
PFAS in food and migration from contact materials into real food Kit Granby, DTU National Food Institute

00

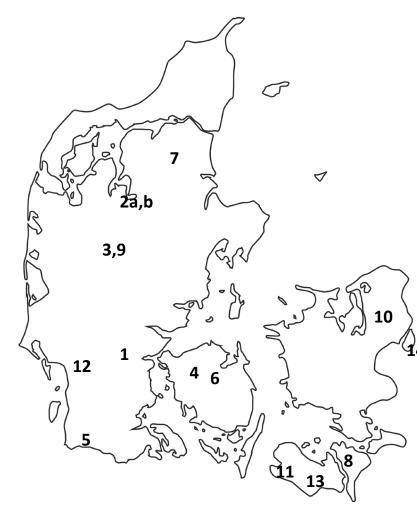
PFAS in the Nordic Region

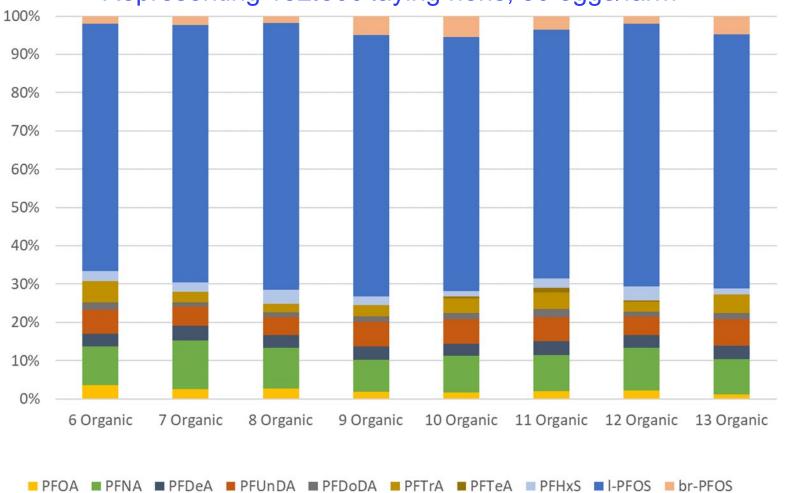
18 September 2023

DTU Food

ood

■ Improved PFAS method; and study on PFAS in Danish eggs

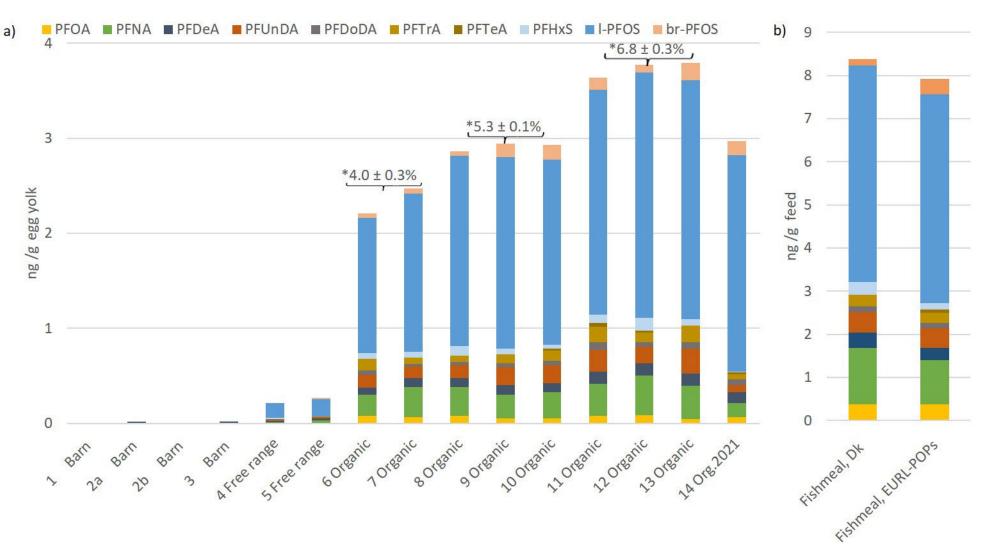

In 2020 EFSA reduced the PFAS tolerable weekly intake (TWI) of Σ PFOS, PFOA, PFNA, PFHxS to 4.4 ng/kg body weight;


Since 1 Jan 2023		Maximum Levels µg/kg				
	PFOS	PFOA	PFNA	PFHxS	Σ4PFA	
					S	
Eggs	1.0	0.30	0.70	0.30	1.70	

DTU Food validated a more sensitive PFAS method and analyzed eggs sampled within projects carried out by the Danish Veterinary and Food Administration's Laboratory.

Distribution of PFAS in organic eggs from 8 large farms, Sept. 2022 Σ 4PFAS~85%±2% of the sum. Normalised to PFOS and logaritmised:

significant differences between other individual PFASs (p=1.4E-25), reflecting identical profiles



Representing 132.500 laying hens, 30 eggs/farm

Ref. MAP Denmark, Colourbox

Large farms' egg yolk samples Sept. 2022, and estimated % fishmeal in feed

Fishmeal 2022 from Danish producer

Higher concentrations of odd relative to even C8-C14 PFCAs for fishmeal and egg yolks

PFAS in the Nordic Region

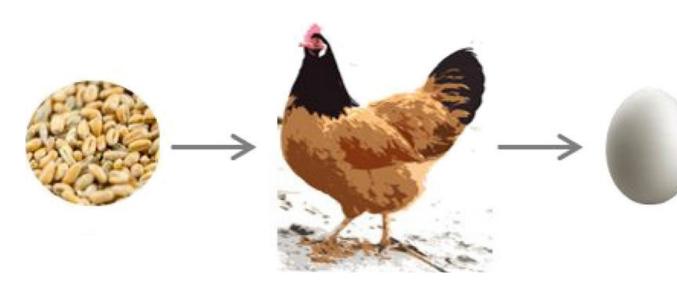
DTU

₩

18 September 2023

DTU Food

Information on fishmeal, the same in Proficiency test from EURL-POPs and fishmeal used as supplementary feed in Denmark



Both fishmeal samples were from the same Danish producer and consisted of herring from the Baltic Sea, from the Bothnian Sea and Southern Central Baltic – West, relatively PFAS polluted areas.

Uneven dominance is characteristic of PFAS distribution in fishmeal worldwide (Li et al 2019 J Hazard. Materials 367, p559.) Fishmeal PFAS higher in the Northern hemisphere. Long-chain PFCAs (PFNA, PFDA, PFUnDA, PFDoDA ,PFTrDA) were higher in industrial areas.

DTU

Transfer of PFAS from contaminated feed to egg (based on controlled feeding trial from BfR Germany)

Halflives (*t*¹/₂) from feed to egg: PFOS 4.3 days PFOA 4.5 days PFHxS 7.6 days Transfer factor from feed to egg:

	Transfer factor	Reference			
	feed to egg	Neierence			
PFOS	2.26	BfR 2021			
PFOA	1.1	BfR 2021			
PFNA	1.4	estimated			
PFDeDA	1.7	estimated			
PFUnDA	2.2	estimated			
PFDoDA	2.1	estimated			
PFTrDA	2.4	estimated			

represent 132,500 laying hens with pools of 30 eggs from eight farms

References: Kowalczyk J. et al 2020 J. Agric. Food Chem.68, 45, 12539-12548

BfR 2021, PFAS maximum levels in feedstuffs: BfR recommends improved analytical methods BfR opinion No 037/2021, DOI 10.17590/20211124-122122

PFAS in the Nordic Region

18 September 2023 DT

DTU Food

Exposure from commercial large farms' organic egg of $\Sigma4PFAS \sim 0.874~ng/g$

Children and adults eating mean~2 and 3 eggs/week (95 perc.~ 5 and 6 eggs/week)

	No. participants	1		Egg consumption g/week		Exposure ng/kg bw/week		% Tolerable weekly intake	
		kg	Mean	95th perc.	Mean	95th perc.	mean	95th perc.	
Children 4- 9 years	421	26.04	125	311	4.2	10.4	95%	237%	
Adolescents 10-17 years	509	54.23	120	328	1.9	5.3	44%	120%	
Adults 18-75 years	3016	78.30	171	426	1.9	4.6	43%	108%	

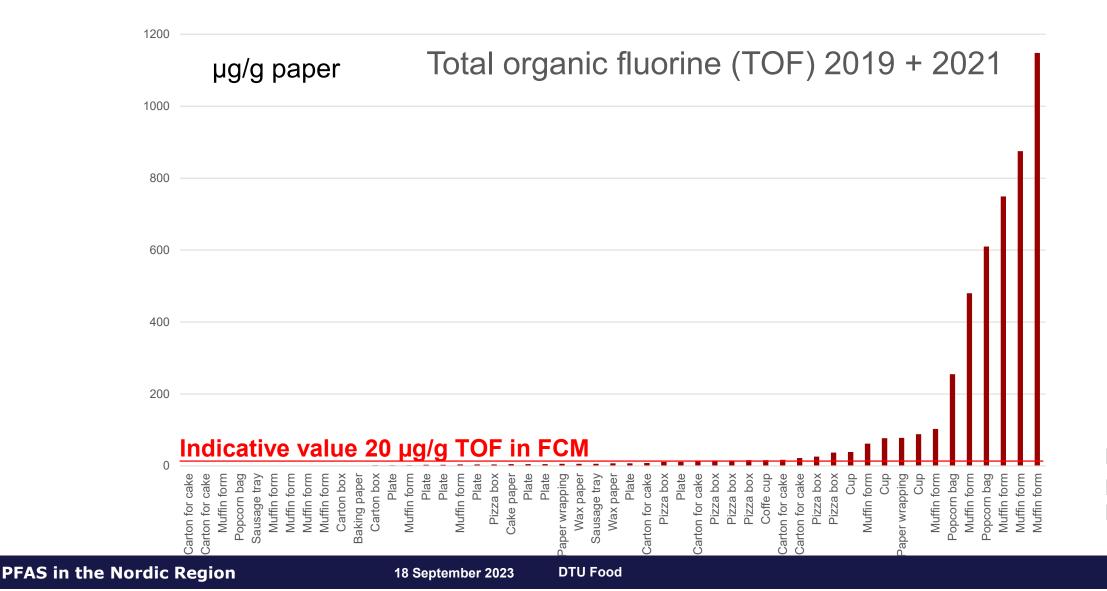
When children are at risk of being exposed to more than twice as much PFAS solely from eggs, as the amount that is the limit for a safe intake, the risk is noticeable.

Press release DTU Food 23 Jan. 2023:

PFAS found in organic eggs in Denmark

The environmental contaminant PFAS has been found in organic egg yolks in Denmark. Especially children who eat many organic eggs are at risk. The substances are most likely transferred via fishmeal, which is included in feed for the hens. This was found in a study from the DTU National Food Institute carried out in collaboration with the Danish Veterinary and Food Administration.

2 months after press release and egg producers' voluntary withdrawal of fishmeal from feed, no/very low PFAS was found in organic eggs:



Ministeriet for Fødevarer, Landbrug og Fiskeri

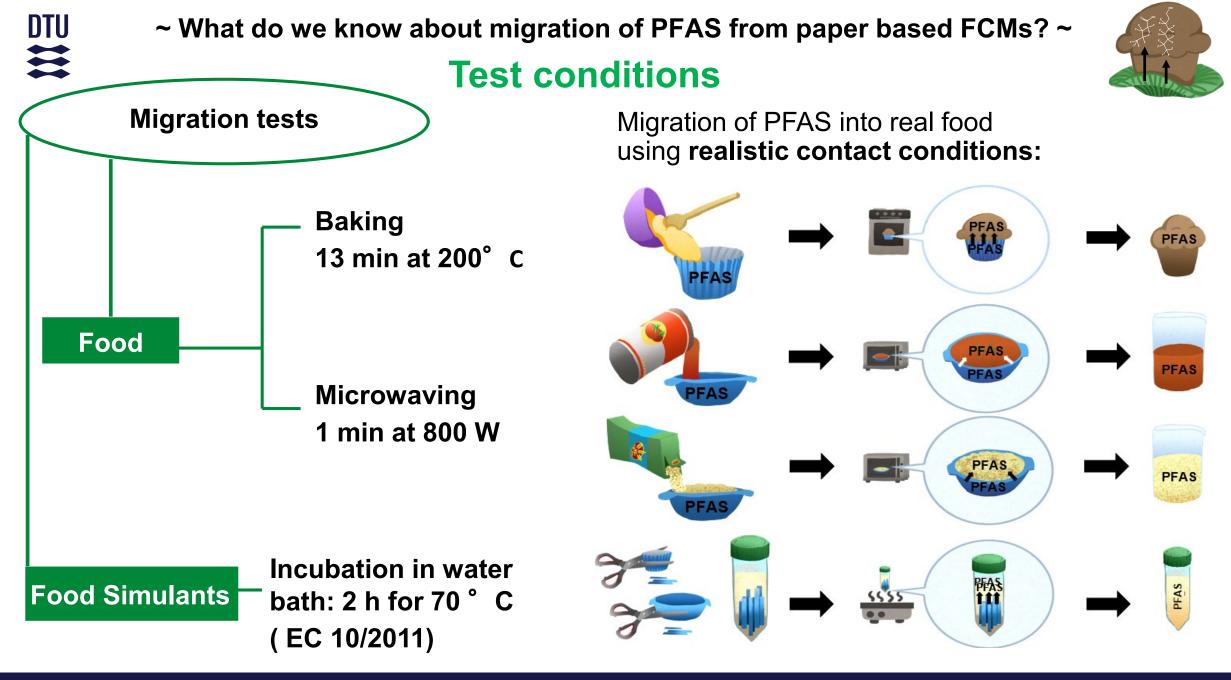
Økologiske æg har ikke længere forhøjede niveauer af PFAS

19.4.2023 06:30:00 CEST | Ministeriet for Fødevarer, Landbrug og Fiskeri

DTU Danish ban on intentional use of PFAS in paper&board food contact materials, indicator value 20 µg TOF /g FCM, 1/7-2020

Ref: DVFA and DTU Food

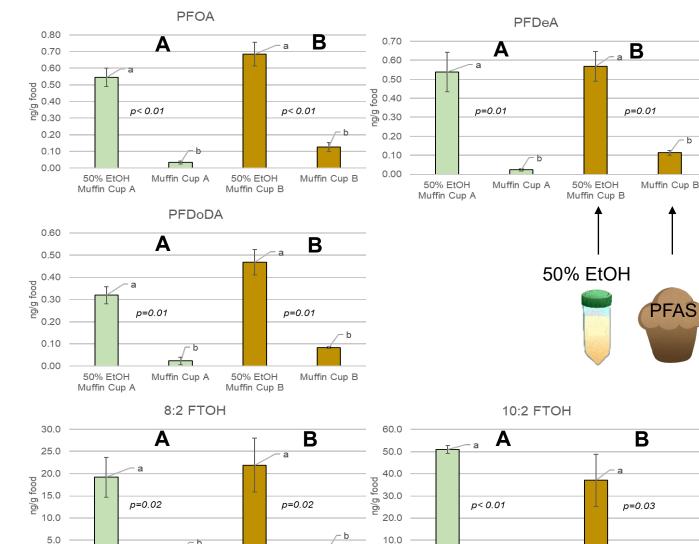
~ What do we know about migration of PFAS from paper based FCMs? ~ Study of migration into real food


Ref:Lerch, M., Nguyen, K.H., Granby, K. 2022. Food Chemistry, 393, 133375

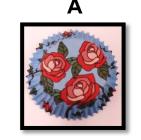
FCM samples

- \rightarrow Sampled on the Scandinavian Market
- \rightarrow Known to contain PFAS
- \rightarrow Samples for high temperature conditions:
- \rightarrow Microwavable disposable paper plates (n=3)
- \rightarrow Muffin cure (n-2)

→ Muffin cups (n=3)	•	ood simulants & t Conditions	Test Food	Food Simulants	
\rightarrow Comparison of migration	into real	SelectionMuffins (dough with 15% Oatmeal Porridge (8% faalTomato Soup (3% fat)		50% Ethanol 50% Ethanol 20% Ethanol	
food and food simulants → Using realistic high temp conditions with the food	erature	Migration conditions	High-temperature application: Baking Microwave	Total immersion of FCM sample	
PFAS in the Nordic Region	18 September 2023	DTU Food		10	



PFAS in the Nordic Region


DTU Food

DTU

~ What do we know about migration of PFAS from paper based FCMs? ~ **Results migration into muffins**

Muffin Cup B

Β

- Migration of PFCAs and FTOHs into 50% ethanol significantly higher than into food (transfer to muffin~ 5-20%)
- ✤ Only detected in 50% ethanol: PFPeA, PFHxA, PFHpA, PFTrDA, PFTeDA The short chain PFCA's are potentially lost during baking (200°C)

0.0

50% EtOH

Muffin Cup A

Muffin Cup A

50% EtOH

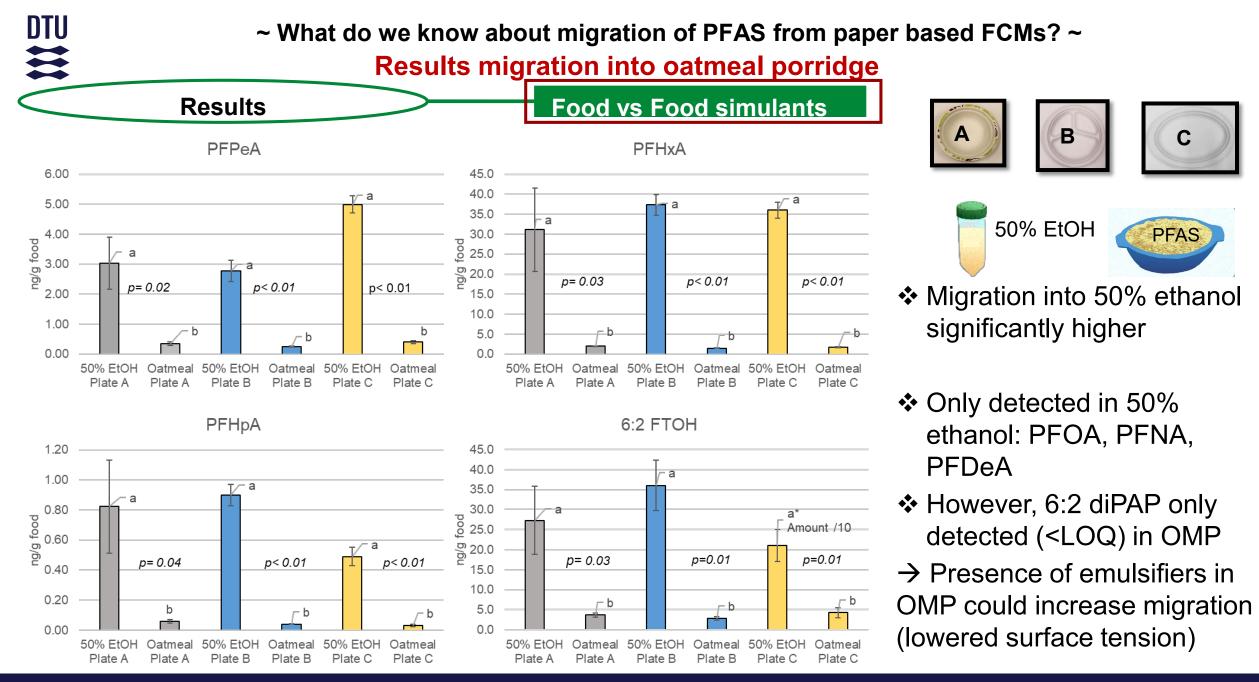
Muffin Cup B

50% EtOH

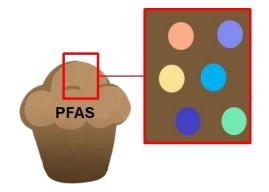
Muffin Cup A

0.0

DTU Food


b

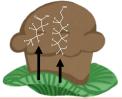
Muffin Cup A


50% EtOH

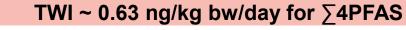
Muffin Cup B

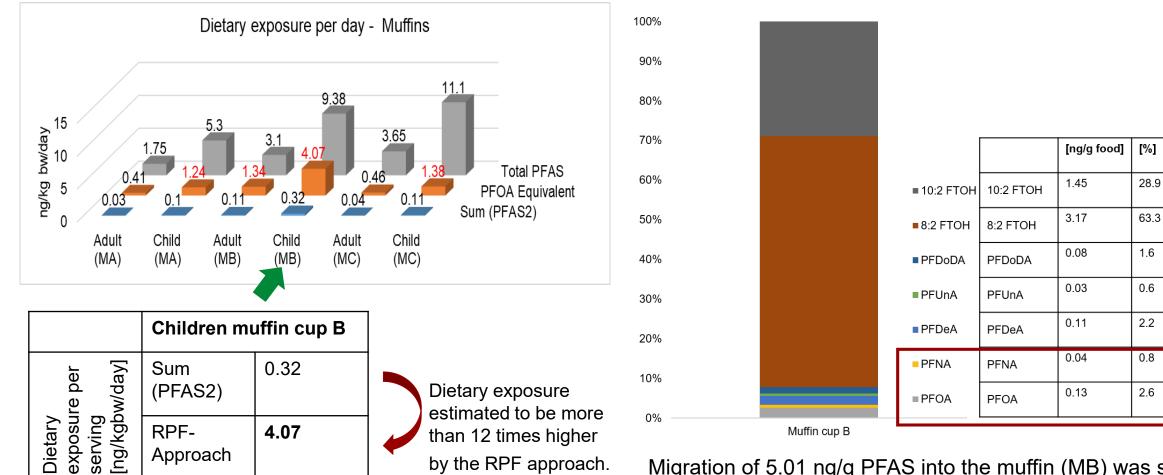
Muffin Cup B

Three scenarios to calculate PFAS in dietary exposure



$$Dietary \ exposure = \Sigma \ \left(PFAS \ \left[\frac{ng}{g \ food} \right] \right) x \frac{weight \ of \ each \ serving[g]}{body \ weight \ [kg]}$$


Dietary exposure =	Occurrence estimation x	Relative potency factor:			
		PFOA	1		
Total PFAS	Sum of all detected PFAS concentrations in	PFPeA	0.05		
Σ (<i>PFAS</i>)	food	PFHxA	0.01		
PFAS4	Sum of PFOA and PFNA	PFHpA	0.01		
Σ (PFOA, PFOS, PFNA, PFHxS	(no PFOS and PFHxS detected)	PFNA	10		
Relative Potency Factor	Each compound \rightarrow define a RPF value	PFDeA	10		
(RPF) - Approach Σ (REC) a squing lent)	based on hepatoxicity and is relative to the	PFUnA	4		
Σ (PFOA equivalent)	toxicity of PFOA	PFDoDA	3		
Bil et al. (2021),	C _{PFAS} x RPF = PFOA equivalent	6:2 DiPAP	0.02		
Environ.Toxicol.Chem.	Sum of PFOA equivalents	6:2FTOH	0.02		
40, 859–870.		8:2FTOH	0.04		
		10:2FTOH	0.04		



~ Is the use of PFAS treated paper based FCMs safe? ~ For high-temperature applications

Dietary exposure estimates for muffins by different approaches

Comparison PFAS concentrations in Muffins (migrated from MC B)

Migration of 5.01 ng/g PFAS into the muffin (MB) was set to 100%

~ Is the use of PFAS treated paper based FCMs safe? ~ For high-temperature applications, No

Migration (ng/g) into food and dietary exposure (ng/kg bw/day) by 3 different approaches TWI ~ 0.63 ng/kg bw/day for ∑4PFAS											
			Paper Plate A		Paper Plate B		Paper Plate C		Muffin Cup A		Muffin Cup C
			Oatmeal Porridge	Tomato Soup	Oatmeal Porridge	Tomato Soup	Oatmeal Porridge	Tomato Soup	Muffin	Muffin	Muffin
SAS		Total Σ (PFAS) [ng/g food]	6.13	3.50	4.70	3.54	6.48	14.1	2.83	5.01	6.00
Total PFAS	Adult	Dietary exposure per serving [ng/kgbw/day]	14.3	10.4	11.0	10.5	15.1	41.9	1.75	3.10	3.65
To	Child	Dietary exposure per serving [ng/kgbw/day]	43.4	31.5	33.3	31.8	45.9	127	5.30	9.38	11.1
f NA		Σ (PFOA/PFNA) [ng/g food]	0.03	0.00	0.03	0.04	0.00	0.05	0.06	0.17	0.06
Sum of PFOA/PFNA	Adult	Dietary exposure per serving [ng/kgbw/day]	0.06	0.00	0.06	0.12	0.00	0.15	0.03	0.11	0.04
b E	Child	Dietary exposure per serving [ng/kgbw/day]	0.18	0.00	0.18	0.36	0.00	0.45	0.10	0.32	0.11
ch		Σ (PFOA equivalent) [ng/g food]	0.20	0.22	0.15	0.29	0.15	0.63	0.66	2.17	0.75
RPF Approach	Adult	Dietary exposure per serving [ng/kgbw/day]	0.46	0.66	0.35	0.87	0.36	1.87	0.41	1.34	0.46
AF	Child	Dietary exposure per serving [ng/kgbw/day]	1.39	1.99	1.06	2.63	1.09	5.67	1.24	4.07	1.38
PFAS in t	the Nordic Re	i gion 18 S	DTU Foo	d	HANK `	YOU F	FOR L	ISTE		G 16	