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Preface 

The current report describes the work underlying the advisory list for self-
classification of chemicals that the Danish EPA has prepared in collaboration 
with researchers from the National Food Institute – Technical University of 
Denmark. The advisory list for self-classification of chemicals is available as a 
database via www.mst.dk. 
 
This report provides the following background material to the database: 

� Chapter 1: A general regulatory background on classification of 
chemicals and how (Q)SAR based assessments can be used in this 
context. 

� Chapter 2: Description of the general methodology applied to make 
the advisory self-classifications.  

� Chapter 3: Description of the (Q)SAR models and the (Q)SAR based 
assessments in relation to the classification criteria for individual 
endpoints.  

� Chapter 4: Discussion and conclusions regarding comparisons with 
the previous advisory list. 
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Summary 

All chemical substances marketed in the EU must be classified and labelled 
according to the regulation on classification and labelling of dangerous 
substances (7). Substances with harmonised classifications adopted in the EU 
are to be found on the List of harmonised classification and labelling of 
hazardous substances (Annex VI of 1272/2008/EU). This list covers around 
7000 substances which have been classified for their hazardous properties. 
However, this also means that about 93,000 of the 100,204 existing 
substances in the EU (EINECS list), are not formally classified. With these 
substances, it is the manufacturer's or importer's responsibility to carry out an 
appropriate classification of the dangerous intrinsic properties (“self-
classification”). In most cases, no test data (from animal testing, etc.) is 
available on their hazardous properties in relation to human health or the 
environment.  
 
To address this issue, the Danish Environmental Protection Agency published 
the Advisory Self-classification List /5/. This report describes the updating of 
this list. The Advisory Self-Classification list is created by the use of (Q)SARs 
((Quantitative) Structure-Activity Relationships) to predict the effects of 
chemicals. The updated Advisory Self-Classification list contains the results of 
a systematic assessment of 49,292 discrete organic EINECS substances in 
relation to the following endpoints for which new and/or improved (Q)SAR 
model predictions were available: 
 

o Mutagenicity  
o Carcinogenicity  
o Reproductive toxicity (possible harm to the unborn child) 
o Danger to the aquatic environment 

 
The advisory classifications for mutagenicity, carcinogenicity and danger to 
the aquatic environment are updates of the advisory classifications on the 
previous self-classification list. Reproductive toxicity is a new endpoint on the 
self-classification list. 
 
Advisory classifications from the previous advisory list for two endpoints have 
not been updated in the current project. For these endpoints the advisory 
classifications from the previous list still apply (and are not discussed further 
in this report): 
 

o Acute oral toxicity  
o Skin sensitisation 

 
The updated advisory list is available as an Excel file for download from DK-
EPA's website and as an online searchable database. This includes the 23,922 
chemicals with new advisory classifications resulting from this project, making 
in all, a total of 30,179 chemicals with advisory classifications, either from this 
project, or with advisory classifications for acute oral toxicity or skin 
sensitisation from the previous advisory list. 
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The advisory classifications are made by using combinations of (Q)SAR 
models relevant for each classification endpoint . This report describes the 
methodology and the models applied. 

 
Further updates of the advisory list are also under consideration. One relevant 
update would be to modify it to meet the criteria set out in the new CLP-
regulation for the classification and labelling of chemicals. The list could also 
be updated based on new or updated (Q)SAR model predictions for other 
endpoints. 
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Dansk sammenfatning 

Alle kemiske stoffer, der markedsføres i EU, skal klassificeres og mærkes efter 
reglerne i klassificeringsbekendtgørelsen (Bek nr. 329 af 16/5 2002) og listen 
over farlige stoffer (1272/2008/EU, bilag VI, tabel 3.2). Listen over farlige 
stoffer dækker i dag ca. 7.000 stoffer og stofgrupper, som er blevet 
klassificeret for deres farlige egenskaber af EU’s kompetente myndigheder. 
Det vil sige, at omkring 93.000 af de 100.204 eksisterende stoffer i EU 
(EINECS-fortegnelsen) endnu ikke har undergået formel klassificering. For 
disse stoffer er det producentens eller importørens ansvar at påføre en korrekt 
klassificering for stoffernes iboende farlige egenskaber (”selvklassificeringer”). 
Imidlertid er der for de fleste af disse stoffer kun få eller ingen test resultater 
(fra dyreforsøg m.m.) om stoffernes farlighed overfor mennesker eller miljø.  
 
Som bidrag til at afhjælpe denne problemstilling, har Miljøstyrelsen tidligere 
offentliggjort den såkaldte selvklassificeringsliste og nærværende rapport 
beskriver opdateringen af denne liste. Selvklassificeringslisten er lavet ved 
brug af (Q)SAR modeller ((kvantitative) struktur-aktivitets sammenhænge) 
som er blevet brugt til at forudsige farlige virkninger af kemiske stoffer. 
Modellerne er med henblik på denne liste blevet anvendt til en systematisk 
vurdering af 49.292 organiske enkeltstoffer fra EINECS-fortegnelsen for 
effekter, hvor der findes pålidelige modeller:  
 

o Skader på arveanlæggene  
o Kræftfremkaldende effekt 
o Reproduktionstoksicitet (skader på afkommet) 
o Farlighed for vandmiljøet 

 
De vejledende klassificeringer for skader på arveanlæggene, 
kræftfremkaldende effekt og farlighed for vandmiljøet er opdateringer af de 
vejledende klassificeringer på den foregående selvklassificeringsliste. 
Reproduktionstoksicitet var ikke med på den foregående liste. 
 
Vejledende klassificeringer for følgende to effekter som var inkluderet på den 
foregående selvklassificeringsliste er ikke blevet opdateret. For disse effekter er 
de vejledende klassificeringer fra den foregående liste stadig gældende (og vil 
ikke blive beskrevet yderligere i denne rapport): 
 

o Akut dødelig virkning ved indtagelse 
o Sensibiliserende virkning ved hudkontakt  

 
Den opdaterede liste med selvklassificeringer er tilgængelig via Miljøstyrelsen 
hjemmeside som både Excel fil til download og som en søgbar online 
database. Inkluderet er de 23.922 kemiske stoffer hvor der er lavet nye 
vejledende klassificeringer samt stoffer med vejledende klassificeringer for 
akut toksicitet og sensibiliserende virkning ved hudkontakt fra den foregående 
liste, i alt 30.179 stoffer med vejledende klassificeringer. 
 
De vejledende klassificeringer er lavet ved hjælp af kombinationer af (Q)SARs 
som er relevante for hver enkelt klassificering. Rapporten beskriver det 
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principielle grundlag for at anvende sådanne modeller samt hvordan 
modellerne konkret er blevet anvendt i dette projekt.  
 
Der er overvejelser om at den vejledende liste skal opdateres yderligere. En 
relevant opdatering kunne være at sikre at den vejledende liste også kan 
anvendes ift. de kriterier som er opstillet i den nye CLP-forordning for 
klassificering og mærkning af kemiske stoffer. Endvidere vil det være relevant 
at opdatere listen med klassificeringer for andre farlige egenskaber. 
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1 Introduction to classification and 
(Q)SAR 

1.1 Background 

When chemical substances are classified in terms of the danger they represent, 
their inherent properties are assessed on the basis of the knowledge and 
information available /2, 60/. Such assessments are often carried out on the 
basis of laboratory test results because the hazard classification criteria to a 
large extent refer to such results. Assessment must be carried out individually 
for each property, which means that often extensive animal testing may be 
required for a single substance. Thus, complete identification of all the 
properties for which classification criteria exist, at present requires results of 
up to 30 animal studies for just one substance.  
 
Given the extensive need for data from animal studies, it is not surprising that 
lack of test data represents a major problem in the assessment of dangerous 
properties of chemicals. It is a well-known fact that there are currently few or 
no test data for a very large fraction of the 100,204 chemical substances on 
the European INventory of Existing Commercial chemical Substances 
(EINECS) /3, 4, e.g. 36/.This means that many chemical substances within 
the European market may have unknown dangerous properties even though 
they have been used for many years.  
 
With the new chemicals legislation in EU, REACH, new information 
demands for chemicals have been imposed in the EU. However, especially for 
chemicals produced in volumes below 10 tpa per manufacturer or importer in 
the EU it is unlikely that test data on a broad spectrum of dangerous 
properties will be available within the foreseeable future. 
 
With the aid of mathematical modelling, so-called (Quantitative) Structure-
Activity Relationships, (Q)SAR, methods for prediction of the properties of 
chemicals can be established. Classifications based on use of (Q)SARs to 
predict dangerous properties can save time and money if used as an 
alternative to animal testing, as well as increase the level of information for 
chemicals that will not undergo testing. The Danish EPA in 2001 published 
the first version of the advisory list for self-classification of dangerous 
substances (denoted AL2001 in the current report) /5/ where 20.624 
substances were assigned advisory classifications according to the following 
dangerous properties: Acute oral toxicity, sensitisation by skin contact, 
mutagenicity, carcinogenicity, and danger to the aquatic environment. 
 

1.2 Classification of chemicals 

Criteria for classification, packaging and labelling of dangerous substances 
and preparations is harmonised in order to protect public health and the 
environment and ensure the free movement of such products /6, 7, 60 /. 
Harmonised hazard labelling allows consumers to recognize dangerous 
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substances and preparations easily and to take adequate measures as regards 
risk avoidance and safe handling and disposal.  
 
Existing regulation 
The present regulation for classification and labelling involves an evaluation of 
the hazard of a substance or preparation in accordance to Council Reg. 
1272/2008/EU /7/ and a communication of that hazard via the label.  
 
Classification of a substance or preparation is considered relative to several 
endpoints concerning physical-chemical properties, health effects or 
environmental properties. This evaluation must be made for any substance or 
preparation manufactured within or imported into the EU and placed on the 
EU market. Classification and labelling is therefore an essential element of risk 
management measures of chemicals.  
 
All marketed substances and preparations must be evaluated for hazard 
classification and labelling, irrespective of the quantity placed on the market. 
The labelling is the first and often the only information on the hazards of a 
chemical that reaches the user, which could be a consumer or a worker. In 
addition the classification has a large number of downstream consequences 
within the EU legislation.  
 
New regulation 
By January 2009 the new CLP regulation on classification, labelling and 
packaging of substances and mixtures has had legal effect in the EU /7/. This 
regulation will gradually replace the present regulation for classification and 
labelling. The new regulation will come into force for single substances 
December 1st 2010 and for mixtures June 1st 2015 /7/. Until December 1st 
2010 substances and mixtures shall be classified labelled and packaged in 
accordance with the present legislation or they can be classified according to 
the CLP regulation. 
 
The CLP regulation is based on the Globally Harmonised System of 
Classification and Labelling of Chemicals (GHS, UN 2007) /61/. The GHS 
classification criteria are in certain cases slightly different than those of the 
current legislation /7/.  
 
It will be considered whether a future update of the advisory self-classification 
list based on the new criteria will be made. 
 

1.3 (Q)SARs and their use in chemical assessment 

Structure-activity relationships (SARs) and quantitative structure-activity 
relationships (QSARs), collectively referred to as (Q)SARs, are theoretical 
models that can be used to predict the physic-chemical, biological (e.g. 
toxicological) and environmental fate properties of molecules based on the 
chemical structure. 
 
(Q)SARs tools are used more and more by authorities in the US and the EU, 
as well as by industry, to assess physico-chemical, (eco-)toxicological, and fate 
properties of substances. 
 
REACH 
In the new EU chemicals legislation, REACH, all other options, including use 
of (Q)SARs, should be considered before performing (or requiring) 
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vertebrate testing /1/. Annex XI of REACH contains the following wording 
regarding (Q)SARs: 
 
Results obtained from valid qualitative or quantitative structure-activity 
relationship models ((Q)SARs) may indicated the presence or absence of a certain 
dangerous property. Results of (Q)SARs may be used instead of testing when the 
following conditions are met: 
 

- Results are derived from a (Q)SAR model whose scientific validity has been 
established, 

- The substance falls within the applicability domain of the (Q)SAR model, 
- Results are adequate for the purpose of classification and labelling and/or 

risk assessment, and, 
- Adequate and reliable documentation of the applied method is provided. 

 
There will be no formal adoption process for (Q)SARs under REACH. 
QSAR Model Reporting Formats (QMRF’s) to compile information on 
endpoint, training set, validation results etc. for individual models will be 
gathered in a JRC QSAR Model Database. There will not be made fixed 
criteria for how the (Q)SARs should perform to receive regulatory 
acceptance, but rather a learning-by-doing process to gain experience and 
common understanding of use of (Q)SARs in chemical assessments /9/. 
 
In the hazard and risk assessment process, (Q)SARs are often used in 
combination with other sources of information on chemicals, either to 
prioritise chemicals for further assessment, to supplement or to replace 
testing.  
 
With the implementation of REACH it is expected that (Q)SARs will be used 
increasingly for the direct replacement of test data as their use, when available 
and adequate, is in fact an obligation /9/. The goal of assessing many 
thousands of chemicals under REACH may not be achievable without the use 
of (Q)SARs and other non-test methods. Especially for low tonnage 
chemicals, (Q)SARs and other non-test methods may also give further 
information beyond the information requirements of REACH. 
 
  



 

14 

 



 

15 

2 Creation and use of the advisory 
list for self-classification  

Following development of new and/or improved (Q)SAR-models the list of 
advisory self-classification of dangerous substances has been updated. This 
chapter of the report presents the methodology applied for this new version of 
the advisory list for self-classification of dangerous substances.  
 

2.1 The selected dangerous properties  

The following endpoints were addressed using (Q)SARs :  
 
• Mutagenicity  
• Carcinogenicity  
• Reproductive toxicity (possible harm to the unborn child) 
• Hazard to the aquatic environment 
 
Two endpoints have not yet been updated in AL2009:  
 
• Acute oral toxicity  
• Sensitization by skin contact  
 
(Q)SAR-predictions for these endpoints were used to assign the classifications 
listed in Table 1. 
 
Dangerous 
property 

Classification Wording of Classification 

Mutagenicity Mut3;R68 Mutagen, category 3; possible risk of 
irreversible effects 

Carcinogenicity Carc3;R40 Carcinogen, category 3; possible risk 
of irreversible effects 

Reproductive 
toxicity 

Repr3; R63 Reproductive toxicant, category 3, 
Possible risk of harm to the unborn 
child 

N;R50 Dangerous for the environment; very 
toxic to aquatic organisms 

N;R50-53 Dangerous for the environment; very 
toxic to aquatic organisms, may cause 
long-terms adverse effects in the 
aquatic environment 

N;R51-53 Dangerous for the environment; toxic 
to aquatic organisms, may cause long-
terms adverse effects in the aquatic 
environment 

Danger to the 
aquatic 
environment 

N; R52-53 Harmful to aquatic organisms, may 
cause long-terms adverse effects in the 
aquatic environment 

Table 1: Advisory classifications in AL2009 
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2.2  The evaluated chemical substances 

The overall purpose of the current project was to evaluate as many chemical 
substances as possible with relevance to the existing regulation for chemicals 
within the EU.  
 
Under REACH /1/ all chemicals with tonnages above 1 ton/year were pre-
registered between June 1st 2008 and December 1st 2008. It would have been 
relevant to evaluate all chemicals in this inventory but at the time of 
preparation of AL2009 no official list existed.  
 
It was therefore decided to base this project on the EINECS list /3,4/. This list 
consists of 100,204 entries, covering organic and inorganic substances in both 
single substance entries (mono-constituent substances) and mixtures (multi-
constituent substances and UVBCs).  
 
The exercise was limited to cover "discrete organics," meaning that multi-
constituent substances and UVCBs (Unknown, Variable Composition and 
Biologicals) were excluded for practical reasons – “if you don’t know what it 
is, you can’t model it”.  
 
Inorganic substances have likewise not been evaluated. These are usually 
better approached by simpler methods of evaluating the availability of the 
respective an- and cations with well-known hazard profiles. "Organo-
metallics" have also been excluded as being poor candidates for modelling. As 
an error check, only such structural representations, which could be 
successfully converted to 3D were used /10/.  
 
When it was possible using a CAS number comparison, all substances already 
classified on the list with formal EU harmonized classifications, Annex I of 
Directive 67/548/EEC (List of dangerous substances, /2/) were also removed. 
However, as there is no official overview of the substances covered by the 
group entries in Annex I, and because a chemical may have more than one 
CAS number, a few chemicals covered by Annex I may not have been 
removed from AL2009. 
 
This resulted in a total of 49,292 discrete organic substances, or about half of 
all EINECS chemicals, which could be subjected to (Q)SAR based 
assessment. 
 

2.3 Test data 

For the vast majority of the assessed chemicals no test data were available. 
However, if test data were available as part of the (Q)SAR-model, this was 
generally used in preference to the estimates.  
 
It is important to stress that no attempt was made to search published or 
unpublished databases for toxicological, ecotoxicological or environmental 
fate information to determine whether a (Q)SAR was necessary for any 
endpoint assesssed.  
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2.4 Reliability of (Q)SAR-predictions 

The reliability of (Q)SAR-predictions depend on numerous parameters 
relating to the mathematical methods used, the number and precision of the 
underlying data used for developing the model and how suitable the model is 
for the particular substance. 
 
In general the uncertainty of (Q)SARs is caused predominantly by two 
different reasons: a) the inherent variability of the input data used to establish 
the model (training set); and b) the uncertainty resulting from the fact that a 
model can only be a partial representation of reality (in other words does not 
model all possible mechanisms concerning a given endpoint and does not 
cover all types of chemicals). However, as a model averages the uncertainty 
over al chemicals, it is possible for an individual model estimate to be more 
accurate than an individual measurement /9/. 
 
The reliability of (Q)SAR predictions can be described in many ways. Usually 
a range of parameters and concepts are used (see e.g. /9/ for a more extensive 
review). These concepts may not be known by all readers. Annex 1 contains 
descriptions of the concepts applied in this report.  
 

2.5 Validation 

Validation is a trial of the model performance for a set of substances 
independent of the training set, but within the domain of the model. The 
model predictions for these substances are compared with measured 
endpoints for the substances in order to establish the predictivity of the model. 
 
Ideally all models should be assessed by checking how well they predict the 
activity of chemicals, which were not used to make them. This is, however, 
not always simple. In part valuable information may be left out by setting 
aside chemicals to be used in such an evaluation, and in part it can be 
extremely difficult to assess how “external” chemicals relate to the model’s 
domain; that is, if they represent a random distribution within this domain 
and thereby giving a fair picture of the predictivity of the model.  
 
This problem is often addressed by using one or another form of cross-
validation, where a number of partial models are “externally validated” by 
splitting the training set into a reduced training set and a testing set. The 
reduced training set is used to develop a partial model, while the remaining 
data are used as a test set to evaluate the model predictivity.  
 
This is repeated a number of times and the results are used to calculate the 
predictivity measures for the models; for quantitative models in the form of Q2 
and SDEP (standard deviation error of prediction), and for qualitative 
(yes/no) models in the form of sensitivity, specificity and concordance (se 
Annex 1 and refs /9/ and /11/ for further details).  
 
While drawbacks of cross-validation exist /14, 15/, much of the criticism is 
directed towards a particular form of cross validation; the leave-one-out cross-
validation /14/. In the validations carried out on the models applied in this 
project the more stable leave-many-out cross-validation approach by leaving 
out random pos/neg balanced sets of 50% of the chemicals, repeated ten 
times, was used /13/. Leaving out 50% of the chemicals in the partial 
validation models is a large perturbation of the training set, which generally 
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leads to realistic, and often pessimistic, measures of the predictivity of the 
model. 
 
The commercial cancer models were validated by external validation /24/.  
 
Concordance will vary depending on both the method used, and the endpoint 
in question. In general, accuracy of contemporary (Q)SAR systems can often 
correctly predict the activity of about 70 – 85% of the chemicals examined, 
provided that the query structures are within the domains of the models. This 
also applies to the models described in this paper.  
 
QSAR Model Reporting Formats (QMRF’s) for all the toxicity models 
applied in this project, including training sets for the DK models, have been 
submitted to the EU JRC QSAR Model Database and the OECD QSAR 
Application Toolbox /35, 37/. 
 

2.6 Applicability domain 

When applying (Q)SAR’s it is important to assure that an obtained prediction 
falls within the domain of the models i.e., that there is sufficient similarity (in 
relevant descriptors) between the query substance and substances in the 
training set of the model.  
 
There is no single and absolute applicability domain for a given model /9/. 
Generally, the broader the applicability domain is defined the lower 
predictivity can be expected. The applicability domain should be clearly 
defined and the validation results should correspond to this defined domain, 
which is again used when the model is applied for predictions.  
 
The applicability domains for MultiCASE models as defined by the US Food 
and Drug Administration (FDA) and implemented in the MultiCASE 
software were used in this project: No warnings in the predictions were 
accepted, except warning for one unknown fragment in chemicals where a 
significant biophore has been detected. Only positive predictions where no 
significant deactivating fragments were detected were accepted.  
 
For aquatic toxicity endpoints, warning for one unknown fragment in 
chemicals which were predicted negative was also accepted, as these 
chemicals underwent prediction by a subsequent model (a log Kow equation) 
to predict if they exerted aquatic toxicity by non-polar narcosis.  
 
The EPISUITE models for rapid biodegradation /43, 45/ and the 
bioconcentration factor in fish /42/ do not automatically flag the predictions 
for domain coverage. No attempts have been made to consider the 
applicability domain for predictions made by these models. 
 
Depending on the endpoint in question, predictions outside the applicability 
domain were obtained for between 27 and 58% of the chemicals examined by 
the individual MultiCASE models.  
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2.7 Application of the models 

It is important to note that the applied models in principle do not predict a 
"classification" – they predict a biological activity that may lead to a 
classification.  
 
Because of the large number of chemicals involved, “rules” were used for 
each endpoint to try and link the biological prediction with a risk phrase. In 
essence the process is no different than that imposed upon a human expert 
forced to interpret the information available in order to comply with the duty 
to make an assessment and self-classification. 
 
The applied models have been used in combinations / batteries within the 
chosen classification endpoints to reach a final call in an attempt to reach 
further reliability beyond individual model predictions and to best comply 
with the classification criteria. 
 

2.8 The result 

The result of the computer-based assessment is AL2009 which comprises 
23,922 chemical substances with advisory classifications for one or more of 
the dangerous properties selected. 
 
The results only represent POSITIVE predictions (for quantitative models 
“positive” here means predicted to have the effect or property as determined 
in relation to a cut-off point). No distinction has been made between a 
negative prediction for an endpoint, and an unreliable prediction (prediction 
outside the applicability domain of the model), which was simply discarded.  
 
Evaluated substances which are not on the list, or substances which are on the 
list but without advisory classifications for one or more of the selected 
dangerous properties, may have been predicted as not having this / these 
dangerous properties, or the models may not have been valid for this 
substance (i.e. predictions were outside the applicability domain for these 
models).  
 
Therefore the advisory list cannot be used to conclude that these substances do not 
possess dangerous properties.  
 
Another important point is that AL2009 represent (Q)SAR based 
identifications of possible hazardous properties of the included chemicals; no 
attempt has been made to evaluate the risk that these chemicals constitute in 
their current use in the EU.  
 
All results are available on the website of the Danish EPA (www.mst.dk) 
where searches can be made on substance name (in Danish), CAS-number, 
EINECS-number, EINECS-name, CAS-name and chemical formula. The 
whole list can also be downloaded as an Excel file. 
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2.9 How the self-classification list can help manufacturers and 
importers to comply with the classification duties  

By making the advisory list for self-classification of dangerous substances 
available to the public, the Danish EPA wishes to offer manufacturers and 
importers a tool which can be used when carrying out self-classification of 
chemical substances for those dangerous properties which are included in the 
list.  
 
If available, reliable test data or predictions using other non-test methods on 
specific substances should always be considered in parallel to computer 
predictions and expert judgements in a weight of evidence (WoE) approach 
to decide on the appropriate classification for a given endpoint. 
 
It is recommended that the list is used in the following way in the 
classifications of chemicals: 
 

1. Examine if the substance is on Annex VI, table 2 of the EU regulation 
for classification, labelling and packaging of dangerous substances /6/. 
If so it should be classified accordingly. For non-classified endpoints 
no classification can be recommended, unless new information 
becomes available.  

2. If the substance is not in Annex VI, table 2, it should be classified 
according to the criteria in the Regulation for classification, packaging 
and labelling of dangerous substances /6/ using all available test and 
non-test data, including AL2009. 
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3 Technical description of the self-
classifications  

The current chapter gives the detailed description of how the advisory 
classifications were assigned to the chemicals in the advisory list for self-
classification. This includes description of the classification rules and the 
(Q)SARs used for predicting the dangerous properties of the chemicals. It 
must be noted that the advisory classifications for acute oral toxicity and 
sensitisation by skin contact have not been updated. The advisory 
classifications for these two endpoints are still recommended for use with the 
documentation as given in the previous version of self-classification list /5/.  
 

3.1 Mutagenicity 

The criteria for classification for mutagenicity are divided into 3 different 
categories: 
 
Classification as mutagen, category 1 (Mut1;R46, May cause heritable genetic 
damage) is based on evidence of a causal association between human 
exposure to the substance and heritable genetic damage.  
 
Classification as mutagen, category 2 (Mut2;R46, May cause heritable genetic 
damage) is based on animal studies showing mutagenity to germ cells either in 
assays on germ cells or by demonstrating mutagenic effects in somatic cells in 
vivo or in vitro as well as metabolic proof that the substances reaches the germ 
cells.  
 
The criteria for classification as mutagen, category 3 (Mut3;R68, Possible 
risks of irreversible effects) is based either on in vivo mutagenicity tests or on 
cellular interactions with in vitro tests acting as supportive evidence. For this 
classification, it is not necessary to demonstrate germ cell mutations. 
 
(Q)SAR based evaluation 
Five models predicting genotoxicity in vivo endpoints were applied in the 
screening. Data for the training sets were obtained from the literature. The 
technical specifications for the models are given in Table 2. 
 
Drosophila melanogaster Sex-Linked Recessive Lethal (SLRL) (in vivo) 
The training set consists of data from Lee et al. /16/. In the experimental 
method, Drosophila melanogaster males and females are used. Males are 
treated with the test substance and mated individually to virgin females. The 
test detects the occurrence of mutations, point mutations and small deletions, 
in the germ line of the insect. The mutations are phenotypically expressed in 
males carrying the mutant gene. When the mutation is lethal in the 
hemizygous condition, its presence is inferred from the absence of one class of 
male offspring out of the two that are normally produced by a heterozygous 
female. The assay has a low sensitivity for genotoxins other than direct-acting 
agents and simple promutagens, but a very high specificity, which means that 
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in general a positive result has considerable value for prediction of potential 
genotoxicity in mammals. 
 
Mutations in mouse micronucleus (in vivo) 
The training set includes data from Hayashi et al. /17/, Mavournin et al. /18/, 
Waters et al. /19/, and Morita et al. /20/. The test detects micronuclei 
produced by damage to the chromosomes or the mitotic apparatus in red 
blood cells. Micronuclei are small nuclei produced during cell division. They 
contain chromosome fragments or whole chromosomes. In the test, mice are 
exposed to the test substance and young red blood cells (erythrocytes) from 
the bone marrow are isolated and analysed for micronucleus. The test is 
especially relevant to assess mutagenic hazard in that it allows consideration of 
factors of in vivo metabolism, pharmacokinetics and DNA-repair processes.  
 
Dominant lethal effect in rodents (in vivo) 
The training set is comprised of data from Green et al. /21/ and other 
references. In the experimental method, mice and rats are used. Treated males 
are mated to virgin females according to an experimental scheme. Females are 
sacrificed in the second half of pregnancy and uterine contents are examined 
to determine the number of implants and live and dead embryos. The 
category of early embryonic deaths is the most significant index of dominant 
lethality and as such used as endpoint. The test identifies major genetic 
damage, mainly the induction of structural and numerical chromosomal 
anomalies.  
 
Sister chromatid exchange in mouse bone marrow (in vivo) 
Data from Tucker et al. /22/ are used in the training set. The sister chromatid 
exchange (SCE) assay detects interchange of DNA between two sister 
chromatids of a duplicating chromosome. Mice are exposed to the test 
chemical. Then a thymidine analog, bromodeoxyuridine (BrdU) is injected. If 
DNA exchanges occur, BrdU can be identified by use of a fluorescence 
technique in chromosomes in the metaphase. The test is considered to be a 
sensitive method for evaluating mutagenicity and may be an indicator of 
carcinogenicity. 
 
Comet assay in mouse (in vivo) 
The training set includes data from Sasaki et al. /23/ plus a number of 
physiological chemicals theoretically assumed not to have the effect (such as 
various amino acids, sugar molecules, fatty acids etc.). The latter was included 
to get a better distribution between positives and negatives in the training set 
for the model). Included in the training set of the model are results from eight 
tissue types; stomach, colon, liver, kidney, bladder, lung, brain and bone 
marrow. The comet assay detects DNA strand break and can be applied to 
virtually any organ of interest. In the experimental test, a microgel 
electrophoretic technique is used for detecting DNA damage at cell level. The 
tested chemical is positive if it produces breaks in DNA-strings, resulting in 
small strings of DNA that are able to migrate further in a microgel, than intact 
DNA strings. In the microscope, damaged DNA is seen as a “comet” while 
not damaged DNA appear as a dot. If appropriately performed, the test has 
been shown to be reliable with high sensitivity to detect DNA damage in 
organs that cannot be investigated in other classical mutagenicity assays.  
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Model Technical summary 

Drosophila melanogaster Sex-Linked Recessive Lethal 
(in vivo)  

MultiCASE, DK model  
Training set: n=377 
Cross-validation 10*50% gave  
Sensitivity: 73.9% 
Specificity: 88.0% 
Concordance: 81.6% 
Domain: 48% 

Mutations in mouse micronucleus (in vivo)  

MultiCASE, DK model  
Training set: n=358 
Cross-validation 10*50% gave  
Sensitivity: 30.1% 
Specificity: 84.5% 
Concordance: 66.1% 
Domain: 59% 

Dominant lethal mutations in rodent (in vivo)  

MultiCASE, DK model 
Training set: n=191 
Cross-validation 10*50% gave  
Sensitivity: 41.3% 
Specificity: 95.2% 
Concordance: 75.9% 
Domain: 42 

Sister chromatid exchange in mouse bone marrow (in 
vivo)  

MultiCASE, DK model 
Training set: n=265 
Cross-validation 10*50% gave  
Sensitivity: 70.4% 
Specificity: 86.9% 
Concordance: 85.5% 
Domain: 53% 

COMET assay in mouse (in vivo) 

MultiCASE, DK model 
Training set: n=286 
Cross-validation 10*50% gave  
Sensitivity: 63.3% 
Specificity: 93.3% 
Concordance: 83.9% 
Domain: 45% 

Table 2: Technical summary for the mutagenicity models 
 
 

 
Figure 1: Schematic diagram illustrating the systematic evaluation applied to assign 
advisory classifications for mutagenicity. 
 
For a substance to be selected as a probable mutagen it was necessary for the 
following criteria to be fulfilled: Positive prediction in two or more models, 
accepting only predictions where no significant deactivating fragments were 
detected. If one or more positive tests could be seen (as part of the training 

 Mutagenicity screening 
 
Models for in vivo 

 
 Drosophila melanogaster SLRL 
 Mouse micronucleus 
 Rodent dominant lethal 
 Mouse sister chromosome exchange 
 Mouse COMET 

Positive test result in at least 
one training set or  
positive prediction in at least 
two models 

Advisory classification 
Mut3; R68 
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sets for the models) for any genotoxicity endpoint, this took precedence over 
model predictions.  
 
When classification is proposed on basis of test data, a positive result in a 
single in vivo test is sufficient evidence on which to base the classification. In 
contrary to that, positive predictions in at least two models were required here.  
 
5,742 of the chemicals investigated in the current project met the criteria in 
the systematic evaluation and were assigned advisory classifications 
Mut3;R68. 
 

3.2 Carcinogenicity 

This endpoint can result in classification in 3 different categories: 
 
Classification as carcinogen in category 1 (Carc1;R45, Toxic; May cause 
cancer, or Carc1;R49, Toxic; May cause cancer by inhalation) is based on a 
strong causal relationship in humans. 
 
Classification as carcinogen in category 2 (Carc2;R45, Toxic; may cause 
cancer, or Carc2;R49, Toxic; may cause cancer by inhalation) is based on 
conclusive animal data from 2 species or 1 species with supportive evidence 
such as genotoxic effects in vitro or in vivo. 
 
Classification as carcinogen in category 3 (Carc3;R40, Harmful; Possible risks 
of irreversible effects”) is subdivided into two: 
 

a) Well-investigated substances with restricted tumorigenic effects. It is 
normally based on clear data of tumour formation in one species. 
Mutagenicity data in vitro and in vivo can be used as supportive 
evidence. 

b) Substances that are insufficiently investigated, but raising concern for 
man. 

  
(Q)SAR based evaluation 
Four models predicting carcinogenicity in vivo and models predicting three 
genotoxicity in vitro endpoints were applied in the screening. Commercial 
MultiCASE training sets constitutes the basis of the carcinogenicity models. 
The technical specifications for the models are given in Table 3. 
 
Carcinogenicity male and female, rats and mice (in vivo) 
The models are the MultiCASE commercial models AG1-4 /24/. The training 
sets were constructed using the NTP (US National Toxicology Program) 
rodent carcinogenicity database, the Lois Gold Carcinogen Potency Database, 
FDA/CDER (US Food and Drug Administration / Center for Drug 
Evaluation and Research) archives, and the scientific literature. Training sets 
include both non-proprietary and proprietary data. Proprietary (confidential) 
data constitute around ten percent of the training sets. The open models 
based on the non-proprietary data were also available and consulted in the 
screening process.  
 
In the experimental test, the test substance is administered by an appropriate 
route to the animals for a major portion of their lifespan. The highest dose 
level should elicit signs of toxicity, without substantially altering the normal 
lifespan due to effects other than tumours. During and after exposure, the 
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animals are observed daily to detect signs of toxicity, particularly the 
development of tumours.  
 
Reverse mutation test, Ames (in vitro) 
The training set is from Kazius et al. /25/. The bacterial reverse mutation test 
detects point mutations, which involve substitution, addition or deletion of 
one or a few DNA base pairs. Amino-acid (histidin) requirering strains of 
Salmonella typhimurium are used. Mutations, which revert mutations present 
in the test strains and restore the functional capability of the bacteria to 
synthesise the amino acid (histidin), are detected. These appear by the ability 
of the bacteria to grow in the absence of histidin required by the parent test 
strain. The test is a useful tool as an initial screen for potential in vivo 
genotoxic activity, and has become the most extensively used in vitro short-
term test in the screening for mutagenicity. 
 
Chromosomal aberration CHO/CHL (in vitro) 
This model was used by Niemela and Wedebye /28/ to evaluate the OECD 
principles for development and validation of (Q)SARS /27/. The Chinese 
Hamster Ovary (CHO) model is the commercial MultiCASE model A61 /26/ 
and the training set for the Chinese Hamster Lung (CHL) model was taken 
from Ishidata /28,29/. The in vitro mammalian chromosome aberration test 
identifies agents that cause structural chromosome aberrations in cultured 
cells. Chromosome damage is expressed as breakage of single or both 
chromatids, sometimes followed by reunion between chromatids or of both 
chromatids at an identical site. Many compounds that are positive in this test 
are mammalian carcinogens causing DNA damage. 
 
Mutations in mouse lymphoma (in vitro) 
The training set is comprised of data from Grant et al. /30/. The mouse 
lymphoma assay detects mutations affecting the heterozygous thymidine 
kinase (TK) locus. It identifies chemicals acting as clastogens (delete, add, or 
rearrange chromosome sections) as well as point mutagens. Mutations in 
genes coding for TK are identified. TK is involved in the phosphorylation of 
thymidin and subsequently in the formation of DNA. Positive chemicals may 
give rise to mutations in genes coding for TK. A mutation may result in loss 
of the ability to phosphorylate the pyrimidin analogs, which is detected by the 
test. The assay has a reputation for high sensitivity and low specificity of 
detecting genotoxic agents. However, in this exercise the model is used to give 
mechanistic information to chemicals already predicted to be carcinogens. 
 
Model Technical summary 

Carcinogenicity in male rat (in vivo) 

MultiCASE, AG1 
Training set: n=1381 
External validation (100 chemicals):  
Sensitivity: 58.6% 
Specificity: 97.6%  
Concordance: 75.0% 
Domain: 70% 

Carcinogenicity in female rat (in vivo) 

MultiCASE, AG2 
Training set: n=1376 
External validation (100 chemicals):  
Sensitivity: 58.6% 
Specificity: 97.6%  
Concordance: 75.0% 
Domain: 70% 
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Carcinogenicity in male mouse (in vivo) 

MultiCASE, AG3 
Training set: n=1252 
External validation (100 chemicals):  
Sensitivity: 58.6% 
Specificity: 97.6%  
Concordance: 75.0% 
Domain: 71% 

Carcinogenicity in female mouse (in vivo) 

MultiCASE, AG4 
Training set: n=1263 
External validation (100 chemicals):  
Sensitivity: 58.6% 
Specificity: 97.6%  
Concordance: 75.0% 
Domain: 71% 

Reverse mutation test, Ames (in vitro)  

MultiCASE, DK model  
Training set: n=4102 
Cross-validation 10*50% gave  
Sensitivity: 84.4% 
Specificity: 82.5% 
Concordance: 83.5% 
Domain: 73% 

Chromosomal aberration CHO (in vitro)  

MultiCASE, A61 
Training set: n=233 
Cross-validation 10*50% gave  
Sensitivity: 32.0% 
Specificity: 91.2% 
Concordance: 69.9% 
Domain: 45% 

Chromosomal aberration CHL (in vitro) 

MultiCASE, DK model 
Training set: n=600 
Cross-validation 10*50% gave  
Sensitivity: 57.8% 
Specificity: 86.5% 
Concordance: 74.3% 
Domain: 64% 

Mutations in mouse lymphoma (in vitro)  

MultiCASE, DK model 
Training set: n=555 
Cross-validation 10*50% gave  
Sensitivity: 68.5% 
Specificity: 86.3% 
Concordance: 79.2% 
Domain: 64% 

Table 3: Technical summary for the carcinogenicity models 
 
Identification of carcinogenic substances  
For a substance to be selected as a probable carcinogen it was necessary for 
the following criteria to be fulfilled: Positive according to the ICSAS 
methodology /24/, corresponding to two or more positive carcinogenicity 
predictions, accepting only predictions for chemicals without significant 
deactivating fragments. If one or more positive tests could was observed (as 
part of the training sets for the models) for any cancer endpoint, this took 
precedence over model predictions.  
 
While in most cases this resulted in little change (the models are heavily 
biased towards making a correct prediction for substances used to make 
them), it was felt that there was no reason to artificially reduce the quality of 
the advisory classification by neglecting to use data, which happen to be 
present. One or more negative tests in the training set of each model also took 
precedence over predictions of that model, except in cases where positive 
training set tests were present in other cancer models.  
 
Employing this carcinogenicity identification algorithm resulted in a list of 
3,726 positive predictions. 
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Figure 2: Schematic diagram illustrating the systematic evaluation applied to 
assign advisory classifications for carcinogenicity.  
 
Identification of genotoxic carcinogens 
While there are many non-genotoxic carcinogens acting by a wide variety of 
often-unknown mechanisms, it was chosen to focus here on chemicals likely 
to cause cancer through a genotoxic mechanism. Therefore, a further 
selection criterion for genotoxicity was set up. 
 
As opposed to the selection criteria for mutagenicity, not all genotoxic 
carcinogens are necessarily clastogenic (cause loss, addition or rearrangement 
of parts of chromosomes). To select the genotoxic chemicals from the 
chemicals already predicted positive for in vivo carcinogenicity,which include 
genotoxic as well as non-genotoxic carcinogens, a battery of models for 
sensitive in vitro genotoxicity endpoints was used. 
 
The genotoxicity criterion was a positive estimate in one or more of the 
models for the following in vitro genotoxicity endpoints; Reverse mutation test 
(Ames), chromosomal aberrations (CHO/CHL), or mutations in mouse 
lymphoma.  
 
A schematic diagram of the systematic evaluation is given in Figure 2. 
According to these criteria, 3,726 of the chemicals assessed in the current 
project were identified as genotoxic carcinogens and selected for advisory 
classification for carcinogenicity. It is not felt that the models employed allow 
discrimination between classification in the three categories, so the lower 
classification Carc3;R40 was applied in all cases. 

 

Genotoxicity screening 
 
Predictions from models for in vitro 

 
 Reverse mutation test (Ames) 
 Chromosomal aberration (CHO/CHL) 
 Mouse lymphoma 

 

Positive prediction or  
positive experimental test  
in at least one model

Advisory classification 
Carc3; R40 

Carcinogenicity screening 
 
Predictions from models for in vivo 

 
 Carcinogenicity, male rat 
 Carcinogenicity, female rat 
 Carcinogenicity, male mouse 
 Carcinogenicity, female mouse

Positive prediction according 
to the FDA ICSAS method,  
or positive experimental test 
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3.3 Reproductive toxicity 

 
This endpoint can result in classification in 3 different categories: 
 
Classification as toxic to reproduction in category 1 (Rep1;R60, Toxic; May 
impair fertility, or Rep1;R61, Toxic; May cause harm to the unborn child) is 
based on a strong causal relationship in humans. 
 
Classification as toxic to reproduction in category 2 (Rep2;R60, Toxic; May 
impair fertility, or Rep2;R61, Toxic; May cause harm to the unborn child) is 
based primarily on animal data, and secondly on “other relevant information”. 
Data from in vitro studies, or studies on avian eggs, are regarded as 
“supportive evidence” and would only exceptionally lead to classification in 
the absence of in vivo data. 
 
Classification as toxic to reproduction in category 3 (Rep3;R62, Harmful; 
Possible risks of impaired fertility, or Rep3;R63, Harmful; Possible risk of 
harm to the unborn child) is based primarily on animal data, and secondly on 
“other relevant information”. Substances in category three are insufficiently 
investigated, but raising concern for man. 
 
Classification for reproductive toxicity covers a wide range of effects on either 
fertility or to the developing organism before and after birth (structural or 
functional damage). The (Q)SAR models applied in the current project only 
cover certain but far from all types of harm to the unborn child. Hence only 
certain types of mechanisms causing malformations or death are covered. 
Furthermore, no (Q)SAR models were used for effects on fertility. 
 
(Q)SAR based evaluation 
Three models predicting in vivo teratogenicity or fetal lethality related 
endpoints were applied in the assessment. A commercial MultiCASE training 
set constitutes the basis of one model. Data for the training sets for the two 
other models were obtained from the literature. The technical specifications 
for the models are given in Table 4.  
 
Teratogenic risk (in vivo) 
The model is the MultiCASE commercial model A49 /31/. The training set is 
composed of data taken from the TERIS (Teratogen Information System) 
and a compilation in which the FDA (US Food and Drug Administration) 
definitions were used to quantify risk of developmental toxicity from drugs 
used during pregnancy. The training set consists of clinical and 
epidemiologicdata. Many biological mechanisms are involved in the effects. 
 
Drosophila melanogaster SLRL effect (in vivo) 
The training set consists of data from Lee et al. (1983) /32/. In the 
experimental method, Drosophila melanogaster males and females are used. 
Males are treated with the test substance and mated individually to virgin 
females. The test detects the occurrence of mutations, point mutations and 
small deletions, in the germ line of the insect. The mutations are 
phenotypically expressed in males carrying the mutant gene. When the 
mutation is lethal in the hemizygous condition, its presence is inferred from 
the absence of one class of male offspring out of the two that are normally 
produced by a heterozygous female. The assay has a low sensitivity for 
genotoxins other than direct-acting agents and simple promutagens, but a 
very high specificity. 
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Dominant lethal effect in rodents (in vivo) 
The training set is comprised of data from Green et al. (1985) /33/ and other 
references /21/. In the experimental method, mice and rats are used. Treated 
males are mated to virgin females according to an experimental scheme. 
Females are sacrificed in the second half of pregnancy and uterine contents 
are examined to determine the number of implants and live and dead 
embryos. The category of early embryonic deaths is the most significant index 
of dominant lethality and as such used as endpoint. The test identifies major 
genetic damage, mainly the induction of structural and numerical 
chromosomal anomalies.  
 
Model Technical summary 

Teratogenic risk in humans (in vivo)  

MultiCASE, A49 
Training set: n=323 
Cross-validation 10*50% gave  
Sensitivity: 50.2% 
Specificity: 91.3% 
Concordance: 79.3% 
Domain: 48% 

Mutations in Drosophila melanogaster SLRL (in vivo)  

MultiCASE, DK model 
Training set: n=377 
Cross-validation 10*50% gave  
Sensitivity: 73.9% 
Specificity: 88.0% 
Concordance: 81.6% 
Domain: 48% 

Dominant lethal mutations in rodent (in vivo)  

MultiCASE, DK model 
Training set: n=191 
Cross-validation 10*50% gave  
Sensitivity: 41.3% 
Specificity: 95.2% 
Concordance: 75.9% 
Domain: 42% 

Table 4: Technical summary for the models for reproductive toxicity. 
 
The dominant lethal test in rodents and the Drosophila SLRL test are initially 
meant for genotoxicity effects on germ cells, but the resulting effect is early 
embryonic deaths and lethal effect on offspring, respectively. Therefore, the 
endpoints are relevant for reproductive toxicity assessment. 
 
In many cases, a toxicological threshold is assumed to exist for reproductive 
toxicity. With mutagenic chemicals this may not be the case. 
 

 
Figure 3: Schematic diagram illustrating the systematic evaluation applied to 
assign advisory classifications for reproductive toxicity. 

 Reproductive toxicity screening 
 
Predictions from models for in vivo 

 
 Teratogenicity, human 
 Drosophila melanogaster SLRL  
 Rodent dominant lethal 

 

Positive prediction in at least  
one model and not predicted  
negative for teratogenicity 

Advisory classification 
Rep3; R63 
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For a substance to be selected as probable toxic to reproduction in the 
assessment, the criterion was a positive prediction in any of the three models 
and without a negative prediction in the teratogenic risk in humans model (see 
Figure 3) (see also /34/).  
 
The screening resulted in a list of 4,036 positive predictions. The models 
employed do not allow discrimination between classification in the three 
classification categories, so the lower classification Rep3;R63 was applied in 
all cases. 
 

3.4 Danger to the aquatic environment 

The classification criteria are composed of three main elements: 1) potential 
for rapid degradation, 2) bioconcentration potential in fish, and 3) short-term 
toxicity to aquatic organisms (fish, daphnia, and algae). Classifications are 
assigned according to the following scheme: 
 
Classification Classification criteria* 
N;R50 
Dangerous for the environment;  
very toxic to aquatic organisms 

Acute toxicity ≤ 1.0 mg/L 

N;R50/53 
Dangerous for the environment;  
very toxic to aquatic organisms;  
may cause long-term adverse effects in the 
aquatic environment 

Acute toxicity ≤ 1.0 mg/L  
and not readily degradable or  
BCF**≥ 100 

N;R51/53 
Dangerous for the environment;  
toxic to aquatic organisms;  
may cause long-term adverse effects in the 
aquatic environment 

Acute toxicity > 1 and ≤ 10 mg/L and not readily 
degradable or  
BCF** ≥ 100 

R52/53 
Harmful to aquatic organisms;  
may cause long-term adverse effects in the 
aquatic environment 

Acute toxicity > 10 and ≤ 100 mg/L and not 
readily degradable 

R53 
Harmful to aquatic organisms 
 

Solubility in water < 1 mg/L and  
not readily degradable and  
BCF** ≥ 100 

Table 5: EU criteria for classification for danger to the aquatic environment  
* The lowest effect concentration, EC50, for fish, daphnia or algae is used 
** BCF: Bioconcentration factor 

 
(Q)SAR based evaluation 
Advisory classifications were assigned on the basis of combinations of 
estimates for ready biodegradability, bioconcentration and acute toxicity 
according to the criteria in Table 5. Classification with risk phrase R53 alone 
was not done in this exercise, as the strong co-linearity between water 
solubility and bioconcentration factor made it redundant. 
It is noted that compared to the classification criteria according to which 
abiotic degradation (and assessment of primary degradation products for their 
environmental hazard classification) can be used, only predictions concerning 
potential for rapid biodegradation was employed here. Furthermore only 
predictions for bioconcentration in fish were used even though the 
classification criteria refers to use of log Kow when reliable measured BCF 
data in fish are not available.  
 
Biodegradation 
Biodegradability was estimated using the Syracuse BIOWIN program /43/. 
Only the non-linear equation for rapid/non-rapid biodegradation (BPP2) was 
applied. Previous validation of this parameter compared with 304 MITI 
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“ready/not-ready (45:259) results showed that while a relatively high 
percentage of “not-ready” chemicals were missed (sensitivity result was 53%), 
97% of “not ready” predictions were correct (PPV, Positive Predictive Value) 
in this “chemical universe” of 85% not-ready chemicals /44/. MITI data was 
also applied by Tunkel et al /41/ who found a sensitivity of 53%, a specificity 
of 86% and a PPV of 83% for 884 chemicals (385 ready: 499 not-ready). 
These findings were largely confirmed in a comparison exercise made by the 
Danish EPA and based on chemicals assessed at OECD (SIAM 11-18), 
where 128 chemicals (59 ready:69 not-ready), which were not part of the 
BPP2 training set indicated a sensitivity of 54%, a specificity of 85% and a 
positive predictive value of 80% /38/. In other words while this model may fail 
to identify around half of all “non-ready” substances, the number of false 
predictions for not-ready biodegradability will be very low.  
 
A total of 11,766 chemicals of the 49,292 chemicals studied were found to be 
“not-readily degradable” according to this criterion.  
 
Bioconcentration 
The classification and labelling guidelines prefer measured data for 
bioconcentration, but as this rarely is available, a Log Kow of greater than three 
is recommended as an indication that BCF will be 100 or greater, in 
accordance with the linear equation of Veith /55/. While a good rule-of-
thumb, this relation both over- and underestimates BCF for many classes of 
chemicals, and is only applicable in the Log Kow interval 2-6.  
 
Bioconcentration was therefore predicted using Syracuse BCFWIN /42/, a 
method based on a combination of Log Kow relations and structural fragment 
categories. This method was evaluated by its authors as having a statistical 
accuracy of R2 = 0.74 (n = 694, S.D. 0.65, mean error = 0.47), which is a 
significant improvement over the standard equation of Veith (log BCF = 0.85 
* Log Kow – 0.70) where predictions for the same 694 compounds had a 
statistical accuracy of R2 = 0.32 (S.D. 1.62 and mean error = 1.12).  
 
No attempt was made to further assess bioaccumulation potential.  
 
For chemicals predicted to have aquatic toxicity concentrations below 10 
mg/L and to be readily biodegradable, 4,662 chemicals were predicted to have 
BCF estimates of equal to or greater than 100.  
 
Acute toxicity 
For aquatic toxicity classifications, it is recommended to used L(E)C50-values 
for fish, daphnia and algae. Aquatic toxicity to fish, daphnia and algae were 
predicted using three models and a theoretical equation.  
 
Fish 
For acute aquatic toxicity to fish a DK MultiCASE model using 96h LD50 
data on 569 chemicals from the Duluth Fathead minnow database was 
applied /48/. Cross-validation of this model gave a R2 of 0.735. As there was 
insufficient test data for very lipofilic substances the MultiCASE model was 
only applied for chemical substances with Log Kow of 6 or less. 
 
Daphnia 
For acute aquatic toxicity to daphnia a DK MultiCASE model using 48h EC50 
data on 641 chemicals from various sources was applied /49/. Cross-validation 
of this model gave a R2 of 0.69. As there was insufficient test data for very 
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lipofilic substances the MultiCASE model was only applied for chemical 
substances with Log Kow up to 7. 
 
Algae 
For acute aquatic toxicity to daphnia a DK MultiCASE model using EC50 
data on 531 chemicals (396 tests made at the Danish Technical University for 
the Danish EPA, plus literature data from various sources) /50/ was applied. 
Cross-validation of this model gave a R2 of 0.74.  
 
A regression equation was used on top of MultiCASE predictions to adjust for 
Log Kow contribution to the toxicity:  
 
Log EC50 (M) = 0.593*Log EC50 (MC4PC prediction, M) – 0.257*Log 
Kow + 1.076  
N = 343, R2 = 0.743, S.E = 0.853  
(Log Kow below –1 were set to –1, Log Kow above 7 and less or equal to 8 were 
set to 5, and Log Kow above 8 were set to 1) 
 
As there was insufficient test data for very lipophilic substances the 
MultiCASE model was only applied for chemical substances with Log Kow of 
up to 8.  
 
Non-polar narcosis predictions for highly lipophilic substances 
Another relationship was used for chemicals with a Log Kow of greater than 
six. Here, all substances were assumed to act by non-polar narcosis, and 
toxicity at equilibrium was estimated according to a relation to the predicted 
bioconcentration factor in small fish: 
 
LC50 (equilibrium) = 8.15 mmol /BCF 
 
The choice of 8.15 mmol corresponds to the theoretical level inducing aquatic 
lethal effects represented by the non-polar narcosis fish (Q)SAR 
recommended in the REACH-guidance /51/. Non-polar narcosis Lethal Body 
Burden’s for fish are generally assumed to be within the range of about 2–8 
mmol /53/. 
 
While simple Log Kow relationships exist for predicting the non-polar narcotic 
toxicity for fish, daphnia and algae, these do not distinguish specific toxicity’s 
unique to any of the three taxa, and were not felt to offer any advantage over 
using the fish models alone, which also adequately predict non-polar narcosis. 
For all practical purposes, non-polar narcosis induces effects at the same 
concentration levels in all three taxa at these high Log Kow values.  
 
Aquatic toxicity screening  
Using the three Multicase models and the non-polar narcosis equation, 18,809 
of the chemicals assessed in the current project had acute aquatic toxicity’s of 
≤ 100 mg/L. 
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Advisory classifications 
 
A total of 18,809 of the chemicals assessed in the current project were selected 
according to one of the four classification categories based on the combination 
of model predictions as indicated in the classification criteria and shown in 
Figure 4. The classifications for danger to the aquatic environment were 
assigned to the following number of chemicals: 
 
N;R50   2,381 
N;R50/53   7,376 
N;R51/53  6,063 
N;R52/53  2,989 

Model Technical summary 

Biodegradation, Syracuse BIOWIN2 non-linear model for 
rapid/non-rapid aerobic biodegradation probability (BPP2) 

Syracuse BIOWIN, US EPA /45/ 
Training set: n=295 
External validation (n=304) gave  
Sensitivity: 53.3% 
Specificity: 91.1% 
Concordance: 58.9% 
PPV: 97.2% 

Bioconcentration (BCF), Syracuse BCFWIN  

Syracuse BCFWIN, US EPA /42,46/ 
Training set: n=694 
Cross-validation gave  
R2 = 0.74 
S.D. = 0.65 
Mean error = 0.47 

Acute toxicity to fish, Fathead minnow LC50 (96h) 

MultiCASE, DK model /48/ 
Training set: n=569 
Cross-validation 3*10% gave  
R2 = 0.74 
Domain: 52% 

Acute toxicity to daphnia, Daphnia magna, EC50 (48h) 

MultiCASE, DK model /49/ 
Training set: n=641 
Cross-validation 3*10% gave  
R2 = 0.69 
Domain: 52% 

Acute toxicity to algae, Pseudokirchneriella subcapitata, EC50  

MultiCASE, DK model /50/ 
plus Log Kow equation  
Training set: n=531 
Cross-validation 10*50% for the two-
step model gave  
R2 = 0.74 
Domain: 58% 

Non-polar narcosis, LC50 (equilibrium) = 8.15 mmol /BCF 
 
Theoretical equation /51-54/ 
 

Table 6: Technical summary for the models used for classification of danger 
to the aquatic environment. 
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Acute aquatic toxicity screening 
 Fish  
 Daphnia 
 Algae 
 Non-polar narcosis 

LC50≤1,0 mg/L 1,0 mg/L<LC50≤10,0 mg/L 10,0 mg/L<LC50≤100,0 mg/L 

Not ready 

BCF≥100 BCF≥100 

Read Not ready Not ready 

R52/53N;R51/53N;R50 N;R50/53

Biodegradation 

Bioconcentration 

Biodegradation Biodegradation 

Bioconcentration 

Ready 

Figure 4: Schematic diagram illustrating the systematic evaluation applied to 
assign advisory classifications for danger to the aquatic environment.
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4 Discussion & Conclusions 

  
The 2009 update of the advisory classification list has been made using 
entirely new models for the CMR advisory classifications; i.e. none of the 
models used to make the advisory classifications for mutagenicity and 
carcinogenicity on AL2001 were used in this update.  
 
Annex 2 contains examples of how further structural analyses of substances 
belonging to various chemical classes can be made on top of the predicted 
properties from this project to visualize and gain further insight into relations 
between sub-structures and, in this case, the carcinogenicity properties of 
chemicals. 
 
For the environmental advisory classifications some of the models used for 
AL2001 were used again (BCFWIN and model for aquatic toxicity to 
Fathead minnow), and new models were applied for biodegradation and 
aquatic toxicity to Dahpnia and Algae.  
 
The total numbers of chemicals on AL2001 compared to AL2009 cannot be 
directly compared because AL2001 contained advisory classifications for skin 
sensitization and acute oral toxicity and these endpoints are not updated in 
AL2009, whereas advisory classification for reproductive toxicity is included 
on AL2009 but not on AL2001.  
 
However, comparisons between AL2001 and AL2009 are made in the 
following for the individual advisory classifications represented in both lists, 
i.e. advisory classifications for mutagenicity, carcinogenicity and danger to the 
aquatic environment.  
 

4.1 Chemicals on AL2009 that were not on AL2001 

As shown in figure 5 a larger number of chemicals have been assigned 
advisory classifications for the individual advisory classifications in the current 
advisory list than in the former. This is due primarily to the application of 
entirely different models with in many cases larger chemical domains than the 
models applied for AL2001. Also, a little more substances were included in 
the start list for AL2009 than for AL2001 (49,292 for AL2009 and 
approximately 47,000 for AL2001) 
 
For the advisory classifications for danger to the aquatic environment the 
reasons for the differences more specifically relate to the addition of aquatic 
toxicity models for Daphnia and Algae, plus the use of the non-linear 
BIOWIN 2 model instead of the linear BIOWIN 1 model, which was used for 
AL2001. BIOWIN 1 has a lower sensitivity than BIOWIN 2. 

 
For the carcinogenicity and mutagenicity endpoints the increased number of 
predictions on AL2009 as compared with AL2001 is generally due to the use 
of new and improved (Q)SAR-models with larger applicability domains.  
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Figure 5 presents an overview of the number of advisory classifications for 
individual endpoints on AL2001 and AL2009. Reproduction is included 
although this endpoint was not addressed in AL2001. 
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Figure 5: Overview of the number of substances for each advisory classification in the 
new and the previous version of the advisory self-classification list. The exact number of 
advisory classifications is shown for each bar. (Note: Reproductive toxiticity was not 
included in AL2001. Also, the advisory classifications for acute oral toxicity Xn, R22 and 
sensitisation by skin contact, R43 have not been updated in the current list and are 
therefore not included.) 
* AL2001 Total: This number refers only to number of chemicals with advisory 
classifications for mutagenicity, carcinogenicity and danger to the aquatic environment. 
The total number of chemicals on AL2001 is 20,624. 
 

4.2 Chemicals on AL2001 that are not on AL2009 

There are also substances that were assigned advisory classifications on 
AL2001 that are not on AL2009. It is for the individual endpoints seen that 
between 11 and 14% of the advisory classifications from AL2001 are not on 
AL2009. Again, the differences are primarily due to the use of new models for 
AL2009. 
 
Chemicals on AL2001 may not have been included in AL2009 for one or 
more of the following reasons:  

 they have been formally classified in the EU 
 they were not included on the new starting list for technical reasons 

(e.g. errors in the structural information or structure information not 
accepted by the (Q)SAR software) 

 they were not within the applicability domain of some or all of the 
models applied for AL2009 

 they do not fulfil the new (Q)SAR model algorithms established for 
advisory classifications in AL2009 

  



 

37 

For the mutagenicity endpoint, for example, where five models were used, 
many of the chemicals that fell out did not have robust predictions (within 
applicability domain) in two or three models, but often with flags in one or 
more of these models showing that a possible active fragment was identified. 
Additionally, many have positive predictions in models for in vitro 
genotoxicity endpoints (which were not included in the evaluation). In total, 
the majority of the chemicals that were not identified this time appear to be 
borderline mutagens. 
 
As there were mixed results (negative / out-of-domain / positive) from the 
battery of models applied within an endpoint, it is not possible to divide the 
chemicals strictly into groups of chemicals that were not identified this time 
because they could not be predicted (i.e. outside domain) or because the 
models applied in the new selection algorithm for AL09 predict them to be 
negative for the effect. 
 
A detailed comparison between numbers of chemicals with advisory 
classifications for carcinogenicity, mutagenicity and danger to the aquatic 
environment on AL2001 and AL2009 is given in table 7.  
 

Substances on AL2001 Substances on AL2009 Advisory 
classifi-
cation 

Total no. 
with this 
advisory 
classifi-
cation 

- also on 
AL2009 
with same 
advisory 
classifi-
cation 

- also on 
AL2009 but 
with different 
advisory 
classifications 

- not on AL2009 Total 
with this 
advisory 
classifi-
cation  

- not on 
AL2001 with 
this advisory 
classifi-
cation 

Mut3;R68 1,678 695 742, including 
- 284 with 
Carc3;R40 
- 80 with 
Rep3;R63 
  (total 349)* 

241 (14%), including 
- 7 now on Annex 1 
- 3 not on start list 

5,742 5,047 

Carc3;R40 642 287 287, including 
- 144 with 
Mut3;R68 
- 45 with 
Rep3;R63 
   (total 160)* 

68 (11%), including 
- 13 now on Annex 1 
- 2 not on start list 

3,726 3,439 

Rep3;R63 - -  - - 4,036 - 
 

Danger to 
the aquatic 
environ-
ment 

8,730 
 

7,546** 
 

203 
 

981 (11%), including 
- 22 now on Annex 1 
- 3 not on start list 
 

18,809 
 

11,263 
 

* Due to overlap; some chemicals have advisory classifications for more than one CMR endpoint 
** with one of the classifications for danger to the aquatic environment 
Table 7. Overview of the occurrence of substances on AL2001 and AL2009 
 

4.3 Conclusion 

Due primarily to the application of combinations of new (Q)SAR models, in 
many cases with larger applicability domains, the number of substances with 
advisory classifications for carcinogenicity, mutagenicity and danger to the 
aquatic environment has increased considerably for individual classifications 
as compared to AL01. Moreover, reproductive toxicity (possible harm to the 
unborn child) was included for the first time. 
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Annex 1. Glossary  

 Description 
Training set The collection of experimental data on a range of chemicals 

that have been used to develop the (Q)SAR-model.  
Sensitivity The sensitivity is a measure of how well the model ”catches” 

the substances with positive effect in relation to the endpoint 
being modelled. A sensitivity of 80% means that 80% of the 
”true positives” in the validation set were correctly predicted 
as positives (the remaining 20% were falsely predicted as 
negatives (false negatives)). The sensitivity is not dependent 
on the prevalence of positives in the “chemical universe”. 

Specificity The specificity is a measure of how well the model predicts 
substances with lack of effects in relation to the endpoint 
modelled. A specificity of 80% means that 80% of the ”true 
negatives” in the validation set were correctly predicted as 
negatives (the remaining 20% of the negatives were falsely 
predicted as positives (false positives)). The specificity is not 
dependent on the prevalence of negatives in the “chemical 
universe”. 

Concordance 
 
 
 
 
 
 
 

Also referred to as overall accuracy. The concordance is an 
overall measure of the correctness of the predictions. A 
concordance of 80% means that 80% of the substances in 
the validation set were correctly predicted as positives or 
negatives (the remaining 20% are the false predictions i.e. 
false negatives and false positives). 

Predictive 
values 

Positive and negative predictive values, PPV and NPV are 
measures of how well the model positive or negative 
predictions, respectively, are correct. A PPV of 80% means 
that 80% of the positive predictions in the validation set were 
correct (the remaining 20% were false positives). The 
predictive values are dependent on the split between 
positives and negatives in the “chemical universe”. 

Applicability 
domain 

The Applicability Domain (AD) of a (Q)SAR expresses the 
limits of the training set of the model for which it can give 
predictions for new compounds with a reliability as 
determined in the validation. The limits of the training set 
are expressed by parameters characterising the physico-
chemical, structural or biological space of the model. The 
development of statistical and mathematical methods for 
defining applicability domains is an active field of current 
research /9/. 

Validation Validation is a trial of the model performance for a set of 
substances independent of the training set, but within the 
domain of the model. The model predictions for these 
substances are compared with measured endpoints for the 
substances in order to establish the sensitivity and specificity 
and overall accuracy of the model. 



 

46 

 



 

47 

Annex 2. Analysis of positive 
predictions of cancer classification 

LeadScope is a predictive data-mining tool for exploring and filtering data 
sets based on both structural features and associated data1. This software 
contains a predefined library of over 27,000 chemical functional groups 
(medicinal chemistry building blocks), which can be applied in the analysis of 
structural similarities within data sets. Structural similarities may lead to 
logical paths linking chemical structures with a biological endpoint.  
 
In this example, structural similarities associated with (Q)SAR predictions 
used for the advisory classifications for cancer were analysed based on a large 
data set to try and gain further insight into the predictions. 
 
A random set of 21,000 chemicals from the full set of around 185,000 
chemicals in the DK (Q)SAR prediction database was imported into 
LeadScope. The size of the set, which was chosen for practical and technical 
reasons, is judged to be representative of the full database.The cancer 
predictions made in the four Multicase FDA cancer models2 for 
carcinogenicity to male and female Mice and Rats, respectively, were entered 
as the overall call made by the so-called FDA ICSAS methodology3. Also 
entered were predictions from the Multicase Ames mutagenicity model 
(described in 3.2.2), and an overall prediction of in vivo genotoxicity4 based 
on five Multicase models for in vivo genotoxicity endpoints (Drosophila 
SLRL, mutations in Mouse micronucleus, dominant lethal mutations in 
rodents, sister chromatid exchange in mouse bone marrow, and COMET 
assay in mouse). 
 
The 21,000 chemicals were organized into groups based on structural features 
according to the LeadScope library of chemical functional groups. This first 
rough structural grouping in LeadScope is shown in figure 1. The groups are 
coloured based on the cancer predictions from the FDA cancer models.  
 
Groups with over-representation of positive predictions have red bars, groups 
with over-representation of equivocal predictions or predictions, which are 
out of the applicability domain, have grey bars, and groups with over-
representation of negative predictions have green bars. Interpretation of 
colours is indicated in the bottom right corner.  
 

                                                  
1 1. Roberts G., Myatt G.J., Johnson W.P., Cross K.P., Blower P.E., ”LeadScope: Software for Exploring 
Large Sets of Screening Data”, J. Chem. Inf. Comput. Sci., 2000, 40 (6), 1302-1314. 
 
2 J. Matthews and J.F. Contrera. A new highly specific method for predicting the carcinogenic potential 
of pharmaceuticals in rodent using enhanced MCASE (Q)SAR-ES software. Reg. Toxicol. and 
Pharmacol. 28 (1998) pp. 242-264. 
 
3 Positive according to the FDA ICSAS methodology corresponds to two or more positive cancer calls, 
accepting only predictions for chemicals without significant deactivating fragments. See footnote 2 for 
reference. 
 
4 The criteria for the overall call for genotoxicity is the one used for advisory classifications and 
described in 3.1 Mutagenicity; positive experimental test result in at least one training set or positive 
predictions in at least two models. 
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The length of the bars indicates the number of chemicals (plotted on a log 
scale). For each group there are a number of more narrowly defined sub-
groups, named clusters, which may have different distributions of positives, 
negatives and “out-of-domain” chemicals. 
 

 
 

Figure 1. First rough structural grouping in LeadScope of the 21,000 chemicals with FDA 
ICSAS cancer calls  
 
Out of the 21,000 chemicals, 4,705 chemicals were assigned to the group 
“reactive groups” by LeadScope. This group is marked with blue in figure 1, 
and was selected for further analysis in this annex.  



 

49 

 
Identification of a group of genotoxic carcinogens 
Within the “reactive groups” LeadScope made a number of chemical clusters. 
Figure 2 gives the first part of a list of these clusters, and again clusters with 
over-representation of positive cancer calls are shown in red. Further down 
the list are further out-of-domain clusters (grey) and negative clusters (green). 
 
In the leftside of figure 2, the cluster numbered “90” is highlighted in blue. 
This cluster is in red colour and contains 24 chemicals.  
 

 
 
Figure 2. Cluster 90 with positive predictions for cancer 
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The first 20 chemicals in cluster 90 are given in figure 3. The FDA 
predictions of cancer are given for each chemical in the upper left corner. 
FDACALL of “1.0” means positive cancer prediction. 
 

 
 
Figure 3. Chemicals in cluster 90 
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From figure 4 it can be seen that all 24 chemicals in cluster 90 are predicted 
positive for both cancer (yellow column to the left) and for Ames 
mutagenicity (yellow column to the right). The chemicals in cluster 90 appear 
on this basis to be genotoxic carcinogens. 
 
 

 
Figure 4. FDA cancer predictions and Ames mutagenicity predictions for chemicals in 
cluster 90 
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Identification and mechanistic profile of a group of steroidal carcinogens 
If we go back to the clusters within the “reactive groups” and instead of 
cluster 90, choose cluster 51, we find a very different group of chemicals. In 
the left side of figure 2, cluster number 51 is highlighted in blue. This cluster 
contains 156 chemicals, with over-representation of positive cancer 
predictions as can be seen from the red colour of the bar. 
 
 

 
 
Figure 5. Clusters within the ”Reactive groups” with cluster 51 highlighted (left) 
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Cluster 51 is composed of steroids that are likely to be promoters of cancer. 
The first of the 156 chemical structures are given in figure 6.  
 

 
Figure 6. Chemicals in cluster 51; steroids which are likely to be promoters 
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In figure 7, the distribution of cluster 51 chemicals with positive and negative 
cancer predictions, Ames mutagenicity predictions and in vivo mutagenicity 
predictions is graphed. “0.0” are the negatives and “1.0” are the positives. 
Approximately half of the chemicals in cluster 51 are predicted positive for 
carcinogenicity as can be seen from the graph in the upper left part of figure 
6. Almost all chemicals are predicted negative in the Ames model (upper right 
part), and all chemicals are predicted negative for in vivo genotoxicity (lower 
left part).  
 
I.e. according to the model predictions from models for cancer and 
genotoxicity, some of the chemicals in this steroid cluster are carcinogens, but 
probably with a non-genotoxic mechanism. It is well-known that some 
steroids can cause cancer through a hormonal non-genotoxic mechanism5. 
 

 
Figure 7. Distribution of cancer predictions (FDACALL), Ames mutagenicity 
(AMESCALC) predictions and in vivo mutagenicity (M_1) predictions in cluster 51 
 

                                                  
5 E.g. Lima, B.S., Van der Laan, J.W.; ”Mechanisms of Nongenotoxic 
Carcinogenesis and Assessment of the Human Hazard”, Reg. Tox. and 
Pharm. (2000) 32, 135-143. 
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The picture of a non-genotoxic mechanism is confirmed in figure 8 and 9, 
where the chemicals predicted to be negative (figure 8) and positive (figure 
9), respectively, for Ames mutagenicity are highlighted in yellow. Both the 
predicted Ames positive and negative chemicals are evenly distributed 
between the chemicals predicted positive and negative for cancer, i.e. there’s 
no significant relation between Ames positive and positive cancer predictions, 
this confirms that the chemicals in cluster 51 are not likely to be carcinogenic 
by a genotoxic mechanism. 
 

 
Figure 8. Distribution of Ames negatives among the carcinogenicity and in vivo 
mutagenicity predictions 

 
Figure 9. Distribution of Ames positives among the carcinogenicity and in vivo 
mutagenicity predictions 
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The seven chemicals predicted to be positive for Ames mutagenicity are 
shown in figure 10. All of them contain additional reactive fragments such as 
the diketone, the hydroperoxy group, and the strained 3-member ring 
(epoxide). By inspection the chemicals look like potential genotoxic 
compounds by electrophilic mechanisms, not because of the steroid part of 
the structures but rather because of the additional reactive fragments.  
 
 

 
 
Figure 10. The seven steroid chemicals predicted positive for Ames mutagenicity 
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Structural identifiers for carcinogenicity of steroids 
In the following, LeadScope was asked to find rules about chemical feature 
combinations that can be used to discriminate between positive and negative 
cancer predictions within the cluster of 156 steroid chemicals.  
 
Figure 11 shows the generated fragment combination tree. The interpretation 
of the colours of the boxes is given in the bottom right corner; red box again 
means over-representation of chemicals with positive cancer predictions, 
green boxes means over-representation of non-cancer predictions, etc.  
 
 

 
Figure 11. A fragment combination tree within the steroids (red means over-
representation of positive cancer predictions) 
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In figure 12, the red box is marked and the rules leading to classification into 
this box appears in the bottom windows. As it appears, a positive prediction in 
the steroid cluster is associated with the 17-hydroxy-steroid skeleton (lower 
left window) and an unsaturated ketone ring (lower right window). There are 
18 chemicals in the selected box. 
 

 
 
Figure 12. A positive prediction is associated with the 17-hydroxy-steroid skeleton (left) 
and an unsaturated ketone ring, cyclohexenone, (right) 
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The 18 chemicals in the red box are given in figure 13. The highlighted part 
of the structure is the combination of the two structural features; the steroid 
fragment and the unsaturated ketone ring. The cancer predictions, FDA calls 
“1.0”, “0.0” or “?”, for cancer are shown in the upper left corner for each 
chemical. 14 of the 18 chemicals are predicted positive for cancer, 3 are 
predicted negative and 1 is equivocal/out-of-domain. In other words, this 
simple rule, i.e. a combination of a 17-hydroxy-steroid skeleton and an 
unsaturated ketone ring, has a discrimination of 14:3 (not including the out-
of-domain prediction) for predicting whether a chemical is predicted to be 
carcinogenic by the Multicase FDA cancer models. In other words, based on 
the 17 chemicals with robust cancer predictions, this rule has a Positive 
Predictive Value (PPV) of 14*100%/17=82%. 
 
 

 
 
Figure 13. Overlay of steroids containing the two structural combinations 
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Characterizing non-carcinogenic steroids 
Of the remaining 138 chemicals in cluster 51, 132 were predicted negative for 
cancer. Some of these are shown in figure 11. This gives the rule of structure 
combinations of steroid skeleton plus cyclohexenone a discrimination of 132:6 
for predicting whether a chemical is not predicted to be carcinogenic by the 
Multicase FDA cancer models. In other words, based on the 138 chemicals, 
this rule has a Negative Predictive Value (NPV) of 132*100%/138=97%. 
 

 
 
Figure 14. 132 out of the 138 substances are predicted negative for cancer 
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LeadScope also identified another rule for discrimination between positive 
and negative FDA cancer predictions as shown in figure 15 (red box). This 
rule combines a distance between two hydrogen bond acceptors (HBA) and a 
cyclohexenone fragment. 6 chemicals had this structure combination, of 
which 4 were predicted positive for cancer according to the Multicase FDA 
cancer models. This gives a discrimination for positives of 4:2, or in other 
words, based on the 6 chemicals, this rule has a Positive Predictive Value 
(PPV) of 4*100%/6=67%. 
 

 
 
Figure 15. Another feature combination (6 structures) within cluster 51 
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The 6 chemicals are given in figure 16, with the FDA cancer calls in the 
upper left corner for each chemical. 
 

 
Figure 16. 4 of the 6 structures are predicted positive for cancer 
 
 


