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SUMMARY 

The global emergence and rapid spread of antimicrobial resistance are considered major threats to 

human health. Horizontal transfer of plasmids is the most important method for transmission of 

resistance, a method which with the accumulation of sequence data in recent years, was shown to be 

highly underestimated. Thus, to be able to control and prevent the spread of undesirable genetic 

traits, it is crucial to understand the factors controlling the conjugational transfer.  

With the great attention to whole genome sequencing it is now possible to rapidly predict a variety 

of different characteristics of pathogens, including antibiotic resistance, plasmid replicons, and the 

evolutionary relatedness of bacteria. Thus, combinations of the bioinformatic technology and the 

classical molecular approaches in the laboratory provide new opportunities for research nowadays.  

The aim of this PhD study was to improve the knowledge for the implication of restriction-

modification systems in horizontal gene transfer and evolution, and to gain new knowledge of 

recipient determinants included in regulation of plasmid uptake in bacteria by using a combination 

of bioinformatics and applied microbiology in the laboratory.  

In Roer I we addressed the dogma of RM systems being a barrier for horizontal gene transfer, 

which, to our knowledge never has been proven at a genetic level for conjugation. In this study we 

constructed an isogenic setup, with single gene-knockout mutants of the type I endonuclease EcoKI 

and the cognate methyltransferase M.EcoKI. By utilizing the plasmid pOLA52, with 2 recognitions 

sites for the RM system, it was possible to investigate the uptake and maintenance of an un-

methylated plasmid in the wild-type strain (intact hsdR gene), and in a hsdR deficient derivate. The 

inactivation of the restriction enzyme caused a 7-fold increase in conjugational transfer for the un-

methylated plasmid compared to the wild-type with intact hsdR gene. Interestingly, the RM system 

did not impose an absolute barrier for conjugational transfer of the wild-type. Thus, these findings 

are leaving a question of the evolutionary impact of RM systems on organisms which preferably 

exchange DNA by conjugation.   

In Roer II, we therefore decided to elucidate on the association between RM systems and the 

evolution of the 221 genomes of the conjugative bacterial species Salmonella enterica ssp. enterica. 

In addition to evaluate the evolution, we decided to investigate the connection between RM systems 

and the content of some of the evolutionary drivers, plasmids and pathogenicity islands. For the 

purpose of identifying RM systems and Salmonella Pathogenicity Islands, RM-Finder and SPI-

Finder were constructed. The detected RM systems were compared with the evolution of the 
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species, depicted as a network of core- and pan-genome trees. Though, from the study we were able 

to conclude that in comparison with natural transformable species, there was no evidence for RM 

systems shaping the evolution of the conjugational species Salmonella enterica ssp. enterica. In 

addition, no pattern between the mobile genetic elements and RM systems was observed. 

In Roer III, we aimed to identify other recipient determinants controlling the conjugational uptake 

and maintenance. To identify possible gene candidates we used a combination of modern molecular 

techniques in the laboratory, and bioinformatic gene prediction. The attempt to identify gene 

candidates was performed on a collection of 93 Salmonella enterica ssp. enterica isolates, covering 

54 different serovars. An initial conjugation experiment was performed to clarify the recipient 

potential for the 93 isolates, with subsequent grouping into good and poor recipients. From this 

rather diverse collection, we were not yet able to detect common gene candidates controlling neither 

increase nor decrease in conjugation abilities. A parallel study, only focusing on S. Enteritidis, 

proved able to detect 33 gene candidates potentially involved in conjugation restriction abilities 

which are being investigated and awaiting verification. This approach indicates that on species level 

no common gene controlling conjugation could be detected and other methods should be 

considered.  

Overall, this PhD study has assessed the old dogma of RM systems being a barrier for horizontal 

gene transfer. This was previously proven in the transfer by transduction and transformation, 

however in this thesis we provide evidence that the imposed barriers are indefinite in conjugational 

transfer. Further, the work in this thesis has provided user-friendly tools for easy in-silico detection 

of RM systems (RM-Finder) and the transferable genomic islands conferring pathogenicity in 

Salmonella (SPI-Finder). It was furthermore demonstrated that, despite the clear correlation 

between RM systems and evolution in the natural transformable organism N. meningitidis, RM 

systems where not the main driver of evolution when turning to organisms which preferably 

exchange their DNA material by conjugation. Additionally, the study proved that the possession of 

mobile genetic elements like plasmids and SPIs cannot be reflected in the RM systems. The PhD 

study suggests that recipient genes are involved in the control of conjugation; however, different 

approaches and serovar and strain specific genes should be investigated.   

This PhD thesis has altogether improved the knowledge on the influence of RM systems in 

conjugation and evolution, and placed a potential for further investigation of recipient determinants 

affecting conjugation.  
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RESUMÉ  

Den globale udvikling og hurtige spredning af antimikrobiel resistens anses for at være en stor 

trussel for det menneskelige helbred. Horisontal overførsel af plasmider er en af de mest 

betydningsfulde mekanismer for overførsel af resistens, en metode som med akkumuleringen af 

sekvens data de seneste år har vist sig at være særdeles underestimeret. For at kunne kontrollere og 

forebygge spredningen af uønskede genetiske træk er det afgørende at forstå de faktorer der 

kontrollerer overførsel ved konjugation. Med den øgede opmærksomhed og udvikling indenfor hel-

genom sekventering er det nu muligt hurtigt at forudsige forskellige karaktertræk hos patogene 

bakterier, hvilket inkluderer antibiotika resistens, plasmid replikon og det evolutionære forhold 

mellem bakterier. Således kan kombinationen af bioinformatik og klassiske molekylære 

fremgangsmåder i laboratoriet tilføre nye muligheder til vor tids forskning.  

Formålet med dette ph.d.-studie var at øge den allerede eksisterende viden indenfor betydningen af 

RM systemer i horisontal gen overførsel og evolutionen, og at opnå ny viden indenfor recipient 

faktorer involveret i reguleringen af plasmid optaget i bakterier, ved at benytte en kombination af 

bioinformatik og anvendt mikrobiologi i laboratoriet.  

I Roer I håndterede vi dogmet for RM systemer som værende en barriere for horisontal gen 

overførsel, hvilket ifølge vores viden aldrig har været vist på et genetisk niveau for konjugation. I 

dette studie konstruerede vi et iso-genetisk opsæt med enkelt gen knockouts af type I 

restriktionsenzymet EcoKI og dens tilhørende methyltransferase M.EcoKI. Ved at bruge plasmidet 

pOLA52, som besidder 2 genkendelses sekvenser for RM systemet, var det muligt at undersøge 

optaget og opretholdensen af et ikke methyleret plasmid i vild-type stammen (med intakt hsdR gen), 

og i et derivat med ødelagt hsdR gen. Inaktiveringen af restriktionsenzymet forårsagede en 7-folds 

stigning i konjugations overførsel af det ikke methylerede plasmid, sammenlignet med vild-type 

stammen med intakt hsdR gen. RM systemet viste sig overraskende nok ikke at tilføre en 

fuldstændig barriere for konjugation til vild-typen. Resultaterne efterlader derved spørgsmål om den 

evolutionære indvirkning af RM systemer på organismer som fortrinsvis udveksler DNA via 

konjugation.  

I Roer II besluttede vi derfor at undersøge sammenhængen mellem RM systemer og evolutionen af 

221 genomer af Salmonella enterica ssp. enterica, som benytter konjugation ved overførsel. Ud 

over at evaluere evolutionen besluttede vi at undersøge sammenhængen mellem RM systemer og 

evolutionære drivkræfter som plasmider og patogenetiske øer. Til at identificere RM systemer og 
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Salmonella Patogenetiske øer (SPI) udviklede vi RM-Finder og SPI-Finder. De opfangede RM 

systemer blev sammenlignet med evolutionen af Salmonella, gengivet i et netværk af core- og pan-

genom træer. Dette studie gjorde det muligt at konkludere, at sammenlignet med naturligt 

kompetente organismer viste RM systemer sig for ikke at forme evolutionen i 

konjugationsorganismen Salmonella enterica ssp. enterica.  Yderligere var det heller ikke muligt at 

observere et mønster mellem mobile genetiske elementer og RM systemer.  

I Roer III forsøgte vi at identificere andre recipient faktorer involveret i kontrollen af konjugations 

overførsel. Til at identificere mulige gen-kandidater benyttede vi en kombination af moderne 

molekylære teknikker i laboratoriet og bioinformatisk forudsigelse af gener. Forsøget på at 

identificere gen-kandidater blev udført på en kollektion af 93 Salmonella enterica ssp. enterica 

isolater af 54 forskellige serovars. For at bestemme recipient potentialet af de 93 isolater, blev et 

indledende konjugations forsøg udført. Herefter blev isolaterne inddelt i grupper af gode og dårlige 

recipienter. Fra denne meget diverse kollektion har det endnu ikke været muligt at finde nogen 

fælles gen-kandidater der kontrollerede hverken op- eller nedregulering i evnen til at konjugere. S. 

Enteritidis blev undersøgt i et parallelt studie, hvor det var muligt at identificere 33 gen-kandidater 

der potentielt kan være involveret i nedregulering af konjugation, hvilket bliver undersøgt nærmere 

og afventer verificering. Med denne fremgangsmåde er det ikke er muligt at identificere gener der 

kontrollerer konjugation på organisme niveau, og andre metoder bør overvejes. 

Alt i alt har dette ph.d.-studie behandlet det gamle dogme for RM sytemer som værende en barriere 

i horisontal gen overførsel. Dette har tidligere været vist i overførslen via transduktion og 

transformation. I denne afhandling leverer vi et bevis for at de pålagte barrierer ikke er fuldkomne i 

konjugativ overførsel. Yderligere har dette studie leveret brugervenlige redskaber til in-silico 

påvisning af RM systemer (RM-Finder) og de overførbare genomiske øer som tilfører patogenese i 

Salmonella (SPI-Finder). Det blev yderligere demonstreret, på trods af en klar sammenhæng 

mellem RM systemer og evolution i den naturlig overførbare organisme N. meningitidis, så var RM 

systemer ikke en drivende kraft i evolutionen af organismer der fortrinsvis udveksler DNA via 

konjugation. Studiet viste yderligere at besiddelsen af mobile genetiske elementer, såsom plasmider 

og SPIs, ikke reflekteres i RM systemerne. Dette ph.d.-studie antyder at organisme specifikke gener 

kan være involveret i kontrollen af konjugation, men forskellige metoder bør overvejes og serovar 

og stamme specifikke gener bør undersøges yderligere. Denne ph.d.-afhandling har overordnet øget 

den eksisterende viden om RM systemers indvirkning på konjugation og evolution, og givet 

anledning til yderligere undersøgelser af recipient faktorer der kan have indflydelse på konjugation.   
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BACKGROUND 

The evolutionary pressure from the increased use of antibiotics in human and veterinary medicine 

has contributed to the emergence and global spread of antimicrobial resistance, which today is 

considered one of the major human health threats. Invention of new antimicrobial agents targeting 

bacterial infections might be an expensive and comprehensive process; consequently it is, as far as 

possible, important to protect the current agents, through improved knowledge of emergence and 

spread of the genetic traits. 

Horizontal transmission of plasmids harbouring antimicrobial resistance genes is one of the most 

important methods of resistance transmission between bacterial species. However, little is known 

about the factors controlling the conjugational transfer of plasmids between different species and 

clones, and without expanding this knowledge it may be impossible to prevent the spread of genetic 

traits through conjugation.  

It has been observed that host-specific and non-host-specific serovars of Salmonella isolated from 

the same reservoir differs in their antibiotic resistance pattern (VAN DUIJKEREN et al. 2002; 

LAUDERDALE et al. 2006). Additionally, preliminary experiments for Escherichia coli have 

suggested that pathogenic clonal lineages serve as better plasmid recipients than non-pathogenic 

clones (unpublished). Thus it is possible that the ability to promote or reject the uptake of foreign 

DNA, such as plasmids, is defined by the genetic differences between the bacterial linages. Possible 

gene candidates include restriction-modification (RM) systems which are thought to act as bacterial 

host barriers against foreign DNA. For RM systems it is practically common knowledge, hence a 

dogma that they interfere with horizontal gene transfer, however for conjugation this has not yet 

been confirmed by a systematic experimental approach. Thus, other recipient genes may be 

included in the regulation of plasmid uptake. If present, identifying these additional genes acting as 

barriers or enhancers in conjugation might clarify the spread of plasmid transferred resistance. 

PURPOSE 

The purpose of the PhD project was to elucidate the implication of restriction-modification systems 

in horizontal gene transfer between bacterial clones, with the focus on conjugational transfer of 

plasmid borne antimicrobial resistance in related clones of Escherichia coli. Furthermore, to 

establish the relationship between restriction-modification systems and evolution in Salmonella in 
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comparison with the content of mobile genetic elements like plasmids and Salmonella pathogenicity 

islands.  

Finally, the purpose was to identify additional genes that might block or enhance uptake in the 

recipient bacteria. 

RESEARCH APPROACH 

The specific studies conducted during this PhD project focused on the following objectives: 

1. To quantify the importance of restriction-modification systems in conjugational transfer of 

plasmids. 

2. To investigate the influence of restriction-modification systems in long term evolution of 

Salmonella enterica ssp. enterica.  

3. To identify and assess gene candidates from whole genome sequenced bacterial isolates, which 

promote or resist plasmid uptake.



 

Chapter 1 

EVOLUTION OF MICROBIAL COMMUNITIES 

The environment of microorganisms can vary considerably, thus bacteria need to be dynamic and 

constantly capable of adapting to new surroundings. Accumulation of these adaptive changes leads 

to diversity within the different species. To understand, control and fight the spread of pathogens, 

we need to understand the processes on how bacteria diversify and the mechanisms that control the 

evolution. The prokaryotic evolution is a result of three main forces: acquisition of genes, loss of 

genes and changes within genes, Figure 1 (FRASER-LIGGETT 2005; PALLEN and WREN 2007; 

USSERY et al. 2009). Events within these forces happen all the time, leaving evolutionary traces on 

bacterial genomes.  

1.1 Evolution by Single-nucleotide Changes 

Single-nucleotide polymorphisms (SNPs) are the simplest and smallest-scale variation within 

changes of genes (FRASER-LIGGETT 2005). A mutation or base substitution in a genome can be 

caused by two fundamental processes: incorporation of wrong nucleotides during replication or 

mutagenesis triggered by physical- or chemical damage or changes. Thus exposure to antimicrobial 

agents such as rifampicin and ciprofloxacin can cause spontaneous mutations, and in Helicobacter 

pylori frequencies at 1×10
-8

 to 2×10
-8

 per cell per division were detected, conferring rapid 

adaptation to exposed environments (WANG et al. 2001). As spontaneous mutations in general are 

rare it is unlikely that the same substitution will occur in multiple genomes (unless there is a strong 
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selective pressure to obtain this given mutation). Hence the presence of the same base SNP in two 

independent genomes implies that the substitution likely descend from a shared ancestor. However, 

exceptions do exist e.g. for genes under selective pressure, like resistance genes. Genes under 

selective pressure are more likely to mutate to make the bacteria capable of adapting to the changed 

environment, thus for such genes the same base SNP can be found in multiple independent 

genomes. SNP analysis has been applied to a variety of uniform pathogens with rather conserved 

genomes (GUTACKER et al. 2002; PEARSON et al. 2004; MONOT et al. 2005; TOUCHMAN et al. 

2007), thus a problem with the more variable species have been the high proportion of mobile 

genetic elements (MGE) causing larger insertions, which challenges the one base substitution 

assumption. However, SNP analysis has proven capable of differentiating between Escherichia coli 

that had diverged for only 200 generations (SHENDURE 2005). Therefore it appears highly suitable 

for detection of short-term evolution such as antimicrobial adaption, rather than long-term evolution 

and acquisition of MGEs (ALLARD et al. 2012, 2013; GIERALTOWSKI et al. 2013; HOFFMANN et al. 

2013).  

 

Figure 1 | Genome evolutionary events. Genome size changes due to plasmid exchange, insertion sequence elements, 

phages and duplication and deletions of genes. The genomes in the figure expand (left) or decrease (right) from the light 

gray to the dark grey backbone. In the events 1, 2 and 3 from the light gray genome (left) a piece of DNA inserts itself 

into the chromosome, and from the middle genome additional insertion happens in event 4 and 5, the latter located at 

the same position as event 3. All these insertions could be caused by an IS element, a phage or another mobile genetic 

element. During genome reduction (right) the inserted region from event 1 was partly removed in event 6, leaving a 

residue in the genome. Contrary in event 7, more DNA was deleted than initially introduced in event 2, resulting in a 

genome reduction in comparison with the original genome (light gray genome left). Further, in event 8 a partial deletion 

of the two individual insertion from event 3 and 5 was resulting in a novel junction, thus in a second step the remaining 

insertions was deleted. The inserted DNA from event 4 was permanently fixed in the genome. Figure 1 is adapted from 

(USSERY et al. 2009). 
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1.2 Evolution by Gene Loss and Deletions 

As bacterial genomes remain about the same size, a balance of gene duplication or acquisition and 

gene loss or deletion must exist (MIRA et al. 2001). The most severe form of genome reduction is 

found in intracellular host-associated bacteria such as endosymbionts. These bacteria are segregated 

from the surroundings in a stable and undemanding niche, which for Rickettsia prowazekii has 

resulted in a substantial downsizing of the genome, leading to renunciation of many of the inherent 

genes (ANDERSSON et al. 1998; WERNEGREEN 2005). With gene loss and deletion of large DNA 

segments in the reductive evolution, it was initially thought that genes targeted for loss were only 

redundant genes not necessary for survival in the new host environment. However an increasing 

number of comparative genomic studies have suggested that a positive selection for gene loss might 

also be advantageous for the bacteria. In Salmonella enterica (S. enterica), different deletions 

appeared beneficial (KOSKINIEMI et al. 2012), and for Bordetella pertussis and Shigella the loss of a 

cell surface antigen enhanced the ability to avoid the host immune system (NAKATA et al. 1993; 

PARKHILL et al. 2003).  

1.3 Evolution by Gene Duplication and Acquisition 

Acquisition of additional genes through gene duplication can increase the number of key genes 

responsible for regulation, secondary metabolisms and transport. As much as 50% of larger 

genomes can be represented by gene paralogs (KONSTANTINIDIS and TIEDJE 2004; FRASER-LIGGETT 

2005). However, acquisition of genes through horizontal gene transfer (HGT) is the most effective 

source of variation within the genome (PALLEN and WREN 2007), providing a possibility for rapid 

alterations for the constant changing demands on the bacteria (BOUCHER et al. 2003). Different 

genetic elements can be transferred by HGT, among others the virulence determinants on 

pathogenicity islands (PAIs) and prophages, which appear to play a major role in the evolution of 

pathogens. In a comparative analysis of Staphylococcus aureus and the closely related 

Staphylococcus epidermidis, it was established that the main cause of variation in virulence and 

pathogenicity was caused by the acquisition of genomic islands, presumably obtained through HGT 

(GILL et al. 2005). Another prominent source for diversification by HGT is mediated by plasmids, 

which can rapidly confer antimicrobial resistance or numerous of virulence factors and thereby 

evolve existing clonal lineages. The opportunistic pathogen Bacillus cereus is normally differing 

from the etiologic agent of anthrax, Bacillus anthracis, by two plasmids, toxic-encoding pXO1 and 

capsule gene coding plasmid pXO2. However, whole genome sequence (WGS) analysis revealed 

that the B. cereus G9241 strain was harbouring a plasmid 99.6% identical with the B. anthracis 
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plasmid pXO1, and a previously unidentified plasmid encoding polysaccharide capsule cluster, 

resulting in a virulent B. cereus strain (HOFFMASTER et al. 2004).  

 

Figure 2 | Concatenated Core-genome tree of 221 Salmonella enterica isolates. The tree is based on 1,072 core gene 

clusters, with colour indications of restriction-modification systems present in the isolates. The bootstrap values are 

indicated at each branch. Figure 2 is adapted from (Roer II).  

With the accumulation of prokaryotic genome sequences, the challenge of constructing whole-

genome phylogenies (WGP) began. The extent and influence of HGT on the evolution, as indicated 

in the two examples with Staphylococcus and Bacillus, together with disagreements between WGP 

and rRNA phylogenies indicated that a reconstruction of the Tree of Life would be difficult or even 

impossible (DOOLITTLE 1999). Consequently, rather than illustrating WGP as a single tree, a 

consensus appeared that the evolution of prokaryotes was more appropriate depicted as a network of 

trees covering both horizontal and vertical transferred genes (FRASER-LIGGETT 2005). In Roer et al. 

(Roer II), the evolution of S. enterica was depicted by the network of the core- and pan-genome 
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trees, presented in Figure 2 and Figure 3. The pan-genome is defined as any gene family in the 

bacterial species, including both the core-genome and the dispensable genome. Thus, a pan-genome 

can either be open or closed, dependent on whether addition of new genomes to the analysis reveals 

new genes (open), or no new genes (closed) to the pan-genome (MEDINI et al. 2005; PALLEN and 

WREN 2007). 

 

Figure 3 | Pan-genome tree of 221 Salmonella enterica isolates. The tree is constructed from a presence or absence 

matrix of gene clusters in the Salmonella genomes. The colours indicate the restriction-modification systems present in 

each isolate. The bootstrap values are shown at each branch. Figure 3 is adapted from (Roer II).  

The core-genome is the pool of conserved genes shared by all the strains of the bacterial species, 

which normally are essential for bacterial growth. The dispensable genome is all the accessory 

genes present in some but not all strains of the bacterial species, together with the strain-specific 

genes (MEDINI et al. 2005). Further, the accessory genes are contributing to the diversity of the 

species and consist of genes encoding selective advantage including colonization of new hosts, 



CHAPTER 1 | EVOLUTION OF MICROBIAL COMMUNITIES 

6 

 

adaption to different niches or confer antibiotic resistance. The core-genome tree is constructed 

from an alignment of the core-genes of the strains, accounting for the vertical evolution. The pan-

genome is a picture of the dispensable genes as the core-genes are present in all strains, and not 

contributing to the pan-genome tree. The pan-genome tree is constructed from a presence or 

absence matrix of the genes, where the relative Manhattan distance between the genomes is used for 

hierarchical clustering. The pan- and core-genome tree network is valuable in detecting variations 

within conserved genes but also HGT.  

  



 

Chapter 2 

PROMISCUITY OF BACTERIA 

It is well-established that considerable horizontal gene transfer can occur between bacterial species. 

However, along with the accumulation of sequence data it became clear that the genetic and 

biochemical diversity in the prokaryotic world was highly underestimated, thus horizontal gene 

transfer was far more extensive in some bacterial species than previously anticipated (PERNA et al. 

2001; FRASER-LIGGETT 2005).  

Some bacterial species like Mycobacterium tuberculosis, Mycobacterium leprae, Yersinia pestis, 

and Bacillus anthracis were found to be genetically uniform pathogens (PALLEN and WREN 2007). 

In addition,  B. anthracis was shown to have a closed pan-genome, where the addition of the fourth 

genome to the analysis did not add new genes to the pan-genome (TETTELIN et al. 2005). 

Furthermore, the pan-genome of nine B. anthracis genomes was shown to consist of 2,893 core 

genes, 85 accessory genes and seven strain-specific genes (ROULI et al. 2014). Uniform species are 

likely to have closed pan-genomes, thus they are more conserved, they have a low ability to acquire 

foreign DNA, and are normally found in niches with limited access to the global microbial gene 

pool (MEDINI et al. 2005).  

In contrast to the bacterial species with closed pan-genomes, bacterial species that normally are 

capable of colonizing multiple environments and can exchange genetic material in multiple ways, 

like Salmonella, E. coli, Streptococci, Meningococci and Helicobacter pylori, are likely to have an 

open pan-genome, where each new genome sequence adds new genes to the overall gene pool of 
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the species. Thus, these bacterial species seem more promiscuous in the sense that they are able to 

acquire DNA outside their own species. With the completion of the genomic sequence of the 

pathogenic E. coli O157:H7 in 2001, Perna et al. compared the genome with the non-pathogenic 

laboratory E. coli K-12 strain and revealed 1,387 new genes encoded in strain-specific clusters of E. 

coli O157:H7. These genes encoded protein candidates of virulence factors, numerous prophages 

and alternative metabolic abilities. This is a practical example of how two members of the same 

species can differ almost 30% (PERNA et al. 2001), which has also been shown for bacterial species 

such as H. pylori and Staphylococcus aureus, both with an average of strain specific genes recorded 

to ~22% (SALAMA et al. 2000; FITZGERALD et al. 2001). However, these findings were observed in 

the years 2000 and 2001, where a limited number of sequenced genomes were available. Therefore, 

assessing the proportion of strain specific genes in the present time could potentially give a different 

result, with the ongoing exchange of genetic material.   

Various studies have been assessing the pan- and core-genomes of E. coli, hence estimating the 

core-genome to be between 1,500-2,000 gene families (WILLENBROCK et al. 2007; 

CHATTOPADHYAY et al. 2009; TOUCHON et al. 2009; VIEIRA et al. 2011; KAAS et al. 2012). 

Additionally, the pan-genome was found in one early study to consist of 11,432 gene families when 

assessing 20 genomes (TOUCHON et al. 2009), while a study only three years later found 16,676 

pan-genes when assessing 186 genomes  (KAAS et al. 2012).  

Another highly diverse species is Salmonella enterica, which is divided into six subspecies of 

which S. enterica subspecies enterica alone is grouped into more than 1,500 individual serovars. 

Some serovars are defined as host-specific, hence they are only found in a limited and specific 

number of hosts, compared to the non-host-specific serovars which can be found in a broad range of 

hosts. Evaluating the pan- and core-genome of S. enterica, one study on 73 genomes showed a core-

genome of 2,882 gene families with a cognate pan-genome of 10,581 gene families 

(LEEKITCHAROENPHON et al. 2012), where an another study utilizing the same method, estimated 

the core-genome on 221 genomes to comprise 2,138 gene families with a cognate pan-genome of 

16,375 gene families (Roer II). The pan-genomes of both E. coli and S. enterica appear to be open, 

and follow the rule that addition of more genomes to the analysis causes larger pan-genomes. 

However, it has been observed for Salmonella that host-specific serovars possess considerably less 

genes related to antimicrobial resistance than serovars with multiple hosts, even though the isolates 

were isolated from the same reservoir (VAN DUIJKEREN et al. 2002; LAUDERDALE et al. 2006). This 

could indicate, that the difference between host- and non-host-specific S. enterica could explain 
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their ability to acquire new genes, as the need for host-specific serovars to adapt to new 

surroundings is smaller since they are limited to only a few hosts. Thus, some bacterial species and 

serovars seem to be capable of diversifying by acquiring new genetic material through plasmids or 

other MGEs more easily than others. The case with S. enterica indicates a segregation of 

promiscuity is possible within a single but yet diverse species. 

2.1 Plasmids 

Plasmids play a major role in the exchange of genetic material between bacteria, thereby enhancing 

the genetic diversity and the ability for bacteria to adapt to changing environments. 

The term plasmid was suggested by Joshua Lederberg in 1952, as a common phrase for all 

extrachromosomal hereditary determinants, both genetically simple or complex (LEDERBERG 1952). 

However, now plasmids are described as either linear of circular double-stranded DNA elements 

capable of autonomous replication in their host, and having a genome size ranging from 

approximately 750 bp to 2.58 Mbp (SHINTANI et al. 2015). Plasmids can be classified by several 

different criteria, including their transmissibility, incompatibility groups, copy number and host 

range. Some plasmids are thought of as selfish DNA elements, as they are self-transmissible, and 

can replicate and survive within a host. However, using these criteria, not all plasmids are to be 

considered as selfish; in a comparison of 1,730 fully sequenced plasmids, only 15% of the plasmids 

were predicted to be self-transmissible, compared with 24% mobilizable plasmids which need help 

to be transmitted and 61% non-transmissible plasmids (SMILLIE et al. 2010). In 2015, Shintani et al. 

classified 4,602 complete plasmid genomes by their host (data collected August 2014). They found 

that 137 of the plasmid genomes were from archaea, 47 were from eukaryotes, and the remaining 

4,418 plasmids were from bacteria (SHINTANI et al. 2015).  

The best studied group of self-transmissible plasmids are the IncP-1 plasmids, which initially were 

found in clinical bacterial isolates (JOBANPUTRA and DATTA 1974; JACOBY et al. 1976). They are 

still of clinical concern due to their ability to carry and facilitate the spread of antibiotic resistance 

(INGRAM et al. 1973; NOVAIS et al. 2006). Additionally, IncP plasmids are present in diverse 

environments like manure (BINH et al. 2008), water streams (SMALLA et al. 2006), waste-water 

treatment plants (SCHLÜTER et al. 2007), and agricultural soils (TOP et al. 1995; SEN et al. 2011), 

which is also the case for the IncP-1 plasmid pKJK5 isolated from a soil environment (BAHL et al. 

2007). A schematic map of a typical IncP-1 plasmid is depicted in Figure 4. The plasmids consist of 

two regions; a ‘plasmid backbone’ and the accessory genes. The plasmid backbone includes genes 
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responsible for replication (trfA), transfer and maintenance (tra and ctl), whereas the accessory 

regions encode genes that can increase the fitness to the host such as antimicrobial or metal 

resistance and alternative metabolic pathways (SCHUMANN et al. 2008). For the IncP-1 plasmids, 

the accessory genes are typically found in two different areas, the first located between the trb 

operon that encode mating-pair formation, and the tra operon that encode genes responsible for 

plasmid transfer. Tthe second region is located between the origin of replication (oriV) and trfA 

responsible for plasmid replication (SCHUMANN et al. 2008; SEN et al. 2013). The accessory regions 

can carry other MGEs such as integrons (Ins), insertion sequences (ISs) and transposons (Tns) that 

enables the accessory genes to move between the bacterial chromosome and plasmids, contributing 

to the bacterial evolution (SCHLÜTER et al. 2007; SCHUMANN et al. 2008). However, plasmids that 

do not enhance beneficial traits to their hosts also exists, and are named cryptic plasmids (VAN 

ELSAS et al. 1998). 

 

Figure 4 | Genetic map of a typical IncP-1 plasmid. The map displays the different functional elements located on a 

typical IncP-1 plasmid. Backbone genes are coloured in dark grey, with accessory genes displayed in light grey. The 

backbone of the plasmid is composed of an origin of replication (oriV) and an operon for replication initiation (trfA). 

The trb operon is involved in bridge formation and the tra operon in DNA processing, both during conjugation. The 

central control region (ctl) comprises regulatory genes involved in maintenance and plasmid stability, whereas the 

accessory regions can consist of host-beneficial genes, whit potential traits. Figure 4 is adapted from (SEN et al. 2013)  

2.1.1 Replication 

One of the main reasons for the success of plasmids is their ability to self-replicate within their host. 

In plasmids, the three different well-known mechanisms for replication of circular plasmids 

includes rolling-circle replication, theta-type replication, and strand displacement-type replication 

(DEL SOLAR et al. 1998).  
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Rolling-circle replication (RCR) plasmids are found in both Gram-positive and Gram-negative 

bacteria as well as archaea. RCR is named due to the apparent rolling movement during replication. 

Plasmids replicating by RCR are generally very small and compact (less than 10 kb) and found in 

multiple copies (KHAN 2005; SCHUMANN et al. 2008). Additionally, RCR plasmids include both 

conjugative and mobilizable plasmids, often carrying antibiotic or metal resistance genes, however 

some of the plasmids are cryptic (KHAN 2005). The Rep region of plasmids encodes proteins that 

are involved in the initiation, elongation and termination of replication (DEL SOLAR et al. 1998).  

The large plasmids are either replicating through the theta-, or strand displacement-type replication 

mechanisms (MEIJER et al. 1995; GUGLIELMETTI et al. 2007). The theta-type replication (TR) is 

named by the molecule shape of the replication intermediate, which is visible under electron 

microscopy. The replication initiates with melting of the parental strands and primer RNA 

synthesis, followed by extension of the primers. In TR the leading strand is synthesized 

continuously, and the lagging strand discontinuously (DEL SOLAR et al. 1998). In contrast, strand 

displacement-type replication (SDR) synthesizes the two strands bidirectionally. Replication by 

SDR is initiated by the combination of three proteins, further this mechanism has been associated 

with mobilizable plasmids of the IncQ family (SAKAI and KOMANO 1996; DEL SOLAR et al. 1998).  

Besides the size difference between RCR and the two other methods, a substantial difference is the 

single-stranded DNA intermediate of RCR plasmids (DEL SOLAR et al. 1998; KHAN 2005), 

providing plasmid instability of plasmids replicated by rolling-circle. 

Following successful replication of the plasmids, they will segregate to the daughter cells by 

vertical transfer and establish in the new host cell.  

2.1.2 Host Range of Plasmids 

The plasmid host range is generally described as the collection of hosts in which a plasmid can 

replicate. Thus this host range is usually smaller than the transfer range (the range of hosts the 

plasmid can be transferred to by conjugation), though bigger than the range of host in which the 

plasmid can be maintained stably without selection (DE GELDER et al. 2007). Plasmids can either 

have a narrow or a broad host range. Narrow host range (NHR) plasmids can be limited in their 

transfer process, by unsuccessful formation of mating pairs, or in difficulties with plasmid 

maintenance caused by incorrect expression of the plasmid replication system in the recipient 

(THOMAS and NIELSEN 2005). Opposite NHR, Broad Host Range (BHR) plasmids are capable of 

transferring to and replicating within a comprehensive range of hosts. Though, different definitions 
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of BHR have been utilized, with some researchers defining BHR as plasmids capable of transferring 

between different genera, whereas others define BHR as those plasmids that can transfer and 

replicate within at least two subgroups of a bacterial species (SZPIRER et al. 1999). As the transfer 

range of some BHR plasmids are wider than the replication range, the combination of conjugative 

transfer followed by integration into the recipient chromosome enables the ability to spread genetic 

material on a broad taxonomic range. Additionally, mobilization of non-conjugative plasmids with a 

broader host range increases the spread. For the self-transmittable (conjugative) plasmids, the group 

of IncP-1 are considered those with the broadest host range (THOMAS 1987; ADAMCZYK and 

JAGURA-BURDZY 2003; SCHLÜTER et al. 2007). Klümper et al. showed that the IncP-1 plasmid 

pKJK5 possessed the ability to transfer to a surprisingly diverse group of recipients extracted from 

soil, thus showing a rather diverse host range (KLÜMPER et al. 2014). However transferring pKJK5 

to various S. enterica recipients showed differences in the ability to take up and maintain the 

plasmid (Roer III).  

Small mobilizable (non-self-transmissible) plasmids, like the IncQ plasmid RSF1010, have showed 

tendencies of broader host range than large plasmids with the ability to conjugate (GUERRY et al. 

1974). However, the mobilizable plasmids are deeply dependent on the conjugative plasmids to 

transfer between hosts.  

2.1.3 Incompatibility 

Incompatibility has not only been used to classify plasmids since the 1970s (SHINTANI et al. 2015), 

but it still has huge impact on the ability of plasmids to be maintained in a new host. Incompatibility 

(Inc) is defined as the inability for two plasmids to coexist in the same host without a selective 

pressure. The failure to coexist can be caused by similarity in replication and partition systems. The 

partition system is covering the active process that controls a consistent distribution of low-copy-

number plasmids to daughter cells (BOUET et al. 2007). Hence, if a potential new host already 

possess an analogous replication mechanism, the new host is unable to distinguish the two plasmids 

and neither will be replicated frequently enough to be stably maintained (NOVICK 1987; BOUET et 

al. 2007). This will in most cases lead to a loss of the newly transferred plasmid, as the initial copy 

number is lower. 

A PCR-based method was previously used to classify the replicon types within Enterobacteriaceae.  

The limitations to identifying novel and divergent replicons resulted in a more accurate 

classification based on the full-length sequence (CARATTOLI 2009), enabling grouping of 
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unidentified Inc groups (SHINTANI et al. 2015). Online WGS tools like PlasmidFinder is now 

available to classify the replicon type based on sequencing data (CARATTOLI et al. 2014). 

In a review by Shintani et al. from 2015, the current number of Inc groups was reported. For 

Enterobacteriaceae 27 different Inc groups were described, 14 Inc groups for Pseudomonas and 

about 18 Inc groups for Staphylococcus (SHINTANI et al. 2015), indicating a broad member of 

MGEs. 

2.2 Pathogenicity Islands 

Another important group of mobile elements that are presumed to be involved in HGT are the 

Pathogenicity islands (PAIs), which are decisive in the virulence of bacteria (GILL et al. 2005; 

PALLEN and WREN 2007). The HGT facilitates a rapid acquirement of complex virulence functions 

from different species. PAIs were first described in pathogenic E. coli, where Hacker and collegues 

investigated the genetics behind virulence. By deletion of two large DNA inserts in the 

chromosome, they found that deletions affected virulence expression, thus mutants with deletions of 

both inserts resulted in a entirely avirulent strain (KNAPP et al. 1986; HACKER et al. 1990). These 

regions responsible for virulence in E. coli 536 led to the term pathogenicity islands (BLUM et al. 

1994).   

 

Figure 5 | General structure of Pathogenicity Islands. (A) shows a schematic model of a bacterial genomic island. 

The PAIs are frequently inserted at sites with tRNA or tRNA-like genes, flanked by directed repeats (DR) which are 

used in insertion and deletion processes. (B) The content of guanine and cytosine (G+C) differs from the rest of the 

genome, which is often used to identify new PAIs. Figure 5 is adapted from (SCHMIDT and HENSEL 2004) 

PAIs can be diverse in both structure and function, however numerous common genetic features 

have been observed. For a genomic island to be a PAI it has to carry at least one virulence gene, 

illustrated by V1, V2 etc. in Figure 5. The majority of the islands can be relatively large, with the 
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majority somewhere between 10 and 200 kb. The PAIs will only be present in pathogens of the 

same or closely related bacterial species. The guanine and cytosine composistion (base 

composition) of bacterial DNA can vary from 25 to 75%, however PAI often differ in base 

composition compared to the rest of the genome in which they are found (HACKER and CARNIEL 

2001; HENSEL 2004). As PAI are belived to be acquired by HGT, the reason for this difference in 

composition is considered to derive from the donor species. However, it has been observed from 

studying genome evolution that horizontally acquired DNA will tend to shift towards the base 

composition in the recipient genome, making it difficult to explain why inherent PAIs still differ in 

their base composition (SCHMIDT and HENSEL 2004). 

PAIs are often, like bacteriophages (CAMPBELL 1992), located within an insertion sites such as 

tRNA, and frequently associated with DNA mobility. Directed repeats (DR) might serve as 

recognition site for integration, however they can also contribute to the instability of PAIs as DR act 

as recognition sequences for enzymes that are involved in deletion of MGEs. When PAIs are 

transferred by transduction (bacteriophages) integrases might mediate the integration into the 

chromosome of the bacteria, as well as excision when the bacteriophage needs to enter a lytic cycle. 

Tns are another type of MGEs that are often found in PAIs, thus besides changing the location 

within the bacterial chromosome, Tns can also jump between chromosome and plasmids. 

Additionally, the combination of two or more insertion elements (IS) can also result in mobilization 

of the PAIs, as well as inactivation of genes. Thus, all the MGEs present at PAIs causes unstablility, 

and deletions of PAIs from chromsomes with distinct frequencies (HACKER et al. 1997; HACKER 

and CARNIEL 2001; SCHMIDT and HENSEL 2004).  

The functions encoded by PAIs are dependent on the environment the bacterium lives in. Thus the 

genetic repertoire encompass several functional groups, with the most common ones being: (i) Iron 

uptake systems, including siderophores like aerobaction or yersiniabactin used to delivery of iron 

into microbial cells. (ii) Adhesins counting i.a. type 4 pili, P-pili, S-fimbriae and Sap adhesion. 

Virulence factors in this group enable bacteria to adhere to the surfaces of the host and promote the 

infection process in the host. (iii) Pore-forming toxins, exotoxins and enterotoxins such as α-

hemolysin, listeriolysin, RTX-like exotoxin and pertussis toxin. The toxins can destroy or affect the 

function of the eukaryotic host cells. (iv) Protein transport through Type III and IV secretion 

systems. These organelles deliver effector proteins into the host cells, modulating the functions of 

the host. (v) Invasion genes, such as the Salmonella spp. inv genes, that facilitate bacterial access to 

the eukaryotic host cells (SCHMIDT and HENSEL 2004; GAL-MOR and FINLAY 2006).  
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For S. enterica, most of the virulence factors are encoded by genes carried in the chromosome, 

many located within PAIs. Genes needed for invasion of S. enterica were found to cluster within a 

defined region in the chromosome by the group of C. A. Lee (MILLS et al. 2006). This lead to the 

PAI named SPI-1. Thus currently 20 different types of PAIs are recorded in PAIDB for Salmonella 

(http://www.paidb.re.kr/ accessed December 4
th

 2015). 

2.2.1 SPI-Finder 

As whole genome sequencing more or less has become the new standard, a user-friendly web-tool 

for an easy in silico detection of Salmonella pathogenicity islands (SPIs) has been developed (Roer 

II). The SPI-Finder tool is publicly available as a web-based service hosted by the Center for 

Genomic Epidemiology (CGE) (https://cge.cbs.dtu.dk/services/SPIFinder/). SPI-Finder is built on a 

BLAST-based methodology for detection of genes from a customized database containing SPI 

variants.  

There have been various initiatives for constructing databases concerning the virulence potential of 

bacteria, including the database ‘Virulence Factors of Pathogenic Bacteria’ (VFDB), a 

comprehensive database which comprises virulence factors form a broad range of bacterial species 

of medical importance (CHEN et al. 2005). However, a drawback with VFDB is the numerous genes 

present in the database that encodes hypothetical and unknown protein functions. Furthermore, the 

database only includes 5 of the known Salmonella pathogenicity islands. Another initiative is the 

PAthogenicity Island DataBase (PAIDB) constructed by Yoon et al. An initiative with the purpose 

of providing a database with comprehensive information on both known and potential pathogenicity 

island regions in prokaryotic genomes (YOON et al. 2007). The updated PAIDB version 2.0 contains 

a total of 223 types of pathogenicity islands, thus the Salmonella records have served as inspiration 

for the customized database behind the SPI-Finder (YOON et al. 2015). For some of the islands 

recorded in PAIDB, multiple copies with 100% identity were represented from different host 

origins. However, in those cases only one representative was included in the SPI-Finder database. 

Different variants within one island were denoted based on their host origin. The SPI database was 

constructed in FASTA format, with a descriptive header and nucleotide sequence for each record, 

thus the database can be updated easily by adding new island variants to the file. Another advantage 

of using FASTA is the uniform format that makes it easy to share.  

The BLAST-based program used in SPI-Finder was originally developed by Zankari et al. for the 

web-tool ResFinder capable of detecting acquired resistance genes from WGS-data. The program 

http://www.paidb.re.kr/
https://cge.cbs.dtu.dk/services/SPIFinder/
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was developed for detection in both pre-assembled genomes and data of raw reads, with a user-

selection of minimum percent identity (%ID) between 80 and 100% (ZANKARI et al. 2012).  

 

Figure 6 | SPI-Finder output for Salmonella Choleraesuis str. SC-B67. For verification of the database, the output 

for Salmonella Choleraesuis str. SC-B67 was correlated with the seven known records in the SPI database for the 

isolate. Besides the seven records that originated from S. Choleraesuis str. SC-B67, SPI-Finder also detected SPI-13 

and SPI-14 variants which were first identified in different S. Gallinarum isolates.  

Subsequently, the original program was updated to only report the best hit within a given position 

of the data (with allowance of 30% overlap), and to report multiple variants of the same gene in 

different positions. Further, a second user-selection parameter was added, allowing for selection of 

a minimum length between 100 and 20%, and the selection interval for %ID was updated to go as 

low as 30% ID. This updated version of the program was applied to the SPI-Finder, allowing only 

the best hits from the SPI database, which also meet the user-specified parameters, to be reported in 

the output. The SPI-Finder is constructed with an easily understandable output, reporting the 
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pathogenicity islands detected, the origin of the islands, the %ID of the hit, the length of the hit and 

database record, the contig followed by the position of the hit in the contig, the insertion location 

from which the island was originally found, and additionally a function category from which the 

function of the islands can be interpreted in the category function table located beneath the output 

table. An output for S. Choleraesuis SC-B67 is shown in Figure 6. The hits in the output are colour 

indicated according to the two parameters; length and identity. Dark green indicates hits of full 

length and with an identity of 100%, where light green indicates hits with full length but with less 

than 100% identity. Additionally, results indicated with grey represents results of less than 100% 

identity that are not of full length (not represented in Figure 6).  

In order to examine the performance and stability of SPI-Finder, the two WGS isolates with the 

most records in the SPI database (S. Choleraesuis str. SC-B67 with seven records and S. Typhi 

CT18 with 10 records), were tested against the program. For S. Choleraesuis SC-B67 (Figure 6), all 

seven records were found on a 100% ID-level, and in full-length, five additional islands were 

detected. For S. Typhi CT18 all 10 records were detected with the addition of one island. Thus in 

both cases, the SPI-Finder was capable of detecting all records in the SPI database from the two 

isolates.  

As mentioned, SPI-Finder is not the first tool exploring pathogenicity islands; the PAIDB initiative 

comprises a PAI Finder predicting PAI-like regions. However, a drawback with the PAI Finder is 

that the user cannot upload WGS data directly to the tool, as it works on open reading frames 

(ORF). Additionally, the header within the searched file needs to follow a strict pattern: 

">ID(integer)|ORF_name|start..end|strand (+ or -)", and the number of query sequences are limited 

to 1,000. Thus Genebank files of seven different diverse prokaryotic species shows that the number 

of ORFs are between 1700 and 5566 for a genome, which were also predicted by different gene 

prediction tools (HYATT et al. 2010), indicating that it is impossible to search an entire genome at a 

time by using PAI Finder.  

The attempt with SPI-Finder was to design a simple, user-friendly tool to interpret Salmonella 

pathogenicity islands from WGS data. However, different aspects should be considered when using 

such tool. Notably, searches based on databases are only capable of detecting and reporting records 

if they are present in the database explored. Consequently, when inquiring a database tool like SPI-

Finder, the user is to some extend obligated to become acquainted with the content in the database 

employed. Additionally, it is important to bear in mind that SPI-Finder solely determines  the 
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presence of genes in the genome and does not access any information concerning the expression. 

SPI-Finder provides an assessment of pathogenicity islands in Salmonella, but no information is 

provided about the actual level of pathogenicity.  

Another consideration when working with WGS data is the quality of the sequence to be explored, 

thus identifying the ideal level of %ID to be capable of detecting the presence of genes. In the 

original program constructed for ResFinder, Zankari et al. reported an optimal %ID at 98% to 

circumvent noise signals (ZANKARI et al. 2012). However the initial study was performed on 

Illumina sequencing data which, compared to other technologies, contain less indel errors. For 

sequence data of lower quality it could be an advantage to decrease the %ID to be capable of 

detecting genes. As a default SPI-Finder do not report hits with an ID of less than 95%. In addition, 

the minimum length should be considered in comparison with data quality. By default, SPI-Finder 

only report hits that cover at least 60% of the gene length. However, poor genome assembly can 

result in a false-negative detection of a gene, or the sequence of a present gene might be split on 

multiple contigs, making it difficult to detect the gene with such BLAST-based tool. Thus, quality 

control and measures of the input data should be provided for the user to be able to have a critical 

view on the results. Currently, methods that map reads to databases are tested as an alternative to 

the BLAST-based method, to circumvent the problems with bad quality assemblies and genes split 

into multiple contigs.  

2.3 The Mechanisms of Horizontal Genetic Transfer 

Vertical transfer describes the process from which genetic material is inherent from parental cells to 

offspring which happens naturally during reproduction. Opposite the vertical transfer process, HGT 

describes the movement of genetic material between and within different populations of prokaryotes 

in the community (FRANCINO 2012).  

The importance of HGT was first recognized together with the observation of heredity of multiple 

antibiotic resistances in pathogens in the 1940’s (WATANABE 1963; DAVIES and DAVIES 2010). 

Subsequently, substantial genetic exchange between bacteria was revealed by disparities in base 

composition and biased codon usage, high gene similarity of distantly related organisms, and 

variation of gene content within the same species (KOONIN et al. 2001; HEUER and SMALLA 2007; 

SCHUMANN et al. 2008). HGT is currently accepted as a dominant driving force in rapid adaptation 

and evolution of bacterial genomes (BERG and KURLAND 2002; DOOLITTLE et al. 2003; HEUER and 

SMALLA 2007; SCHUMANN et al. 2008). 
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Figure 7 | The three general transfer modes of Horizontal Gene Transfer; Conjugation, Transformation and 

Transduction. The different mechanisms are explained in the text. Figure 7 is adapted from (STEWART 2013). 

Several studies have elucidated the extent of HGT in bacterial communities. In a clinical isolate of 

the gram-positive bacteria Enterococcus faecalis more than 25% of the genome potentially 

consisted of mobile DNA (PAULSEN et al. 2003). As previously mentioned,  in the case with the 

non-pathogenic E. coli K-12 strain and the pathogenic O157:H7 strain a difference around 30% was 

observed (PERNA et al. 2001), indicating a big intra-species divergence.  

The horizontal transfer of genes is mediated by three general mechanisms; conjugation, 

transformation and transduction, as illustrated in Figure 7.  

The individual contribution to HGT is not known for the three transfer mechanisms. However, the 

transfer of plasmid mediated by conjugation is believed to be one of the most frequent and 

disseminated mechanisms for  transfer of genetic material among bacterial species (JAIN et al. 2002; 

THOMAS and NIELSEN 2005; SCHUMANN et al. 2008). This PhD thesis is focusing on conjugational 

transfer, the mating process between bacteria. However, transduction and transformation will 

shortly be described in the sections 2.3.2 and 2.3.3.  

2.3.1 Conjugation 

The conjugational process is highly specific, where the transfer of DNA is specialized by a 

multiprotein complex, the conjugation apparatus (GROHMANN et al. 2003). The active participation 

of both mating partners, donor and recipient, was already suggested in 1968 by Curtiss et al. 

(CURTISS et al. 1968). A physical contact between the cell surfaces of the mating pair is an 
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important prerequisite for conjugational transfer, which in gram-negative bacteria is mediated by 

extracellular filaments termed sex pili (GROHMANN et al. 2003).  

The type IV secretion systems (T4SS) are responsible for the conjugative transfer of plasmids. One 

of the best studied conjugative transfer systems is the IncP (tra) system of RP4, a broad-host range 

IncP plasmid, of which the most essential mechanism will be described in this section. 

The IncP transfer system is comprised in the two regions; Tra1 and Tra2. For DNA to travel across 

the cell envelopes of the mating cells, two main protein complexes are involved; the multiprotein-

DNA complex relaxosome and a mating-pair formation (mpf) complex. The relaxosome complex is 

formed from genes encoded by both chromosome and plasmid (FÜRSTE et al. 1989; LANKA and 

WILKINS 1995). The mpf complex is encoded in the plasmid trb operon (LESSL et al. 1993) as 

illustrated at the IncP plasmid in Figure 4. 

 

Figure 8 | Overview of general mechanisms for plasmid transfer. Conjugative plasmids are carrying an origin of 

transfer (oriT), genes encoding proteins for pili, mating-pair formation complex (mpf) responsible for the T4 envelope 

spanning channel, a T4CP (yellow), the relaxsosome conjugation initiation complex with the secretion substrate and 

DNA nicking relaxase (pink). The different steps are described in the text. Figure 8 is adapted from (ZECHNER et al. 

2012) 

The conjugational transfer is illustrated step-by-step in Figure 8, and described in the following.  

(i) The conjugation is initiated by the assembly of multiple proteins forming the relaxosome 
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complex at the origin of transfer (oriT). (ii) The complex is then preparing the single-stranded DNA 

intended for transfer (T-strand). This is done by nicking activity of the phosphodiester bond at the 

nic site within oriT, which in addition, mediates formation of a covalent tyrosinyl-DNA adduct 

(ZECHNER et al. 2012). (iii) The plasmid-encoded TraG-like T4CP (coupling protein) recognizes the 

nucleoprotein and docks it to the complex (GRAHN et al. 2000). (iv) When the initiation signal is 

registered, as a result of donor-recipient contact, the T-strand with linked relaxase is actively 

pumped through the mfp transport apparatus. (v) After the termination of transfer, the original 

plasmid in the donor is stabilized by conjugative replication, where the missing complementary 

strand is synthesized. (vi) In the recipient, recircularization of the plasmid is done by joining the 

free 3’-hydroxyl and the 5’-terminus with the covalently bound relaxase. Finally, the transferred 

plasmid is stabilized by freeing the relaxase and synthesizing the complementary strand. 

(GROHMANN et al. 2003; ZECHNER et al. 2012). The transfer genes at IncP plasmids are not 

constitutively expressed, but is regulated by local auto-regulators and global regulators, which 

results in a coordinated expression with other plasmid functions (ZATYKA and THOMAS 1998; DANG 

et al. 1999). 

The Type IV secretion system (T4SS) involved in conjugational transfer is capable of connecting a 

wide variety of organisms (GRAHN et al. 2000; THOMAS and NIELSEN 2005), and is thereby one of 

the most significant machineries in bacterial adaptation and evolution (AMINOV 2011). 

Additionally, conjugative plasmids facilitate the spread of antibiotic resistance between pathogens, 

and continue to be a crucial player in the emergence of multidrug resistant pathogens in hospitals 

(BEOVIĆ 2006) and agriculture (ZHU et al. 2013). 

2.3.1.1 Methods for Detection of Conjugational Plasmid Transfer 

Conjugation abilities of bacterial species and transfer range of plasmids have conventionally been 

evaluated by using single isolates as recipients (LEDERBERG et al. 1952). The most common and 

still widely used method for detection of plasmid transfer is based on selective plating, where 

plasmid encoded traits act as markers for conjugational events. This requires for the plasmid to 

confer resistance to antibiotics or heavy metals, or to possess accessory metabolic pathways, which 

allow only the transconjugants to grow on the selective media. Nevertheless, the method has 

allowed for identification of several factors affecting conjugational transfer, including the effect of 

chemical compounds like biocides in transfer of the transposon Tn916 (SEIER-PETERSEN et al. 

2014), conjugational inhibition by unsaturated fatty acids (FERNANDEZ-LOPEZ 2005), the 
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availability of nutrients (SØRENSEN and JENSEN 1998), changes in temperature and pH values 

(RICHAUME et al. 1989; ROCHELLE et al. 1989).     

The selective detection method does have other drawbacks than the selective requirements of the 

plasmids, especially when studying a complex microbial community. The method is restricted to the 

small fraction of bacteria which is culturable and able to grown on specific growth media; a fraction 

that probably is below 1% of the total bacterial community (AMANN et al. 1995). In addition, this 

method ignores the fact that most bacteria exist in complex matrices and together in communities 

with hundreds to thousands of other species, when only focusing on a single recipient strain (HONG 

et al. 2006; BROWN KAV et al. 2012).  

To overcome some of these drawbacks, in-situ reporter genes were introduced on plasmids. The 

detection of plasmid transfer could then be measured as the expression of the reporter genes in the 

transconjugants, thus avoiding cultivation with selective plating and the enclosed selective 

advantage. Different reporter gene systems have been utilized for detecting plasmid transfer, 

including the lux system (HOFFMANN et al. 1998), the β-galactosidase assay with the lacZ gene 

(JAENECKE et al. 1996), and systems with reporter genes expressing fluorescent proteins 

(CHRISTENSEN et al. 1996; DAHLBERG et al. 1998). 

To avoid expression of the reporter genes in the donor strain, inducible reporter genes were 

introduced on the conjugative plasmids. This was achived by introducing the reporter genes behind 

a lacZ promoter subjected to inhibition by constitutive lacI repression in the donor (either by 

insertion of lacI on the chromosome or present on a non-transferable plasmid) (DAHLBERG et al. 

1998; FERNANDEZ-LOPEZ 2005). Thus, expression of the reporter genes would only occur after 

successful transfer to the recipients. The construction of the inducible lux system, measuring 

plasmid transfer as arbitrary light units (ALU), gave rise to a high-throughput conjugational assay, 

allowing up to 96 samples at the same time by using microplate luminometers for detection 

(FERNANDEZ-LOPEZ 2005; PÉREZ-MENDOZA and DE LA CRUZ 2009).  

The inducible fluorescent system with gfp as reporter gene has been widely used to quantify 

plasmid transfer using flow cytometers, where the transfer was measured as expression of GFP in 

the recipients (CHRISTENSEN et al. 1996; DAHLBERG et al. 1998; SØRENSEN et al. 2003). The 

enhanced ability to study plasmid transfer in microbial communities revealed transfer frequencies 

up to 1,000 times higher than observed with methods dependent on cultivation (MUSOVIC et al. 

2006). In 2000, the gfp reporter system was further improved by implementing a red-fluorescent 
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marker gene (DsRed) at the donor chromosome. This enabled simultaneously detection and 

quantification of the donors, recipients and transconjugants (TOLKER-NIELSEN et al. 2000).  

The improved gfp reporter system is still available, thus it provides the opportunity to screen a 

broad collection of strains or even communities for their ability to conjugate and take up a plasmid. 

With isolation of single transconjugants by fluorescent activated cell sorting (FACS), and whole 

genome amplification it is possible to determine the range of recipients in a community, without the 

need of selection and cultivation (MUSOVIC et al. 2006; KLÜMPER et al. 2014; SHINTANI et al. 

2014).  

The fluorescent properties of the system have been improved by using the advanced gfpmut3 variant 

for the green fluorescent reporter and mCherry as the red fluorescent donor marker gene, in the 

construct of i.a. E. coli MG1655::mCherry-lacI
q
 with the plasmid construct pKJK5::gfp3mut 

(KLÜMPER et al. 2014).  

This latter E. coli pKJK5 system, constructed by Klümper et al., was applied in Roer III, as a high-

throughput screening method, to identify conjugative abilities in a broad collection of S. enterica 

ssp. enterica. 

 

Figure 9 | Quintuple gating for donor, recipient and transconjugant detection by flow cytometry. Flow cytometry 

detection of donor, recipients, and transconjugants from a conjugation mixture of a S. enterica recipient and E. coli K-

12 MG1655 donor carrying pKJK5. The gating procedure consists of five successive gates in the 3 bivariate plots: Plot I 

with the Bacterial gate, detects all particles of bacterial size based on front scatter (FSC) and side scatter (SSC); Plot II 

detects all red fluorescence particles (mCherry) representing the donors, and all non-red particles representing either 

recipients or transconjugants by using side scatter and PE-Texas Red; Plot III divides the recipients and transconjugants 

by gating non-green and green fluorescence particles (gfp3mut) based on side scatter and FITC. Figure 9 adapted from 

(Roer III). 

In Roer III, the detection of donor, recipients and transconjugants was based on a quintuple gating 

approach. The five gates are defined in the three bivariate plots in Figure 9. In the first plot, a 
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combination of side scatter (SSC) and forward scatter (FSC) is used to distinguish bacterial particles 

from other subpopulations, by using a gate corresponding to particles of bacterial size. In the red 

fluorescence (PE-Texas Red) vs SSC plot a gate was set to cover all donor cells, with an additional 

non-red gate covering recipients and transconjugants. In the third plot, green fluorescence (FITC) 

and SSC was used to distinguish green transconjugants from non-green recipients. This approach 

allowed us to count 100,000 bacterial events in around 30 seconds, without the need to use selective 

cultivation.    

2.3.2 Transduction 

Transduction is another of the three transfer mechanisms comprised by the term HGT. The transfer 

of non-viral DNA to a new host is mediated by the bacterial viruses, bacteriophages (phage), as 

illustrated in the upper right corner of Figure 7 (STEWART 2013). The mechanism relies on 

mistakenly packed phage heads where host DNA is integrated in the phage DNA during the 

reproduction of the phage particle. When host cells are lysed, defective phage particles are released, 

ready to adsorb to new host cells, where they can inject the carried DNA from the previous host.  

When delivered to the recipient host cell, the transferred DNA can be integrated into the 

chromosome (MAZODIER and DAVIES 1991; HEUER and SMALLA 2007). A review by Brüssow et al. 

describes different bacterial species that have acquired pathogenicity determinants through phages 

(BRÜSSOW et al. 2004). Additionally, PAIs in pathogenic strains is believed to have evolved from 

lysogenic bacteriophages (HACKER et al. 2003; DOBRINDT et al. 2004). 

It was originally assumed that phages was limited to a small range of hosts (BERGH et al. 1989; 

MAZODIER and DAVIES 1991), however phages like P1 and Mu have shown to interconnect with a 

broad range of bacteria (JENSEN et al. 1998; WOMMACK and COLWELL 2000; CHEN and NOVICK 

2009). Transfer by transduction has the advantage that DNA is protected from the environment, and 

the phage particles can persist relatively long under environmental conditions (ZEPH et al. 1988; 

WOMMACK and COLWELL 2000).  

The number of bacteriophages in seawater is found to be 10 times higher than the number of 

bacteria (BRÜSSOW and HENDRIX 2002; DANOVARO et al. 2008), and with transduction events of 20 

million billions per second in the oceans (CHIBANI-CHENNOUFI et al. 2004) marine viruses are 

believed to be a major contributor in the global ecosystem (SUTTLE 2007; DANOVARO et al. 2008; 

ZHAO et al. 2013). However, as the transduction mechanism relies on mistakes in phage packing, 
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most of the transferred DNA will not be functional genes. Thus, the evolutionary impact of 

transduction will probably be rather low.   

2.3.3 Transformation 

The third HGT mechanism is transformation (Figure 7). Transformation covers the uptake of free 

exogenous DNA by competent cells (LORENZ and WACKERNAGEL 1994; DUBNAU 1999). Natural 

competence is a physiological phase, genetically programmed, where efficient uptake of DNA is 

permitted. This can either be a persistent phase, as for N. meningitidis (HAMILTON and DILLARD 

2006), or a phase induced by environmental factors (HANAHAN 1983; NIELSEN and VAN ELSAS 

2001). Thus, the prerequisites for transformation are the bacterial change to a competent phase, the 

availability of exogenous free DNA, followed by the uptake and stable integration of the DNA 

(HEUER and SMALLA 2007).  

Transformation is a commonly used method in gene technologies, as artificially constructed 

changes of environments can trigger the desired bacterial cells to enter a competent phase, ready to 

act as recipients for uptake of free DNA. However, transformation frequencies among isolates from 

the same species can differ significantly, indicating that the ability to transform is not shared 

systematically between isolates from the same bacterial species (SIKORSKI et al. 2002; MAAMAR 

and DUBNAU 2005). Additionally, the efficiency of integrating the newly introduced DNA to the 

bacterial genome might vary between bacterial species (SIKORSKI et al. 2002).  

Transformation has been confirmed in various bacterial species and environments (BRÄUTIGAM et 

al. 1997; NIELSEN and VAN ELSAS 2001; AVERHOFF and FRIEDRICH 2003; SØRENSEN et al. 2005; 

HAMILTON and DILLARD 2006), however very limited knowledge exists on the importance of 

transformation, the subsequent ability of the bacteria to adapt to different environments (HEUER and 

SMALLA 2007), as well as the contribution to bacterial evolution (JOHNSBORG et al. 2007). 



 

Chapter 3 

TRANSFER DEFENCE MECHANISMS 

The evolutionary rate in bacteria is affected by both the ability to exchange DNA as well as the 

frequencies of transfer, thus any genetic determinant restricting or enhancing this, may influence 

evolution. A number of well-described mechanisms affecting conjugative transfer include plasmid 

incompatibility (described in section 2.1.3), entry exclusion, clustered regularly interspaced short 

palindromic repeats (CRISPR), and restriction-modification systems (RM systems). This PhD thesis 

is focusing on the barriers of RM systems, and their influence on evolution. However, entry 

exclusion and CRISPR will shortly be described in the sections 3.2.1 and 3.2.2.  

3.1 Restriction-Modification Systems 

Restriction-modification systems are transfer defence mechanisms endorsed by the bacterial hosts. 

Generally all bacteria mark their DNA with an identity signature, thus when DNA is transferred 

from one bacterium to another, DNA lacking the signature of the recipient strains will be perceived 

as ‘foreign’ DNA rather than ‘self’. DNA perceived as ‘foreign’ is generally enzymatically cleaved 

in the recipient (KING and MURRAY 1994; WILLIAMS 2003; ROBERTS et al. 2003).  

The discriminatory barrier was first demonstrated in the 1950’s with an E. coli K-12 strain infected 

by bacteriophage λ, transmitted through either E. coli strain C or B (BERTANI and WEIGLE 1953). 

Around a decade later, it was proven that the establishment of bacteriophages in E. coli K-12 strains 
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could be ‘restricted’ by an enzyme that attacked ‘foreign’ DNA (MESELSON and YUAN 1968; LINN 

and ARBER 1968). 

Traditionally, the restriction enzyme is found together with a cognate methyltransferase, modifying 

the DNA by adding a methyl group in a given position. The activities from the two genes constitute 

the restriction-modification systems. However, there are systems only comprised by a modification-

dependent restriction enzyme, which only attack DNA, when the DNA is methylated in a specific 

pattern (ROBERTS et al. 2003). Both variants share the ability to attack DNA recognized as ‘foreign’ 

and thereby prevent DNA establishment in the recipient. Thus, while the methyltransferase from a 

classical RM system is required to protect the cells own DNA from degradation by the cognate 

restriction enzyme, the modification can act as substrate for restriction activity from a modification-

dependent system in another strain (MURRAY 2002).  The classical RM systems have been 

subdivided into three groups (type I-III), based on their complexity, the requirement of cofactors, 

their recognition sequence, and DNA cleavage site, as illustrated in Figure 10. The modification-

dependent systems account for a fourth group (type IV). However, some RM systems do not fit 

readily into any of the four types (KING and MURRAY 1994). 

The key characteristics for the type I RM systems are the hetero-oligomeric complexes which 

catalyses both restriction and modification, when the recognition sequence is recognized by the 

specificity subunit (S). They are usually comprised of two R subunits, two M subunits and one S 

subunit.  

 

Figure 10 | Characteristics and gene organization for the three classical RM systems; Type I-III. RM systems are 

subdivided according to their complexity, cofactor requirement, recognition sequence and DNA cleavage site. Type I, 

type II and type III are the classical RM systems. Type IV Modification-dependent systems are not classical systems, as 

they do not possess a cognate methyltransferase, and only cleave DNA with specific modifications. ENase, 

endonuclease activity; MTase, methyltransferase activity. Figure 10 is modified from (MURRAY 2002). 
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The three type I subunits are encoded by the closely related genes; hsdR, hsdM and hsdS. The genes 

are transcribed from two promotors; hsdM and hsdS from the same promotor, and hsdR from a 

separate promotor (LOENEN et al. 1987). For methyltransferase activity, only the two subunits M 

and S are necessary, whereas the third subunit R is required for restriction activity. Thus, the 

restriction activity will not be active without the M and S subunits. Two functional complexes 

exists; one with only methyltransferase activity (M2S1), and the RM system which comprises all 

three subunits (R2M2S1) (MURRAY 2000). In the modification reaction, S-adenosyl-methionine 

(AdoMet) act as the methyl source, whereas AdoMet, ATP, and Mg
2+

 all are required for restriction 

activity (BICKLE and KRÜGER 1993). In type I RM systems, the recognition sequences are 

asymmetric and are constructed by two components, the first of 3 or 4 bp and the second of 4 or 5 

bp. The two components are separated by a non-specific spacer region of 6-8 bp. When the 

recognition sequence is hemimethylated the DNA will act as substrate for modification, whereas 

unmodified recognition sequences will trigger DNA cleavage at sites remote from the recognition 

sequence (BICKLE and KRÜGER 1993; MURRAY 2002).  

Compared to the type I RM systems, the type II systems are less complicated, which is probably 

why this is also the type of restriction enzymes used in gene technology. The systems are comprised 

of two separate genes; Res encoding the restriction activity and Mod encoding the methyltransferase 

activity. As for the type I systems, the modification requires AdoMet as methyl donor, while the 

restriction activity for type II systems only is dependent on Mg
2+

 (BICKLE and KRÜGER 1993; 

ROBERTS et al. 2003). The restriction enzyme and the methyltransferase recognize the same 

recognition sequence, which generally is a palindromic sequence of 4-8 bp. The methyltransferase 

modify a specific base within the recognition sequence on each strand. The structure of the 

recognition sequence facilitates cleavage of both DNA strands at the same time, generally within or 

close to the recognition sequence (ROBERTS et al. 2003).  

The type III systems are not as simple as type II systems, but are sharing some traits with the type I 

systems. A hetero-oligomeric complex of the Res and Mod genes catalyse both restriction and 

modification activities in the type III systems. As for the type I and II systems, the AdoMet is 

required for modification, while both Mg
2+

 and ATP are required for restriction activity in type III 

systems. The recognition sequences for type III systems are asymmetrical, and the cleavage site is 

located close to the recognition sequence (BICKLE and KRÜGER 1993; ROBERTS et al. 2003). 
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The non-classical RM systems, type IV, restrict modified DNA. However their recognition 

sequences have usually not been defined (ROBERTS et al. 2003). 

For decades, the restriction-modification systems have been known to act as barriers, not only on 

bacteriophages, but for horizontal gene transfer as well (KING and MURRAY 1994; TOCK and 

DRYDEN 2005; VEIGA and PINHO 2009; VASU et al. 2012). Generally, the belief is that DNA 

lacking the signature of the recipient will act as substrate for restriction, irrespective of whether the 

‘foreign’ DNA would enter the recipient as single- or double-stranded (MURRAY 2002). Plasmid 

DNA, which enters the recipient as single-stranded DNA through conjugation, will become 

sensitive to cleavage after stabilization from the synthesis of the complementary strand (THOMAS 

and NIELSEN 2005).  

However, this has, to our knowledge, never been demonstrated at a genotypic level. In Roer I, the 

impact of the type I RM system EcoKI, in conjugational transfer, was elucidated by utilizing a 

combination of isogenic RM variants of the E. coli K-12 strain MG1655 and plasmids pOLA52 

(SØRENSEN and HANSEN 2003) and pHHA45 (DOLEJSKA et al. 2012), respectively harboring either 

two or zero recognition sequences for the EcoKI system.  

 

Figure 11 | Conjugational transfer with isogenic donor and recipient strains of E. coli K-12.  
Each transfer experiment was performed at least in triplicate. The data is visualized as the means of transconjugants per 

10
8
 recipients, with standard errors of the mean (SEM). For un-methylated plasmid pOLA52, with two recognition 

sequences for the EcoKI system, statistically significant differences were observed between the restriction deficient 

recipient MG1655-hsdR
INT

 and the remaining two recipients (b*, P0.029). No statistically significant differences were 

observed for the un-methylated pHHA45 plasmid without recognition sequences for EcoKI. 

In Roer I we show that a hsdR deficient mutant caused a 7-fold increase in uptake of an 

unmethylated plasmid with two recognition sites. Though, most importantly we demonstrated that 
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the barrier imposed by the EcoKI type I restriction system, had an effect, but that the barrier was not 

absolute in relation to conjugational plasmid transfer. 

3.1.1 Restriction-ModificationFinder 

In Roer II, the content of RM systems was elucidated in a comprehensive collection of S. enterica 

WGS genomes. For that purpose, another user-friendly web-tool, Restriction-ModificationFinder 

(RM-Finder) was developed for an easy in silico detection of RM systems. The RM-Finder was 

built on the same BLAST-based methodology as SPI-Finder, with a customized database 

containing restriction enzymes, methyltransferases and specificity subunits for the classical systems, 

as well as the modification-dependent type IV systems. RM-Finder is likewise available as a web-

based service hosted by CGE (https://cge.cbs.dtu.dk//services/Restriction-ModificationFinder/).  

For databases on RM systems, the Restriction Enzyme database (REBASE) is the only authoritative 

source, a dedicated work by R. Roberts and D. Macelis (ROBERTS et al. 2015). REBASE is a 

comprehensive database, currently with more than 5,000 complete descriptions of RM systems. The 

database is containing information about restriction enzymes and related proteins like DNA 

methyltransferases, specificity subunits, homing endonucleases, helicase domain proteins etc. and 

contains both published and unpublished references. The data in REBASE is based on genome 

sequence data subjected to analysis, where predicted components from RM systems are labelled 

with the suffix ‘P’ to indicate that they are putative and included in the database (ROBERTS et al. 

2015). When the systems become biochemically characterized, the suffix is replaced with a Roman 

number. Though, with the Single molecule Real Time (SMRT) sequencing, the characterization of 

especially the methyltransferases are rapidly increasing (FLUSBERG et al. 2010; KORLACH et al. 

2010; KORLACH and TURNER 2012). Impressively, REBASE is continuously updated and their web 

interface refreshed on a nightly basis. Their ftp access to the data is refreshed once per month, 

providing data to external sources, like RM-Finder. However, the continuous expansion of 

REBASE indicates that far from all RM systems are known. This can be a problem when searching 

for RM systems, as it will be impossible to know if all systems are detected in the searched 

genomes.   

Additionally, REBASE is providing various tools for investigating the determinants in RM systems, 

including a BLAST tool to search sequences against the REBASE database. This tool is capable of 

using either DNA or protein sequences as input file. However, few major drawbacks from this tool 

exist; the lack of ability to BLAST either raw data or assembled genomes, and absence of user-

https://cge.cbs.dtu.dk/services/Restriction-ModificationFinder/
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selective parameters. The limitations from REBASE lead to the construction of RM-Finder (Roer 

II). REBASE is the source of data behind the database in RM-Finder, and includes the relevant 

restriction enzymes, methyltransferases, and specificity subunits for type I-IV RM systems. The 

RM database was constructed in the uniform and easily sharable FASTA format, containing a 

descriptive header, and the nucleotide sequence for each record. The database is automatically 

updated according to the monthly REBASE update.  

The RM-Finder is constructed with the updated user-selection parameters, allowing for selection of 

minimum length and minimum %ID. The default settings for RM-Finder are set to minimum ID of 

95%, and a minimum length of 60%. Furthermore, it is possible to search only one type of RM 

systems, and to search all records in the database, including putative genes.  

 

Figure 12 | RM-Finder output for Escherichia coli K-12 strain MG1655. For demonstration of RM-Finder, the 

complete genome of E. coli K-12 strain MG1655 was evaluated.  



CHAPTER 3 | TRANSFER DEFENCE MECHANISMS 

32 

 

Figure 12 illustrates the output constructed by RM-Finder, reporting hits of each of the four systems 

in an individual section. The output reports the RMS genes detected, the %ID of the hit, the length 

of the hit compared to the database record, the contig in which the hit was found followed by the 

position in the contig. Additionally, the type of system, the function of the gene, the recognition 

sequence (if known), and the accession number are reported in the output. As for SPI-Finder, the 

hits are indicated by colour according to the two user-selection parameters; %ID and minimum 

length.  

To evaluate the performance of RM-Finder, the E. coli K-12 strain MG1655 was evaluated, and 

compared with the putative predictions from REBASE (http://rebase.neb.com/cgi-

bin/onumget?17068). It can be argued that the MG1655 strain is not the most complicated control 

strain. However, if RM-Finder is not capable of detecting all the known RM systems in a well-

characterized strain, then the results predicted for uncharacterized strains will be unreliable.  

Table 1 | Comparison of REBASE and RM-Finder 

Predicted by REBASE Recognition Sequence Predicted by RM-Finder 

M.Eco1655DamP GATC Found by including putative 

M.Eco1655DcmP CCWGG M.Eco3609Dcm 

Eco1655McrBP unknown EcoKMcrB 

Eco1655McrCP unknown EcoKMcrC 

Eco1655MrrP unknown EcoMrr 

Eco1655ORF300P AACNNNNNNGTGC EcoKI 

M.Eco1655ORF300P AACNNNNNNGTGC M.EcoKI 

S.Eco1655ORF300P AACNNNNNNGTGC S.EcoKI 

M.Eco1655ORF6040P ATGCAT M.EcoKII 

Eco1655ORF16910P YCGR EcoKMcrA 

By only searching the biochemically characterized systems in RM-Finder, 90% of the genes were 

identified in concordance with REBASE. By inspecting the predictions from REBASE 

M.Eco1655DamP was predicted by the putative M.UbaC1152DamP. When searching the RM-

Finder, including putative variants, the M.Eco1655DamP enzyme is predicted from 

M.Eco321DcmP with 100% ID and 100% length. 

When using the RM-Finder tool, the same precaution should be taken as mentioned for SPI-Finder. 

The WGS data quality should be considered, and even though the data included in RM-Finder is 

comprehensive, database searches can only find what is included in the database.  

http://rebase.neb.com/cgi-bin/onumget?17068
http://rebase.neb.com/cgi-bin/onumget?17068
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3.2 Other Defence Mechanisms 

In addition to RM systems, other defence mechanisms exist. Some can be encoded or caused by the 

transferred plasmid to prevent further uptake of MGEs, as for incapability and plasmid entry 

exclusion, others can, as for RM systems and CRISPR, be encoded on the bacterial chromosome to 

protect the bacteria. In the following sections, CRISPR and entry exclusion will briefly be 

introduced. 

3.2.1 Host CRISPR Systems 

CRISPR is referred to as the bacterial adaptive immune systems, as it has the benefit of 

continuously adjusting and adapting its reach and defence mechanisms against invasion (GOREN et 

al. 2012). According to the CRISPR database approximately 45% (1,176 out of 2,612) of the 

bacterial genomes possess CRISPRs (http://crispr.u-psud.fr/crispr/ Accessed December 22
nd

, 2015). 

The CRISPR systems are combined by two different mechanisms; Immunization of ‘foreign’ 

incoming DNA like plasmids or bacteriophages, and secondly subsequent immunity to the same 

DNA. In the immunization process, ‘foreign’ plasmid or virus DNA is recognized by a Cas 

complex, and cleaved into novel spacer unit. The novel spacer unit is inserted at the leader end (5’-

end) of the CRISPR locus, which induces acquired immunity against subsequent invasion (VAN DER 

OOST et al. 2009; HORVATH and BARRANGOU 2010). As the new spacer units generally are inserted 

at the leader end of the CRISPR locus, a chronological record of the encountered DNA exists. 

However, swapping and loos of spacers occur (LILLESTØL et al. 2006).  

For the immunity process, the repeat-spacer array constructed from the immunization is transcribed 

into pre-crRNA, which is further processed into mature crRNAs. Subsequently, the crRNAs are 

guiding a Cas complex to the invading DNA, where inactivation is conducted (HORVATH and 

BARRANGOU 2010).  

CRISPRs are defence mechanisms only recently discovered, however they are now applied to 

molecular biology research, enabling targeted genome editing (CONG et al. 2013; DOUDNA and 

CHARPENTIER 2014). 

3.2.2 Entry Exclusion 

Entry exclusion facilitated by plasmids can turn the bacteria into poor recipients to avoid addition of 

extra genetic elements (GARCILLÁN-BARCIA and DE LA CRUZ 2008). This ability can provide an 

http://crispr.u-psud.fr/crispr/
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evolutionary advantage for the plasmid, as intra-cell competition with other conjugative plasmids or 

MGEs can be minimized or avoided (THOMAS and NIELSEN 2005).  

The exclusion mechanism was shown to operate at both the inner- and outer recipient membrane, 

and be caused by the two plasmid-encoded genes, traT and traS (ACHTMAN et al. 1977). The 

protein of traT operates at the outer membrane, where modifications of the recipient cell membrane 

prevent the adhesion of transfer pili encoded by additional plasmids. This results in reduced abilities 

for the recipient to form mating aggregates with new donor cells (THOMAS and NIELSEN 2005).  

As described in section 2.3.1, the initiation of conjugational transfer is dependent on a signal. This 

signal is proposed to be induced by TraG. After translocation of TraG from the donor to the 

recipient cell, contact with the inner membrane of the recipient initiates conjugation (AUDETTE et 

al. 2007). The plasmid-encoded traS can interfere with this process, thus blocking additional DNA 

uptake in the recipient (GARCILLÁN-BARCIA and DE LA CRUZ 2008). 

The barrier of entry exclusion was shown not to be absolute, and uptake of new plasmids in a host 

was not completely excluded. However, a decrease of more than 500-fold caused by entry exclusion 

was observed for conjugation (PÉREZ-MENDOZA and DE LA CRUZ 2009) 

3.3 Host Defence and Evolution 

Defence mechanisms like RM systems and CRISPR are predicted to have an important influence on 

the uptake and establishment of DNA. It is therefore reasonable to think that their function can be 

reflected in the evolution of bacteria. 

In was suggested by Budroni et al. that the evolution of bacteria was associated with the genomic 

content of RM systems (BUDRONI et al. 2011). The Neisseria genus serves as a paradigm for natural 

transformation, where exchange of genetic material is generally due to the persistent competence in 

the organism. Budroni et al. investigated 20 Neisseria meningitidis genomes, covering five 

serogroups of the recorded 13 for the species (ROSENSTEIN et al. 2001; CENTERS FOR DISEASE 

CONTROL AND PREVENTION 2012). They found that, for the phylogenetic network constructed based 

on the core genes; genomes from the same clonal complex were forming distinct phylogenetic 

clades. Further, they provided evidence that the phylogeny, thus evolution, in N. meningitidis could 

be associated with the RM systems identified in the genomes (BUDRONI et al. 2011). 

In addition to the study by Budroni et al., the connection between RM systems and evolution has 

been elucidated for the organism S. enterica ssp. enterica (Roer II), which is known to generally 



CHAPTER 3 | TRANSFER DEFENCE MECHANISMS 

35 

 

exchange genetic material through conjugation (FERGUSON et al. 2002). The association was 

investigated for 221 S. enterica genomes, covering 97 S. enterica ssp. enterica serovars, where the 

evolution was depicted as a phylogenetic network based on a core-genome three (Figure 2) and a 

pan-genome three (Figure 3). Assessing the content of RM systems in correlation to the two trees, 

we did not observe significant linkage, though we observed sub-linage correlation and serovar 

specific patterns in cases with e.g. S. Enteritidis and S. Typhymurium (Roer II). Additionally, we 

observed that plasmid replicons, SPIs, and AMR showed a better correlation to serovars than to RM 

systems. Thus, the study presented in Roer II suggests a limited influence of RM systems on the 

evolution of the conjugative organism Salmonella enterica ssp. enterica (Roer II), which correlates 

very well with the findings of RM systems not producing an absolute barrier for conjugation (Roer 

I).  

In a recent study by Fricke et al. the evolutionary influence of CRISPR was investigated in S. 

enterica (FRICKE et al. 2011). From the 28 S. enterica genomes included in the study, the phylogeny 

was only partially reflected in the composition of the CRISPR arrays. However matches between 

CRISPR spacers and the content of plasmids and prophages could indicate a potential for CRISPR 

to be involved in sub-linage evolution (FRICKE et al. 2011).  

Even though, barriers like RM systems seem to have an influence on the evolution of transformable 

organisms (BUDRONI et al. 2011), the indefinite barrier of RM systems in conjugation (Roer I), the 

lack of association between evolution and RM systems (Roer II), and the only partial association 

between CRISPR and evolution (FRICKE et al. 2011), implies that for conjugal organisms, other 

factors might be involved in shaping the evolution and importantly the spread of genetic traits like 

AMR. 



 

Chapter 4 

OTHER RECIPIENT DETERMINANTS AFFECTING CONJUGATION 

Numerous studies have elucidated on environmental factors or exogenous components affecting 

conjugations (RICHAUME et al. 1989; ROCHELLE et al. 1989; FERNANDEZ-LOPEZ 2005; SEIER-

PETERSEN et al. 2014). However, only few studies have investigated the contribution and ability of 

bacteria to act as recipients.  

In 1974 Skurray et al. showed that some E. coli K-12 mutants were defective in conjugation, due to 

the lack of a major outer membrane protein (SKURRAY et al. 1974). The missing protein in the 

recipient precluded mating pair formation. Thus, the defective recipient inspired to the term “Con
-
 

mutant” (conjugation negative mutant). Further, evidence was provided, that different recipient cell 

surface components like LPS and the outer membrane protein OmpA were involved in Con
-
 

recipients for conjugation (HAVEKES et al. 1977; MANOIL and ROSENBUSCH 1982). However, 

mutants generated at that time, especially cell envelope mutants, were generated by random 

mutagens like ethylmethanesulfonate (EMS), which made it difficult to identify the exact site of 

mutation (HAVEKES et al. 1977; MANOIL and ROSENBUSCH 1982). 

In a recent study, Pérez-Mendoza and de la Cruz tried to identify recipient genes in E. coli affecting 

the ability in plasmid conjugation, by using a more systematic approach (PÉREZ-MENDOZA and DE 

LA CRUZ 2009). By using the inducible lux system for conjugational detection (described in 

2.3.1.1), they were capable of performing high-throughput screening in the attempt to identify 

recipient factors involved in conjugation. The E. coli mutant collection, the Keio collection (BABA 
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et al. 2006), enabled systematic screening of more than 99% of the non-essential genes from the E. 

coli K-12 genome. However, none of the 3,908 recipients tested, showed a dramatic drop in 

conjugation frequency compared to the wild-type E. coli K-12 strain BW25113. As a second 

attempt to identify recipient genes involved in conjugation, Pérez-Mendoza and de la Cruz 

constructed a transposon insertion mutant library of the DH5α E. coli strain. From this, they 

confirmed the previous findings of LPS being involved in conjugational transfer (PÉREZ-MENDOZA 

and DE LA CRUZ 2009). Therefore, they concluded that recipient bacterial cells cannot evade from 

being used as recipients in conjugation. However, their study was only based on two E. coli strains, 

both with wild-types showing reasonable conjugation abilities. Thus, these two isolates could 

potentially lack the restricting or enhancing abilities for conjugation.  

As described in Chapter 3 with transfer defence mechanisms, recipient systems like RM and 

CRISPR do exist. However, RM systems was both shown not to be an absolute barrier in 

conjugation between isogenic E. coli strains (Roer I), and not to shape the evolution of S. enterica 

ssp. enterica (Roer II). Thus, in Roer III, we aimed to identify other recipient determinants either 

enhancing or restricting plasmid uptake in S. enterica ssp. enterica. To overcome the drawback of 

not knowing if the isolates investigated, potentially could possess determinants either restricting or 

enhancing conjugation, the study was initiated with identifying the recipient potential of all isolates 

included. 93 isolates, covering 54 serovars were included in the study, to provide a broad genetic 

pool for investigation. From the initial conjugation, the isolates were subdivided into two groups of 

good (10 isolates) and poor (83 isolates) recipients. However, the comparative bioinformatic 

approaches applied could not yet identify gene candidates for neither enhancing nor restricting 

plasmid uptake. Thus other approaches should be considered in the identification of genes in 

Salmonella subspecies enterica that might control conjugation (Roer III). A parallel study on S. 

Enteritidis identified 33 gene candidates potentially restricting conjugation, which are being 

investigated and awaiting verification (Roer III). 

Though, little is still known about recipient determinants affecting conjugational transfer. So far, 

membrane proteins have demonstrated to be involved in conjugation (SKURRAY et al. 1974; 

HAVEKES et al. 1977; MANOIL and ROSENBUSCH 1982). The findings in Roer III, with transfer 

frequencies from the same donor construct, varying from 0.0 to 2.5 × 10
-1

 transconjugants per 

potential recipients indicates that recipient determinants must exist (Roer III). This contradicts the 

conclusion by Pérez-Mendoza and de la Cruz, which states  that in conjugation, bacteria cannot 

avoid being used as recipients (PÉREZ-MENDOZA and DE LA CRUZ 2009).



 

Chapter 5 

CONCLUSION AND FUTURE PERSPECTIVES 

 

For decades, it has been a dogma that RM systems act as a barrier for horizontal gene transfer. This 

has previously been demonstrated for transfer of DNA by transduction and transformation. The 

studies within this PhD thesis have illustrated that, the barriers imposed by the RM system EcoKI, 

are not absolute in conjugational transfer of an IncP-1 plasmid (Roer I). However, an inactivation 

of the restriction enzyme could cause a 7-fold increase in plasmid uptake. As the barriers of RM 

systems was demonstrated to be indefinite, it was interesting to investigate if the observed reduction 

in transfer after all could be reflected in the evolution of an organisms using conjugation as the 

preferred method in DNA exchange (Roer II). By developing and using the easily interpreted and 

user-friendly tools, RM-Finder and SPI-Finder, the PhD study demonstrated that the evolution of 

the conjugative organisms S. enterica ssp. enterica, was not associated with RM systems, and that, 

plasmid replicons and SPIs could not be reflected in the content of RM systems either. This led to 

the thought of other recipient determinants being involved in the control of plasmid uptake and in 

the evolution of bacteria (Roer III). By combining results obtained in the laboratory with 

bioinformatic approaches, we were able to predict 33 gene candidates restricting plasmid uptake in 

S. Enteritidis, which are being investigated and awaiting verification. However, we were not yet 

able to detect common genes on species level that potentially could control conjugation.  
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There is still an enormous lack of knowledge regarding the recipient determinants that control the 

uptake and establishment of plasmids. Thus, the global emergence and rapid spread of undesirable 

genetic traits are of significant importance, with antimicrobial resistance being an obvious example 

of such traits. The usage of antimicrobials in treatment of both human and animals has created a 

reservoir of resistant organisms and a pool of resistance genes available for further transmission.  

One of the most striking and current examples is the rent observations of the plasmid-mediated mcr-

1 gene, which is conferring resistance towards colistin. A resistance which previously was mediated 

by chromosomal mutations with subsequent vertical heredity to daughter cells (HASMAN et al. 

2015; LIU et al. 2015). However, the plasmid-mediated gene now enables rapid horizontal spread 

between bacteria. In Denmark, the gene was detected in an E. coli isolate only susceptible to a 

narrow range of antimicrobial classes (HASMAN et al. 2015). Thus, acquisition of additional 

resistances will leave a limited number of (if any) suitable options for treatment of bacterial 

infections. This emphasizes the importance of understanding the mechanisms and genes involved in 

controlling the uptake and maintenance of plasmids. Through improved knowledge we can 

hopefully predict and control the conjugational spread of generic threats in the future.  

When elucidating on conjugational transfer, a big effort has been made on explaining the 

conjugative apparatus encoded on plasmids, and environmental settings affecting the transfer. 

However, little is known about the ability for bacteria to act as recipients. Different membrane 

proteins and barriers in the bacteria have been proposed to be involved in regulation of horizontal 

gene transfer. With new knowledge of RM systems not providing an absolute barrier, it would be 

interesting to elucidate on the mechanisms which allow some plasmids to evade the digestion of the 

restriction enzymes. Since most restriction enzymes works on double stranded DNA, one theory 

could be that the methyltransferase methylates some of the plasmids as the bacterial ‘self’, 

simultaneously with the synthesis of the stabilizing complementary strand right after transfer to the 

recipient, thus protecting the DNA from the restriction enzyme. This theory should be investigated 

to further improve the knowledge of the effect of RM systems in conjugation.  

The development of benchtop sequencing technologies in the recent years has made whole-genome 

sequencing applicable in modern research, which also enabled a comprehensive analysis of a 

diverse dataset comprising 221 genomes in Roer II. With the continuous decrease in both 

purchasing and sequencing cost and the increased knowledge within this field, sequencing will most 

likely be standard in most research laboratories in the future. However, to enable practical usage of 
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the new technology, the knowledge obtained in the laboratory needs to be converted into 

bioinformatic tools like the RM-Finder and SPI-Finder. Currently, tools to predict plasmid 

replicons, antimicrobial resistance genes, virulence factors, serotypes etc. are developed (ZANKARI 

et al. 2012; CARATTOLI et al. 2014; JOENSEN et al. 2014, 2015), and over the next years we will 

probably see a great increase in the development of bioinformatic tools and usage. However, 

everything cannot be predicted by in-silico analysis alone, to improve our knowledge of 

mechanisms and bacterial behaviour we still need to do research in the laboratory. But the 

technology definitely has the potential in diagnostics and routine surveillance settings, where 

bacteria are screen for known characteristics.  

Combining molecular technology and advanced bioinformatics is thus a new strategy in 

contemporary research, an approach pursued in Roer III. However, for now we were not capable of 

linking genes to neither enhanced or restricted conjugational abilities on species level, but a 

comprehensive investigation and characterization of the 93 isolates included in the study could 

potentially reveal a connection between isolates within the two groups of recipients. Another 

interesting analysis could be a SNP comparison of the genomes, thus unique SNPs within genes 

could explain a functional inactivation of proteins involved in conjugation. If the combination with 

bioinformatics cannot predict or answer why differences are observed in conjugational abilities, 

alternative approaches would be to turn the focus back to functional analysis in the laboratory. One 

such approach could be to screen the bacterial genes by performing random gene-knockouts of the 

genes in the recipient. However, the genes responsible for the recipient potential could as well be an 

essential gene for the bacteria, in which case a knock-out of the gene would be fatal for the bacteria. 

The knock-out construct should be accompanied by the construction of a transposon cloning library 

of the recipient. Different approaches combining the technologies, as well as sticking to molecular 

microbiology can be followed in the attempt to identify the recipient determinants that are involved 

in the control of conjugational uptake of plasmids.  

In summary, this PhD study is improving the knowledge of RM systems and their impact on 

conjugation and evolution. Moreover, this PhD implies that recipient genes could be involved in 

controlling conjugation, and are leaves great opportunities for revealing of genes involved in 

plasmid uptake.  
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The EcoKI Type I Restriction-Modification System in Escherichia coli
Affects but Is Not an Absolute Barrier for Conjugation

Louise Roer, Frank M. Aarestrup, Henrik Hasman

Division for Epidemiology and Microbial Genomics, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark

The rapid evolution of bacteria is crucial to their survival and is caused by exchange, transfer, and uptake of DNA, among other
things. Conjugation is one of the main mechanisms by which bacteria share their DNA, and it is thought to be controlled by var-
ied bacterial immune systems. Contradictory results about restriction-modification systems based on phenotypic studies have
been presented as reasons for a barrier to conjugation with and other means of uptake of exogenous DNA. In this study, we show
that inactivation of the R.EcoKI restriction enzyme in strain Escherichia coli K-12 strain MG1655 increases the conjugational
transfer of plasmid pOLA52, which carriers two EcoKI recognition sites. Interestingly, the results were not absolute, and uptake
of unmethylated pOLA52 was still observed in the wild-type strain (with an intact hsdR gene) but at a reduction of 85% com-
pared to the uptake of the mutant recipient with a disrupted hsdR gene. This leads to the conclusion that EcoKI restriction-mod-
ification affects the uptake of DNA by conjugation but is not a major barrier to plasmid transfer.

The exchange of chromosomal and/or extrachromosomal
DNA, such as plasmids, viruses, and transposons, is crucial for

the evolution of bacteria and their ability to adapt to new environ-
ments. Exchange of genetic material occurs among both related
and unrelated species of bacteria and is driven by the three hori-
zontal gene transfer (HGT) mechanisms: conjugation, transfor-
mation, and transduction (1–3). Restriction-modification (RM)
systems are described as major barriers to HGT (4–6) and
comprise restriction endonucleases with a cognate methyltrans-
ferase. These recognize and cleave DNA not modified by the
methyltransferase, thereby making the bacterium able to distin-
guish between its own (methylated) DNA and incoming non-
methylated DNA.

Based on their protein-complex subunit composition and
functionality, RM systems can be divided into four types; this
study focuses on type I. Type I systems require products of the
three genes hsdR (restriction), hsdM (methylation), and hsdS (se-
quence specificity) and cleave randomly at a remote distance from
the recognition sequence. Restriction occurs only when a protein
complex of all three gene products (R2M2S) is formed, whereas
methylation of the DNA requires formation of a complex of only
the HsdM and HsdS proteins (M2S) (7).

Some studies have indicated that transfer by conjugation is
unaffected by RM systems but that unmodified phage or free DNA
in transformation is readily degraded (8–11). This has led to the
view that the conjugational transfer of plasmids through a single-
stranded DNA intermediate is immune to restriction by RM sys-
tems, as the great majority of these recognize only nonmethylated
double-stranded DNA (12–17). Other studies have, however,
contradicted this. In 1964, Arber and Morse (18) proposed that
host specificity (RM systems) might play a role in the acceptance
or rejection of DNA transferred by conjugation in Escherichia coli.
In many studies from the 1960s, the transfer was measured with
recombinants of Hfr strains (18–20), but Arber and Morse made a
phenotypic study showing that the conjugational transfer of epi-
somes (with the ability to express genes without integration into
the bacterial chromosome) was affected in the same manner as in
phages (18). Other experiments have shown reduced conjuga-
tional transfer between different bacterial species with diverse re-

striction-modification systems, indicating that they may be the
cause of this reduction in transfer (21, 22), but none of these
observations have been confirmed with isogenic strains by mod-
ern molecular techniques. Recent studies indicated that SauI, a
type I RM system for Staphylococcus aureus, may be a barrier to
transfer into and between S. aureus isolates (23), but Veiga and
Phino showed that inactivation of the SauI system was not suffi-
cient for producing strains that efficiently take up foreign DNA
(6), again questioning the importance of RM systems as barriers to
conjugational transfer.

In the current study, we aimed to clarify the impact of a restric-
tion-modification system in the conjugational gene transfer of
single-stranded plasmidic DNA (24, 25) at the genotypic level. We
focused on the impact of the type I RM system EcoKI, with the
recognition sequence AACN6GTGC, in the transfer of conjugative
plasmids between RM variants of the E. coli K-12 strain MG1655.
In addition to possessing the type I RM system, which we examine
in the current study, MG1655 possess three different methylation-
requiring type IV systems, EcoKMcrA, EcoKMcrBC, and
EcoKMrr. All three systems are sequence specific and will not
interfere with plasmid transfer between isogenic strains used in
the current study (26–29). We provide evidence that the RM sys-
tem EcoKI has a significant and negative effect on conjugation but
also that this is not a major barrier to conjugation.
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MATERIALS AND METHODS
Media and reagents. E. coli cells were cultured in brain heart infusion
(BHI) broth at 37°C. For growth on agar, Luria-Bertani (LB) or BHI agar
plates were used. The following antibiotics and concentrations were used:
ampicillin (Amp), 50 �g/ml for cloning or 100 �g/ml in HGT assays;
chloramphenicol (Cam), 25 �g/ml; kanamycin (Kan), 25 �g/ml; tetracy-
cline (Tet), 5 �g/ml or 10 �g/ml; rifampin (Rif), 25 �g/ml; and nalidixic
acid (Nal), 25 �g/ml.

Strains and plasmids. Bacterial strains, plasmids, and oligonucleo-
tides used in this study are listed in Table 1. 32 The conjugation experi-
ments were performed from donors with (hsdM�) and without (�hsdM)
the ability to methylate the DNA and with functional, disrupted, and
complemented restriction abilities. Two plasmids with a published
DNA sequence, pOLA52 and pHHA45 (GenBank accession numbers
EU370913.1 and JX065630.1, respectively), were used to assess the influ-
ence of the RM systems on conjugational transfer. pOLA52, belonging to
the IncXI incompatibility group, has two recognition sites for the EcoKI
system, while pHHA45, belonging to the IncN incompatibility group,
does not contain any sites. Both IncXI and IncN plasmids are known to
transfer in the single-stranded form (24, 25, 30, 31).

Construction of TargeTron insertion mutants of E. coli MG1655.
Two TargeTron mutants with interruptions, MG1655-hsdRINT and
MG1655-hsdMINT, were created by following the guidelines from Sigma-

Aldrich (32) for insertion mutations in E. coli strains, with the plasmid
pAR1219 as the source of T7 RNA polymerase. Plasmid pACD4K-C-loxP
was used as the donor for the group II intron, retargeted by PCR with
primers designed for position 1740|1741 in hsdR (primers LR1, LR2, and
LR3) and position 720|721 in hsdM (primers LR5, LR6, and LR7). Gene
disruptions were induced by the addition of 20 �l of a 10 mM stock
solution of isopropyl-�-D-thiogalactopyranoside (IPTG) to 2 ml of cul-
ture.

The plasmids (retargeted pACD4K-C-loxP and pAR1219) were
cured by overnight growth in broth, followed by plating on BHI, and
patched on BHI with 50 �g/ml Amp and BHI plus 25 �g/ml Cam to
identify plasmid-free isolates. MG1655-hsdRINT was made electro-
competent as described by D. O’Callaghan and A. Charbit (33), but the
glycerol washing step was performed with the full-strength original
volume (100 ml). MG1655-hsdRINT was further transformed with the
plasmid 706-Cre to remove the kanamycin resistance marker (Gene
Bridges GmbH). Single colonies of both MG1655-hsdMINT and
MG1655-hsdRINT were tested by PCR for the TargeTron insert and
removal of the kanamycin gene (MG1655-hsdRINT only) by using Taq
polymerase (Fermentas) and internal and external primers LR3 and
LR4 (hsdR) or LR7 and LR8 (hsdM). For further verification, the PCR
products were purified using a GFX purification kit (GE Healthcare)
and sequenced by Macrogen Korea.

TABLE 1 Bacterial strains, plasmids, and oligonucleotides used in this study

Bacterial strain, plasmid, or
oligonucleotide Description (relevant genotype and/or phenotype) or sequence (5= to 3=)a Source or reference

Escherichia coli strains
MG1655 (K-12 strain) F� �� ilvG rfb-50 rph-1 CGSC
MG1655-RN Spontaneous Rifr and Nalr derivate of MG1655 This study
MG1655-A Spontaneous NaN3

r derivate of MG1655 This study
MG1655-hsdRINT TargeTron insertion at nucleotide 1740|1741 of hsdR, Rifr Nalr This study
MG1655-hsdMINT TargeTron insertion at nucleotide 720|721 of hsdM, Kanr This study
MG1655-hsdRCOMPL MG1655-hsdRINT with phsdR for complementation, Rifr Nalr Tetr This study
MG1655-hsdRCONTROL MG1655-hsdRINT with expression vector pMSC83, Rifr Nalr Tetr This study
DH10B F� endA1 recA1 galE15 galK16 nupG rpsL �lacX74 �80lacZ�M15 araD139 �(ara leu)7697 mcrA

�(mrr-hsdRMS-mcrBC) ��

Invitrogen

Plasmids
pACD4K-C-loxP Linearized TargeTron plasmid with a T7 promoter; Camr Kan-�td Sigma
pACD4K-C-loxP (hsdR) pACD4K-C-loxP retargeted for hsdR of MG1655 (LR1/LR2/LR3) This study
pACD4K-C-loxP (hsdM) pACD4K-C-loxP retargeted for hsdM of MG1655 (LR4/LR5/LR6) This study
pAR1219 Expresses T7 RNA polymerase under the control of the IPTG-inducible lac UV5 promoter; Ampr Sigma
706-Cre Expression plasmid for Cre recombinase driven by the thermosensitive promoter cI578; Tetr Gene Bridges GmbH
pOLA52 Plasmid of 45.7 kb with two restriction sites for hsdR (EcoKI); Ampr 41
pHHA45 Plasmid of 51.6 kb without restriction sites for hsdR (EcoKI); Ampr 31
pMSC83 Cloning vector used for complementation; Tetr This study
phsdR R.EcoKI from MG1655 cloned into pMSC83 This study

Oligonucleotidesb

LR1 (hsdR IBS) AAAAAAGCTTATAATTATCCTTACATCGCGGCTATGTGCGCCCAGATAGGGTG Sigma
LR2 (hsdR EBS1d) CAGATTGTACAAATGTGGTGATAACAGATAAGTCGGCTATATTAACTTACCTTTCTTTGT Sigma
LR3 (hsdR EBS2) TGAACGCAAGTTTCTAATTTCGGTTCGATGTCGATAGAGGAAAGTGTCT Sigma
LR4 (hsdR-V-R) TCCAGCTGGCTGCGGAACTGC TAGC
LR5 (hsdM IBS) AAAAAAGCTTATAATTATCCTTAGATTGCGCCGCCGTGCGCCCAGATAGGGTG Sigma
LR6 (hsdM EBS1d) CAGATTGTACAAATGTGGTGATAACAGATAAGTCGCCGCCGTTAACTTACCTTTCTTTGT Sigma
LR7 (hsdM EBS2) TGAACGCAAGTTTCTAATTTCGATTCAATCTCGATAGAGGAAAGTGTCT Sigma
LR8 (hsdM-V-F) CCAATGATCTGGACGACCTT TAGC
LR9 (hsdR-C-F) GGTCATTGCCCGGAAAGGTA TAGC
LR10 (hsdR-C-R) GGCAGCCTGAAGGATGAAGT TAGC

a For bacterial strains and plasmids, the relevant genotype, phenotype, and other characteristics are shown. Abbreviations: INT, interruption; COMPL, complementation.
b The genes targeted by the primers used in the construction of knockout strains or complementary plasmids are shown in parentheses at the end of the entry.
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Complementation of hsdR with phsdR. For complementation in the
hsdR mutant, we amplified a 3,633-bp fragment encompassing the hsdR
gene with the primers LR9 and LR10 by PCR and cloned the resulting
fragment into the PvuII site of pMSC83. For a detailed description, see the
supplemental material.

Horizontal gene transfer of single-stranded DNA by conjugation.
The strains MG1655-A and MG1655-hsdMINT were transformed with the
plasmid pOLA52, containing two recognition sites for EcoKI, or
pHHA45, lacking EcoKI recognition sites, to act as donors in the conju-
gation experiments. The strains MG1655-RN, with a functional hsdR gene
on the chromosome, MG1655-hsdRINT, with an interrupted restriction
gene, and MG1655-hsdRCOMPL, with a complemented restriction gene,
were used as recipients.

Two individual conjugation experiments were performed, one with
transfer of pOLA52 and one with pHHA45. In both cases, overnight cul-
tures of donor and recipients were reinoculated into fresh preheated BHI
medium and grown to an optical density at 600 nm (OD600) of 0.5. Then,
1-ml samples of each donor and recipient were mixed in 24-well microti-
ter plates and incubated at 37°C for 5 h. Conjugation mixtures were di-
luted and plated on selective plates for CFU counting.

RESULTS
Horizontal gene transfer of single-stranded DNA by conjuga-
tion. The results of the conjugational transfers are presented in
Fig. 1.

All three recipients, MG1655-RN, MG1655-hsdRINT, and
MG1655-hsdRCOMPL, accepted the methylated plasmid pOLA52
from donor MG1655-A at high ratios (transconjugants per 108

recipients) of 2.05 	 103, 1.04 	 103, and 0.67 	 103, respectively.
The level of conjugational transfer into the MG1655-hsdRCOMPL

strain complemented with the hsdR gene in trans was significantly
lower (P 
 0.021) than in the MG1655-RN strain, with a wild-type
functional hsdR gene on the chromosome, possibly due to the
higher copy number, stronger promoter, or both.

For the transfer of the unmethylated plasmid pOLA52, with
two recognition sites, from the donor MG1655-hsdMINT to the
three recipients, MG1655-RN, MG1655-hsdRINT, and MG1655-

hsdRCOMPL, the ratios were 0.42 	 103, 2.79 	 103, and 0.17 	 103,
respectively. The recipient MG1655-hsdRINT showed a statistically
significantly (P 
 0.029) higher level of transfer, which was more
than 6.5 times higher than those of the two recipients with func-
tional hsdR genes.

In the transfer of pHHA45, no significant difference was ob-
served between the ratios of 8.45 	 104, 7.73 	 104, and 3.58 	 104

from the donor MG1655-A or between the ratios of 9.47 	 104,
6.25 	 104, and 7.66 	 104 from the donor MG1655-hsdMINT to
the recipients MG1655-RN, MG1655-hsdRINT, and MG1655-
hsdRCOMPL, respectively (see Table S1 in the supplemental mate-
rial).

Complementation of hsdR restores restriction activity. The
restriction gene hsdR was cloned into the expression vector
pMSC83 under the control of the arabinose promoter pBAD,
which is known to be leaky in rich media (34). The conjugation
experiment was therefore performed without addition of arabi-
nose to avoid overexpression of the hsdR gene, which could po-
tentially be harmful to the cell. As a control for sufficient hsdR
expression and to verify that the decrease in transfer observed in
Fig. 1 was caused by expression of the hsdR gene alone and not the
vector pMSC83, conjugation with the complemented strain and a
control strain with the pMSC83 vector was performed. For the
control experiment, the methylation-deficient donor MG1655-
hsdMINT was used with each plasmid (pHHA45 and pOLA52).
The results of the conjugative control experiment are presented in
Fig. 2.

In experiments with the unmethylated plasmids pHHA45 and
pOLA52, the conjugational transfer of pOLA52 to MG1655-
hsdRCOMPL was significantly decreased (P 
 0.00031) compared
with that to MG1655-hsdRCONTROL, with transfer ratios of 0.21 	
103 and 5.89 	 103, respectively. With the transfer of pHHA45, no
significant difference was observed between the transfer ratios of
5.70 	 104 and 3.37 	 104 for MG1655-hsdRCOMPL and MG1655-
hsdRCONTROL, respectively.

FIG 1 Single-stranded horizontal gene transfer with isogenic donor and recipient strains of E. coli K-12 MG1655. All experiments were performed at least in
triplicate, and data are means of transconjugants per 108 recipients, with standard errors of the mean (SEM). The levels of transfer of the plasmids for the three
recipients were compared individually for each donor (strain and plasmid). Statistically significant differences were observed between the recipients MG1655-RN
and MG1655-hsdRCOMPL with the donor MG1655-A (a*, P 
 0.021) and between MG1655-hsdRINT and the remaining two recipients with the donor MG1655-
hsdMINT (b*, P 
 0.029) with the plasmid pOLA52, which harbors two recognition sites for EcoKI. No statistically significant differences were observed with the
two donors with the plasmid without recognition sites for EcoKI, pHHA45.
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DISCUSSION

Previous studies of the influence of RM systems in conjugation
have generated conflicting conclusions in relation to the effect of
RM systems on plasmid transfer (8–15). This has led to some
controversy on how restriction-modification systems act on the
uptake of single-stranded DNA, such as plasmids transferred by
conjugation. An obvious driver of the conflicting conclusions
from these studies is the fact that many of these studies were car-
ried out in an era before the emergence of molecular techniques in
microbiology and before the genetic determinants responsible for
the RM phenotypes were identified.

The current study aimed to utilize isogenic strains and defined
knockout genetic constructs to study how RM systems influence
plasmidic transfer and showed that the type I restriction-modifi-
cation system EcoKI in E. coli K-12 MG1655 affects conjugational
transfer if the transferred DNA includes nonmethylated recogni-
tion sites.

Transfer of the methylated plasmid pOLA52 from the wild-
type host to the three different recipients, with different restriction
abilities, was not expected to have any significant influence on its
uptake, as the plasmid was modified as “self” and in all three cases
should have been immune from degradation. Transfer of the non-
methylated plasmid into the complemented strain was signifi-
cantly lower than into the wild-type strain; more surprisingly, the
same was true for the methylated plasmid. One explanation for
this decrease might be incompatibility between pOLA52 and the
vector carrying the complementation gene hsdR, but this was not
expected, as the two replicons belong to IncXI and ColE10, respec-
tively. This was also verified by the control experiment (Fig. 2),
where the results clearly showed that the decrease in transfer was
caused by the restriction gene alone and not the vector pMSC83.
Therefore, a more likely explanation may be that overexpression
of EcoKI, resulting in the formation of R2M2S complexes rather

than M2S complexes, leads to degradation of hemi-methylated
DNA, as in the type II systems described by Nelson et al. (35).

The unmethylated plasmid pOLA52 was taken up significantly
less in the wild-type strain than in strain MG1655-hsdRINT, which
has an interrupted restriction gene. The plasmid without recogni-
tion sites for EcoKI can transfer efficiently between donor and
recipients independently of methylation and restriction abilities.
This was shown by the transfer of the plasmid pHHA45 from both
the methylation-deficient donor MG1655-hsdMINT and the
MG1655-A donor with the functional hsdM gene to three different
recipients with functional, disrupted, and complemented restric-
tion genes.

Even though the transfer efficiencies of the two plasmids,
pOLA52 and pHHA45, differ by nearly 2 logs in the hsdR-dis-
rupted recipient, we find pHHA45 an appropriate control plas-
mid, as both plasmids are narrow-host-range plasmids and about
the same size. More plasmids could be investigated to confirm our
observation that the conjugational transfer or uptake in E. coli
K-12 strain MG1655 is in fact dependent not only on the donor’s
methylation and the recipient’s restriction abilities but also on the
presence of recognition sequences on the plasmid. The results of
this genotypic study are in agreement with the study performed by
Arber and Morse (18), where the RM-deficient strains were se-
lected based on phenotypes by testing their ability to restrict dif-
ferent phages, but they were not further characterized.

From the present study, we have shown that a type I RM system
can act as a barrier to the conjugational transfer of plasmids, but in
many of the previous studies, the restriction is described only
phenotypically (10, 18) or as a transfer between unrelated species
(8, 11, 12) without our knowing the type of RM system involved.
There is evidence that a type-III-like RM system may act as barrier
to transformation in S. aureus strains (36) but not to conjuga-
tional transfer. Further, the present study focuses on only a single
system, in a single isolate, with only two different plasmids. This
leads to the questions of whether all type I systems influence con-
jugational transfer and whether the three remaining systems have
the same ability to protect hosts from invading foreign DNA.
Murray and colleagues suggest that the protection from foreign
DNA might be altered by alleviation of chromosomal restriction
genes, which might lead to uptake (37–39).

Pérez-Mendoza and de la Cruz (40) investigated two different
knockout libraries, the Keio collection of single knockouts and a
random insertion library, to determine how recipient cells con-
tribute to bacterial conjugation (40). Their only finding was that
the lipopolysaccharide (LPS) showed strong conjugation inhibi-
tion when conjugation was performed in liquid, but with filter
mating, the reduction was restored. The Keio collection is based
on a restriction-deficient K-12 strain variant (BW25113), which
explains why they did not find EcoKI as a contributing factor in
conjugation, as we did in this study.

Even though Pérez-Mendoza and de la Cruz did not find any
genes responsible for the conjugational uptake in the recipient,
this does not preclude the possibility that such genes exists. The
two parental E. coli strains used in their study may be missing
regulatory genes responsible for conjugational transfer. To iden-
tify possible barriers to conjugational uptake, as well as uptake by
the other HGT mechanisms, good and poor recipients must be
identified by phenotype and compared at the genetic level.

In summary, the EcoKI RM system found in E. coli K-12 strain
MG1655 affects the conjugational transfer of plasmid pOLA52,

FIG 2 Conjugative effect of hsdR from the unmethylated donor strain
MG1655-hsdMINT inserted into the complemented strain MG1655-
hsdRCOMPL compared to that in a control strain harboring the empty vector
pMSC83. For conjugation with the unmethylated plasmid pHHA45, which
lacks recognition sites for MG1655-hsdR, no significant difference was ob-
served between the complementation and control strains. For conjugation
with the plasmid pOLA52, which has two recognition sites, a significant dif-
ference was observed between the two recipients (a*, P 
 0.00031).
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harboring two recognition sites, but the results imply that this
effect is not absolute and that uptake is still possible, though at a
lower level. The results showed 4.88-times-higher uptake of meth-
ylated pOLA52 than of the unmethylated plasmid in wild-type
MG1655. This leads to the conclusion that plasmids with the same
methylation pattern as the recipient can have a competitive ad-
vantage when entering a new host.
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ABSTRACT 23 

Salmonella enterica ssp. enterica is a highly diverse foodborne pathogen that is sub-divided into 24 

more than 1,500 serovars. The diversity is believed result from mutational evolution as well as 25 

intra- and interspecies recombination that potentially could be influenced by Restriction-26 

Modification systems (RM systems). The aim of this study was to investigate if RM systems were 27 

linked to the evolution of Salmonella enterica ssp. enterica.  28 

The study included 221 Salmonella enterica genomes of which 68 were de novo sequenced, in 29 

addition to 153 public available genomes from ENA. The dataset covered 97 different serovars of 30 

Salmonella enterica ssp. enterica, and additional five genomes from four other Salmonella 31 

subspecies as an outgroup for constructing the phylogenetic trees. The phylogenetic trees were 32 

constructed based on similarity in core-genes as well as the presence or absence of pan-genes. The 33 

topology of the trees was compared to the presence of RM systems, antimicrobial resistance (AMR) 34 

genes, Salmonella Pathogenicity Islands (SPIs), and plasmid replicons. 35 

We did not observe any significant correlation between the evolution and the RM systems in S. 36 

enterica ssp. enterica. However, sub-lineage correlations and serovar specific patterns was observed 37 

in few cases. Additionally, the results implied that plasmids replicons, SPIs, and AMR all were 38 

better correlated to serovars than to RM systems. 39 

This study suggests a limited influence of RM systems on evolution of Salmonella enterica ssp. 40 

enterica, very likely due to the conjugational mode of horizontal gene transfer in Salmonella. Thus, 41 

other factors must be involved in shaping the evolution of bacteria.  42 

 43 

IMPORTANCE 44 

The evolution of bacterial pathogens, their plasticity and ability to constantly change and adapt to 45 

new surroundings are crucial for understanding the epidemiology and public health. Along with the 46 



 

3 

application of genomics, it became clear that horizontal gene transfer played a key role in evolution. 47 

Thus, to understand, prevent, fight, and control the spread of undesirable pathogens, we need to 48 

elucidate the processes that drive the horizontal gene transfer, the evolution and diversification. 49 

Restriction-modification systems are thought to cause rearrangements within the chromosome, as 50 

well as act as a barrier to horizontal gene transfer. However, here we show that the very persuasive 51 

correlation between restriction-modification systems and evolution in other bacterial species is not 52 

present in Salmonella enterica ssp. enterica. In summary, this work illustrates that other 53 

mechanisms must be involved in controlling the evolution.  54 

  55 
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INTRODUCTION 56 

The Salmonella genus is highly diverse and comprised by the two species; Salmonella enterica and 57 

Salmonella bongori. The species S. enterica contains six subspecies of which the highly diverse S. 58 

enterica ssp. enterica can be sub-divided into more than 1,500 serovars. The subspecies is a 59 

common cause of diseases in humans and domestic animals (1, 2) and one of the leading causes of 60 

foodborne illness worldwide (3). 61 

Recombination between genomes is thought to be a major driver in evolution (4), and to contribute 62 

to the diversity within the Salmonella genus (5, 6). In Neisseria meningitidis it was suggested that 63 

the phylogenetic relationship is associated with the content of Restriction-Modification systems 64 

(RM systems) (7). Further, rearrangements of genomes caused by RM systems are described as 65 

factors that could influence the evolution of pathogens (4). In addition to their role in 66 

rearrangements, RM systems are also considered to be a barrier for horizontal gene transfer between 67 

bacteria, thus serving as an immune defence system for uptake of foreign(4) DNA (8–10). The 68 

precise contribution have to our knowledge never been quantified, but we have recently shown that 69 

for conjugational transfer between isogenic Escherichia coli isolates, RM systems are not 70 

absolutely barrier (11).  71 

RM systems are comprised of a restriction enzyme (RE) and a cognate methyltransferase. The 72 

restriction enzyme recognizes and digests foreign incoming DNA, whereas the methyltransferase 73 

perform methylation of the bacterium’s own DNA to protect itself from degradation from the 74 

cognate restriction enzyme (12, 13). This enables the bacteria to distinguish between own 75 

(methylated) DNA and incoming non-methylated DNA.  76 

The RM systems are divided into four types (I-IV), based on their protein-complexes, the sub-unit 77 

composition, and the functionality of the system (14). The Type I systems are complexes of three 78 

gene products; hsdR (R: restriction), hsdM (M: methylation), and hsdS (S: sequence specificity). 79 
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This type cleaves non-methylated DNA randomly at a remote distance from the recognition 80 

sequence determined by the specificity subunit. The protein-complex of all three gene products; 81 

R2M2S (two sub-units of R and M and one sub-unit of S) must be established prior to restriction, 82 

whereas a complex of only the hsdM and hsdS proteins (M2S) is needed for methylation of the 83 

DNA (15). Type II systems are only made up of methyltransferases and restriction enzymes, where 84 

the function and composition of the M and R varies dependent on the sub-type of the system. Type 85 

II systems modulate (cleave and/or methylate) unmethylated DNA at specific recognition sites, 86 

making them suitable as molecular biological tools to cut DNA for cloning or other analysis where 87 

only a piece of DNA is needed (12, 15). Type III systems, consisting of the gene products Res and 88 

Mod, hemi-methylate the DNA and cleave DNA at specific sites 25-27 bp downstream of the 89 

recognition sequence (16), whereas Type IV, compared to Type I-III, does not encode a 90 

methyltransferase and only cleaves methylated DNA (12, 15).  91 

In this study, we elucidated the potential association between RM systems and the phylogeny of S. 92 

enterica ssp. enterica serovars. We tested the hypothesis that RM systems might be linked to the 93 

evolution of S. enterica ssp. enterica and hereby be responsible for the diversification of the 94 

species. Most bacterial DNA exchange depends on mobile genetic elements (MGE), and in 95 

Salmonella; Salmonella pathogenicity islands (SPI) are believed to be acquired by horizontal gene 96 

transfer and have an effect on the structure of the genome (17, 18). Thus, we also elucidated the 97 

content of plasmids, antimicrobial resistance genes (AMR) and SPIs in correlation to the RM 98 

systems and the phylogeny of the species, to examine their effect on the evolution.   99 
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RESULTS 100 

Genomes  101 

A total of 221 Salmonella genomes were included in the analysis represented by 153 genomes 102 

previously described by Timme et al. (1) and retrieved from The European Nucleotide Archive. 103 

This collection was merged with 68 genomes sequenced as part of the 100K Foodborne Pathogen 104 

Genome Project (http://100kgenome.vetmed.ucdavis.edu/, NCBI BioProject PRJNA186441). The 105 

final collection consisted of 216 S. enterica ssp. enterica genomes and five genomes of other 106 

subspecies. The 221 Salmonella genomes were summarized in the supplemental material (Table 107 

S1). 108 

 109 

Characterization of Restriction-Modification systems 110 

To characterize the RM systems of the 221 genomes, a WGS analysis was performed using the 111 

newly developed tool Restriction-ModificationFinder 1.0. Partial systems were completed by 112 

individual BLAST analysis of up- and downstream sequences against the REBASE database (19). 113 

In total, we identified 113 putative RM systems i.e.; 58 Type I RM systems (TI) with 43 of 114 

unknown recognition sequence, 23 Type II RM systems (TII), two Type III RM system (TIII), and 115 

30 Type IV RM systems (TIV), respectively. In addition, numerous methyltransferases outside RM 116 

systems were identified, including Type I, Type, II and Type III methyltransferases (Table S2). 117 

The additional methyltransferases (without associated restriction enzyme) identified were not 118 

include in the analysis, as the barrier for horizontal gene transfer (HGT) is thought to be caused by 119 

the cleavage from RE.  120 

Two of the genomes only contained one RM system, where the other genomes contained between 121 

two and seven systems. One of the Type III RM systems were shared by 191 genomes, the type I 122 

system TI-1 was shared by 203 of the genomes and 37 RM systems were specific to a single 123 

http://100kgenome.vetmed.ucdavis.edu/
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genome. The remaining systems were shared by two to 38 genomes. The distribution of the RM 124 

systems was illustrated in the presence/absence matrix in Fig. 1, and in details in Fig. S1. The 125 

analysis revealed very diverse content of RM systems, and assessing the highest level of 126 

discrimination in the cladogram, 120 distinct clusters were formed with 77 clusters containing a 127 

single genome. 128 

 129 

The Salmonella Pan- and Core-Genomes 130 

The pan- and core-genomes were estimated based on the 221 S. enterica genomes. The progression 131 

of the pan- and core-genomes is shown in Fig. S2, as increasing numbers of the S. enterica genomes 132 

were added to the analysis. Analysing the pan-genome, consisting of any gene families found, the 133 

gene families increased gradually with the one by one addition of the different S. enterica ssp. 134 

enterica serovars compared to a distinct increase in the number of gene families with the inclusion 135 

of S. enterica ssp. diarizonae. In contrast, the number of conserved gene families across the S. 136 

enterica genomes in the core-genome analysis seemed relative consistent but with similarly drops 137 

when introducing other S. enterica subspecies to the analysis. The final analysis compressing all 138 

221 S. enterica genomes contained 16,375 gene families in the pan-genome (File S1) and 2,138 139 

gene families in the core-genome (File S2), respectively. Analysing the total number of gene 140 

families in the pan-genome, each S. enterica genome contribute in average with 65 new gene 141 

families, increasing the diversity within the S. enterica species. 142 

 143 

The link between evolution and Restriction-Modification systems 144 

To study the genomic evolution of S. enterica ssp. enterica, differences within the core-genes were 145 

examined for all 221 genomes and illustrated by the phylogenetic core-genome tree in Fig. 2. This 146 

evolution of S. enterica ssp. enterica is not only formed by the differences in the genes shared by 147 
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the genomes, but also the loss of genes leading to differences in gene content. Fig. 3 displays the 148 

pan-genome tree based on the presence and absence of genes across all the genomes included in the 149 

study.  150 

For both the core- and pan-genome trees, the high bootstrap values of 1 near the root of the trees 151 

reflected a general trustable structure for the phylogenetic trees of the Salmonella genus, whereas 152 

the low bootstrap values found in some of the branches likely indicated that some of the genomes in 153 

those branches were highly similar in their core- or pan-gene content, thus it was difficult to 154 

determine the definite arrangement within the branch. However, both the core- and pan-genome 155 

trees separated well the serovars amongst one another with relatively high bootstrap values at the 156 

tips of the trees.  157 

To examine the hypothesis of RM systems being linked to the evolution of S. enterica ssp. enterica, 158 

parallel analyses were performed to identify groups of genomes with highly similar RM pattern that 159 

were also forming discrete phylogenetic clusters on the core- and pan-genome trees. Convergence 160 

was indicated by colours in the matrix of RM systems (Fig. 1), and the core- and pan-genome trees 161 

(Fig. 2 and Fig. 3). A few small clusters with almost identical RM content, partly clustering together 162 

in the core- and pan-genome trees were observed. In most cases the genomes within a cluster 163 

belonged to the same serovar, as for S. Bareilly or S. Agona (dark green and light blue). However, 164 

three larger clades, with 21, 8 and 7 genomes, were identified in the RM matrix. Of the 21 genomes 165 

in the first clade, containing serovars of Typhimurium, Saintpaul, Paratyphi B and Heidelberg, 90% 166 

of the genomes were located together in one distinct cluster in the core-genome tree and the 167 

remaining 10% were also located together. For the pan-genome tree, the 21 genomes were 168 

identified at 4 different locations with the distribution of 67%, 19%, 9% and 5% of the genomes, 169 

respectively.  The two larger clades of 8 and 7 genomes were located adjacent to each other in the 170 

RM matrix, the first containing serovars of Stanleyville, Gallinarum, Pullorum and Dublin, and the 171 
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second containing serovars of Enteritidis and Berta. Comparing to the core- and pan-genome trees, 172 

in both cases the two clades were located together with all 100% of the genomes.  173 

 174 

Plasmid Replicons, Antimicrobial resistance and Pathogenicity Islands in Salmonella enterica 175 

All 221 Salmonella genomes were analysed for the content of plasmid replicons by using the Center 176 

for Genomic Epidemiology (CGE) web-tool PlasmidFinder 1.2 (20), of which 118 of the genomes 177 

did not contain any replicons present in the PlasmidFinder database. In the remaining 103 genomes, 178 

40 different plasmid replicons were identified with each genome containing up to seven different 179 

replicons. 180 

Assessing the replicons in comparison with the RM systems observed in the S. enterica ssp. 181 

enterica serovars, no convergence was observed (Fig. 4) and RM systems and plasmid replicons 182 

were never observed on the same contigs. Evaluating the plasmid replicons in correlation to 183 

serovars, no correlation was observed between serovars and quantity of replicons; the 11 genomes 184 

with the highest replicon content represented 10 different serovars. However, for multiple isolates 185 

with the same serovar common replicons are observed, such as with the incFII and incX1 replicons 186 

present in all the S. Dublin genomes. Additionally, incFII was observed in 50% of the S. Enteritidis 187 

genomes, and together with the incFIB replicon in 50% of the S. Typhimurium and in both 188 

4,[5],12:i:- genomes. Interestingly, even though the numbers of replicons are not equal in identical 189 

serovars, the results imply a better association between replicons and serovars compared to the 190 

association between replicons and RM systems..  191 

 192 

AMR genes were found in 220 of the genomes, varying from one to 19 different genes per genome, 193 

with aac(6')-Iy present as the only resistance gene in 140 of the genomes. The correlation of AMR 194 

and RM systems was examined (Fig. S3), however no congruency was observed most likely due to 195 
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the in-built bias of the strain collection. Despite this potential bias, the assessment of correlation 196 

between AMR and plasmid replicons revealed different resistance genes located on the same 197 

contigs as plasmid replicons. Few genomes contained more than four plasmid replicons and 198 

between 10 and 16 resistance genes, correlating high resistance to the number of replicons present 199 

in the genomes.  200 

 201 

The presences of SPIs were assessed in all 221 Salmonella genomes utilizing the newly developed 202 

web-tool SPI-Finder 1.0, and visualized in Fig. 5. SPIs were found in all 221 genomes, and the 203 

number of SPI’s in each genome varied from one to 14 islands/genes of islands.  204 

The comparison of the SPIs and the content of RM systems revealed no clear association (Fig. 5). 205 

However, associating the SPIs to individual Salmonella serovars such as S. enterica ssp. enterica 206 

serovars Typhimurium, Paratyphi A, Choleraesuis, Heidelberg, and Saintpaul, some association was 207 

apparent within a serovar.  208 
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DISCUSSION 209 

For decades, RM systems have been recognized for their ability to act as “immune systems” for 210 

bacteria, determining whether or not foreign DNA was established in the cell. For N. meningitidis 211 

the impact of RM systems in evolution was recently elucidated, and the purpose of the current study 212 

was to clarify if a similar association could be identified in S. enterica ssp. enterica, by 213 

investigating a large subset of different whole genome sequenced S. enterica ssp. enterica serovars 214 

and an outgroup of five genomes from other subspecies. However, it was not possible to draw any 215 

significant association between RM systems and the overall evolution of Salmonella enterica ssp. 216 

enterica, even though we did observe genomes from the same RM clades in discrete phylogenetic 217 

clusters of both the core- and pan-genome trees.  218 

The Neisseria genus, including N. meningitidis, is known to serve as a paradigm for natural 219 

transformation, where genetic exchange happens frequently due to their persistent competence 220 

independent of the phase of their life cycle (21). As RM systems have been recognized as barriers 221 

for transformation in multiple species (22–24), the link between a natural transformable species and 222 

the RM systems, as shown for N. meningitidis, seems reasonable. However transformation in 223 

Salmonella is unlikely as they are not natural transformable, and the transfer of genetic material 224 

happens mainly through conjugation (25). In addition, a recent study performed in E. coli (11) 225 

indicated that the barriers imposed by the RM systems in conjugational plasmid transfer were not 226 

absolute, which could explain the lack of significant association in our study when trying to 227 

associate RM systems to the plasmid replicons, AMR, SPI’s, and their influence on the evolution. 228 

The core- and pan-genome trees were constructed with a method previously described by 229 

Leekitcharoenphon et al. (26), where 73 genomes were evaluated. They found a core-genome of 230 

2,882 genes and a cognate pan-genome of 10,581 genes. In our study, the core-genome was found 231 

to comprise 2,138 genes and the cognate pan-genome to contain 16,375 genes of the 221 genomes 232 
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assessed. This indicates an open pan-genome for S. enterica ssp. enterica, where addition of 233 

genomes to the analysis increases the total gene pool in the pan-genome, compared to the very 234 

uniform species Bacillus anthracis, having a closed genome, where the addition of genomes to the 235 

analysis will not increase the gene pool (27). This also supports the knowledge of S. enterica ssp. 236 

enterica being a highly diverse bacterial species.   237 

Assessing the RM systems, we identified 113 RM systems and numerous individual 238 

methyltransferases, with each genome harbouring two to seven RM systems. Vasu and Nagaraja (4) 239 

recently described how changes in specificity or acquisition of new RM systems could alter the 240 

strains genetically from the original clonal population, as the methyltransferase modifies the 241 

genome of its new host, and the RE prevents genetic exchange between closely related strains. 242 

Thus, mutations accumulate in the “new strain”, leading to genetic diversity. We found that 191 of 243 

the 221 genomes analysed shared a Type-III RM recognition sequence. Taking this result into 244 

consideration it is plausible that the Type-III system was the first RM system introduced in S. 245 

enterica ssp. enterica with subsequently a larger diversity following the later acquisition of new 246 

RM systems as described by Vasu and Nagaraja. However the same RM systems could also have 247 

been introduced in different branches at different time points, resulting in identical RM systems 248 

clade across the trees. 249 

Assessing the pan- and core-genome trees, there are indications of some clustering of genomes with 250 

similar RM systems i.e. the cluster of S. Enteritidis and S. Dublin as well as the red RM systems 251 

clade consisting of S. Typhimurium, and S. Heidelberg located together in both trees. However, the 252 

influence is not significant, indicating that the evolution could be driven by several factors. For 253 

instance, a previous study compared 28 Salmonella enterica isolates and provided evidence that 254 

clustered regularly interspaced short palindromic repeats (CRISPR) mediated sub-lineage evolution 255 

(28). Other drivers in evolution are host and environmental adaptations, which besides gene 256 
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acquisition can be caused by gene loss and deletions, gene duplication and changes within genes by 257 

e.g. mutations (29, 30).  258 

In the study on N. meningitidis they investigated the association of RM systems, homologous 259 

recombination and the phylogenetic network (7). The main study was performed on 20 genomes, 260 

covering five serogroups out of the recorded 13 serogroups for N. meningitidis (31, 32). Budroni et 261 

al. found that genomes from the same clonal complex (CC) were located together in phylogenetic 262 

clades based on their core genes. In addition, the clades could be associated with the RM systems 263 

identified (7). In our study, we investigated 217 genomes of S. enterica spp. enterica containing 97 264 

different serovars with an outgroup of five genomes from four other subspecies. Considering the 265 

highly diverse dataset investigated in this study, compared to the one of N. meningitidis, we 266 

observed small trends of sub-lineage association of RM systems and evolution. This could indicate 267 

that even though the dataset investigated in this study was comprehensive, more genomes of each 268 

serovar should be included to cover the complete picture of the influence of RM systems in 269 

evolution of S. enterica ssp. enterica. Thus, with the current speed in WGS, this might be realistic 270 

in the nearest future. Thus, even in the ideal data scenario the lack of association is very likely due 271 

to the incomplete barrier of RM systems in conjugation.  272 

As for all database dependent approaches, the methods are only capable of detecting and reporting 273 

records present in the database explored. Our analysis for detecting the RM systems was limited to 274 

the current knowledge presented in the REBASE (33), where the recognition sequences of various 275 

number of Type I specificity subunits were not yet determined. Thus it is likely that some strains 276 

have acquired RM systems with identical recognition pattern, however this is presently unknown. 277 

Thus, this is why the all database dependent analyses should be interpreted with care.  278 

The plasmid replicons which potentially could have an effect on the bacterial diversity due to 279 

horizontal gene transfer were also identified, but no clear correlation between the RM systems and 280 
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the content of harboured plasmid replicons was observed. However, this approach might be 281 

complicated by the fact that plasmids are transferable and affected by factors such as fitness costs, 282 

selective pressure (34–37), and again the fact that the RM barrier is not absolute (11). Thus, the 283 

analysis performed on the plasmid replicons illustrates the current status of the time of isolation in 284 

contrast to what plasmids potentially could be acquired. AMR can be encoded by genes located on 285 

transferable plasmids, why this potentially could reflect the promiscuity of the genomes reflected in 286 

current time which could explain the lack of association between AMR and RM systems. This 287 

might also be explained by the possible biased dataset in respect of selective criteria e.g. 288 

susceptibility to antimicrobial agents, plasmid content or virulence (SPI) for the isolates. Though, 289 

the content of the RM systems is not believed to be affected by the possible biases. 290 

The mechanism behind the acquisition of SPIs is horizontal gene transfer (17, 18). Nevertheless, the 291 

maintenance of SPIs within the genomes are considered stable (38), and is therefore a good measure 292 

of the barriers of RM systems, compared to plasmids replicons and AMR which can easily be lost if 293 

they do not confer any beneficial traits to the host. Despite this speculation,  the influence of RM 294 

systems on the distribution of the SPI’s was not supported by our analysis - on the contrary there 295 

were indications of some SPI’s being serovar specific, which corresponds to previous findings (38).  296 

In conclusion, recombination and rearrangement events caused by RM systems are, in several cases, 297 

described as driven factors for evolution, contributing to the diversity within a species (4, 39–44). 298 

However, high recombination between two distantly related lineages of S. enterica is exceptional 299 

(6, 45), thus explaining the difficulties of linking the RM systems to the evolution of S. enterica ssp. 300 

enterica. Thus, recombination occurs within and between closely related serovars (6).  301 

In this study, we showed that RM systems could not be linked to the evolution of S. enterica ssp. 302 

enterica, very likely due to the incomplete barriers of RM systems in conjugation. However, we 303 

provided evidence of closely related serovars with identical RM systems; i.e. S. Dublin and S. 304 
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Enteritidis, suggesting that to elaborate further on the hypothesis of RM systems being involved in 305 

the evolution of Salmonella enterica ssp. enterica, either a collection of closely related serovars or a 306 

more comprehensive dataset with multiple representatives from each serovar could be assessed to 307 

expand on the hypothesis if the evolution of sub-groups of S. enterica ssp. enterica RM systems 308 

could have stronger links between their genomic evolution and the presence of RM systems 309 

compared to the lack of association for the entire subspecies enterica.  310 

311 
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MATERIAL AND METHODS 312 

Salmonella Strains 313 

From an in-house strain collection at the Technical University of Denmark, National Food Institute 314 

(DTU FOOD), a sub-collection of 68 S. enterica ssp. enterica isolates with a global origin and a 315 

focus on multidrug resistance was submitted to the 100K Food Pathogen Genome Project 316 

(http://100kgenome.vetmed.ucdavis.edu/, NCBI BioProject PRJNA186441) for WGS. 317 

Subsequently, the genomes from that project were merged with a genomic collection consisting of 318 

105 Salmonella strains; with a majority originating from the American Type Culture Collection – 319 

often pan-susceptible, sequenced by the Center for Food Safety and Applied Nutrition (FDA-320 

CFSAN) and US Department of Argiculture (USDA) (1) and with 48 public available Salmonella 321 

genomes retrieved  from the European Nucleotide Archive and included this study. The final dataset 322 

of 216 S. ssp. enterica genomes was constructed with focus on diversity including a total of 97 323 

different Salmonella serovars. Additionally, five genomes of four other subspecies were included in 324 

the dataset forming an outgroup. This dataset might have an in-build bias in respect of the selective 325 

criteria e.g. susceptibility to antimicrobial agents. Full genomic information is shown in Table S1 in 326 

the supplemental material.  327 

 328 

Whole genome sequencing 329 

Genomic DNA was extracted from the 68 Salmonella isolates using an Invitrogen Easy-DNA kit 330 

(Invitrogen, Carlsbad, CA, USA), and DNA concentrations were determined using a Qubit double-331 

stranded DNA (dsDNA) BR assay kit (Invitrogen). The genomic DNA was prepared for Illumina 332 

pair-end sequencing using Illumina (Illumina, Inc., San Diego, CA) NexteraXT Guide 333 

150319425031942 and following protocol revision C 334 

(http://support.illumina.com/downloads/nextera_xt_sample _preparation_guide_15031942.html). 335 

http://100kgenome.vetmed.ucdavis.edu/
http://support.illumina.com/downloads/nextera_xt_sample%20_preparation_guide_15031942.html
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The DNA was dispatched for Illumina HiSeq whole genome sequencing at the School of Veterinary 336 

Medicine, UC Davis, USA in relation to the 100K Foodborne Pathogen Genome Project.  The raw 337 

reads of the 68 sequenced genomes, received from UC Davis, were assembled using the Assembler 338 

1.0 pipeline from the CGE available on http://cge.cbs.dtu.dk/services/all.php, which is based on the 339 

Velvet algorithms for de novo short-read assembly. A complete list of genomic sequence data is 340 

available in Table S1 in the supplemental material.  341 

Construction of core-pan-genome plot and pan- and core-genome trees 342 

Open reading frames (ORFs) were predicted on the contigs using Prodigal software (46) and same 343 

gene predictor was subsequently used to eliminate biases in annotation quality and to standardize 344 

the genes found in all genomes (47). 345 

The predicted genes were translated into amino acid sequences and aligned all-against-all using 346 

BLASTP (48). Genes were in this study considered to belong to the same gene family if the 347 

alignment length was at least 50% of the longest sequence and more than 50% in similarity (“the 348 

50/50 rule”) (27).  349 

Pan- and Core-Genome Plot  350 

The core-pan-genome plot was constructed by comparing the gene families from all genomes. The 351 

pan-genome was constructed from the union of the genes from the genomes under consideration, 352 

while the core-genome was built from the intersection of genes families shared by every genome 353 

under analysis (26, 27).  354 

Pan-genome Tree 355 

The pan-genome tree was reconstructed from a matrix consisting of gene families (rows) and 356 

genomes (columns). In the matrix, the absence and presence of genes across the genomes were 357 

represented by 0’s and 1’s, respectively. The genomes were clustered using hierarchical clustering 358 

http://cge.cbs.dtu.dk/services/all.php
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of the relative Manhattan distance between genomes and the bootstrap values were calculated to 359 

represent the confidence of branches (26, 49). 360 

Core-genome Tree 361 

The core genes were aligned in a blast-like manner using BLAT v. 35 (50) to the predicted genes of 362 

each genome. The genes found in all genomes were then aligned using MUSCLE v. 3.8.31 (51) and 363 

concatenated to a single alignment. 500 resamples of the alignment were created with Seqboot 364 

version 3.67 (part of the PHYLIP package (52)). 365 

A gene was considered “identified” according to the ”50/50” rule. DNADist (52) was employed to 366 

calculate the genomic distances from the initial alignment as well as each of the 500 resamples. 367 

FastMe (53) was used to calculate trees from the distance matrices. The tree from the original 368 

alignment was compared to the 500 trees created from the resamples using CompareToBootstrap 369 

(54). The final tree was visualized with FigTree (http://tree.bio.ed.ac.uk/software/figtree/). 370 

Construction of RM-Finder and SPI-Finder 371 

To be able to analyse the genomes for their content of RM systems and SPI’s, two public available 372 

online tools were developed. Both tools were build on a BLAST-based methodology for detection 373 

of genes from customized databases, originally developed by Zankari et al. for in silico detection of 374 

acquired resistance genes (55). The tools were developed to process both pre-assembled genomes 375 

and data of raw reads from different sequencing platforms, with user-selections parameters for 376 

minimum percent identity (%ID) and minimum length. The default settings were chosen as 377 

minimum ID at 95% to avoid noise and fragments of the genes, and a minimum length of 60% to be 378 

able to detect genes in the start or end of contigs from bad assemblies. 379 

The database behind RM-Finder originate from the authoritative source REBASE (19, 33), and 380 

includes Type I-IV restriction genes, methyltransferases and specificity units. The database is 381 

categorised into two groups, one only including genes with confirmed function, and one where 382 

http://tree.bio.ed.ac.uk/software/figtree/
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putative genes are included. The RM-Finder database is monthly updated.  383 

The Salmonella enterica records from the PAthogenicity Island DataBase (PAIDB) served as 384 

inspiration for the customized database behind SPI-Finder (56, 57).  385 

Extensive explanations of the output can be assessed as separate tabs at the online tools; 386 

https://cge.cbs.dtu.dk/services/Restriction-ModificationFinder/ and 387 

https://cge.cbs.dtu.dk/services/SPIFinder/. 388 

 389 

Identification of RMS-genes, Plasmid Replicons, SPI’s and Antimicrobial resistance 390 

To analyse the content of RM systems in the 221 genomes, all ORFs were submitted to the 391 

Restriction-ModificationFinder version 1.1 available on the CGE website 392 

(https://cge.cbs.dtu.dk/services/Restriction-ModificationFinder/), to identify restriction- (R), 393 

methyltransferase- (M) and specificity (S) genes. Subsequently, the R, M and S genes identified 394 

were individually inspected to form RM systems, and putative systems were assigned when all 395 

genes required were present and adjacent on the contig, even if truncated or frame-shifted. For 396 

systems with unknown specificity, systems were assigned according to the specificity subunit 397 

present. However, incomplete systems were investigated for truncated genes. Additionally, contigs 398 

with incomplete systems were inspected by BLAST against REBASE, and putative genes for 399 

completion were revealed. Based on the predicted recognition sequences, the systems were merged 400 

and named according to the type of system. A RM systems presence/absence matrix was 401 

constructed in R-2.14 (http://cran.r-project.org/bin/windows/base/old/2.14.0/) with hierarchical 402 

clustering, and euclidean distance (Fig. 1 and Fig. S1). 403 

The 221 draft genomes were analyzed for the content of plasmid replicons, pathogenicity islands 404 

and antimicrobial resistance genes, by using the CGE web-tools; PlasmidFinder 1.1 (20), SPIFinder 405 

1.0 (https://cge.cbs.dtu.dk/services/SPIFinder/) and ResFinder 2.0 (55) with %ID = 80.00 and 406 

https://cge.cbs.dtu.dk/services/Restriction-ModificationFinder/
https://cge.cbs.dtu.dk/services/SPIFinder/
https://cge.cbs.dtu.dk/services/Restriction-ModificationFinder/
http://cran.r-project.org/bin/windows/base/old/2.14.0/
https://cge.cbs.dtu.dk/services/SPIFinder/
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minimum length at 60.00%. The content of plasmid replicons and pathogenicity islands was 407 

interpreted by Circos plots (http://circos.ca/). For the antimicrobial resistance genes, a 408 

presence/absence matrix was constructed as described for the RM systems (Fig. S2).  409 

http://circos.ca/
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 564 

Fig. 1. Presence or absence matrix of the 113 restriction-modification systems.  565 

In the matrix, each row represents one genome analysed, and each column represents one of 113 RM systems. The 566 

cladogram is a hierarchical clustering of the genomes based on the Euclidean algorithm. Convergence of genomes with 567 

highly similar RM system content and discrete phylogenetic clades on the core- and pan-genome trees was indicated by 568 

the colours in the cladogram.  569 
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 570 

 571 

Fig. 2. Concatenated core-genome tree of Salmonella enterica serovars constructed on 1,072 core gene clusters. 572 

Phylogenetic tree constructed on core genes. Discrete phylogenetic clades with highly identical RM system content 573 

were indicated by the colours defined in Fig. 1.  574 
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 575 

Fig. 3. Pan-genome tree of Salmonella enterica serovars with colour indicated RM systems. Phylogenetic tree 576 

constructed from presence/absence matrix of genes across genomes. The colours represent the different groups of RM 577 

systems defined in Fig. 1.  578 

  579 
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 580 

Fig. 4. Map of plasmid replicons in Salmonella enterica. The genomes in the map are ordered according to their RM 581 

systems, and coloured as in Fig. 1. The bright gray colour indicates absence of replicon in the given genomes, where 582 

presence is indicated by a colour specific for the replicon. From the outside to the middle the order of the replicons are: 583 

incA/C, incA/C2, ColMGD2, Col156, Col8282, ColE10, ColpVC, ColRNAI, incFIA, incFIB, incFIC, incFII, incHI1A, 584 

incHI1B, incHI2, incHI2A, incI1, incI2, incN, incP, p0111, incQ1, incR, incX1, incX4. 585 
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 586 

Fig. 5. Map of Salmonella Pathogenicity Islands found in Salmonella enterica genomes. The genomes are ordered 587 

by their RM system profile, indicated by the colours from Fig. 1. Each SPI is defined by a circle with different variants 588 

indicated by colour in the given circle.  589 

From the inner circle and outwards, the order of the SPI’s is: C63PI, CS54-island, SGI1, SPI-1, SPI-2, SPI-3, SPI-4, 590 

SPI-5, SPI-7, SPI-8, SPI-9, SPI-10, SPI-11, SPI-12, genes of SPI-13, genes of SPI-14. 591 

  592 
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Abstract 17 

The spread of genetic threats through horizontal gene transfer is of very high importance. By 18 

understanding the mechanisms and genes associated with conjugational ability in recipients we 19 

might be able to predict, delay or even control the spread of antimicrobial resistance. The aim of 20 

this study was to identify species-specific gene family candidates from whole genome sequenced 21 

Salmonella enterica, which are enhancing or restricting plasmid uptake and maintenance in 22 

recipient cells.  23 

The study included 93 Salmonella enterica isolates, covering 54 different serovars. To evaluate the 24 

ability of the 93 isolates to take up a plasmid, an initial conjugation experiment was performed with 25 

the mCherry marked Escherichia coli K-12 strain MG1655 donor, and the gfp reporter constructed 26 

IncP-1β plasmid pKJK5. The conjugation frequencies, ranging from 0.0 to 2.5 × 10
-1

 27 

transconjugants per potential recipients, facilitated a subdivision of the genomes by using the 28 

kmeans algorithm. The predicted gene families of the resulting groups of ten good and 83 poor 29 

recipients were compared by different approaches to identify gene family that might be involved in 30 

either enhancing or restricting conjugation. In addition, a parallel analysis was performed, on 11 S. 31 

Enteritidis isolates, to elucidate if serotype specific genes could be involved in conjugation.  32 

For the entire collection of 93 Salmonella enterica isolates, we were not able to detect unique gene 33 

family candidates associated with the either high or low transfer frequencies. However, when 34 

assessing the 11 S. Enteritidis genomes separately, 33 gene family candidates were identified that 35 

were associated with restricting conjugational abilities. 36 

This study suggests that no common genes exist for Salmonella enterica, which neither enhancing 37 

nor restricting conjugation. However, serovar specific gene family candidates should be 38 
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investigated to clarify their impact on conjugation. Additionally, the results obtained in this study 39 

indicate that bacteria can avoid being used as recipients.  40 
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Introduction 41 

Horizontal gene transfer has played a major role in both long- and short term bacterial evolution. 42 

Mobile genetic elements such as plasmids and transposons are widespread in all bacterial species 43 

[1]. With the global emergence and rapid spread of multiple antibiotic resistance in recent years, it 44 

has become clear that the importance of horizontal gene transfer in evolution is of very high 45 

significance, perhaps even higher than previously expected [2–4], especially with the global 46 

transmission of resistance plasmids into several bacterial species [5]. We also observe seemingly a 47 

difference in the ability of specific clonal lineages and bacterial species to acquire resistance 48 

plasmid, which cannot just be explained by differences in reservoirs [6, 7]. If we can identify 49 

genetic traits associated with reduced or increased ability to acquire resistance genes we might 50 

better predict where resistance will emerge. 51 

In conjugation, there is a need for active participation of both mating partners [8]. In a recent study, 52 

Pérez-Mendoza and de la Cruz tried to identify recipient genes in Escherichia coli affecting the 53 

ability in plasmid conjugation [9], but the results indicated that none of the non-essential genes from 54 

the E. coli recipient played an important role in conjugation. Different host defense mechanisms 55 

have been suggested to impose barriers for conjugation, including the RM systems. However a 56 

study performed on E. coli revealed that these barriers were not absolute [10], and in addition could 57 

not be reflected in the evolution of Salmonella enterica ssp. enterica (unpublished data from Roer et 58 

al., 2015). It has been observed that host-specific Salmonella serovars are carrying considerably less 59 

resistance genes compared to the serovars with multiple hosts, although they have been isolated 60 

from the same reservoir [6, 7]. This phenomenon has so far not been explained, thus it is likely that 61 

a varying ability to receive DNA could be caused by genetic difference among the clones.  62 
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In this study we aimed to identify genetic traits associated with uptake of IncP-1 plasmids. IncP-1 63 

plasmids were originally found in clinical bacterial isolates [11, 12], and are still of clinical concern 64 

because of their ability to carry and facilitate the spread of antibiotic resistance [13, 14] and the 65 

IncP transfer (tra) system of the broad-host-range plasmid RP4 is one of the best-studied 66 

conjugative systems [15]. We investigated several Salmonella recipients of various serovars, and 67 

divided them into groups of good and poor recipients based on their transconjugant frequencies 68 

using an E. coli donor. Different bioinformatical approaches were taken in the attempt to identify 69 

genes responsible for promoting or resisting conjugational transfer.   70 
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Material and Methods 71 

Bacterial donor strain and conjugative plasmid 72 

The mCherry tagged donor E. coli MG1655::lacI
q
-pLpp-mCherry-Km

R  
with the conjugative 73 

gfpmut3-tagged pKJK5 plasmid was kindly provided by Uli Klümper et. al [16]. Essentially, the 74 

plasmid was genetic marked with a gfpmut3 gene, encoding green fluorescent protein (GFP), 75 

conditionally expressible by a lacIq repressible promoter located upstream of gfpmut3 gene [17]. 76 

Further, the plasmid donor strain E. coli MG1655 was chromosomally marked with a gene cassette 77 

encoding constitutive expression of both red fluorescence (mCherry gene) and lacIq. As a result, the 78 

constitutive lacIq expression ensures a gfp repression on the plasmid in the donor strain, but upon 79 

plasmid transfer to the recipients, gfp expression is possible resulting in green fluorescent 80 

transconjugants detectable by flow cytometry. Donor strain and conjugative plasmid are listed in 81 

Table 1. 82 

Salmonella enterica Recipients 83 

From an in-house strain collection at the Technical University of Denmark, National Food Institute 84 

(DTU FOOD), a collection of 35 S. enterica spp. enterica isolates with a global origin and a focus 85 

on serovar diversity was merged with a sub-set of 58 genomes previously sequenced as part of the 86 

so-called 100K project (NCBI BioProject PRJNA186441). The final recipient collection consisted 87 

of 93 Salmonella spp. enterica genomes covering 54 different serovars. A complete list with 88 

genomic information is avalible in S1 Table in the supplemental material. 89 

Whole genome sequencing 90 

From the in-house collection, genomic DNA was extracted from the 35 Salmonella isolates using 91 

Invitrogen Easy-DNA kit (Invitrogen, Carlsbad, CA, USA). DNA concentrations were determined 92 

using Qubit double-stranded DNA (dsDNA) BR assay kit (Invitrogen). The genomic DNA was 93 
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prepared for Illumina pair-end sequencing using Illumina (Illumina, Inc., San Diego, CA) 94 

NexteraXT Guide 150319425031942 and following protocol revision C 95 

(http://support.illumina.com/downloads/nextera_xt_sample _preparation_guide_15031942.html), 96 

and submitted for whole genome sequencing at the in-house Illumina MiSeq sequencer.  97 

The raw reads of both in-house 35 genomes and the 58 genomes from 100K project were assembled 98 

using the Assembler v1.0, which is based on the Velvet algorithms for de novo short-read assembly, 99 

available from the Center for Genomic Epidemiology (CGE), http://cge.cbs.dtu.dk/services/all.php.  100 

Conjugation with pKJK5::gfp 101 

A single colony of the donor strain was grown in LB with TMP at 37
o
C overnight. The individual 102 

recipients were inoculated in 24 well plates (Nunc) and grown overnight at 37
o
C. The growth was 103 

stopped by incubating the overnight cultures on ice for 3 hours. The optical density (OD) was 104 

measured at 600 nm and donor and recipients were diluted to a final OD at 0.5. The donor was 105 

mixed with the individual recipients in a ratio of 1:1 in 24 well plates, and incubated 18 hours for 106 

conjugation at 37
o
C. The conjugations were interrupted by properly mixing the liquid, and in the 107 

initial screening plates were stored on ice for 30 minutes. Donor, recipients and transconjugants 108 

were detected and counted by flow cytometry. All samples were diluted in 0.9% NaCl to reach 109 

approximately 2,000 counting events per second
 
before running on flow cytometer.  110 

Flow cytometric detection 111 

Detection of transconjugants, donor, and recipient cells was carried out by using a FACSAria IIIu 112 

(Becton Dickinson Biosciences, San Jose, CA, USA). The following settings and voltages were 113 

used for detection: forward scatter (FSC) = 505V, side scatter (SSC) = 308V, the bandpass filter 114 

530/30 nm and 508V were used for detection of green fluorescence (GFP) whereas the bandpass 115 

filter 610/20 nm and 500V were used for red fluorescence detection. A 70 mm nozzle was used with 116 

http://support.illumina.com/downloads/nextera_xt_sample%20_preparation_guide_15031942.html
http://cge.cbs.dtu.dk/services/all.php
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a sheath fluid pressure of 70 psi. For operating the system the BD FACSDiva software v.6.1.3 was 117 

used, whereas FlowJo v.10 was used for analyzing the data. Five gates were defined in three 118 

bivariate plots to distinguish donors, recipients and transconjugants. On the SSC-A vs. FSC-A plot, 119 

one gate was defined for particles of bacterial size. On the PE-Texas Red-A vs. SSC-A plot two 120 

gates were defined, a gate covering all red fluorescent particles defining the donor bacterial cells, 121 

and a non-red gate for the recipient- and transconjugant cells. From the non-red gate, on a FITC-A 122 

vs. SSC-A plot, a gate was set to cover all green fluorescent particles, while an additional non-green 123 

gate was set to account for the recipient cells (Figure 1). Each sample was set to analyze a total of 124 

100,000 events with the size of bacteria.   125 

Defining good and poor recipients 126 

From the conjugation experiments, transfer frequencies were defined as number of transconjugants 127 

per number of potential recipients, and the mean transfer frequencies (TFs) were calculated for each 128 

isolate. The algorithm kmeans in R-2.14 (http://cran.r-project.org/bin/windows/base/old/2.14.0/) 129 

was used to divide the isolates into two groups (good and poor recipients, respectively) based on 130 

their mean TF. The algorithm partitions each point into the group where the sum of squares from 131 

the point to the center of the cluster gives the lowest value. To illustrate that it was reasonable to 132 

group by the TF mean, a clusplot was drawn based on data from donor, recipient, transconjugant, 133 

TF and transconjugant/donor for each isolate.  134 

Identification of recipient determinants involved in conjugation 135 

For identification of recipient determinant of the 93 genomes that might be involved in conjugation, 136 

two different approaches were taken. In the first attempt all 93 genomes were analysed together. 137 

The Prodigal software [18] was used to predict open reading frames (ORFs) on the scaffolds to 138 

eliminate biases in annotation quality and to standardize the genes found [19]. Further, the predicted 139 

genes were translated into amino acid sequences and aligned all-against-all using BLASTP [20]. 140 

http://cran.r-project.org/bin/windows/base/old/2.14.0/
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Genes were considered as part of a gene family if the alignment length was at least 80% of the 141 

longest sequence and had more than 80% in similarity (80/80 rule) [21]. A common core-pan-142 

genome plot was constructed by comparing the gene families from all the genomes. The pan-143 

genomes were constructed by the union of all the genes, while the core-genomes were assembled 144 

from the intersection of gene families shared by at least 90% of genomes [21, 22]. By using the perl 145 

script for comparative genomic analysis from the CMG-biotool [23], unique genes was determined 146 

by comparing the intersection of genes in one group with the ORFs of the other group.  147 

In the second attempt the genomes were, prior to the subjected analysis, divided into the two groups 148 

of good and poor recipients. ORFs, gene families, pan- and core-genomes were predicted for each 149 

group, as described above. To identify unique genes, the core-genome of one group was compared 150 

with pan-genome of the other group by using BLASTP and the 80/80 rule. This method will ignore 151 

orthologues. The resulting gene family candidates were further inspected by using BLASTP against 152 

the predicted ORF from each genome from the opposite group, to ensure that the predicted gene 153 

families would be unique.    154 

In addition to the analyses of all 93 S. enterica genomes, the 11 S. Enteritidis genomes spanning 155 

both groups (good and poor) were analysed separately, to search for serovar specific gene family 156 

candidates. For this analysis, the first approach was used, where ORFs, gene families, and core- and 157 

pan-genomes were constructed based on all 11 genomes.   158 
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Results 159 

High throughput conjugational screening and grouping of isolates 160 

The high throughput conjugational approach was conducted to screen a high number of varying S. 161 

enterica isolates for their conjugational ability. This was done to identify recipients with poor 162 

versus enhanced ability to take up a plasmid. The plasmid pKJK5, encoding the green fluorescence 163 

gene gfp, was introduced to the S. enterica recipients via the red fluorescent tagged donor E. coli K-164 

12 MG1655 which represses gfp. Flow cytometry detection revealed transfer frequencies (TF) of 165 

the 93 S. enterica recipients varying from 0.0 to 2.5 × 10
-1

 transconjugants per potential recipients, 166 

illustrated in the boxplot in Figure 2A.  167 

From the TF mean for each isolate, the kmean algorithm was used to divide the isolates into two 168 

groups, resulting in a group of 10 good recipients, and a group of 83 poor recipients. The clustering 169 

based on the TF mean for each isolate was represented by a principal component analysis (PCA), 170 

illustrated in Figure 3. Isolates from the group of good recipients were illustrated by the red 171 

triangles, and isolates from the poor group of recipients by blue circles. The two groups were 172 

located apart without overlap in the 2D representation in Figure 3.  173 

Comparative genomics and identification of gene family candidates involved in conjugation 174 

By investigating the gene families found in the 83 bad recipients, absent in the 10 good recipients, 175 

and vice versa, we attempted to identify gene families involved in enhancing or restricting plasmid 176 

uptake. The pan- and core-genome of the 93 recipients were predicted to 22,161 gene families and 177 

1,933 gene families, respectively. However, in the attempt to identify group dependent gene 178 

families, no families were identified by this approach.  179 

In the second attempt, separate core- and pan-genomes were constructed for the two groups. The 180 

core-genome (conserved genes) from one group of recipients was compared with the pan-genome 181 
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(entire gene-pool including core-genome) from the other groups of recipients, to identify unique 182 

gene families only shared within one of the group. The pan- and core-genomes of the good recipient 183 

group were predicted to 8,733 and 3,249 gene families by prodigal with following all-against-184 

alignment. For the group of poor recipients, the pan- and core-genomes were predicted to 20,458 185 

and 2,052 gene families.  186 

By using the second approach to compare the gene families between the two groups of recipients, 187 

we identified 6 gene families from the good recipients, potentially encoding genes facilitating 188 

plasmid transfer. Additionally, 4 gene families were identified in the group of poor recipients, as 189 

gene candidates for resisting plasmid transfer. However surprisingly, when manually searching for 190 

the identified ORFs in the opposite group by using BLASTP, none of the gene family candidates 191 

were found to be unique for the groups.  192 

Additionally, to narrow down the diversity within the dataset and to look for serovar-specific gene 193 

candidates, the analysis was performed on a single serovar as well. For the 11 S. Enteritidis 194 

genomes included in the study, four genomes were predicted to belong to the good recipient group 195 

and seven genomes was predicted to belong to the poor recipient group. The TF for the 11 genomes 196 

were illustrated in Figure 2B, with the TF values for the 18 S. Typhimurim genomes in Figure 2C 197 

for comparison. The common pan- and core-genomes were predicted to 6,149 and 3,736 gene 198 

families, respectively. The interception of gene families from one group, totally absent from the 199 

other group, revealed that the bad group was sharing 34 gene families not identified in the group of 200 

good recipients. Contrary, no unique gene families were identified from in the good group. To 201 

verify the findings, the 34 predicted proteins from the poor recipient group were manually searched 202 

against the four genomes from the good recipients. This revealed that one of the genes was found in 203 

one of the four genomes with an identity of 99.6%, and the remaining 33 was found with less than 204 

66% identity at amino acid level. Thus, 33 gene family candidates, possible restricting conjugation, 205 
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were identified in S. Enteritidis. The protein sequences of the 33 unique genes can be found in 206 

supplemental material (S9 File), together with the sequences of all the predicted pan- and core-207 

genomes (S1 File - S8 File). 208 

 209 

  210 
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Discussion 211 

In recent time, it has become clear that the genetic spread through horizontal gene transfer is highly 212 

important in evolution of bacteria [2–4]. However, it is equally important in global emergence and 213 

rapid spread of undesirable genetic traits, like the spread of antibiotic resistance. A striking example 214 

is the recent finding of the plasmid-mediated colistin resistance gene, mcr-1, a resistance which 215 

until now only was mediated by chromosomal mutations with following vertical transmission to 216 

daughter cells [24, 25]. Hasman et al. detected the mcr-1 gene in a highly resistant E. coli isolate 217 

from a human bloodstream infection. The isolate was only susceptible to a limited number of 218 

antimicrobial classes, including the carbapenems. Additional acquisition of resistance will leave a 219 

limited number of suitable treatment options [25], which underlines why understanding how genes 220 

are controlling the uptake and establishment of the plasmids in the recipients is of great importance. 221 

The objective of this study was to identify genetic traits of recipient strains, associated with uptake 222 

of IncP-1 plasmids, a mediator for spread of antimicrobial resistance. Based on transconjugant 223 

frequencies from a conjugational setup, the 93 S. enterica recipients clustered into two groups based 224 

on high and low transconjugant frequencies. By using different approaches for comparative 225 

genomics of the two groups, we initially identified 6 gene family candidates for enhancing 226 

conjugation, in addition to 4 gene family candidates restricting conjugation. However, further 227 

analysis with BLASTP against all predicted ORFs from the opposite group, revealed that none of 228 

the candidates were in fact unique to any of the two defined groups. The main dataset of 93 229 

recipients was covering 54 different serovars, which is arguably a very diverse dataset and could 230 

have contributed to the lack of success to identify unique gene candidates. Thus, to decrease the 231 

genetic diversity, a single serovar was assessed separately. Assessing only the S. Enteritidis serovar, 232 

it was possible to identify 33 unique gene families in the genomes belonging to the low transfer 233 

frequency group, indicating the potential for serovar specific genes involved in the restriction of 234 
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conjugational transfer. Adding additional S. Enteritidis serovars to the analysis could increase the 235 

serovar specific diversity and perhaps decrease the number of significant genes found in the 236 

analysis. 237 

The attempt to identify genes affecting recipient abilities in plasmid conjugation has previously 238 

been done by Pérez-Mendoza and de la Cruz [9]. Their study was performed with E. coli as 239 

recipient, and their strategy was based on high-throughput screening for systematic evaluation of 240 

individual E. coli genes in bacterial conjugation, where 20,000 random Tn-insertion mutants as well 241 

as the Keio collection of 3,908 individual deletion mutants, were screened. The attempt to identify 242 

recipient genes was focusing on two different K-12 strains, without knowing if genes affecting 243 

conjugation would be present at all [9]. They concluded that conjugation occur with little regard to 244 

the components of the recipient cells, which cannot avoid being used as recipient [9]. 245 

In the present study, we tried to deal with the drawback of not knowing the level of conjugational 246 

ability of the recipients investigated, by performing an initial conjugation experiment of 93 S. 247 

enterica ssp. enterica isolates, with following grouping of good and poor recipients. Unfortunately, 248 

no gene families could be associated with either the good recipient- or poor recipient groups when 249 

assessing the entire enterica subtype of Salmonella. However, other analysis identifying unique 250 

SNPs could perhaps reveal an association not recorded with the utilized methods. Further, a 251 

comprehensive characterization including plasmid replicons, antimicrobial resistance, MLST 252 

profiles, etc. could as well guide the analysis in a direction or give an impression of where to search 253 

for differences that could cause the different recipient abilities.  254 

 As mentioned above, an explanation could be the high complexity within the dataset, as the initial 255 

study was performed on a variety of S. enterica ssp. enterica isolates. To reduce the diversity, the 256 

11 genomes of S. Enteritidis were assessed in an individual analysis, with the grouping defined 257 
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from the analysis of the 93 genomes. However, when assessing the conjugational frequencies of S. 258 

Enteritidis, it became clear that it can be difficult to define an arbitrary threshold separating good 259 

recipients from poor recipients. It can be questioned if we need the threshold to identify genes 260 

involved in conjugation, or if a strain by strain comparison, taking the TF into account, would be 261 

more appropriate. Comparing the conjugational frequencies of S. Enteritidis and S. Typhimurium, 262 

the frequencies for the two serovars are not in the same range, however the same pattern of increase 263 

in frequencies can be observed within each of the two serovars (Figure 2). Thus, a comparison of 264 

the gene content of the two serovars could be a subject for identification of gene-candidates. From 265 

the kmean algorithm none of the S. Typhimurium but four out of 11 S. Enteritidis isolates were 266 

determined as good recipients. Assessing the continuously increase between of the isolates 267 

illustrated in Figure 2, this classification into good and poor recipients do not seem reasonable, as 268 

no distinct grouping is observed within neither of the two serovars. Additionally, the similar pattern 269 

for the two serovars, but different range of transfer, indicates that the ratio of conjugational transfer 270 

is very serovar specific. An explanation for this difference in range could be the individual sub-271 

linage content of RM systems for the two serovars (unpublished data from Roer et al., 2015). 272 

However, this does not explain the difference observed within each serovar. Even though there is no 273 

clear grouping of good and poor recipients within a serovar, differences in recipient abilities can be 274 

observed which even appear significant between the two isolates with the highest and lowest 275 

frequencies. Comparing these results to the conclusion by Pérez-Mendoza and de la Cruz [9], it is 276 

not obvious that the bacteria cannot avoid being used as recipients, especially as some of the 277 

transfer frequencies in this study are recorded to zero and some are as high as 2.5 × 10
-1

 278 

transconjugants per potential recipients, from the same donor and conjugation apparatus. The very 279 

high TF observed for some of the isolates is very unusual in conjugation, indicating that these 280 

isolates indeed have good recipient abilities. Thus, some recipient components must be involved in 281 
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the recipient conjugational ability. As RM systems did not impose absolute barriers, other factors 282 

must be involved in the control of conjugation.  283 

The continuously increase in S. Enteritidis and S. Typhimurium could indicate that multiple genes 284 

are involved in determining the ability to take up plasmids, causing a synergy effect increasing or 285 

decreasing of the transfer frequency. However, it could also be different genes accounting for the 286 

differences in recipient abilities for each isolate, which probably could be answered by protein 287 

annotation and sequence alignment of the predicted proteins. Changing the arbitrary threshold for S. 288 

Enteritids could potentially reveal more or less gene family candidates. An interesting approach 289 

with this continuously increase in frequency could be to do multiple comparisons, where each 290 

“jump” is investigated in correspondence to the remaining genomes. Thus, for each 291 

increase/decrease the responding gene could be predicted.  292 

Interestingly, only gene families predicted to be involved in reducing plasmid uptake were observed 293 

from this analysis. However, considering the fitness costs of harbouring plasmids, it is reasonable to 294 

think that bacteria in general develop methods for restricting plasmid uptake as a protection or 295 

defence mechanism, and not develop enhancing abilities.  296 

Playing the devil’s advocate it could be argued that it is possible that the 33 genes only are 297 

predicted as unique due to the size difference between the two groups, as the poor recipient group 298 

contain seven genomes compared to the four in the good group. Thus, maybe the 33 gene family 299 

candidates are found due to natural diversity between the strains, and do not possess any impact on 300 

conjugational transfer. Therefore, the 33 gene family candidates predicted in this study should be 301 

further investigated, both by function prediction, prevalence of genes, and in molecular techniques 302 

in the laboratory.  303 

The current study was constructed by using a combination of molecular technologies and 304 

bioinformatics to predict gene family candidates involved in regulation of recipient abilities in 305 



17 

 

conjugation. Though, some drawbacks from using bioinformatics in prediction of bacterial 306 

behaviour do exist. The prediction of gene families is based on the “80/80” rule. However a single 307 

nucleotide difference can cause alteration of the protein which in some cases can lead to functional 308 

inactivation without truncating the protein. An alternative approach could be to screen the bacterial 309 

genes for examining enhanced or restricted abilities to uptake plasmids. One example would be to 310 

perform random gene-knockout of a good recipient, with following identification of genes either 311 

decreasing or increasing the conjugational abilities, as performed in by Pérez-Mendoza and de la 312 

Cruz in E. coli [9]. However, in this case the conjugational ability would be known in advance. 313 

Another approach could be a transposon-library of the bacterial genome, which can be introduce to 314 

a recipient with the opposite conjugation ability, than the wildtype.  315 

In summary, the findings from this study indicate that differences in conjugation ability can be 316 

observed, both at species level and serovar level for Salmonella, with differences varying from 0.0 317 

to 2.5 × 10
-1

 transconjugants per potential recipients. No common genes could yet be linked to 318 

enhanced or restricted conjugational abilities, when comparing a broad community of Salmonella 319 

enterica ssp. enterica isolates, but additional bioinformatic approaches are ongoing to explore this 320 

dataset further. With regards to S. Enteritidis, 33 gene family candidates could be predicted, which 321 

are being investigated and awaiting verification. Thus, the collection of genomes used in this study, 322 

together with the results from the initial conjugation experiment leaves great opportunities for 323 

revealing of genes involved in plasmid uptake.   324 
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Table 1 | Bacterial donor strain and plasmid used in this study. 405 

1
 For bacterial strains and plasmids the relevant genotype, phenotype and other characteristics are shown. 406 

  407 

Bacterial strain and plasmid Description (relevant genotype or phenotype)  Source or 

reference 

Bacterial strains   

Escherichia coli MG1655 mCherry F
-
 λ

-
 ilvG- rfb-50 rph-1, lacIq-pLpp-mCherry-Kan

R
 [16] 

   

Plasmids   

pKJK5::Plac::gfp IncP-1β, Tmp
R
 [16] 
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 408 
Figure 1 | Conjugational screening detected by flow cytometry. Flow cytometry detection of Donor, Recipients, and 409 
Transconjugants from a conjugation mixture of S. enterica and E. coli K-12 MG1655 carrying pKJK5. The gating 410 
procedure consists of five successive gates in the 3 different plots: Plot I with the Bacterial gate, detects all particles of 411 
bacterial size based on front and side scatter; Plot II detects all red fluorescence particles representing the donors, and 412 
all non-red particles representing either recipients or transconjugants by using side scatter and PE-Texas Red; Plot III 413 
divides the Recipients and Transconjugants by gating non-green and green fluorescence particles based on side scatter 414 
and FITC.  415 
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 416 

Figure 2 | Conjugation frequencies for S. enterica ssp. enterica. A, Transconjugant frequencies of the initial 417 
screening of recipients with good or poor uptake. The frequencies are represented as a box for each isolate, illustrating 418 
the results of the three repetitions. The frequencies are represented as a box for each isolate, illustrating the results of 419 
the three repetitions. B, Conjugation frequencies for the 11 S. Enteritidis isolates included in the study. C, Conjugation 420 
frequencies for the 18 S. Typhimurium isolates included in the study. The isolates in B and C are ordered according to 421 
their mean transfer frequency. 422 

 423 
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 424 

Figure 3 | 2D Representation of Clustering. The PCA analysis is based on the donor, recipients and transconjugants 425 
in each replicate, as well as their mean of the three repetitions of the conjugations experiment. Additionally, the 426 
representation is based on the TF mean and the donor/transconjugant ratio. The bad recipients are marked with blue 427 
circles and the good recipients are marked with red triangles. The two components together explain 75.22% of the point 428 
viability of the data.   429 
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Supporting information 430 

S1 Table: Genomic information of recipient strains 431 

S1 File: The 22,161 Salmonella Pan genes from all 93 genomes, in FASTA format 432 

S2 File: The 1,933 Salmonella Core genes from all 93 genomes, in FASTA format 433 

S3 File: The 8,733 Salmonella Pan genes from group with high frequency, in FASTA format 434 

S4 File: The 3,249 Salmonella Core genes from group with high frequency, in FASTA format 435 

S5 File: The 20,458 Salmonella Pan genes from group with low frequency, in FASTA format 436 

S6 File: The 2,052 Salmonella Core genes from group with low frequency, in FASTA format 437 

S7 File: The 6,149 Salmonella Enteritidis Pan genes from 11 genomes, in FASTA format 438 

S8 File: The 3,736 Salmonella Enteritidis Core genes from 11 genomes, in FASTA format 439 

S9 File: The 34 Unique Salmonella Enteritidis genes from group with low frequency, in FASTA format 440 
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