here is not the same as the original sep gene defined in S. aureus N315 (GenBank gene SA1761) and that the definition given by the VirulenceFinder is a consequence of the annotations given to the reference genomes used for building the database. The sep gene identified here in the ST398 show however similarity to other enterotoxins and might indicate that S. aureus ST398 strains can contain enterotoxin like proteins that can be identified when using WGS data. This emphasises that as outputs from the S. aureus VirulenceFinder database relates to the annotations in the NCBI nucleotide database and for details beyond these annotations further investigation might be needed.

Here we demonstrated how an informative tool for WGS data can be generated. The S. aureus VirulenceFinder database is part of the tool package found on the CGE webpage (www.genomicepidemiology.org). Here are tools like MLST and ResFinder already available (15, 21) and additional tools for phylogenetic studies are under development.

Acknowledgements

The work funded in part by the Danish Ministry of Food, Agriculture and Fisheries (Grant no.: 3304-FVFP-09-F-002-1) and The Technical University of Denmark. We acknowledge Ea Zankari, Rolf Sommer Kaas and Martin Vestergaard from the National Food Institute and the Center for Biological Sequence analysis, Technical University of Denmark for assistance with generation of the VirulenceFinder database.

References

1. Foster TJ. 2009. Colonization and infection of the human host by staphylococci: adhesion, survival and immune evasion. Veterinary dermatology 20:456-70.
2. Williams R. 1963. Healthy carriage of Staphylococcus aureus: its prevalence and importance. Bacteriological Reviews 27:56-71.
3. Tulinski P, Fluit AC, van Putten JPM, de Bruin A, Glorieux S, Wagenaar J a, Duim B. 2013. An ex vivo porcine nasal mucosa explants model to study MRSA colonization. PloS one 8:e53783.
4. Fluit a C. 2012. Livestock-associated Staphylococcus aureus. Clinical Microbiology and Infection 18:735-44.
5. Foster TJ. 2005. Immune evasion by staphylococci. Nature reviews. Microbiology 3:94858.
6. Huijsdens XW, Dijke BJ Van, Spalburg E, Van MG, Heck MEOC, Pluister GN, Voss A, Wannet WJB, Neeling AJ De. 2006. Community-acquired MRSA and pig-farming. Annals of clinical microbiology and antimicrobials 5:1-4.
7. Hasman H, Moodley a, Guardabassi L, Stegger M, Skov RL, Aarestrup FM. 2010. Spa type distribution in Staphylococcus aureus originating from pigs, cattle and poultry. Veterinary microbiology 141:326-31.
8. Diep BA, Palazzolo-Ballance AM, Tattevin P, Basuino L, Braughton KR, Whitney AR, Chen L, Kreiswirth BN, Otto M, DeLeo FR, Chambers HF. 2008. Contribution of Panton-Valentine leukocidin in community-associated methicillin-resistant Staphylococcus aureus pathogenesis. PloS one 3:e3198.
9. Armand-Lefevre L. 2005. Clonal comparison of Staphylococcus aureus isolates from healthy pig farmers, human controls, and pigs. Emerging infectious diseases 11:711-714.
10. Voss A, Loeffen F, Bakker J. 2005. Methicillin-resistant Staphylococcus aureus in pig farming. Emerging infectious diseases 11:2004-2005.
11. Schijffelen MJ, Boel CHE, van Strijp JAG, Fluit AC. 2010. Whole genome analysis of a livestock-associated methicillin-resistant Staphylococcus aureus ST398 isolate from a case of human endocarditis. BMC genomics 11:376.
12. Price L, Stegger M, Hasman H, Aziz M. 2012. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. MBio 3:e00305-11.
13. Cheung AL, Bayer AS, Zhang G, Gresham H, Xiong Y-Q. 2004. Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus. FEMS Immunology \& Medical Microbiology 40:1-9.
14. Hallin M, De Mendonça R, Denis O, Lefort A, El Garch F, Butaye P, Hermans K, Struelens MJ. 2011. Diversity of accessory genome of human and livestock-associated ST398 methicillin resistant Staphylococcus aureus strains. Infection, genetics and evolution 11:290-9.
15. Larsen M, Cosentino S. 2012. Multilocus sequence typing of total-genome-sequenced bacteria. Journal of clinical microbiology 50:1355-61.
16. Golding GR, Bryden L, Levett PN, McDonald RR, Wong A, Graham MR, Tyler S, Van Domselaar G, Mabon P, Kent H, Butaye P, Smith TC, Kadlec K, Schwarz S, Weese SJ, Mulvey MR. 2012. whole-genome sequence of livestock-associated st398 methicillinresistant staphylococcus aureus Isolated from Humans in Canada. Journal of bacteriology 194:6627-8.
17. Sung JM-L, Lloyd DH, Lindsay J a. 2008. Staphylococcus aureus host specificity: comparative genomics of human versus animal isolates by multi-strain microarray. Microbiology (Reading, England) 154:1949-59.
18. Corrigan RM, Miajlovic H, Foster TJ. 2009. Surface proteins that promote adherence of Staphylococcus aureus to human desquamated nasal epithelial cells. BMC microbiology 9:22.
19. Shinji H, Yosizawa Y, Tajima A, Iwase T, Sugimoto S, Seki K, Mizunoe Y. 2011. Role of fibronectin-binding proteins A and B in in vitro cellular infections and in vivo septic infections by Staphylococcus aureus. Infection and immunity 79:2215-23.
20. Omoe K, Imanishi K, Hu D, Kato H, Fugane Y, Abe Y, Hamaoka S, Watanabe Y, Nakane A, Uchiyama T, Shinagawa K. 2005. Characterization of Novel Staphylococcal Enterotoxin-Like Toxin Type P. Infection and immunity 73:5540-5546.
21. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. The Journal of antimicrobial chemotherapy 67:2640-4.

Figures and Tables

Table 1. Test run of the ST398 S0385 genome in the S. aureus VirulenceFinder.

ID	Gene	Virulence factor	
100.00\%	at	Autolysin	Adherence (17 genes)
100.00\%	clfA	Clumping factor A	
100.00\%	clfB	Clumping factor \mathbf{B}	
100.00\%	cna	Collagen adhesion	
100.00\%	ebpS	Elastin binding protein	
98.83\%	eap/map	Extracellular adherence protein/MHC analogous protein	
100.00\%	fib	Fibrinogen binding protein	
100.00\%	efb	Extracullelar Fibrinogen binding protein	
100.00\%	fnbA	Fibronectin binding proteins	
100.00\%	fnbB	Fibronectin binding proteins	
100.00\%	icaR	Intercellular adhesin	
100.00\%	icaA		
99.67\%	icaD		
100.00\%	icaB		
100.00\%	icaC		
100.00\%	spa	Staphylococcal protein A	
100.00\%	vwb	von Willebrand factor	
ID	Gene	Virulence factor	
99.14\%	sspB	ine proteas	Exoenzyme (7 genes)
100.00\%	sspC	proteas	
100.00\%	hysA	Hyaluronate lyase	
100.00\%	lip	Lipase	
100.00\%	geh		
100.00\%	coa	Staphylocoagulase	
100.00\%	nuc	Thermonuclease	
ID	Gene	Virulence factor	
100.00\%	isb	lgG-binding protein	Host Immune evasion (20 genes)
100.00\%	cap5A	Capsule	
99.28\%	cap1B		
98.84\%	cap5B		
99.48\%	cap5C		
100.00\%	cap5D		
100.00\%	cap8E		
98.75\%	cap5F		
99.29\%	cap5G		
100.00\%	cap5H		
100.00\%	cap5I		
100.00\%	cap5J		
100.00\%	cap5K		
100.00\%	cap8L		
99.64\%	cap5M		
98.76\%	cap5N		
99.29\%	cap50		
98.95\%	cap5P		
100.00\%	capA		
100.00\%	capC		
ID	Gene	Virulence factor	

100.00\%	esaA	Type VII secretion system	Secretion system (6 genes)
100.00\%	esaB		
99.33\%	esaC		
100.00\%	essA		
100.00\%	essB		
100.00\%	essC		
100.00\%	esxA		
100.00\%	Gene	Virulence factor	
100.00\%	hla	Alpha hemolysin	Toxin (13 genes)
100.00\%	hld	Delta hemolysin	
100.00\%	sep	Enterotoxin P (SEntP)	
100.00\%	eta	Exfoliative toxin type A	
100.00\%	set1	Exotoxin/superantigen-like proteins	
100.00\%	set3		
100.00\%	set4		
100.00\%	set5		
100.00\%	set6		
99.45\%	sal		
100.00\%	SExo	Superantigen-like	
99.59\%	hlgA	Exotoxin	
99.68\%	hlgC	Gamma hemolysin	

The table illustrates the output from the ST398 S0385 genome (accession no. AM990992.1) test run in with the VirulenceFinder. The first column shows the sequence identity when all genes within the database were BLASTed against the assembled genomes and the best matching genes are given as output. The threshold was set to 98% ID. Second column and third give the gene name and the encoding virulence factor. Fourth column defines the virulence group.

Table 2. Virulence profiles of 14 selected S. aureus ST398 strains.

Country:	FI	DE	IT	PL	IT	US	CA	US	US	US	DK	CN	US	FR
Spa type:	t034	t034	t011	t011	t011	t034	t034	t034	t034	t034	t034	t571	t571	t571
Host:	pig	human	human	human	human									
MET	R	S	R	R	R	S	R	R	S	S	R	S	S	S
Clade	Ila1i	Ila1i	Ila1ii	Ila1ii	lla 2	11 a 2	Ila	11 a	Ila-GOI	Ila-GOI	II-GOI	II-GOI	1	1
$\begin{aligned} & \text { Genes/St } \\ & \text { rains } \end{aligned}$		1061	$\begin{gathered} 2913 \\ 9 \end{gathered}$	$\begin{gathered} 6919 \\ / 08 \end{gathered}$	$\begin{gathered} 1334 \\ 9 _6 \end{gathered}$	F20	7-109	$\begin{gathered} \hline \text { P23- } \\ 02 _\mathrm{S} \\ \mathrm{~W} 62 . \\ 1 \end{gathered}$	F38	F10	50148	$\begin{gathered} \text { P23- } \\ 9 _W Z- \\ 1 \end{gathered}$	1953	$\begin{gathered} \text { ST2009 } \\ 1526 \end{gathered}$
SEnt														
sea														
sep														
SExo														
atl														
cap1A														
cap1B														
cap1C														
cap5A														
cap5B														
cap5C														
cap5D														
cap5F														
cap5G														
cap5H														
cap5I														
cap5J														
cap5K														
cap5M														
cap5N														
cap50														
cap5P														
cap8E														
cap8L														
clfA														
clfB														
cna														
coa														
eap/map														
ebh														
ebpS														
efb														
esaA														

esaB														
esaC														
essA														
essB														
essC														
esxA														
eta														
fib														
fnbA														
fnbB														
geh														
hla														
hlb														
hld														
hlgA														
hlgB														
hlgC														
hysA														
icaA														
icaB														
icaC														
icaD														
icaR														
iceA														
iceC														
lip														
lukF-PV														
lukS-PV														
nuc														
sak														
sal														
sbi														
scn														
sdrC														
sdrD														
sdrE														
set1														
set3														
set4														
set5														
set6														
spa														
sspA														

sspB														
sspC														
vwb														

The table illustrates the virulence profiles of 14 selected S. aureus ST398 strains given by the S. aureus VirulenceFinder. The threshold was set to 95% ID. The strains have been published previous by Lance B. Price et al. (2012). A grey box indicates the presence of a gene at the 95% identity level and a white box illustrates that the gene is not present in the genome at the 95% identity level. The top five rows show country of isolation, spa type, hhost origin, resistant or sensitive to methicillin and clade in which the isolate cluster according to Lance B. Price et al. (2012).

Supporting figures

Table S1. List of strains included in building of the database.

Strain:	GenBank accession no.
Staphylocoocus aures subsp. aureus N315	BA0000018.3
Staphylocoocus aures subsp. aureus NCTC8325	CP000253.1
Staphylocoocus aures subsp. aureus TW20	FN433596.1
Staphylocoocus aures subsp. aureus 04-02981	CP001844.2
Staphylocoocus aures subsp. aureus 08BA02176	CP003808.1
Staphylocoocus aures subsp. aureus RF122	AJ938182.1
Staphylocoocus aures subsp. aureus 11819-97	CP003194.1
Staphylocoocus aures subsp. aureus 71193	CP003045.1
Staphylocoocus aures subsp. aureus COL	CP0000046.1
Staphylocoocus aures subsp. aureus ECT-R2	FR714927.1
Staphylocoocus aures subsp. aureus ED133	CP001996.1
Staphylocoocus aures subsp. aureus ED98	HE681091.1
Staphylocoocus aures subsp. aureus HO 5096 0412	CP000736.1
Staphylocoocus aures subsp. aureus JH1	CP000703.1
Staphylocoocus aures subsp. aureus JH9	CP002114.2
Staphylocoocus aures subsp. aureus JKD6159	FR821771.1
Staphylocoocus aures subsp. aureus LGA251	FR821777.2
Staphylocoocus aures subsp. aureus MSHR1132	BX571857.1
Staphylocoocus aures subsp. aureus MSSA476	BA000032.2
Staphylocoocus aures subsp. aureus MW2	CP009324.1
Staphylocoocus aures subsp. aureus MU3	BA0000017.4
Staphylocoocus aures subsp. aureus MU50	AM990992.1
Staphylocoocus aures subsp. aureus ST398	CP002643.1
Staphylocoocus aures subsp. aureus TO131	CP002110.1
Staphylocoocus aures subsp. aureus TCH60	CP000255.1
Staphylocoocus aures subsp. aureus USA_300_FPR3757	CP000730.1
Staphylocoocus aures subsp. aureus USA_300_TCH1516	CP003033.1
Staphylocoocus aures subsp. aureus VC40	CP002120.1
Staphylocoocus aures subsp. aureus JKD6008	APO09351.1
Staphylocoocus aures subsp. aureus str. Newman	BX571856.1
Staphylocoocus aures subsp. aureus MRSA252	

Table S2. Virulence genes included in the S. aureus VirulenceFinder database.

Virulence factors	Related genes
Adherence (22 genes)	
Autolysin	atl
Cell wall associated fibronectin binding protein	ebh
Clumping factor \mathbf{A}	clfA
Clumping factor B	clfB
Collagen adhesion	cna
Elastin binding protein	ebpS
Extracellular adherence protein/MHC analogous protein	eap/map
Fibrinogen binding protein	fib
Extracullelar Fibrinogen	
binding protein	

Serine V8 protease	sspA	
Staphylocoagulase	coa	
Staphylokinase	sak	
Thermonuclease	nuc	
Host Immune evasion (52 genes)		
Exoprotein SCIN	scn	
IgG-binding protein	isb	
Capsule Type 1(A-C), 5(A-P) and $8(A-M$ and $P)$	capA	
	capB	
	capC	
	capD	
	capE	
	capF	
	capG	
	capH	
	capl	
	capJ	
	capK	
	capL	
	capM	
	capN	
	capO	
	capP	
Secretion system (8 genes)		
Type VII secretion system	esxA	
	esaA	
	essA	
	esaB	
	essB	
	essC	
	esaC	
	esxB	
Toxins (59 genes)		
Alpha hemolysin	hla	
Beta hemolysin	hlb	
Delta hemolysin	hld	
Enterotoxin A (SEntA)	sea	
Enterotoxin B (SEntB)	seb	
Enterotoxin C (SEntC)	sec	
Enterotoxin G (SEntG)	seg	
Enterotoxin H (SEntH)	seh	
Enterotoxin I (SEntH)	sei	
Enterotoxin K (SEntK)	see	

Enterotoxin L (SEntL)	sel
Enterotoxin M (SEntM)	sem
Enterotoxin N (SEntN)	sen
Enterotoxin O (SEntO)	seo
Enterotoxin P (SEntP)	sep
Enterotoxin Q (SEntQ)	seq
General Enterotoxin	SEnt
Enterotoxin Yent1	yent1
Enterotoxin Yent2	yent2
Enterotoxin-like	SEnt-like
Exfoliative toxin type A	eta
Exotoxin/superantigen-like proteins	set1
	set2
	set3
	set4
	set5
	set6
	set7
	set8
	set9
	set10
	set11
	set12
	set13
	set14
	set15
	set16
	set17
	set18
	set19
	set20
	set21
	set22
	set23
	set24
	set25
	set26
	set30
Superantigen-like	sal
Exotoxin	SExo
Gamma hemolysin	hlgA
	hlgB
	hlgC

Manuscript III

Leukocidin M	lukM
Leukotoxin D	lukD
Leukotoxin E	lukE
Panton-Valentine leukocidin	lukS-PV
	lukF-PV
Toxic shock syndrome toxin	tsst

National Food Institute
Technical University of Denmark
Mørkhøj Bygade 19
DK - 2860 Søborg
Tel. 35887000
Fax 35887001
www.food.dtu.dk

[^0]:

