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Summary 

Escherichia coli (E. coli) is of huge importance in global health both as a commensal 

organism living within its host or as a pathogen causing millions of infections each 

year. Infections occur both sporadic and as outbreaks with sometimes up to thousands 

of infected people. To limit the number of infections it is important to monitor 

pathogenic E. coli in order to detect outbreaks as quickly as possible and find the 

source of the outbreak. The effectiveness of monitoring and tracking of pathogens is 

very dependent on the typing methods that are employed. Classical typing methods 

employed for E. coli is in general expensive and to some extent unreliable. Next 

generation sequencing has quickly become a tool widely available and has enabled 

even smaller laboratories to do whole genome sequencing (WGS). Having the entire 

genome available provides the opportunity to create the ultimate typing method. This 

PhD thesis attempts to take the first steps toward such a method. 

In Kaas I all publicly available E. coli genomes sequenced (186) are analyzed. 1,702 

core genes were found in all genomes. 3,051 genes were found in 95% of the 

genomes. The pan genome was found to consist of 16,373 genes. The overall 

phylogeny was inferred from the core genome and also set into context of the 

Escherichia genus. The variance within each gene cluster was calculated in order to 

compare the variance between genes and possibly identify typing targets for further 

study. The variance scores calculated was also used to compare the three MLST 

schemes that exist for E. coli. 

It quickly became clear that single nucleotide polymorphism (SNP) analysis was 

becoming the method of choice for inferring the phylogeny of bacterial outbreaks. 

However, the method remained unavailable to many people due to technical 

obstacles. In Kaas II we describe the SNP method and the validation behind a web 



server that we set up in order to overcome some of the technical obstacles faced by 

many people and thereby making the method more available. The method briefly, 

calls SNPs against a specified reference sequence, creates an alignment (pseudo-

sequence) of all the SNPs, and uses the maximum likelihood (ML) method to create a 

tree. The most important detail in the method is the assumption made about “missing” 

SNPs. Meaning SNPs called in one strain but not in another. It was assumed that 

SNPs not found in a position was due to that nucleotide being identical to the one in 

the reference sequence. The assumption is in general valid if all the genomes 

compared are closely related and the sequencing data is of good quality. 

In Kaas III we sought to overcome the assumption mentioned above but most 

important of all we wanted to create a method that could handle sequence data 

obtained from different sequencing technologies. The method from Kaas II was 

completely rewritten and a new web server (CSI Phylogeny) was published that could 

handle sequence data of all kinds and no longer made assumptions about missing 

SNPs. Very briefly, the method differs from Kaas II mainly by validating all the 

locations in all the genomes in which a SNP has been called in any genome. In 

parallel to the development of a new SNP method another method was also developed 

that briefly, relies on counting nucleotide differences (ND) between each genome 

pair, while also validating each position analyzed and ignoring the positions that 

cannot be validated thereby creating a distance matrix that is used as input to an 

UPGMA method that creates the final phylogeny. The ND method was also 

implemented as a web server and published. 

If whole genome sequencing is to be used for routine monitoring and tracking of E. 

coli pathogens, it is crucial to have an idea of how large the difference is between 

isolates from the same outbreak, compared to the difference to other non-outbreak 



isolates, in order to do reliable distinctions. In Kaas IV we analyzed ten different 

outbreaks. Seven of the outbreaks were sequenced for the study and three of the 

outbreaks were obtained from published studies. Several background isolates that 

resembled the outbreak isolates were also sequenced. Five different bioinformatic 

methods were evaluated against the 10 outbreaks. The five different methods were 

based on SNP, ND, core genes, k-mers, and average nucleotide identity (ANI). Only 

the ANI method was not able to cluster all outbreaks correctly. The pairwise distance 

between all isolates were also calculated by each method and compared. Most 

methods showed lower distance between isolates in the same outbreak compared to 

the background strains, but only the SNP method was able to set one common 

threshold for outbreak isolates versus non-outbreak isolates for the entire dataset. 

Whole genome sequencing is a powerful but also a rather new tool. This PhD thesis 

has hopefully shed some light on how we can continue development of whole genome 

sequence typing and also made WGS more available to a broader audience.  



Danish Summary 

Escherichia coli (E. coli) spiller en vigtig rolle i den globale sundhed både grundet 

dennes rolle som kommensal bakterie, der lever i dennes vært og som patogen 

bakterie, der er skyld i millioner af infektioner hvert eneste år. Infektionerne er både 

sporadiske eller som udbrud med tusindvis af smittede i visse tilfælde. For at mindske 

antallet af infektioner er det vigtigt at overvåge patogene E. coli med henblik på 

hurtigt opdagelse af udbrud og sporing af kilden til disse. Effektiviteten af 

overvågning og sporring er i høj grad afhængig af typningsmetoderne der anvendes. 

De klassiske typningsmetoder, der anvendes til E. coli er overordnet set dyre og til en 

hvis grad ikke helt til at stole på. Næste generations sekventering er hurtigt blevet vidt 

tilgængelig og har gjort det muligt for selv mindre laboratorier at udnytte hel genom 

sekventering. At have hele bakteriegenomet tilgængeligt giver nu mulighed for at 

udvikle den ultimative typningsmetode. Denne Ph.d. afhandling forsøger at tage de 

første skridt imod en sådan metode. 

I Kaas I analyseres alle offentligt tilgængelige sekventerede E. coli genomer (186). 

1.702 kernegener blev fundet i alle genomer.  3.051 gener blev fundet i 95% af alle 

genomer. Pan-genomet blev beregnet til at indeholde 16.373 gener. Den overordnede 

fylogeni blev estimeret fra kernegenerne og også sat i kontekst til genusset 

Escherichia. Variansen i hvert gen blev beregnet med henblik på at sammenligne 

variansen i mellem forskellige gener og identificere mulige typningsmarkører til 

yderligere undersøgelse. De beregnede variansscorer blev også brugt til at 

sammenligne de tre MLST skemaer, der eksisterer for E. coli. 

Det stod hurtigt klart at Single Nukleotid Polymorfisme (SNP) var ved at blive den 

fortrukne metode til at udlede et bakterieudbruds fylogeni. Dog forblev metoden 

utilgængelig for mange, grundet tekniske forhindringer. Vi beskriver i Kaas II en 



SNP metode og en validering af denne for en webserver vi implementerede netop for 

at overkomme nogle af disse tekniske forhindringer og dermed øge tilgængelighed af 

denne metode. Metoden i korte træk: Der kaldes SNPs imod en referencesekvens, 

disse SNPs bliver så sat sammen til et ”alignment” (pseudo-sekvens) og ved brug af 

metoden ”Maximum Likelihood” udledes et fylogenetisk træ. Den vigtigste detalje i 

denne metode er antagelsen der laves omkring ”manglende” SNPs. Med dette menes 

SNPs, der er kaldt i en stamme, men ikke i en anden. Det blev antaget at grunden til at 

en SNP manglede i en position var at nukleotiden i denne position var identisk med 

nukleotiden i samme position i referencesekvensen. Antagelsen holder så længe at 

stammerne der bliver sammenlignet er meget ens og sekvensdata er af god kvalitet. 

I Kaas III søgte vi at overkomme førnævnte antagelse, men vigtigst af alt ville vi 

gerne have en metoder der kunne håndtere sekvensdata opnået via forskellige 

sekvensteknologier. Metoden fra Kaas II blev fuldstændig omskrevet og en ny web 

server (CSI Phylogeny) blev publiceret, der kunne håndtere alle former for 

sekvensdata og ikke længere foretog nogen antagelser vedrørende manglende SNPs. 

Meget kort, så adskiller metoden hovedsageligt sig fra Kaas II ved at validere alle 

positioner i alle genomer, hvor SNPs er blevet kaldt. Parallelt med udviklingen af den 

nye SNP metode, blev også udviklet en metode, der kort fortalt, bygger på at tælle 

antallet af nukleotid forskelle (ND) mellem hvert genom par, samtidig med at der 

også laves positions validering og positioner der ikke kan valideres ignoreres. Derved 

skabes en distance matrix, der bliver brugt som input til UPGMA metoden der 

udleder den endelige fylogeni. ND metoden blev også implementeret som web server 

og publiceret. 

Hvis hel genom sekventering skal bruges til rutine overvågning og sporing af 

patogene E. coli, så er det afgørende at vide hvor stor forskel der kan forventes at 



findes blandt isolater i samme udbrud i forhold til isolater, der ikke er en del af et 

udbrud, hvis man skal være i stand til at kunne skelne. Vi analyserede 10 forskellige 

udbrud i Kaas IV. Syv af disse udbrud blev sekventeret til dette studie og tre af 

udbruddene blev hentet fra publicerede studier. Flere baggrundsisolater, der ligner 

udbrudsisolaterne blev også sekventeret. Fem forskellige bioinformatiske metoder 

blev evalueret på de ti udbrud. De fem forskellige metoder var baseret på SNP, ND, 

kernegener, k-mers og gennemsnitlig nukleotid identitet (Average Nucleotide Identity 

– ANI). Kun metoden ANI, kunne ikke klynge alle isolaterne i deres respektive 

udbrud. Den parvise afstand imellem alle isolater blev også beregnet med hver enkel 

metode og sammenlignet. De fleste metoder beregnede lavere afstand imellem isolater 

i samme udbrud end til baggrundsisolater, dog var det kun SNP metoden, der var i 

stand til at sætte én fælles tærskel for udbrudsisolater versus ikke-udbrudsisolater for 

hele datasættet. 

Hel genom sekventering er et kraftfuldt, men også en ret nyt værktøj. Denne Ph.d. 

afhandling har forhåbentlig været med til at kaste lys over hvordan vi kan fortsætte 

udviklingen af hel genom typning og gjort hel genom sekventering mere tilgængeligt 

for et bredere publikum.  

  



Problem Statement 

The first next generation sequencer was released around 2004 and triggered a massive 

increase in whole genome sequencing (WGS), providing new and powerful ways to 

obtain insights into genomics. While sequencing technology has evolved at an 

impressive speed, becoming even faster and cheaper, WGS is still a young field with 

lots of questions to be answered. In this PhD we attempt to elucidate several issues 

regarding the use of WGS as a tool for typing of E. coli.  

E. coli was chosen due to its role as a frequent human, animal, and food borne 

pathogen and its genomic profile that is clonal but still very diverse. The PhD aimed 

at exploring how diverse the genome of the available whole genome sequences were 

and to estimate the variance of the genes. The objective of the variance analysis was 

to find potential epidemiological markers for future studies. 

Single Nucleotide Polymorphisms (SNPs) has been widely used to describe different 

bacterial outbreaks and recent evolution. It was the aim of this thesis to analyze 

results obtained by the SNP method, but also alternative methods in order to evaluate 

their use for typing purposes. In general, there is a need in WGS to establish standards 

for the definition of bacterial clones. 

The project is part of the Center for Genomic Epidemiology (CGE). The main 

objective of CGE is to facilitate global surveillance of microbial pathogens using 

WGS. From this objective also follows the need to make WGS tools available to 

clinical laboratories and epidemiologists in order to make WGS a feasible alternative 

to classical methods. An additional objective of this thesis was therefore also to make 

user-friendly tools available for complete SNP analysis and also to improve on the 

existing method to make it platform (sequence) independent. 

  



E. coli 

Taxonomy 

In 1885 Theodor Escherichia discovered a new species in the feces of healthy 

individuals. It was originally named Bacterium coli commune, later reclassified 

Bacillus coli before it was finally classified Escherichia coli (E. coli) [1]. 

E. coli belongs to the family Enterobacteriaceae and are non-spore forming, 

facultative anaerobe, and Gram-negative rods. E. coli can be both motile and non-

motile. Motile E. coli has peritrichous flagella [2]. 

Since Nobel price winners Edward Tatum and Joshua Lederberg used the E. coli K12 

strain, as a model organism to show bacterial conjugation in the late 1940s it has been 

the preferred model organism in Biology research. Researchers in bacterial genetics, 

biochemistry, and physiology have come to favor E. coli K12 due to its accessibility, 

rapid and simple laboratory growth conditions, low virulence, tractable genetics, and 

metabolic versatility [3]. 

Ecology 

E. coli exists both as commensal and as a widespread pathogen. Commensal E. coli 

are predominantly found in the gut of mammals, but in general exists in warm-

blooded animals and reptiles [4,5]. However, E. coli has the ability to survive in the 

environment (e.g. water) for prolonged periods of time and is often used as an 

indicator for fecal contamination. In recent years more focus has been given to the 

environmental E. coli and it has been estimated that half of the E. coli population 

resides in secondary habitats. Studies have also shown that specific strains of E. coli 

(those capable of saprophytism) are capable of growing under these environmental 

conditions [5]. Walk et al. reported 5 new phylogenetic clades [6], from strains 



isolated mainly from the environment that was distinct from known E. coli but could 

not be distinguished using traditional phenotypic profiling [6,7] [Kaas I]. The 

primary habitat of commensal E. coli is in the large intestine of the digestive tract and 

predominantly in the caecum and the colon. They are populating the mucus layer that 

covers the epithelial cells throughout the digestive tract. The mucus gets degraded and 

shed in to the intestinal lumen where it gets excreted in the feces. The competition in 

the microbiota in the gut is high and E. coli is outnumbered 100/1 to 10,000/1 [5]. E. 

coli has adapted its metabolism to utilize sugars from the mucus; especially gluconate 

seems to play an important role. Commensal E. coli benefits from its relationship with 

the host owing to a steady flow of nutrients, a stable environment, protection from 

some stress factors, and also gains transport and dissemination. The host benefits are 

more implicit. It is understood that E. coli can provide colonization resistance, but E. 

coli does also play a part in the eco system of the microbiota, primarily by limiting 

oxygen in the environment, and thereby enhancing the conditions for anaerobe 

organisms, in turn these anaerobe organism might further benefit the host. However, 

this is a discussion that is well beyond the scope of this thesis [5]. 

Pathogenic Classification 

In immunocompromised hosts, where the gastrointestinal barrier is breached 

commensal E. coli can cause disease (ex. peritonitis). However, the vast majority of 

E. coli infections are due to pathogenic E. coli that has adapted a broad range of 

virulence factors, which leads to a wide spectrum of diseases (See Figure 1). 

Pathogenic E. coli can be divided into two main categories: diarrhoeagenic E. coli and 

extraintestinal E. coli (ExPEC). The majority of diarrhoeagenic E. coli can further be 

divided into six pathovars: enteropathogenic E. coli (EPEC), enterohaemorrhagic E. 

coli (EHEC), enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAEC), 



enteroinvasive E. coli (EIEC), and 

diffusely adherent E. coli (DAEC). It 

is widely accepted that Shigella spp. 

falls within the species E. coli [8] and 

it should be classified in the pathovar 

EIEC [9]. However, due to the 

clinical significance of Shigella the 

nomenclature is still maintained [10]. 

The two most common ExPEC 

pathovars are uropathogenic E. coli 

(UPEC) and neonatal meningitis E. coli (NMEC), others exists but will not be 

described here. It is important to keep in mind that the pathovars describe the 

pathogenicity of an E. coli strain but contains little information on its phylogenetic 

relationship to other E. coli strains. The reason being that a pathovar is largely defined 

by virulence factors that are often located on mobile genetic elements and are 

therefore subject to horizontal gene transfer (HGT) [9,10]. A study by Ogura et al. 

showed how different E. coli clones has independently evolved into EHECs [11]. 

Epidemiology & Clinical importance 

E. coli is primarily spread through contaminated water and food. Diarrhoeagenic E. 

coli is a massive problem in developing countries where they are endemic and a 

significant contributor to childhood mortality. The most important pathovars in 

developing countries are ETEC, EPEC and EIEC. A rather large infectious dose is 

required for both ETEC and EPEC infections, which explains why there is practically 

no direct person-to-person transmission. ETEC is also known as traveller’s diarrhea 

because ETEC is among the most common causes of diarrhea in visitors to 

Figure 1. Colonization sites of pathogenic E. coli. 
Figure is borrowed from Croxen et al. [9]. 



developing countries. Studies have shown that in areas where ETEC is endemic, there 

also exists thorough contamination, especially in the warm and wet months where the 

bacteria thrive. It is believed that mucosal immunity can be obtained in exposed 

individuals and it has been shown that asymptomatic individuals may shed large 

portions of virulent ETEC in their stools. These two factors explain how ETEC can 

remain endemic and why it almost only affects visitors and children. While ETEC in 

developed countries are less predominant among the human population it is a problem 

among swineherds, in food production, where it causes diarrhea and edema disease. 

Edema disease is affecting post-weaning pigs, where it is often fatal.  

EPEC is like ETEC also primarily found in children. EPEC is found in children under 

the age of 2 years and primarily in infants younger than 6 months. EPEC does not 

affect visitors like ETEC does. It is believed that humans loose specific receptors with 

age and is therefore not affected by EPEC. The primary reservoir is believed to be 

asymptomatic human adults and children. The vast majority of EPEC infections are 

found in children but outbreaks of EPEC affecting adults is seen and often the source 

is contaminated food or water. 

EHEC is in contrast to ETEC and EPEC predominantly found in developed countries. 

EHEC requires low infectious doses and is in addition to spread by contaminated food 

and water also spread by person-to-person transmission. The major outbreaks caused 

by EHEC have gained the most attention, but the sporadic infections cause the largest 

disease burden, as estimated by the Center for Disease Control (CDC) in the US. 

However, it is probable that insufficient typing fails to reveal a number of these 

sporadic cases as outbreaks. Stx producing E. coli is found in a wide variety of 

animals that is usually asymptomatic due to lack of receptors that bind shiga toxins. 

Strains responsible for human disease is manly found in the gut flora of cattle. The 



low number of organisms (100-200) required for infection makes cross contamination 

of food products and seeds a significant problem and has in many incidents been 

reported to be the source of outbreaks, including the German outbreak in 2011 that 

was believed to originate from contaminated sprout seeds [12]. The most common 

EHEC serotype reported is O157:H7 but other serotypes is also important causes of 

EHEC infections. 

EAEC is a very diverse group and contains considerable genetic heterogeneity. This 

fact along with difficulties in establishing consistent defining factors for this group 

continues to make the pathogenicity and clinical relevance controversial topics. The 

main reservoir is believed to be human. EAEC is often isolated from children 

suffering from diarrhea in developing countries. However EAEC is also often found 

to co-exist with other pathogenic E. coli making its clinical relevance difficult to 

estimate. EAEC is frequently mentioned in relation to persistent diarrhea, however no 

solid evidence of this exists [13]. EAEC has also been found to cause urinary tract 

infections (UTI) in Denmark [14]. A hybrid of an EAEC and an EHEC was believed 

to cause a large German outbreak in 2011. 

Non-Shigella EIEC is less widespread than previously mentioned pathovars although 

it has been reported to be predominant in some areas [15]. Shigella has received a lot 

more attention as it continues to cause a very high amount of infections. Kotloff et al. 

estimated more than 1 million deaths caused by Shigella spp. in 1999 in the 

developing world [16] and CDC’s FoodNet has registered Shigella to be the second 

most prevalent foodborne pathogen in 2013 with Salmonella being the most prevalent 

and Campylobacter to be the third most prevalent pathogen [17]. The main reservoir 

is believed to be human and the very low dose required for infection makes person-to-

person transmission and cross contamination important factors. Shigella is found 



worldwide although the highest disease burden is found in the developing world, 

where it is a significant cause of possible fatal diarrhea in especially young children. 

The mode of acquisition is largely unknown for DAEC. Some studies suggest that 

DAEC mostly affect children between the age of 1 and 5 years. The lack of solid 

pathogenic markers makes the clinical importance of DAEC uncertain [18].  

Urinary tract infections (UTIs) are one of the most common community acquired 

infections and also the most common nosocomial infection. The risk of getting a 

nosocomial UTI is estimated to be 5-10% each day for patients with catheters but is 

also very common among non-catheter patients [19]. The predominant cause of UTIs 

is UPEC E. coli, which is estimated to be the cause of 70-90% of the community 

acquired UTIs and 50% of the nosocomial UTIs [20]. Even though a large portion of 

UTIs is asymptomatic and UTIs rarely has fatal outcomes, the vast amount of 

infections makes it a very important pathogen both from a health perspective and due 

to the significant economic burden it imposes on society. However, actual UPEC 

outbreaks are rare and most infections are sporadic [13]. 

NMEC is the second cause of neonatal meningitis. The average onset is about 6-9 

days from birth. It is believed that the acquisition of NMEC comes from the gut flora 

of the mother or the environment. Few risk factors has been identified but around one 

third of all infections happens in premature infants [21]. 

Pathogenesis 

In general the E. coli pathovars affects the same host mechanisms, but do so using 

very different approaches. EPEC and EHEC both belong to a family of pathogens that 

form attaching and effacing (A/E) lesions on epithelial cells. The bacteria efface the 

microvilli and form distinct pedestals on the host cell beneath the attached bacterial 

cell. The initial attachment of the two pathovars is through different adherence 



factors, that are not all fully understood but involves different types of pili and 

flagella. The intimate attachment happens through the bacterial outer-membrane 

protein intimin. The intimate attachment recruits other proteins that in turn lead to 

actin replacement and pedestal formation. The literature describes this process in 

detail for the prototypes of EHEC and EPEC, but it turns out the two prototype strains 

studied are not representative for all EHECs and EPECs [22]. Following intimate 

attachment EPEC pathovars translocate a variety of effector proteins in to the target 

host cell using the type 3 secretion system (T3SS). The specific effectors are different 

between the EPEC strains but are known to be responsible for disruption of 

mitochondrial structure and function, inhibition of phagocytosis, disruption of the 

tight junction between epithelial cells, reduction of protein trafficking and increased 

ion secretion. Several of these factors are believed to be the cause of diarrhea also 

including increased intestinal permeability, intestinal inflammation, active ion 

secretion and the loss of epithelial surface due to effacement. 

EHEC causes both bloody/non-bloody diarrhea and hemolytic uremic syndrome 

(HUS) in humans. The Stx toxins also known as verocytotoxins (VTs) are the primary 

virulence factors of EHEC pathovars. E. coli strains that produce Stx/VT are also 

known as Shiga toxin producing E. coli (STEC) and verocytotoxin producing E. coli 

(VTEC), respectively. Two types of Stx toxins are relevant for human infections; Stx1 

and Stx2. EHECs lack a secretory system for Stx and are only released through 

phage-mediated lysis, which is why antibiotic therapy should be discouraged in 

relation to an EHEC infection. The receptors of Stx are found on Paneth cells in the 

human intestinal tract. The uptake and subsequent activation of the toxin in these cells 

are believed to prevent protein synthesis and lead to necrosis and cell death. From the 

epithelial cells Stx enters the bloodstream where it is transported to the kidneys, 



where it can lead to HUS that in turn can lead to fatal acute renal failure. Stx is also 

found in Shigella dysenteriae that is also able to cause HUS, but not other species of 

Shigella. More than 200 serotypes of E. coli produce Stx toxins (VTEC/STEC). 

However, many lack the pathogenicity island known as the locus of enterocyte 

effacement (LEE) and are therefore not causing disease in humans. Only the 

VTEC/STEC, containing this island, lead to human disease and is categorized EHEC. 

Some members of the ETEC pathovar also produce Stx toxins and are known as 

ETEC/STEC and are an important pathogen of pigs, where it colonizes the small 

intestine. The toxins enter the bloodstream and bind specific receptors on epithelial 

and endothelial cells. The toxin impairs blood vessels and leads to edema, ataxia, and 

death [23]. 

The pathovar ETEC causes watery diarrhea in humans. ETEC enterotoxins consist of 

two groups: heat-labile enterotoxins (LT) and heat-stabile enterotoxins (ST). ETEC 

strains express either one of the toxins or both. LT toxins increase intracellular cAMP 

that leads to increased Cl- secretion from the epithelial cell, which leads to diarrhea. 

ST toxins exists in two unrelated classes: STa and STb. Only STa causes disease in 

humans, STb causes disease in animals. STa causes increased levels of cGMP in the 

host cell that leads to increased secretion from the cell and causes diarrhea. STb 

causes elevation of Ca2+ concentration in the host cell that leads to increased ion 

secretion. Interestingly, it has been suggested that there is a link between countries 

with a high prevalence of ETEC and a low rate of colon cancer [24]. 

The knowledge of EAEC pathogenesis is limited and controversial. It is not fully 

understood if there exists a common factor between all EAEC that contributes to its 

shared adherence phenotype. EAEC adhere to HEp-2 cells and to each other in a 

“stacked-brick” configuration, thereby creating a thick biofilm of bacteria that adhere 



loosely to the mucosal surface. EAEC secretes enterotoxins and cytotoxins and causes 

mild but severe mucosal damage and watery diarrhea. No single virulence factor has 

conclusively been associated with EAEC virulence. 

EIEC/Shigella (will just be referred to as EIEC) is the only pathovar that are truly 

invasive and penetrates the epithelial cells. EIEC is also distinguishable from other 

pathovars due to its lack of flagella or adherence factors. EIEC carries a plasmid that 

encodes a T3SS that is used to secrete a number of proteins involved in invasion of 

host cells, including cell uptake, lysis of the endocytic vacuole and apoptosis of 

macrophages. Infection commences in the colon where the bacteria are transported to 

the submucosa layer, through microfold cells (M cells). Bacterial cells then go 

through macrophage uptake that initializes cell death in the macrophage that 

ultimately leads to release of the bacteria. The EIEC in the submucosa layer invades 

colonocytes through the basolateral side. Following invasion of colonocytes, the 

bacteria hijack the host machinery to prevent detection from the immune system and 

spread to neighboring colonocytes. 

DAEC creates a diffuse adherence pattern on HeLa and HEp-2 cells induced by a 

group of adhesins collectively known as Afa-Dr adhesins. All DAEC establishes 

attachment to epithelial cells through binding of the receptor decay-accelerating factor 

(DAF). This binding leads to up regulation of DAF receptors on the apical side of the 

epithelial cells and provides tighter attachment to the bacteria. The interaction 

between Afa-Dr adhesins and the host cell leads to increased levels of Ca2+, which 

along with other factors is believed to be the cause of diarrhea. Unlike the other 

pathovars, it is believed that the pathogenesis of DAEC is mainly due to the 

interactions of the Afa-Dr adhesions and the host cell. 



UPEC causes cystitis and acute pyelonephritis in humans. UPEC is not a subgroup of 

the commensal E. coli found in the colon, UPEC isolates contains pathogenicity 

islands specific to UPEC strains that are not found in fecal E. coli strains. A urinary 

tract infection is likely to start with the colonization of the colon alongside the normal 

gut flora. The bacteria then ascend the urethra into the bladder. Attachment of the 

bacteria in the bladder is dependent on an important virulence factor that encodes the 

fimbrial adhesin FimH. The attachment of the bacteria by FimH triggers an invasion 

of the host cell. Inside the host cell, the bacteria replicate and form biofilm-like 

complexes known as intracellular bacterial communities (IBC). Motile bacteria leave 

the epithelial cell and enter the lumen of the bladder. The attachment and infection of 

UPEC leads to apoptosis and exfoliation.  Some UPEC strains can further ascend to 

the kidney, this requires that the bacteria “turns off” the fimbriae which then leads to 

decreased attachment and increased motility due to an increased level of flagellated 

bacteria. Upon reaching the kidney the attachment to renal cells might be dependent 

on the expression of P fimbria, although this correlation is still inconclusive. 

MNEC is an interesting pathovar because its invasion of the central nervous system 

offers no apparent advantages to the bacteria. It is very likely that the virulence 

factors causing disease in humans have in fact been adapted for another purpose [3]. 

After the initial colonization of MNEC the bacteria is transported by transcytosis 

through enterocytes into the bloodstream. In the bloodstream the bacteria needs to 

immediately protect itself against the innate immune system. An antiphagocytic 

capsule provides protection from the host immune response. MNEC has also been 

shown to invade macrophages and monocytes. MNEC is transported through the 

bloodstream to the brain microvascular endothelial cells, where FimH and OmpA 



mediate attachment. Ultimately this attachment leads to MNEC crossing the blood-

brain barrier and causing edema, inflammation and neural damage. 

 

  



Typing of Escherichia coli 

To type a bacteria is to associate the bacteria with a unique label that can 

genotypically and/or phenotypically distinguish the specific type of bacteria from 

other bacteria. Typing bacteria enables the description of bacteria transmission routes 

and dissemination. Typing is therefore a very important tool in epidemiology and is 

among others used in outbreak investigations, disease surveillance, and bacterial 

population studies. Typing is done on the subspecies level, which is why typing is 

sometimes referred to as sub-typing. Several different strains can belong to the same 

type but it can also happen that one strain can consist of several types. The latter will 

mostly be the case in pandemics or long-term evolution studies.  

E. coli is especially causing outbreaks related to contaminated food and water and in 

these situations it is crucial to track down the source of the outbreak as fast as 

possible. First, the ongoing outbreak needs to be detected and then the source needs to 

be located. In both these steps, typing is needed and the speed and success of the 

outbreak investigation is highly dependent on the typing methods employed. The 

usefulness of a typing method can generally be put in to two categories: performance 

and convenience [25]. Performance covers typeability, stability, discriminatory 

power, epidemiological concordance, and reproducibility. Convenience covers: 

rapidity, flexibility, accessibility, ease of use, and cost. The number of different 

strains that can be typed with a method defines typeability of the method. Stability 

covers the stability of the markers, which is employed by a typing method. 

Discriminatory power is a methods ability to differentiate different unrelated strains 

randomly sampled from a population. The results of a method should reflect the 

epidemiological data and it is defined as the epidemiologic concordance of the 

method. The last of the performance measures is reproducibility. The typing results 



should be identical, independently of the time and place where they are obtained. A 

typing method that performs well must also be convenient in order to make it 

practically useful in outbreak investigations and in the clinics and hospitals. As 

already mentioned the method needs to be rapid. Furthermore it needs to be flexible 

with regard to the number of species that it is able to type. The accessibility of 

reagents and people with the proper skills is important. From this follows also “ease 

of use”. Does the method require a lot of labor and interpretation of results? Finally, 

one of the most important aspects for many institutions: cost. With a significant 

throughput of bacteria that needs typing at reference laboratories and hospitals, the 

cost must be an important consideration. The most widely used typing methods for E. 

coli will be discussed briefly below. 

Serotyping 

Probably the most important typing method for E. coli is, and has been for quite some 

time, serotyping [25]. O typing and H typing defines an E. coli serotype. K typing is 

sometimes also employed. The general idea is that specific sera react to a specific 

antigen and it is this reaction that is 

observed in the laboratory. O typing 

refers to cell wall antigens, H typing 

refers to flagella antigens, and K 

typing refers to capsule antigens 

[26,27]. Not all E. coli are motile and 

are therefore not H typed. Some E. coli cannot be O typed, although in general these 

are a minority, these are normally referred to as “O rough”. Interestingly, most non-

motile E. coli can be H typed by whole genome sequencing (WGS) and all E. coli 

seems to be O typeable by WGS (data not shown). But even conventional phenotypic 

Figure 2. Serotyping. Positive reaction to sera (left) 
and negative reaction (right). Figure is borrowed from 
www.ssi.dk. 



serotyping has high typeability. The genes responsible for serotype are involved in 

virulence and are therefore under selective pressure from the host immune system. 

From years of experience, serotyping has proven to be quite stable, although variable 

enough to provide significant discriminatory power and epidemiological concordance. 

If serotyping is done very carefully and under standardized conditions it is also 

reproducible. In general the performance of serotyping is quite good. However, the 

level of convenience is not as high. Serotyping is not especially fast, it takes at least 3 

days for the O and H typing [28]. Serotyping is species specific but the principle can 

be transferred to other species and has so with for example Salmonella. As mentioned 

it is important that serotyping is done in a systematic and standardized way in order to 

create confident results but even then, the results are not clear and it requires 

experience and skill to tell positive reactions from negative ones. Furthermore the 

method requires sera that are not cheap due to the rather laborious production process, 

involving live animals. The cost of consumables, manpower and time makes 

serotyping expensive [18]. It should also be kept in mind that although serotyping 

provides good discriminatory power, the typing does not provide any information on 

the relationships between the different serotypes. 

Pulse Field Gel Electrophorese (PFGE) 

PFGE is a molecular typing method where the genome of the bacteria is fragmented 

using restriction enzymes. The restriction enzymes utilized are so-called “rare cutters” 

meaning they usually yield fewer than 30 fragments. The fragments are then run on a 

gel with an electric field which angle is changed periodically, in order to allow the 

large fragments to move through the gel. The fragments will move through the gel 

according to size and create a collection of bands that defines the type, almost like a 

barcode. The type of the isolate is then defined based on a specific set of criteria [29]. 



PFGE has high typeability since all strains can be typed. The stability is difficult to 

evaluate since the E. coli genome is known to be quite dynamic, however far from all 

genomic changes will result in a different band 

pattern. The discriminatory power of PFGE is very 

high and apart from WGS probably the highest of 

all available typing methods for E. coli. PFGE 

shows epidemiological concordance although band 

patterns for a specific strain can change during an 

outbreak. Efforts have been done to describe 

relationships between different band patterns, but 

such evaluations should be done with much care, 

since almost identical patterns can be obtained from 

two unrelated strains and very different patterns can 

be obtained from related strains. Through careful 

standardization PFGE is reproducible. As with serotyping the performance of PFGE 

is quite good but the level of convenience might be as low if not lower than 

serotyping. PFGE takes at least 2-4 days [25,28]. PFGE can easily be applied to other 

species, although the restriction enzymes employed might differ. The PFGE method 

requires relatively expensive equipment and skilled personal. Even though 

computational software exists to analyze and process the gel images, it still requires 

experienced personal to carefully evaluate the gels. The similarity of PFGE band 

patterns should not be considered a measure for genetic distance [25] and band pattern 

similarity can not be guaranteed to tell anything about strain similarity. However, in 

practice band pattern similarity are used to infer relationship between strains [25]. 

Figure 3. PFGE of 24 E. coli strains 
isolated from pigs. Figure is a 
cropped version from Blanco et al. 
[80]. 



Multi Locus Sequence Typing (MLST) 

MLST is based on the sequencing of selected conserved housekeeping genes. Three 

MLST schemes currently exist for E. coli, each with three different sets of genes. 

Mark Achtman’s scheme was the first to be published and contains 7 genes. The 

Pasteur institute published a second scheme consisting of 8 genes. The third scheme 

was developed specifically for shiga-toxin producing E. coli (STEC/VTEC) and 

contains 15 genes, although a type can consist of 2, 7, and 15 alleles. Regardless of 

scheme, the approach is similar. The genes specified by the scheme are sequenced for 

the isolate that needs to be typed and the allele is compared to a database of known 

alleles. The specific combination of alleles then constitutes the type that is indicated 

by a single number. For example most O157:H7 isolates are sequence type ST11. The 

typeability is in principle high, since the housekeeping genes can be found in all E. 

coli isolates. However, alleles that are not already known or combination of alleles 

that hasn’t been seen before cannot be assigned a specific type. It obviously provides 

validity to the MLST database that all types are manually curated, but it is also a 

considerable drawback. The stability of the MLST genes is quite high, since these 

genes are essential for bacterial survival. The stability is in fact so high that it 

negatively influences the discriminatory power of this typing method, which is 

significantly lower than both serotyping and PFGE. An estimation of the variation in 

E. coli genes also suggests that the genes used for MLST typing contains less 

variation than the average conserved gene found in E. coli, with the exception of the 

Pasteur scheme that actually showed to contain genes more variable than the average 

conserved gene [Kaas I].  MLST typing exhibit limited epidemiological concordance 

due to the low discriminatory power, non-outbreak isolates will have a significant 

chance of being clustered with outbreak strains due to identical sequence type. 



Inferring phylogeny based solely on MLST sequences infers incorrect relationships 

between strains [8]. Inferring a phylogeny based on the conserved genes of 186 E. 

coli isolates does suggest that the actual assignment of sequence types does infer a 

clonal relationship between the assigned strains [Kaas I]. Reproducibility is high and 

the very simple assignment and globally shared databases makes comparison of 

different types very simple. MLST typing is like the previously mentioned methods 

not very convenient. The typing method is slow, due to the individual sequencing of 

at least 7 different genes, although automated systems do exist that can do MLST 

typing in a single day [30], most laboratories don’t have this option. Each species 

needs its own MLST scheme, but the principles behind MLST typing apply to all 

species. As mentioned it will be quite laborious for most laboratories to do 

sequencing of 7 specific genes and the overall cost is substantial. Traditional MLST 

typing is outdated due to the vast improvements to WGS. It has become cheaper to 

sequence the entire genome than just 7 specific genes [31]. At the time of writing new 

sequence types are only accepted through manual curation of Sanger sequencing. 

With fewer and fewer people doing Sanger sequencing new curation methods that can 

handle WGS data needs to be implemented if new types are to be added.  

Next generation sequencing (NGS) in epidemiology 

Next generation sequencing has made WGS widely available. WGS is currently 

cheaper than ever, and with the release of several benchtop sequencers, even smaller 

laboratories are able to do sequencing locally. The vast increase in WGS has also 

meant a huge increase in the demand for bioinformatics, a relatively new field that 

with NGS has gotten a lot of attention. The use of Single Nucleotide Polymorphisms 

(SNP) to infer phylogenies and thereby predict transmission routes in outbreaks have 

received a lot of attention due to impressive results in several studies, for example a 



study on the spread of methicillin resistant Staphylococcus aureus (MRSA)[32]. 

Inferring phylogenies by SNPs has almost become the golden standard for describing 

outbreaks and has proven its worth in several additional species like Vibrio cholera 

[33], Mycobacterium tuberculosis [34], Salmonella [35], and also several examples of 

E. coli [36,37] [Kaas IV] (SNP typing will be discussed in more detail later). 

However, all these studies have been done retrospectively and while they have helped 

shed light on how the outbreaks spread, none of them have actually helped to decrease 

the number of infections. WGS needs to be employed in the front line offices of 

doctors and epidemiologists and applied in real-time. A pilot study done by Joensen 

and colleagues has suggested that it is possible for WGS to compete in both cost and 

speed with the conventional typing methods in Denmark [28]. Bioinformatics has 

been and continues to be a bottleneck in many projects, but the publication of several 

freely available bioinformatic tools will hopefully help to make the bottleneck wider. 

It is now possible to do species identification [38], MLST [39], find resistance genes 

[31] plus E. coli virulence genes [28], SNP calling plus phylogeny [Kaas III+IV], 

and very soon serotyping of E. coli (tool is validated and working, manuscript is 

being composed by Joensen et. al) from raw sequencing data using freely available 

web-tools.  

The ambition with these new possibilities should not be to just replace conventional 

typing methods. The development of a whole genome typing scheme that could easily 

be applied, compared and stored in an international database would facilitate the 

possibility for real-time surveillance and detection of pathogens, virulence 

genes/plasmids, and resistance on a global scale. Such surveillance and detection is 

increasingly valuable due to the globalization. Contaminated foods can easily travel 

all over the world, as can asymptomatic carriers of pathogens. It has always been an 



issue in epidemiology that the registered infections only make up a small part of the 

actual spread of a pathogen. A lot of infections are handled without medical 

assistance and a lot of infections are treated by broad antibiotics and therefore never 

actually identified (typed). Furthermore, asymptomatic carriers are seldom found 

unless they are suspected sources of an outbreak. It has therefore been hypothesized 

that metagenomic sequencing of certain “hotspots” like sewers or wastewater plants 

might improve surveillance, because in these samples also the organisms shed in the 

feces of healthy people are picked up. Apart from the scientific and technical 

challenges posed by such ambitions, also political and ethical issues need to be dealt 

with. Fortunately international initiatives like the Global Microbial Identifier (GMI) 

has been started and hopefully will continue to find support and resources because 

these initiatives has the potential to have a massive impact on global public health.  



Defining a gene 

In order to use WGS to its full potential, an important issue is the ability to define 

genes. The main reason for defining genes are to predict gene function and from that 

infer theories about the organism in which they reside. Another reason for defining 

genes is to track the specific evolution of specific genes or collections of genes. For 

the latter it is critical that sequences defined, as one gene is not mixed with sequences 

from another gene since that would mix different phylogenetic signals. This can be 

particularly challenging if paralogues or co-evolution is involved. 

Gregor Mendel was the father of modern genetics, although he actually never used the 

term “gene”. He did nonetheless describe discrete recessive and dominant 

traits/characters (German: Merkmal) that got transferred from parent to offspring. 

Mendel described how genotypes affected the phenotypes of pea plants in his 

experiments, without actually knowing about genotypes and phenotypes [40]. It was 

the Danish botanist Wilhelm Johannsen who coined the word “gene” in 1903 [41] and 

later “phenotype” and “genotype” in 1909 [42]. Today we define genes as stretches of 

DNA or RNA that encodes polypeptides or RNA chains that in turn provides a 

function in the organism. The same gene in different organisms, if expressed, will 

provide the same function. However, a specific gene can due to mutation or 

recombination be found in different variants, named alleles. This means that different 

variants of the same gene have different DNA sequences. It is this theory that 

scientists rely on when they annotate function to a gene based on its sequence 

similarity to another annotated gene. Homolog sequences are expected to have 

identical functions.  

One of the most obvious questions in defining genes is probably: How variable can 

sequences be and still retain the same function? There is probably not a single answer 



to this question, because it could vary between species and it certainly varies between 

conserved genes and accessory genes. Here we define accessory genes, as genes not 

found in all strains of the same species. All genes found in a specific species make up 

the species pangenome. The coregenome is considered to be all the genes conserved 

in strains of a specific species. It is expected that virulence genes like adhesins could 

be very different and still retain identical function while ribosomal genes can’t be too 

variable. Different attempts have been made to cluster gene sequences. Tettelin et al. 

aligned all gene sequences of a specific isolate to all the gene sequences of another 

isolate, using three different alignment methods, if any of the three methods found a 

match with more than 50% nucleotide/amino acid identity and covering at least 50% 

of the gene/protein length, then the genes matching would be considered to have 

similar function [43]. Rasko et al. employed a BLAST score ratio (BSR). The BSR is 

a normalized BLAST value and was employed alongside a more stringent threshold 

of ~80% identity over the length of the protein. The exact method cannot be deducted 

from their publication [44]. Reciprocal BLAST is a method where a hit is only 

considered if the top hit from BLASTing a gene from genome A against genome B is 

identical to the top hit obtained from BLASTing that gene from genome B against 

genome A. Touchon et al. applied reciprocal BLAST in order to define orthologous 

gene clusters in E. coli. Genes were considered orthologous if the reciprocal best hit 

was unique and the amino acid identity was at least ~85% and less than 20% percent 

different in protein length [45]. Snipen and Ussery suggested a method similar to 

Touchon’s for creating pangenome trees, although they employed the 50% identity 

and 50% length thresholds as suggested by Tettelin et al. [46]. Lukjancenko et al. 

employed the Snipen and Ussery method on 61 E. coli genomes [8]. The latter 

method was applied to the 186 genomes used in [Kaas I]. Some of the gene clusters 



obtained was relatively large and on closer inspection it was clear that a lot of 

unrelated gene sequences had been clustered together (data not shown). The issue 

encountered with this method is likely to cause an issue in every one of the previously 

mentioned gene clustering methods. It was found that large gene clusters would start 

to act as “black holes” and eventually all genes would be part of the same gene 

cluster. The problem is caused by the increasing variety allowed between the genes in 

the cluster and the newly ones that gets added. As more genes are added to the cluster 

the greater the distance between the initial genes added can be to the newly added 

genes. The gene clusters has most likely been too small to act as “black holes” in the 

previous studies where a much smaller number of genomes were analyzed. More 

complex clustering was needed for the [Kaas I] study. In 2003 before any of the 

previous mentioned methods was published, Li et al. actually developed a method to 

cluster orthologous genes named orthoMCL [47]. As the name suggests this method 

uses the Markov Chain Clustering (MCL) algorithm developed by Van Dongen [48]. 

In [Kaas I] BLAT [49] was applied to create the all-against-all protein alignments 

and from these a graph was created and used as input to the MCL algorithm. This 

method is very similar to the orthoMCL method. The clusters created with MCL did 

not seem to create “black holes” and the bioinformatic tests applied to the clusters 

suggested that the clusters was well defined [Kaas I]. 

  



The E. coli genome 

It is widely accepted that the E. coli genome in general is diverse, dynamic and 

exhibits chromosomal plasticity. The rate of lateral gene transfer is high and the gene 

residency is relatively short, resulting in a high gene flux in E. coli genomes [45]. The 

high gene flux is also reflected in phylogenies expressed by pangenome trees created 

from E. coli proteomes. Only the phylogeny of highly related genomes can be inferred 

reliably with this method because only the most recent gene transfers will reflect the 

true phylogeny [45][Kaas I]. Touchon et al. showed that recombination events 

contribute more to the diversity in the E. coli genome than does mutation events. It 

was further shown that the high gene flux is compatible with the relative clonal nature 

of E. coli due to gene acquisitions and losses primarily happening at certain 

“hotspots” on the E. coli genome, thereby retaining its core genes and also the 

organization of these [45]. The strong phylogenetic signal among the core genes was 

also found within a substantial larger amount of genomes (186 genomes, Figure 4) 

[Kaas I]. The clonal nature of E. coli was observed using Multi Locus Enzyme 

Electrophorese (MLEE) that defined four main groups (A, B1, B2, and D) into which 

E. coli can be divided [50,51]. Two accessory groups were further defined (C and E) 

[5,52], and later a sub-group “F” of D was defined [53]. The overall phylogenies 

created for E. coli generally agree that the first split in E. coli history lead to the 

emergence of B2. This is further supported by the increased diversity in this group, 

which gives it sub-species characteristics. Group D was then the next to emerge, 

followed by E and lastly A and B1 that are classified as sister groups [5,45] [Kaas I]. 

  



 

Figure 4. E. coli core gene tree. The E. coli tree was created from the alignment core-genes from the 
186 E. coli genomes. MLST types are annotated to the far right of each genome name. The Escherichia 
genus tree was created from 297 core-genes. The phylotypes are marked with the colors blue (A), red 
(B1), purple (B2), green (D), and the Shigella genomes are marked with the color brown. At each node 
a black circle indicates a bootstrap value of 1, a grey circle a bootstrap value between 1 and 0.7 and a 
red number indicate an actual bootstrap value below 0.7. The dashed line in the figure represents a 
branch, which has been manually shortened by the authors to fit the figure on a printed page. 



Several studies have estimated the core genome of E. coli to be around 1,500-2,000 

genes [8,45,54–56][Kaas I, ]. Touchon et al. hypothesized that the genome of the 

most common ancestor of E. coli predicted in their study containing 4,043 genes 

might better represent the true essential genes of natural living E. coli than the core 

genome because the core genome found in their study lacked 23 high-confidence 

essential genes [45]. It was these results that inspired a “soft core” genome in which 

core genes had to be found in 95% of all the analyzed genomes in contrast to the usual 

100%, this leads to a soft core genome of 3051 genes [Kaas I]. The pangenome has 

also been estimated in several studies and generally follows the rule that more 

genomes equal a larger pangenome. Touchon et al. found a pan-genome of 11432 

genes among 20 genomes [45] and a pangenome of 16676 genes was found among 

186 genomes in [Kaas I]. A study by Snipen et al. estimated the pangenome of E. coli 

to be around 45000 genes [57]. Lapierre et al. speculate that bacterial pangenomes are 

“open” and therefore will keep increasing as bacteria evolve [58].  

Figure 5. Progress of Homolog Gene Cluster calculation in Kaas I as each genome is added. Two 
circles exist (red & blue) for each genome added from genome no. 9 up to and including genome no. 
186. Red represents the number of core genes after the addition of a genome and blue represents the 
number of pan-genome genes after the addition of a genome. 



Whole genome typing 

The entire DNA sequence of an organism can now be made available and thus 

provide researchers, epidemiologists, and doctors the ultimate material for typing. 

Indeed, every single DNA sequence is in principle a type of its own, although 

somewhat impractical. Typing based on WGS involves some level of clustering of the 

DNA sequences. As mentioned previously, probably the most popular is based on 

Single Nucleotide Polymorphism (SNP), alternatives will also be discussed. 

Single Nucleotide Polymorphism (SNP) analysis 

The SNP analysis consists of finding/calling SNPs in the organisms in question and 

based on these infer a probable phylogeny. The method is based on the theory that 

random single mutations will happen independently over time throughout the genome 

of an organism. The amount of SNP differences between two organisms will define 

the genomic distance between them and in turn define their relationship.  

In order to define differences, one needs a common reference to which these 

differences can be defined. This reference is often the genome of a specific isolate. 

The DNA sequence of the isolates in question is mapped to the reference genome and 

the differences are found. This is referred to as “SNP calling”. A SNP is defined by its 

position in the reference genome and the nucleotide shift. SNP calls are usually stored 

in a Variant Call Format (VCF). Several tools exists for mapping raw sequence data 

to a reference sequence [59,60] or mapping assembled genomes to a reference [61]. 

Likewise several tools also exists for SNP calling [62–64]. However, there seems to 

be a gap in the availability of bioinformatic tools that will progress the analysis from 

SNP calls to an inferred phylogeny. A free web-tool “snpTree” was developed and 

published to fill this gap [Kaas II]. The reason for this gap might have something to 

do with some of the unpleasant assumptions one needs to make at this step, which 



might also explain why this step is often not described even high impact publications 

[32]. In [Kaas II] it is assumed that all mutations are independent. Therefore all SNPs 

can be concatenated in to one single alignment. A difficult issue is how to deal with 

“missing” SNPs. In [Kaas II] the rather large assumption is made that if a SNP is 

found in one isolate and not in another it is because the other isolates are identical to 

the reference at the position in question. The assumption of independent mutations is 

made in all SNP analysis, most analysis also creates a SNP alignment, but a distance 

matrix could be created instead of an alignment. From the alignment/matrix a 

phylogeny can then be inferred, snpTree uses Maximum likelihood but many methods 

exist, including Maximum parsimony and UPGMA. 

The assumption with regard to “missing” SNPs made by snpTree is fair as long as the 

genomes compared (including the reference genome) are closely related and 

horizontal gene transfer is at a minimum [Kaas II]. However, the assumption 

becomes problematic if the reference isn’t closely related or if the sequence data has 

been obtained by different sequencing methods [Kaas III]. Issues with the relatedness 

of the reference come from the obvious fact that not all “missing” SNPs are caused by 

identical sequence. A SNP can be “missing” because the actual sequence in the 

reference does not exist in the genome in question. A SNP can also be missing due to 

the lack of confident base calls in the specific position, so there might actually be a 

SNP but it just can’t be called with confidence. The assumption made by snpTree will 

make genomes seem more related to the reference sequence than they actually are. 

Furthermore, even if sequences are closely related, snpTree will fail if the quality of 

the sequence data isn’t high enough [28]. 

Different sequencing methods have been shown to contain systematic biases [[65–

70]]. Traditionally, studies have simply coped with this by using just a single 



sequencing method, although sometimes including assembled sequences. Adding 

validation of all positions included in a SNP analysis and thereby not making the 

“missing SNP” assumption, resulted in a much more robust method that was also 

capable of handling raw sequence data obtained by several different methods [Kaas 

III] (Figure 6). The new method has also been published as a freely available web tool: 

“Call SNPs and Infer Phylogeny (CSI Phylogeny)” 

(http://cge.cbs.dtu.dk/services/CSIPhylogeny/). 

 

Figure 6. Salmonella Montevideo phylogeny based on sequence data obtained from different 
technologies. Labels are colored according to isolate. The sequencing platforms applied are appended 
to the end of each label. (A) Phylogeny inferred with novel SNP procedure; (B) Phylogeny inferred 
with the Nucleotide Difference (ND) method. 

An issue that was also brushed upon earlier is that of horizontal gene transfer, phages, 

and selfish DNA. Here we will refer to all of these under one common term: “mobile 

elements”. The mobile elements of bacterial genomes challenge the assumption of 

single independent random mutations. The mutations located on mobile elements are 



not independent as they “travel” with the mobile element. The insertion or deletion of 

an element will also add or delete several mutations, respectively. One mutation is no 

longer equal to one evolutionary event and this can disturb the true phylogenetic 

signal. The simplest way of dealing with mobile elements in SNP analysis is to 

“prune”. Simply ignore all SNPs that are found in close vicinity of each other. This 

method relies on the fact that mobile elements are often non-essential and are 

therefore more likely to fix mutations, and if a mobile element maps to another 

mobile element this will cause an unusual increase in SNP calls in that area [Kaas II, 

III]. Another way of attempting to handle mobile elements is to only call SNPs in the 

core genome [71] or only call SNPs at specific “trusted” positions. By using known 

mobile elements, one can also try and locate these by alignment (ex. BLAST) and 

exclude SNPs found in these regions in the reference [45]. Finally, by annotating the 

reference genome and “manually” excluding the parts that is believed to disturb the 

true phylogenetic signal [72]. Using a core genome or pruning is probably the most 

objective methods, but might also be too simplistic. Finding known elements 

obviously requires a database of known elements and doesn’t exclude new/unknown 

mobile elements. Manual curation has the benefit of complete control but with that 

comes also the risk of the biggest bias. In a study Price and colleagues removed just a 

single mobile element and documented the exact location, making reproduction of 

their results easy [72]. However another study published by Gardy and colleagues 

provides no description on what has been removed or at which locations, making their 

results impossible to reproduce and difficult to asses the validity of the exclusions 

[73]. Apart from removal of mobile elements, SNP analyses also contain a wealth of 

parameters that can be adjusted, mostly with regard to filtering of SNPs. All these 

issues makes standardization of SNP analyses difficult, but the main obstacle towards 



standardizing is the complete dependence on a specific reference. SNP calls made in 

two different isolates cannot be compared unless the SNPs were called using the exact 

same genomic reference sequence. Although a method has been published that does 

not rely on a traditional reference [74], it still relies on a computation that cannot be 

compared across studies. In its essence, the method takes raw sequence data from 

isolates and finds the SNPs located in the core genome of these isolates. It remains to 

be seen if this method is an improvement to regular de novo assembly followed by 

SNP calling by MUMMER for example. However, the greatest issue with the method 

is that it only handles data obtained by one sequencing method at a time and including 

new sequences requires a complete recalculation. It should be mentioned that the 

method was developed with neither phylogeny nor epidemiology in mind but to find 

biomarkers in endangered animals. 

K-mer, nucleotide difference (ND), and gene-by-gene 

There are numerous alternatives to SNP analysis. One alternative is “k-mer 

phylogenies”. These are obtained by fragmenting sequence reads or assembled 

genomes in to fragments of size “k” (k-mers), counting the k-mers, comparing the 

counts between isolates, and creating distance matrices [Kaas IV]. This method can 

be implemented to be extremely efficient, but at its present state still contains too 

much noise in order to resolve clonal outbreaks [Kaas IV].  

A promising method is the Nucleotide Difference (ND) method published in [71]. 

This method is processing all the positions in all possible genome pairs and counts the 

differences between them. The method has high resolution and seems at least as 

robust as the SNP method “CSI Phylogeny” mentioned earlier, as it also handles 

sequence data obtained by different sequencing methods [Kaas III].  



Gene-by-gene is a method that is based on the same principles as MLST [75,76]. The 

method is (depending on the genes employed) referred to as “Whole Genome MLST 

(wgMLST)” or “Ribosomal MLST (rMLST)”. The main difference to traditional 

MLST is that more genes are employed in the analysis. For wgMLST several hundred 

genes are employed specific to the isolate in question. While rMLST relies on just 53 

genes found to be conserved between almost all species [77]. The resolution of 

rMLST has been shown to be almost comparable to that of SNP analysis [75,77]. The 

actual computations needed for inferring phylogenies etc. is limited, which is quite 

positive. It should be noted however, that prior to the application of the gene-by-gene 

method annotated and assembled sequences are needed. However, the main obstacle 

for the gene-by-gene approach is without doubt the curation of an allele database. For 

traditional MLST there exist hundreds of alleles at each locus and several thousand 

ST types. A gene-by-gene database has been published (PubMLST.org) in an attempt 

to store alleles for several bacterial species and rMLST. The amount of information in 

the database at present time is limited and as for traditional MLST typing has an issue 

with new/unknown alleles. It also seems unfortunate that a database that will rely very 

much on the participation from the community and its users, although access is open, 

has restrictions on the use of the data found in the database. 

Defining clones 

E. coli is responsible for a huge number of sporadic infections but have also caused 

some of the largest and most severe outbreaks in all parts of the world for example 

Japan [78], Germany [12] and the United States [37]. These outbreaks could have 

been limited if it rapidly had been possible to identify the source. It is crucial in the 

clinical setting and in epidemiology that one is able to distinguish strains and define 

clones in order to monitor and fight infectious agents. Five methods were evaluated in 



[Kaas IV]. The five methods were based on SNPs, K-mers, nucleotide differences 

(ND), core genes, and average nucleotide identity (ANI).  The methods were 

evaluated with regard to resolution and clustering at the outbreak level. It was shown 

that with just a handful of isolates, all but the ANI method was able to cluster the 

outbreak isolates into monophyletic clades. It was however only the SNP method that 

was able to establish a “clone threshold”. A threshold of 500 SNPs could distinguish 

all combinations of a one-to-one comparison between isolates (See Figure 7). It was 

argued that the limit might be lowered to 200 due to the inclusion of two sets of 

outbreak strains that would not be considered traditional outbreak strains. The ND 

method was originally developed for raw data and the results from [Kaas IV] suggest 

that it still needs improvement when dealing with assembled genomes. However, if 

the assembled genomes are left out of the analysis the ND method obtains comparable 

results to that of the SNP method – a threshold of about 200 nucleotide differences. 

Previous E. coli studies has recorded up to 74 SNPs within outbreak strains [37]. For 

Salmonella, which is considered a very homogenous species, has been observed 

within outbreak variation of up to 30 SNPs [71]. An outbreak of Staphylococcus 

aureus in a neonatal unit showed up to 16 SNPs between outbreak strains [79]. These 

studies confirms the theory that different species evolves at different speeds and 

therefore clonal definitions will have to be species specific. The study by Kaas et al. 

suggests that E. coli isolates having less than 200 SNPs are clones. It seems like a 

high threshold. 

  



 

Figure 7. Genetic distance between outbreak and background in 10 different outbreaks. Each 
outbreak is defined by two bars for each method, a green and a blue one. The name of the outbreak is 
written below the bottom two bars to which the outbreak belong. Green bars indicate variance found 
within each outbreak (dark=average, light=max). Blue bars indicate distance to nearest non-outbreak 
strain. Each blue bar reaching the top expands beyond view. The red bar (horizontal) indicates the 
clonal threshold for the SNP analysis. 



 An explanation could be that most of the outbreaks analyzed are food borne 

outbreaks and therefore are subject to higher variation in contrast to nosocomial 

outbreaks that might be more homogenous. Another explanation might also be that 

mobile elements are not completely ignored because the method used for sorting these 

out was pruning, which might be less efficient than other methods. These results need 

more data to back up the threshold but the prospects of developing automatic outbreak 

detection methods are definitely positive. 

 

  



Future perspectives, challenges & Conclusion 

Since the launch of the first next generation sequencer around 2004, sequencing 

technology has developed at an impressive speed. Cost has been brought down to 

ensure access to sequence data for even smaller laboratories. The actual machines 

have recently further undergone adaption to small scale sequencing with the 

presentation of benchtop sequencers. It is now possible to do sequencing at clinical 

laboratories and other frontline institutions. Acquiring sequencers, enabling fast local 

sequencing in the clinical setting and for outbreak investigations should be 

encouraged as it will most likely free up resources and provide significant health 

benefits. However, with next generation sequencing also followed a bioinformatic 

bottleneck. There is a lack of qualified bioinformaticians and a lack of bioinformatic 

tools available to non-specialists. Researchers has developed a lot of great methods, 

done fascinating pilot studies, and obtained impressive insights. It does however seem 

that the focus should be changed from discovery to application. There is a need for 

studies that evaluates methods with the intend of developing tools and practices that 

can be applied outside the research community [Kaas III+IV][75].  

In Denmark the clinical practices send their samples to local microbiological clinical 

laboratories for analysis. The clinical laboratories then, if the isolate found is among 

the list of isolates that are under surveillance in Denmark, send the samples to the 

national reference laboratory (“Statens Serum Institut”, SSI). Joensen et al. did a 

study sequencing all VTEC isolates that was received at SSI for several weeks [28]. 

The pilot study did sequencing along side the classical typing done at SSI and was in 

a sense “real-time”. However, sequencing could be much closer to actual “real-time” - 

the sampling time, if the sequencing was done at the clinical laboratory. It seems that 

it would be valuable to do a pilot study where a sequencer is set up at a clinical 



laboratory, and do sequencing of everything that would normally be send to SSI. The 

amount of sequencing could be limited to specific pathogens or geographic location 

(specific practices) in the beginning. A crucial aspect in such a study would be the 

direct interaction with the clinical/technical staff. Hopefully the study would elucidate 

the obstacles in implementing sequencing at clinical laboratories. The study might 

further enable the creation of tools, databases, and realistic guidelines for future 

implementations of WGS at other clinical laboratories. If truly successful the results 

could provide the foundation for a standardized protocol for setting up WGS at a 

clinical laboratory. Such a study could help close the gap between application and 

development and help ensure unanimous systems and interfaces. 

When clinical laboratories and doctors can use tools on WGS data and see the 

improved results they will want to participate and in exchange for results provide data 

that will enable global surveillance of infectious agents including virulence factors 

and antibiotic resistance. Surveillance on the global scale will provide a vast impact 

on global health. 

Global surveillance will also require handling of huge amounts of data. Even though 

computer hardware is getting faster, it can’t keep up with the amount of resources 

needed for complex biological analysis or will at least limit it to institutions with 

significant computational power. The representation of biological sequence in 

bioinformatics could be improved by implementing libraries that exploits the limited 

alphabet and create binary code instead of text, as already done to some extend in the 

programming language Python (https://pythonhosted.org/ngs_plumbing). The binary 

code requires much less memory and is many times faster to process and compare 

than text. Binary code coupled with k-mers could potentially create extremely fast 

phylogenies with a minimum amount of resources. 



 

An area with huge potential is metagenomics, due to the ability to sequence entire 

communities and the ability to sequence organisms that are not culturable. It is also an 

area that is full of challenges and its usefulness in practical applications remains to be 

seen. However, many uses can be imagined. First of all the ability to sequence clinical 

samples directly will save time and maybe reveal new insights. Sequencing samples 

from certain “hotspots” such as sewage, in order to do surveillance of pathogens and 

antibiotic resistance in the community has also been mentioned. There is no doubt 

that the challenge of small DNA reads from a complex microbiological community 

mixed together provides significant limitations. New sequencing technologies 

promises longer reads and in a future perspective, longer reads will significantly 

increase the usefulness of metagenomics.  

Conclusion 

The E. coli genome is very diverse and has a high gene flux, but retains a strong 

phylogenetic signal [Kaas I] due to the existence of recombination hotspots [45]. In 

order to make WGS truly useful in outbreak investigations, tools need to be made 

available to non-bioinformaticians like epidemiologists and clinical laboratories. This 

includes tools for SNP calling and inferring phylogenies across different sequencing 

platforms [Kaas II+III]. If any bioinformatic method is to be used for whole genome 

typing of E. coli, studies need to be published that challenges the method and that can 

shed some light on how clones in an outbreak should be distinguished from sporadic 

cases caused by similar strains [Kaas IV]. 

Whole genome sequence typing of E. coli is important, but it will most likely not 

change anything about the typing nomenclature traditionally used for E. coli. Doctors 

will continue to talk about EHEC, O157:H7, and ST11 types. These are well-



established types, with well-defined properties, and probably don’t need to be 

changed. However, whole genome typing will provide important information on 

which isolates are clonal and therefore related. WGS will provide information on 

virulence and resistance, so the name of the organism doesn’t really matter, as long as 

the genome is there. In the end the: 

 

“The genome is the type.” 

-Ole Lund 
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Abstract

Background: Escherichia coli exists in commensal and pathogenic forms. By measuring the variation of individual
genes across more than a hundred sequenced genomes, gene variation can be studied in detail, including the
number of mutations found for any given gene. This knowledge will be useful for creating better phylogenies,
for determination of molecular clocks and for improved typing techniques.

Results: We find 3,051 gene clusters/families present in at least 95% of the genomes and 1,702 gene clusters
present in 100% of the genomes. The former 'soft core' of about 3,000 gene families is perhaps more biologically
relevant, especially considering that many of these genome sequences are draft quality. The E. coli pan-genome for
this set of isolates contains 16,373 gene clusters.
A core-gene tree, based on alignment and a pan-genome tree based on gene presence/absence, maps the
relatedness of the 186 sequenced E. coli genomes. The core-gene tree displays high confidence and divides the
E. coli strains into the observed MLST type clades and also separates defined phylotypes.

Conclusion: The results of comparing a large and diverse E. coli dataset support the theory that reliable and good
resolution phylogenies can be inferred from the core-genome. The results further suggest that the resolution at the
isolate level may, subsequently be improved by targeting more variable genes. The use of whole genome
sequencing will make it possible to eliminate, or at least reduce, the need for several typing steps used in
traditional epidemiology.

Keywords: Escherichia coli, Core-genome, Pan-genome, Phylogeny, Whole genome sequencing, Genetic variation,
Comparative genomics, MLST typing, Phylotyping

Background
The declining cost of whole genome sequencing (WGS)
of bacterial pathogens has now made sequencing an op-
tion available for many scientists including those wor-
king in routine laboratories. WGS is useful in research
and trend studies, but might soon be found in routine
applications for diagnostics and surveillance, as well. De-
pending on the technology, WGS can be done in a few
of hours and at low cost. Combined with the right tools,
WGS makes real-time surveillance and rapid detection
of outbreaks possible [1].

Escherichia coli is a gut commensal bacterium, as well
as an important pathogen. As a commensal it acts as a
beneficial member of the human microbiome in both di-
gestion and defense against opportunistic pathogens. It
is, however, also one of the most important human
pathogens as it is responsible for up to 90% of all human
urinary tract infections, and a frequent cause of septi-
cemia, gastro-intestinal and other infections. E. coli is re-
sponsible for a large part of the more than 2 million
deaths caused by diarrhea in children under the age of
five in developing countries [2]. In developed countries,
bacteremia is the 10th most common cause of death and
among the Gram-negative bacteria, E. coli is responsible
for 30% of the cases [3]. Food borne outbreaks are also
frequently observed and rapid characterization is im-
portant to detect and prevent outbreaks.
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Pathogenic E. coli are traditionally classified on the
basis of serotype and/or Multi Locus Sequence Type
(MLST). Pulse field gel electrophoresis (PFGE) is also
widely used, especially to detect outbreaks, because of
its discriminatory power, but both PFGE and serotyping
provide little phylogeneticly meaningful information. In
contrast, MLST typing often lacks the discriminatory
power to describe complex outbreaks [4], but can indicate
some phylogenetic relationships, since it is based on the se-
quencing of genes, although some of these relationships
might be questionable [5]. E. coli is also classified according
to the presence of specific virulence factors in to patho-
groups such as VTEC (verocytotoxin producing Escherichia
coli), ETEC (enterotoxigenic Escherichia coli), EIEC (enter-
oinvasive Escherichia coli), EHEC (enterohemorrhagic
Escherichia coli), EPEC (enteropathogenic Escherichia coli)
and EAEC (enteroadherent Escherichia coli).
Apart from its role in human and animal health and di-

seases, E. coli is also an important and well-characterized
model organism, which makes it one of the most sequenced
organisms in GenBank, second only to Staphylococcus aureus
in terms of the number of sequenced genomes available. This
makes E. coli a good candidate for genome variation studies.
With the application of WGS to epidemiology, the

opportunity to create better and more precise typing
methods has arisen. To facilitate the future comparison
of WGS data and identify clones or related strains, it
is important to develop standards for classifying isolates.
The genes within a genome are constantly evolving and
some genes fix mutations at faster rates than others [6].
This rate is complex because it has several dependencies
including gene function, selection pressure and location
on the chromosome or plasmid [7].
When choosing appropriate target genes for typing

purposes, it is important to know that the targets can be
expected to exist in all isolates to be typed. One method
for doing this is to choose genes that exist in all members
of the species studied – the core-genes.
It is the aim of this study to identify core-genes and

to estimate the variation within all the genes of 186
publically available E. coli and Shigella genomes from
GenBank. In addition, different methods for classification
of E. coli are evaluated. The results form a basis for
future implementation of WGS as a standard typing
tool for classification of E. coli in phylogeny and epi-
demiology. Standardized classification of bacteria with
WGS is crucial if it is to be used in real-time surveil-
lance and quick outbreak detection.

Results
The Prodigal software predicted a total of 945,211 genes
across all genomes. This is an average of ~5,082 genes
per genome, which could be an overestimation because
of the lower quality of some of the draft genome

sequences. The average is ~4,837 predicted genes per
genome among the complete genomes, which can be
compared to the average of ~4,754 genes per genome
annotated in the complete genomes in GenBank. The
genes were clustered into 16,373 clusters, which repre-
sent the E. coli "pan-genome". The clusters were deter-
mined by MCL clustering, as described in the methods
section, and are referred to as Homolog Gene Clusters
(HGCs), The "soft core" is defined as all HGCs found in
at least 95% of all genomes and the "strict core" is
defined as all HGCs found in at least 100% of all ge-
nomes. The soft core consists of 3,051 HGCs and the
strict core contains 1,702 HGCs.
The progress of the clustering algorithm is plotted in

Figure 1. Each point represents the pan- and core-genome
results after adding an additional genome. The x-axis starts
at genome 9, because each core HGC is allowed to be miss-
ing in 9 genomes once each calculation has finished. The
size of the core-genome quickly approaches 3,000 HGCs
and then stabilizes. The pan-genome continues to rise with
the addition of more genomes. The curve seems to become
almost linear.
The first 50 added genomes are all complete genomes.

There seems to be no unusual drop or rise in the core-
or pan-genome, respectively, with the addition of the
draft genomes.

Variation within HGCs
The distribution of variation within HGCs is shown in a
density plot in Figure 2. The majority of HGCs have less
than 0.020 substitutions per site. The 5th and 10th percen-
tiles are also calculated. These show that 95% and 90% of
the HGCs have less than 0.242 substitutions per site and
0.179 substitutions per site, respectively.

9 89 186
0

5000

10000

15000

Homolog Gene Clusters

Genomes

Pan-genome: 16,373

Core-genome: 3,051

Figure 1 Progress of Homolog Gene Cluster calculation as each
genome is added. Two circles exist (red & blue) for each genome
added from genome no. 9 up to and including genome no. 186.
Red represents the number of core HGCs after the addition of a
genome and blue represents the number of pan HGCs after the
addition of a genome.
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Nucleotide diversity is calculated as the average num-
ber of substitutions per site within an HGC as suggested
by Nei & Li [8] (see Materials & Methods for details).
The density plot of the pan-genome (blue) has a sin-

gle large top, which represents the majority of HGCs.
The density plots of the soft core and the strict core
are colored green and red, respectively. The intersection
of the two cores is colored yellow. It can be observed that
the distributions of the two core-genomes are almost
identical. The tops of the core distributions are located
higher on the x-axis (more diverse), than the top of the
pan-genome, but the distributions are narrower, and
result in lower medians (~0.018).
1,472 of the HGCs in the pan-genome have zero sub-

stitutions per site. This is mostly due to the small sizes
of these HGCs; almost half of them contain only two
members. One HGC contains 68 members. This HGC
represents a small coding sequence of 156 base pairs. It
encodes a hypothetical protein named YrhD of unknown
function [Swiss-Prot:P58037, EcoGene:EG14370].
The most conserved core HGC was identical for both

the soft and the strict cores. It has 188 members (substi-
tutions per site: 0.0000467). Not surprisingly this gene
cluster represents a ribosomal gene (S18).
The least conserved soft core HGC has 187 members

(substitutions per site: 0.382). It represents a family of
conserved genes with unknown function. The least con-
served strict core HGC has 1,158 members (substitu-
tions per site: 0.324). It represents a large cluster of ABC
transporters. This large family has been reported before,
and represents the diverse range of substrate specificities
of the different ABC transporters, which is due to substi-
tutions in the periplasmic binding subunit [9].

The least conserved of all the HGCs consists of 28
members (substitutions per site: 0.592). The alignment
of this HGC is small and very scattered. It represents a
family of transposases. The 28 members only represent
5 different genomes, 3 of which are Shigella genomes.
Three distinct MLST schemes exist for E. coli, although

probably the most widely used is Mark Achtman’s set
of 7 housekeeping genes (http://mlst.ucc.ie/); the Pasteur
institute has created an alternative scheme, which uses
8 genes (http://www.pasteur.fr/recherche/genopole/PF8/
mlst/EColi.html), and T. Whittam’s scheme uses up to 15
genes (http://www.shigatox.net/) [10-12]. A box plot for
the HGCs belonging to each scheme was created and is
presented in Figure 3. The genes used in each of the three
MLST schemes are presented in Additional file 1. A
phylogenetic tree was inferred for a selection of American
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Figure 2 HGC Variation plot. A Density plot was created from the calculation of nucleotide diversity within each HGC. The blue plot was
created from all the HGCs. The red plot only includes the strict core HGCs. The green plot includes the soft core (95%) HGCs. Intersection
between core plots is yellow.
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Figure 3 Box plot of MLST gene variation. A box plot presenting
the distribution of nucleotide diversity within each of the three
MLST schemes. The red line represents the median of percent
identity for HGCs in the core (~0.018 substitutions per site).
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outbreak isolates with ST type 11 and serotype O157:H7
using the genes from the different MLST schemes. As a
proof-of-concept, a phylogenetic tree was also inferred
using 7 alternative genes, which were chosen semi-
randomly with a diversity ~0.03 substitutions per site. The
4 phylogenetic trees are presented in Additional file 2.
None of the trees match the expected phylogeny, which
can be seen in Figure 4. The tree inferred from alternative
genes and T. Whittam’s scheme, seems to give the most
discriminatory power.

Distribution of functional annotations
All genes were annotated with functional categories,
where possible, using the COG database [13,14]. The
annotations for the quarter of HGCs with the highest
nucleotide diversity (“Most variable genes”) and the
quarter of HGCs with the lowest nucleotide diversity
(“Most conserved genes”) are compared in Figure 5.

Core-gene tree
The core-gene tree of E. coli is presented in Figure 6. A
core-gene tree of the entire Escherichia genus is also
presented as a small inset in Figure 6. The bootstrap
values are scaled from 0 to 1, and indicate the fraction
of the 500 bootstrap trees that agrees with each of the
nodes. Bootstrap values of 1 are replaced with a black
circle and bootstrap values between 0.7 and 1 are
replaced by a grey circle. The tree containing all boot-
strap values can be found in Additional file 3. The four
main phylotypes A, B1, B2 and D are marked by the col-
ors blue, red, purple and green, respectively. These phy-
lotypes were determined in silico, based on the work
done by Clermont et al. [15]. Additional phylotypes, C,

E, and F, have also been reported [7,16,17] and are
marked with their corresponding letters in Figure 6.
In 2009 Walk et al. [18] reported five novel phylogen-

etic clades, which were phylogenetically distinct from
traditional E. coli, but they were unable to discriminate
the novel clades from E. coli by traditional phenotypic
profiling. These are sometimes referred to as Environ-
mental E. coli or the cryptic Escherichia lineages. In
2011 Luo et al. sequenced strains from four of the five
novel clades [19]. The four cryptic lineages are included
in the Figure 6 inset and named Clade I, III, IV, and V.
Clade I is included in the E. coli core tree as an out-
group because Clade I is very close to traditional E. coli.
Clade I consists of 5 genomes, two of which have not, to
our knowledge, been reported as Clade I strains. Using
an in silico version of the identification procedure pro-
posed by Clermont et al. [20], we further confirmed that
the strains “E. coli STEC 7v” and “E. coli 1.2741” are in-
deed Clade I strains.
As a rule of thumb, bootstrap values above 0.7 are

trustworthy, and in the core-gene tree in Figure 6, the
bootstrap values are, in general, above this threshold.
Figure 4 presents a close-up of the ST 11 group of the

core-gene tree. These results are in agreement with the
SNP tree of a previous study on American O157:H7 out-
breaks [21].

Pan-genome tree
The pan-genome tree is presented in Figure 7. The boot-
strap values range from 0% to 100%, and indicate the per-
centage of the 500 bootstrap trees that agrees with each of
the nodes. Bootstrap values of 100 are replaced with a
black circle and bootstrap values between 70 and 100 are
replaced with a grey circle. Bootstrap values below 70 are
replaced with red circles. The tree containing all bootstrap
values can be found in Additional file 4. The phylotypes
are colored as in the core-gene tree (Figure 6).

Validation of methods
The standard deviation of all HGCs was calculated and
plotted. The Alignments of the 10 HGCs with the highest
standard deviation were examined and the gene sequences
were BLASTed against the nr database, Uniprot, and
annotated with protein domains using InterProScan
(http://www.ebi.ac.uk/Tools/pfa/iprscan/). The HGCs seem
to be well defined. The HGCs were either manually
annotated as virulence factors (e.g. adhesins) or were of
unknown function. Common to these 10 HGCs is also a
very large average gene size. For the HGC with greatest
standard deviation (adhesin) the average genes size is
~13,000 nucleotides. See Additional file 5 for details.
Genes were annotated with functional categories using

the COG database. Each gene can be annotated with
several categories. In this study it will be referred to as

Figure 4 Core-gene tree close-up on O157:H7 strains. The tree is
a close-up of the O157:H7 clade from the core-gene tree presented
in Figure 6. The names has been colored according to the three
outbreaks described in [21]. Blue strains represent the spinach
outbreak, red strains represent the Taco Bell outbreak and the green
strains represent the Taco John outbreak. Branch lengths have been
modified to create the best visual output and thus have no value.
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the “functional profile'” of the gene. Ignoring the func-
tional profile “unknown function”, 4,123 HGCs con-
tained genes with an identical profile. 12,189 HGCs
could not be annotated. 59 HGCs contained genes with
two different profiles, and 2 HGCs contained genes with
more than two profiles. These two HGCs were examined
and seem to be well defined. The 4,123 HGCs annotated
with a single profile represents ~75% of all the genes.
In this study we include both draft and completed gen-

omes. To estimate whether or not inclusion of draft
sequences influences nucleotide diversity, we tested three
datasets. One consisted of the 50 complete genomes, the
other two consisted of 50 draft genomes randomly picked
(without replacement). Clustering and nucleotide diver-
sity calculation for all three datasets were performed.

The two pan-genomes of the draft sequences seemed to
be slightly higher than for the complete one. Virtually no
difference in the distribution of nucleotide diversity was
observed. See Additional file 6.

Discussion
In this study we identified core-genes and estimated the
genetic variation among 186 publically available E. coli
and Shigella genomes. Here, we will have a brief look at
how E. coli is currently classified, how it fits our data,
and discuss how these results may form a basis for fu-
ture implementation of WGS as a standard typing tool
for classification of E. coli in phylogeny and epidemi-
ology and understanding E. coli evolution.

Nucleotide transport and metabolism

Function unknown

Signal transduction mechanisms

Cell motility

Transcription

Amino acid transport and metabolism

Defense mechanisms

Secondary metabolites biosynthesis, transport and
catabolism

Cell wall/membrane/envelope biogenesis

Energy production and conversion

Replication, recombination and repair

Posttranslational modification, protein turnover,
chaperones

Translation, ribosomal structure and biogenesis

Inorganic ion transport and metabolism

Coenzyme transport and metabolism

Cell cycle control, cell division, chromosome
partitioning

General function prediction only

Lipid transport and metabolism

Carbohydrate transport and metabolism

Intracellular trafficking, secretion, and vesicular
transport

Extracellular structures
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Figure 5 General function of conserved and variable HGCs. The difference in functional annotations between conserved and variable HGCs.
Conserved here defined as the quarter of HGCs with the lowest nucleotide diversity (red bars) and variable defined as the quarter of HGCs with
the highest nucleotide diversity (blue bars). Each HGC has a functional profile. A functional profile consists of one or more functional categories.
The bars represent the percentage of HGC profiles, which contain the functional category listed to the immediate left of the bars.
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The dataset analyzed was obtained from GenBank and
is publically available from NCBI. Two data quality issues
are immediately encountered when using sequence data
produced by others and from several different research-
ers: genome annotation and sequence quality. The anno-
tation of the sequences can be very different, due to
different annotation pipelines. Some annotations are
manually curated and others are not. The completeness
of each sequence can vary – some completed sequences
are more “complete” than others. Chain et al. suggested a
list of 6 categories in which all sequenced genomes could
be defined based on their level of completeness [22]. In
an attempt to overcome the bias from different annota-
tions all genomes were annotated using the Prodigal gene
finder [23] which provided consistency across the entire
data set.

Sequence quality is also a concern. Unfortunately there
hasn’t been much focus on the issue, and publications
estimating error rates in sequence databases are scarce.
To our knowledge there are no recent publications esti-
mating error rates in bacterial genomes deposited in
GenBank. Wesche et al. estimated error rates in the
mouse DNA sequences deposited to GenBank in 2004
[24]. They found an error rate of 0.1% in coding DNA
sequences. This is lower than the estimate done in 1988
for all GenBank sequences deposited at the time, which
demonstrated an error of ~0.3% [25].
Eukaryotes in general have much more complex gen-

omes, due to introns, exons and complex repeats,
which in turn leads to a higher than expected error
rate. Sequencing technologies and assembly have also
improved significantly since 1988. It is hypothesized that
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E.col i_O157H7_str ._EC4401_ID_27749-- - - - - - - - - -ST-11

E . c o l i _ 9 9 . 0 7 4 1 _ I D _ 5 1 1 0 3 - - - - - - - - - - - - - - - - - - - - - - N o  M L S T  t y p e

E.col i_O103H2_str ._12009_ID_32511- - - - - - - - - - - -ST-17

E . c o l i _ 9 0 0 1 0 5 _ 1 0 e _ I D _ 5 1 1 3 7 - - - - - - - - - - - - - - - - - - - S T - 2 1

E . c o l i _ I D _ 1 5 6 3 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - S T - 3

E . c o l i _ 5 5 9 8 9 _ I D _ 3 3 4 1 3 - - - - - - - - - - - - - - - - - - - - - - - - S T - 6 7 8

S.boyd i i_CDC_3083-94_ ID_15637- - - - - - - - - - - - - - -ST-1129

E . c o l i _ M S _ 1 1 6 - 1 _ I D _ 4 7 2 2 9 - - - - - - - - - - - - - - - - - - - - - S T - 1 6 7

E.col i_str ._K-12_substr ._MG1655_ID_225-- - - - - -ST-10

E . c o l i _ F 1 1 _ I D _ 1 5 5 7 6 - - - - - - - - - - - - - - - - - - - - - - - - - - S T - 1 2 7

E . c o l i _ M S _ 1 8 2 - 1 _ I D _ 4 7 2 6 5 - - - - - - - - - - - - - - - - - - - - - S T - 4 5 3

E . c o l i _ 5 3 6 3 8 _ I D _ 1 5 6 3 9 - - - - - - - - - - - - - - - - - - - - - - - - S T - 6

E . c o l i _ A P E C _ O 1 _ I D _ 1 6 7 1 8 - - - - - - - - - - - - - - - - - - - - - - S T - 9 5

E . c o l i _ M S _ 6 0 - 1 _ I D _ 4 7 2 1 1 - - - - - - - - - - - - - - - - - - - - - - S T - 1 2 7

E . c o l i _ M S _ 1 8 7 - 1 _ I D _ 4 7 2 6 9 - - - - - - - - - - - - - - - - - - - - - S T - 9 3

E .co l i _B_s t r . _REL606_ ID_18281 - - - - - - - - - - - - - - - -ST -93

E . c o l i _ M S _ 6 9 - 1 _ I D _ 4 7 2 1 3 - - - - - - - - - - - - - - - - - - - - - - S T - 6 8

E . c o l i _ T W 1 0 5 0 9 _ I D _ 3 9 1 0 3 - - - - - - - - - - - - - - - - - - - - - - S T - 7 4 7

E . c o l i _ B 4 1 _ I D _ 5 1 1 3 5 - - - - - - - - - - - - - - - - - - - - - - - - - - S T - 1 0

E . c o l i _ 1 8 2 7 - 7 0 _ I D _ 4 0 2 5 7 - - - - - - - - - - - - - - - - - - - - - - S T - 3 9 8

E . c o l i _ M S _ 1 4 6 - 1 _ I D _ 4 7 2 4 1 - - - - - - - - - - - - - - - - - - - - - S T - 3 4

E . c o l i _ H S _ I D _ 1 3 9 5 9 - - - - - - - - - - - - - - - - - - - - - - - - - - - S T - 4 6

E.col i_O157H7_str ._EC4113_ID_27743-- - - - - - - - - -ST-11

E . c o l i _ E 1 1 6 7 _ I D _ 3 8 9 4 1 - - - - - - - - - - - - - - - - - - - - - - - - S T - 1 7 2 7

E . c o l i _ I A I 3 9 _ I D _ 3 3 4 1 1 - - - - - - - - - - - - - - - - - - - - - - - - S T - 6 2

E . c o l i _ I A I 1 _ I D _ 3 3 3 7 3 - - - - - - - - - - - - - - - - - - - - - - - - - S T - 1 1 2 8

E.col i_O157H7_str ._EC4084_ID_42813-- - - - - - - - - -ST-11

E . c o l i _ M S _ 8 5 - 1 _ I D _ 4 0 6 9 9 - - - - - - - - - - - - - - - - - - - - - - S T - 8 8
E . c o l i _ E 1 1 0 0 1 9 _ I D _ 1 5 5 7 8 - - - - - - - - - - - - - - - - - - - - - - S T - 3 8 1

E . c o l i _ 8 3 9 7 2 _ I D _ 3 1 4 6 7 - - - - - - - - - - - - - - - - - - - - - - - - S T - 7 3

E.coli_O157H7_str._TW14588_ID_28847---- - - - - - -ST-11

E . c o l i _ C F T 0 7 3 _ I D _ 3 1 3 - - - - - - - - - - - - - - - - - - - - - - - - - S T - 7 3

E . c o l i _ E P E C a 1 4 _ I D _ 4 0 2 6 7 - - - - - - - - - - - - - - - - - - - - - - S T - 2 1

E . c o l i _ M S _ 2 0 0 - 1 _ I D _ 4 7 2 7 5 - - - - - - - - - - - - - - - - - - - - - S T - 1 2 7

E . c o l i _ 1 0 1 - 1 _ I D _ 1 6 1 9 3 - - - - - - - - - - - - - - - - - - - - - - - - N o  M L S T  t y p e

E.col i_O157H7_str ._EC4206_ID_27735-- - - - - - - - - -ST-11

E . c o l i _ 1 3 5 7 _ I D _ 4 0 2 9 1 - - - - - - - - - - - - - - - - - - - - - - - - - N o  M L S T  t y p e

E . c o l i _ M 8 6 3 _ I D _ 3 9 0 4 5 - - - - - - - - - - - - - - - - - - - - - - - - - N o  M L S T  t y p e

E.col i_O127H6_str ._E234869_ID_32571-- - - - - - - - -ST-15

E.col i_O157H7_str ._EC536_ID_42821-- - - - - - - - - - -ST-11

E . c o l i _ T W 1 0 7 2 2 _ I D _ 5 9 7 4 5 - - - - - - - - - - - - - - - - - - - - - - S T - 4 4 3

E . c o l i _ H 2 6 3 _ I D _ 3 8 9 8 5 - - - - - - - - - - - - - - - - - - - - - - - - - S T - 9 5

S . f l exner i_CDC_796 -83_ ID_60775 - - - - - - - - - - - - - -ST -145

E . c o l i _ S M S - 3 - 5 _ I D _ 1 9 4 6 9 - - - - - - - - - - - - - - - - - - - - - - S T - 3 5 4

E . c o l i _ M S _ 1 5 3 - 1 _ I D _ 4 7 2 5 7 - - - - - - - - - - - - - - - - - - - - - S T - 7 3

E . c o l i _ F V E C 1 3 0 2 _ I D _ 3 9 9 1 5 - - - - - - - - - - - - - - - - - - - - - S T - 6 9

E . c o l i _ R N 5 8 7 1 _ I D _ 4 0 2 7 9 - - - - - - - - - - - - - - - - - - - - - - - S T - 7 2 5

E . c o l i _ E D 1 a _ I D _ 3 3 4 0 9 - - - - - - - - - - - - - - - - - - - - - - - - - S T - 4 5 2

E.col i_O55H7_str ._CB9615_ID_42729-- - - - - - - - - - -ST-335

E . c o l i _ T A 2 7 1 _ I D _ 3 9 0 9 1 - - - - - - - - - - - - - - - - - - - - - - - - S T - 5 8

E.col i_O157H7_str ._EC4205_ID_42819-- - - - - - - - - -ST-11

E . c o l i _ M S _ 7 8 - 1 _ I D _ 4 7 2 1 7 - - - - - - - - - - - - - - - - - - - - - - S T - 8 6

E .co l i _STEC_7v_ ID_48269 - - - - - - - - - - - - - - - - - - - - - -No  MLST  type

E . c o l i _ 5 3 6 _ I D _ 1 6 2 3 5 - - - - - - - - - - - - - - - - - - - - - - - - - - S T - 1 2 7

S . f l e x n e r i _ 2 a _ s t r . _ 2 4 5 7 T _ I D _ 4 0 8 - - - - - - - - - - - - - - S T - 2 4 5

E .co l i_O157H7_st r . _Saka i_ ID_226 - - - - - - - - - - - - - - ST -11

E . c o l i _ T W 1 0 5 9 8 _ I D _ 5 9 7 4 3 - - - - - - - - - - - - - - - - - - - - - - S T - 4

E.col i_O157H7_str ._EC4192_ID_42811-- - - - - - - - - -ST-11

E.co l i_O111H-_st r ._11128_ ID_32513- - - - - - - - - - - -ST-16

E . c o l i _ M S _ 1 1 7 - 3 _ I D _ 4 7 2 3 1 - - - - - - - - - - - - - - - - - - - - - S T - 1 5 6

E . c o l i _ B 7 A _ I D _ 1 5 5 7 2 - - - - - - - - - - - - - - - - - - - - - - - - - - S T - 9 4

E . c o l i _ B L 2 1 D E 3 _ I D _ 2 0 7 1 3 - - - - - - - - - - - - - - - - - - - - - - S T - 9 3

E.co l i_O157H7_st r ._1125_ ID_61473- - - - - - - - - - - - -ST-11

E.co l i_O157H-_st r ._493-89_ ID_60059- - - - - - - - - - -ST-11

E . c o l i _ M S _ 1 8 5 - 1 _ I D _ 4 7 2 6 7 - - - - - - - - - - - - - - - - - - - - - S T - 7 3

E.col i_str ._K-12_substr ._W3110_ID_16351--- - - -ST-10

E . c o l i _ M S _ 1 1 5 - 1 _ I D _ 4 7 2 2 7 - - - - - - - - - - - - - - - - - - - - - S T - 3 9 9

E.col i_O157H7_str ._EC4191_ID_42817-- - - - - - - - - -ST-11
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Figure 6 Core-gene tree. The E. coli tree was created from the alignment of 1,278 core-genes from the 186 E. coli genomes. MLST types are
annotated to the far right of each genome name. The Escherichia genus tree was created from 297 core-genes. The phylotypes, as determined by
the in silico Clermont [15] method, are marked with the colors blue (A), red (B1), purple (B2), green (D), and the Shigella genomes are marked
with the color brown. At each node a black circle indicates a bootstrap value of 1, a grey circle a bootstrap value between 1 and 0.7 and a red
number indicate an actual bootstrap value below 0.7. The dashed line in the figure represents a branch, which has been manually shortened by
the authors to fit the figure on a printed page. The original tree with all bootstrap values can be seen in Additional file 2. Both trees are
unrooted, but the E. coli tree has been visually rooted on the node leading to Clade I.
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a conservative estimate of sequence errors in bacterial
sequences deposited to GenBank today is less than 0.1%.
Consequently an average E. coli gene (~1000bp) will con-
tain approximately 1 error per gene.
Most errors caused by NGS technologies comes from

insertions and deletions (indels), which will be com-
pletely ignored, due to the way nucleotide diversity is
calculated. Therefore the errors, which are actually hav-
ing an effect on the nucleotide diversity calculations, are
probably lower than 0.1%. Because of these facts, it is

believed that errors will, at most, cause 0.001 additional
diversity to any of the variation calculations, and we
believe that this is probably a very conservative estimate.
Sequencing errors, both indels and nucleotide changes

can, however, cause genes to be truncated. Touchon et al.
showed that at least 23 essential housekeeping genes were
missing in their core-genome [7], and genomes missing
these genes turned out to contain truncated versions of
the “missing” genes. It was hypothesized that this was
probably due to sequencing errors. Owing to the

Relative manhattan distance

0.12 0.10 0.08 0.06 0.04 0.02 0.00

E . c o l i _ M S _ 2 1 - 1 _ I D _ 4 7 2 0 5 - - - - - - - - - - - - - - - - - - - - - - S T - 5 9
E . c o l i _ I A I 3 9 _ I D _ 3 3 4 1 1 - - - - - - - - - - - - - - - - - - - - - - - - S T - 6 2
E . c o l i _ S M S - 3 - 5 _ I D _ 1 9 4 6 9 - - - - - - - - - - - - - - - - - - - - - - S T - 3 5 4

E . c o l i _ F V E C 1 4 1 2 _ I D _ 3 9 9 1 7 - - - - - - - - - - - - - - - - - - - - - S T - 6 9

E . c o l i _ F V E C 1 3 0 2 _ I D _ 3 9 9 1 5 - - - - - - - - - - - - - - - - - - - - - S T - 6 9
E . c o l i _ U M N 0 2 6 _ I D _ 3 3 4 1 5 - - - - - - - - - - - - - - - - - - - - - - - S T - 5 9 7

E . c o l i _ 0 4 2 _ I D _ 4 0 6 4 7 - - - - - - - - - - - - - - - - - - - - - - - - - - S T - 4 1 4

E . c o l i _ M S _ 1 9 8 - 1 _ I D _ 4 7 2 7 3 - - - - - - - - - - - - - - - - - - - - - S T - 6 9
E . c o l i _ 9 9 . 0 7 4 1 _ I D _ 5 1 1 0 3 - - - - - - - - - - - - - - - - - - - - - - N o  M L S T

E . c o l i _ T A 1 4 3 _ I D _ 3 9 0 7 9 - - - - - - - - - - - - - - - - - - - - - - - - S T - 1 8 8 4
E . c o l i _ M S _ 6 9 - 1 _ I D _ 4 7 2 1 3 - - - - - - - - - - - - - - - - - - - - - - S T - 6 8

E . c o l i _ T A 2 8 0 _ I D _ 3 9 0 9 3 - - - - - - - - - - - - - - - - - - - - - - - - N o  M L S T
E . c o l i _ B 3 5 4 _ I D _ 3 8 9 1 7 - - - - - - - - - - - - - - - - - - - - - - - - - N o  M L S T

E . c o l i _ 1 . 2 7 4 1 _ I D _ 5 1 0 8 5 - - - - - - - - - - - - - - - - - - - - - - - N o  M L S T

E.co l i _STEC_7v_ ID_48269 - - - - - - - - - - - - - - - - - - - - - -No  MLST

E.sp ._TW15838_ ID_56127 - - - - - - - - - - - - - - - - - - - - - - -No  MLST

E . c o l i _ M 8 6 3 _ I D _ 3 9 0 4 5 - - - - - - - - - - - - - - - - - - - - - - - - - N o  M L S T

E . c o l i _ T W 1 0 5 0 9 _ I D _ 3 9 1 0 3 - - - - - - - - - - - - - - - - - - - - - - S T - 7 4 7

E . c o l i _ B 7 A _ I D _ 1 5 5 7 2 - - - - - - - - - - - - - - - - - - - - - - - - - - S T - 9 4

E . c o l i _ T W 1 0 7 2 2 _ I D _ 5 9 7 4 5 - - - - - - - - - - - - - - - - - - - - - - S T - 4 4 3
E . c o l i _ M S _ 1 4 5 - 7 _ I D _ 4 0 7 0 3 - - - - - - - - - - - - - - - - - - - - - S T - 4 4 8

E.co l i_ATCC_8739_ ID_18083- - - - - - - - - - - - - - - - - - - -No  MLST

E . c o l i _ E 4 8 2 _ I D _ 3 8 9 4 9 - - - - - - - - - - - - - - - - - - - - - - - - - S T - 1 2 8 8
E . c o l i _ H S _ I D _ 1 3 9 5 9 - - - - - - - - - - - - - - - - - - - - - - - - - - - S T - 4 6
E . c o l i _ 1 8 2 7 - 7 0 _ I D _ 4 0 2 5 7 - - - - - - - - - - - - - - - - - - - - - - S T - 3 9 8

E.col i_str ._K-12_substr ._W3110_ID_16351--- - - -ST-10

E . c o l i _ D H 1 _ I D _ 3 0 0 3 1 - - - - - - - - - - - - - - - - - - - - - - - - - - S T - 1 0 6 0
E.coli_str._K-12_substr._MG1655star_ID_51747-ST-10
E.col i_str ._K-12_substr ._MG1655_ID_225-- - - - - -ST-10

E.coli_str._K-12_substr._DH10B_ID_20079----- -ST-1060

E . c o l i _ 2 . 4 1 6 8 _ I D _ 5 1 1 2 7 - - - - - - - - - - - - - - - - - - - - - - - S T - 1 0
E.coli_'BL21-GoldDE3pLysS_AG'_ID_30681-------ST-93
E . c o l i _ B L 2 1 D E 3 _ I D _ 2 8 9 6 5 - - - - - - - - - - - - - - - - - - - - - - S T - 9 3

E . c o l i _ B W 2 9 5 2 _ I D _ 3 3 7 7 5 - - - - - - - - - - - - - - - - - - - - - - - S T - 1 0

E . c o l i _ H 7 3 6 _ I D _ 3 9 0 3 3 - - - - - - - - - - - - - - - - - - - - - - - - - S T - 2 2 7

E .co l i _B_s t r . _REL606_ ID_18281 - - - - - - - - - - - - - - - -ST -93
E . c o l i _ M S _ 1 8 7 - 1 _ I D _ 4 7 2 6 9 - - - - - - - - - - - - - - - - - - - - - S T - 9 3
E . c o l i _ M S _ 1 4 6 - 1 _ I D _ 4 7 2 4 1 - - - - - - - - - - - - - - - - - - - - - S T - 3 4

E . c o l i _ 3 . 2 3 0 3 _ I D _ 5 1 1 2 9 - - - - - - - - - - - - - - - - - - - - - - - S T - 1 0

E . c o l i _ E 1 5 2 0 _ I D _ 3 8 9 4 5 - - - - - - - - - - - - - - - - - - - - - - - - S T - 4 8
E . c o l i _ B 4 1 _ I D _ 5 1 1 3 5 - - - - - - - - - - - - - - - - - - - - - - - - - - S T - 1 0

E . c o l i _ M S _ 1 1 6 - 1 _ I D _ 4 7 2 2 9 - - - - - - - - - - - - - - - - - - - - - S T - 1 6 7
E . c o l i _ M S _ 1 7 5 - 1 _ I D _ 4 7 2 6 3 - - - - - - - - - - - - - - - - - - - - - S T - 1 6 7

E . c o l i _ M S _ 1 1 5 - 1 _ I D _ 4 7 2 2 7 - - - - - - - - - - - - - - - - - - - - - S T - 3 9 9
E . c o l i _ T W 1 0 5 9 8 _ I D _ 5 9 7 4 3 - - - - - - - - - - - - - - - - - - - - - - S T - 4

E .co l i_ETEC_H10407_ ID_42749- - - - - - - - - - - - - - - - - -ST-48

E . c o l i _ K O 1 1 _ I D _ 3 3 8 7 5 - - - - - - - - - - - - - - - - - - - - - - - - - S T - 1 0 7 9
E . c o l i _ T W 1 1 6 8 1 _ I D _ 5 9 7 4 9 - - - - - - - - - - - - - - - - - - - - - - S T - 7 2 8

E . c o l i _ W _ I D _ 4 2 7 0 9 - - - - - - - - - - - - - - - - - - - - - - - - - - - - S T - 1 0 7 9

E . c o l i _ H 4 8 9 _ I D _ 3 9 0 1 3 - - - - - - - - - - - - - - - - - - - - - - - - - S T - 9 3

E . c o l i _ 1 0 1 - 1 _ I D _ 1 6 1 9 3 - - - - - - - - - - - - - - - - - - - - - - - - N o  M L S T

E . c o l i _ 9 7 . 0 2 6 4 _ I D _ 5 1 0 9 9 - - - - - - - - - - - - - - - - - - - - - - S T - 5 8

E . c o l i _ I A I 1 _ I D _ 3 3 3 7 3 - - - - - - - - - - - - - - - - - - - - - - - - - S T - 1 1 2 8

E . c o l i _ T A 2 7 1 _ I D _ 3 9 0 9 1 - - - - - - - - - - - - - - - - - - - - - - - - S T - 5 8

E . c o l i _ H 5 9 1 _ I D _ 3 9 0 2 1 - - - - - - - - - - - - - - - - - - - - - - - - - S T - 1 5 5

E . c o l i _ M S _ 7 8 - 1 _ I D _ 4 7 2 1 7 - - - - - - - - - - - - - - - - - - - - - - S T - 8 6

E . c o l i _ S E 1 1 _ I D _ 1 8 0 5 7 - - - - - - - - - - - - - - - - - - - - - - - - - S T - 1 5 6
E . c o l i _ T W 1 0 8 2 8 _ I D _ 5 9 7 4 7 - - - - - - - - - - - - - - - - - - - - - - S T - 1 7 3

E . c o l i _ M S _ 1 1 9 - 7 _ I D _ 4 0 7 0 9 - - - - - - - - - - - - - - - - - - - - - S T - 1 5 5

E . c o l i _ 9 5 . 0 9 4 1 _ I D _ 5 1 0 9 5 - - - - - - - - - - - - - - - - - - - - - - S T - 5 8

E . c o l i _ M S _ 7 9 - 1 0 _ I D _ 4 0 7 0 1 - - - - - - - - - - - - - - - - - - - - - S T - 1 0 1

E . c o l i _ E C 4 1 0 0 B _ I D _ 6 1 4 7 9 - - - - - - - - - - - - - - - - - - - - - - S T - 1 8 9 0
E . c o l i _ 5 5 9 8 9 _ I D _ 3 3 4 1 3 - - - - - - - - - - - - - - - - - - - - - - - - S T - 6 7 8

E . c o l i _ E 2 4 3 7 7 A _ I D _ 1 3 9 6 0 - - - - - - - - - - - - - - - - - - - - - - S T - 1 1 3 2

E . c o l i _ M S _ 1 0 7 - 1 _ I D _ 4 0 7 1 3 - - - - - - - - - - - - - - - - - - - - - S T - 1 0 1

E . c o l i _ M S _ 1 1 7 - 3 _ I D _ 4 7 2 3 1 - - - - - - - - - - - - - - - - - - - - - S T - 1 5 6

E . c o l i _ E 1 1 6 7 _ I D _ 3 8 9 4 1 - - - - - - - - - - - - - - - - - - - - - - - - S T - 1 7 2 7
E . c o l i _ B 0 8 8 _ I D _ 3 8 9 0 5 - - - - - - - - - - - - - - - - - - - - - - - - - N o  M L S T
E . c o l i _ H 1 2 0 _ I D _ 3 8 9 7 1 - - - - - - - - - - - - - - - - - - - - - - - - - S T - 1 1 2 5

E . c o l i _ 3 4 3 1 _ I D _ 4 0 2 6 5 - - - - - - - - - - - - - - - - - - - - - - - - - S T - 3 7 8

E . c o l i _ 1 3 5 7 _ I D _ 4 0 2 9 1 - - - - - - - - - - - - - - - - - - - - - - - - - N o  M L S T

E . c o l i _ L T - 6 8 _ I D _ 4 0 2 6 1 - - - - - - - - - - - - - - - - - - - - - - - - S T - 2 8 1

E . c o l i _ T W 1 4 4 2 5 _ I D _ 5 9 7 5 1 - - - - - - - - - - - - - - - - - - - - - - S T - 2 3

E . c o l i _ 5 3 6 3 8 _ I D _ 1 5 6 3 9 - - - - - - - - - - - - - - - - - - - - - - - - S T - 6

E . c o l i _ M S _ 1 8 2 - 1 _ I D _ 4 7 2 6 5 - - - - - - - - - - - - - - - - - - - - - S T - 4 5 3

E . c o l i _ 1 . 2 2 6 4 _ I D _ 5 1 0 9 7 - - - - - - - - - - - - - - - - - - - - - - - S T - 6 7 5

E . c o l i _ M S _ 8 4 - 1 _ I D _ 4 7 2 1 9 - - - - - - - - - - - - - - - - - - - - - - S T - 8 8

E . c o l i _ 9 7 . 0 2 5 9 _ I D _ 5 1 0 9 1 - - - - - - - - - - - - - - - - - - - - - - S T - 3 3

E . c o l i _ T A 0 0 7 _ I D _ 3 9 0 6 3 - - - - - - - - - - - - - - - - - - - - - - - - S T - 9 3

E . c o l i _ M S _ 1 9 6 - 1 _ I D _ 4 7 2 7 1 - - - - - - - - - - - - - - - - - - - - - S T - 1 0

E . c o l i _ M S _ 8 5 - 1 _ I D _ 4 0 6 9 9 - - - - - - - - - - - - - - - - - - - - - - S T - 8 8

E . c o l i _ E 2 2 _ I D _ 1 5 5 7 7 - - - - - - - - - - - - - - - - - - - - - - - - - - S T - 2 0

E . c o l i _ M S _ 1 2 4 - 1 _ I D _ 4 0 7 0 7 - - - - - - - - - - - - - - - - - - - - - S T - 8 8

E . c o l i _ 4 . 0 5 2 2 _ I D _ 5 1 1 0 9 - - - - - - - - - - - - - - - - - - - - - - - S T - 1 6

E . c o l i _ E 1 2 8 0 1 0 _ I D _ 4 0 2 6 9 - - - - - - - - - - - - - - - - - - - - - - S T - 3
E . c o l i _ 4 . 0 9 6 7 _ I D _ 5 1 1 2 1 - - - - - - - - - - - - - - - - - - - - - - - S T - 2 0

E . c o l i _ J B 1 - 9 5 _ I D _ 5 1 1 1 1 - - - - - - - - - - - - - - - - - - - - - - - S T - 2 9 4

E . c o l i _ 1 1 8 0 _ I D _ 4 0 2 8 9 - - - - - - - - - - - - - - - - - - - - - - - - - S T - 1 6

E . c o l i _ I D _ 1 5 6 3 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - S T - 3

E.co l i_O111H-_st r ._11128_ ID_32513- - - - - - - - - - - -ST-16

E . c o l i _ 9 7 . 0 2 4 6 _ I D _ 5 1 0 8 7 - - - - - - - - - - - - - - - - - - - - - - S T - 3 4 2
E . c o l i _ 5 . 0 9 5 9 _ I D _ 5 1 1 1 5 - - - - - - - - - - - - - - - - - - - - - - - S T - 6 5 5
E.col i_O103H2_str ._12009_ID_32511- - - - - - - - - - - -ST-17
E . c o l i _ E P E C a 1 4 _ I D _ 4 0 2 6 7 - - - - - - - - - - - - - - - - - - - - - - S T - 2 1

E.col i_O26H11_str ._11368_ID_32509- - - - - - - - - - - -ST-21
E . c o l i _ 9 0 0 1 0 5 _ 1 0 e _ I D _ 5 1 1 3 7 - - - - - - - - - - - - - - - - - - - S T - 2 1

E . c o l i _ E 1 1 0 0 1 9 _ I D _ 1 5 5 7 8 - - - - - - - - - - - - - - - - - - - - - - S T - 3 8 1
E . c o l i _ 2 . 3 9 1 6 _ I D _ 5 1 1 2 3 - - - - - - - - - - - - - - - - - - - - - - - S T - 1 0

S . _ f l e x n e r i _ 2 a _ s t r . _ 2 4 5 7 T _ I D _ 4 8 2 5 5 - - - - - - - - - S T - 2 4 5

S . _ s o n n e i _ S s 0 4 6 _ I D _ 1 3 1 5 1 - - - - - - - - - - - - - - - - - - - S T - 1 5 2

S . _ f l e x n e r i _ 2 a _ s t r . _ 3 0 1 _ I D _ 3 1 0 - - - - - - - - - - - - - S T - 2 4 5
S . _ f l e x n e r i _ 2 0 0 2 0 1 7 _ I D _ 3 3 6 3 9 - - - - - - - - - - - - - - - S T - 2 4 5

S . _ f l e x n e r i _ 5 _ s t r . _ 8 4 0 1 _ I D _ 1 6 3 7 5 - - - - - - - - - - - S T - 6 3 4
S . _ s o n n e i _ 5 3 G _ I D _ 4 8 2 6 5 - - - - - - - - - - - - - - - - - - - - - S T - 1 5 2

S._boydi i_CDC_3083-94_ ID_15637- - - - - - - - - - - - - ST-1129

S . _ b o y d i i _ S b 2 2 7 _ I D _ 1 3 1 4 6 - - - - - - - - - - - - - - - - - - - S T - 1 1 3 0
S ._ f l exner i_CDC_796 -83_ ID_60775 - - - - - - - - - - - -ST -145

S ._boyd i i_ATCC_9905_ ID_60773- - - - - - - - - - - - - - -ST-1749
S . _ d y s e n t e r i a e _ 1 0 1 2 _ I D _ 1 6 1 9 4 - - - - - - - - - - - - - - - S T - 2 8 8

S._dysenter iae_CDC_74-1112_ID_60771-- - - - - - -ST-25 2

S . _ d y s e n t e r i a e _ 1 6 1 7 _ I D _ 4 8 2 6 3 - - - - - - - - - - - - - - - S T - 1 4 6
S . _ d y s e n t e r i a e _ S d 1 9 7 _ I D _ 1 3 1 4 5 - - - - - - - - - - - - - - S T - 1 4 6

E.col i_O157H7_str ._EC4196_ID_27741-- - - - - - - - - -ST-11

E.col i_O157H7_str ._EC4042_ID_27737-- - - - - - - - - -ST-11

E.col i_O157H7_str ._EC4045_ID_27733-- - - - - - - - - -ST-11

E.col i_O157H7_str ._EC4024_ID_27747-- - - - - - - - - -ST-11

E.coli_O157H7_str._TW14359_ID_30045--- - - - - - - -ST-11

E.col i_O157H7_str ._EC4486_ID_27751-- - - - - - - - - -ST-11

E.col i_O157H7_str ._EC4113_ID_27743-- - - - - - - - - -ST-11

E.col i_O157H7_str ._EC4401_ID_27749-- - - - - - - - - -ST-11

E . c o l i _ M 7 1 8 _ I D _ 3 9 0 4 3 - - - - - - - - - - - - - - - - - - - - - - - - - S T - 5 7
E . c o l i _ B 1 8 5 _ I D _ 3 8 9 1 5 - - - - - - - - - - - - - - - - - - - - - - - - - N o  M L S T

E.col i_O157H7_str ._EC536_ID_42821-- - - - - - - - - - -ST-11

E.col i_O157H7_str ._EC4076_ID_27745-- - - - - - - - - -ST-11
E.col i_O157H7_str ._EC4115_ID_27739-- - - - - - - - - -ST-11

E.col i_O157H7_str ._EC4127_ID_42815-- - - - - - - - - -ST-11

E.col i_O157H7_str ._EC4206_ID_27735-- - - - - - - - - -ST-11

E.col i_O157H7_str ._EC4192_ID_42811-- - - - - - - - - -ST-11

E.col i_O157H7_str ._EC4084_ID_42813-- - - - - - - - - -ST-11

E.col i_O157H7_str ._EC4191_ID_42817-- - - - - - - - - -ST-11

E.co l i_O157H7_st r ._1125_ ID_61473- - - - - - - - - - - - -ST-11
E.col i_O157H7_str ._EC1212_ID_61465-- - - - - - - - - -ST-11

E.co l i_O157H7_st r ._1044_ ID_61463- - - - - - - - - - - - -ST-11
E .co l i_O157H7_st r ._Saka i_ ID_226- - - - - - - - - - - - - -S T -11

E.col i_O157H7_str ._FRIK2000_ID_36543--- - - - - - -ST-11

E.col i_O157H7_str ._EC4501_ID_27753-- - - - - - - - - -ST-11

E.coli_O157H7_str._TW14588_ID_28847--- - - - - - - -ST-11

E.co l i_O157H-_st r ._493-89_ ID_60059- - - - - - - - - - -ST-11

E.col i_O157H7_str ._FRIK966_ID_32275-- - - - - - - - -ST-11

E.col i_O157H7_str ._EDL933_ID_259- - - - - - - - - - - - -ST-11

E.col i_O157H7_str ._EC508_ID_27755-- - - - - - - - - - -ST-11

E.col i_O157H-_str ._H_2687_ID_60061- - - - - - - - - - -ST-587

E.col i_O157H7_str ._EC4205_ID_42819-- - - - - - - - - -ST-11

E.col i_O157H7_str ._EC869_ID_27757-- - - - - - - - - - -ST-11

E.col i_O55H7_str ._3256-97_ID_60063- - - - - - - - - - -ST-335

E.col i_O157H7_str ._LSU-61_ID_60067-- - - - - - - - - -ST-11

E.coli_O55H7_str._USDA_5905_ID_60065---------ST-335
E.col i_O55H7_str ._CB9615_ID_42729-- - - - - - - - - - -ST-335

E.col i_O157H7_str ._G5101_ID_60057-- - - - - - - - - - -ST-11

E . c o l i _ M S _ 6 0 - 1 _ I D _ 4 7 2 1 1 - - - - - - - - - - - - - - - - - - - - - - S T - 1 2 7

E . c o l i _ 5 3 6 _ I D _ 1 6 2 3 5 - - - - - - - - - - - - - - - - - - - - - - - - - - S T - 1 2 7

E . c o l i _ M S _ 4 5 - 1 _ I D _ 4 7 2 0 7 - - - - - - - - - - - - - - - - - - - - - - S T - 7 3

E . c o l i _ M S _ 2 0 0 - 1 _ I D _ 4 7 2 7 5 - - - - - - - - - - - - - - - - - - - - - S T - 1 2 7

E . c o l i _ C F T 0 7 3 _ I D _ 3 1 3 - - - - - - - - - - - - - - - - - - - - - - - - - S T - 7 3
E . c o l i _ M S _ 1 5 3 - 1 _ I D _ 4 7 2 5 7 - - - - - - - - - - - - - - - - - - - - - S T - 7 3
E . c o l i _ M S _ 1 8 5 - 1 _ I D _ 4 7 2 6 7 - - - - - - - - - - - - - - - - - - - - - S T - 7 3

E . c o l i _ 8 3 9 7 2 _ I D _ 3 1 4 6 7 - - - - - - - - - - - - - - - - - - - - - - - - S T - 7 3
E . c o l i _ A B U _ 8 3 9 7 2 _ I D _ 3 8 7 2 5 - - - - - - - - - - - - - - - - - - - - S T - 7 3

E . c o l i _ F 1 1 _ I D _ 1 5 5 7 6 - - - - - - - - - - - - - - - - - - - - - - - - - - S T - 1 2 7

E . c o l i _ H 2 5 2 _ I D _ 3 8 9 8 1 - - - - - - - - - - - - - - - - - - - - - - - - - S T - 9 5

E . c o l i _ H 2 6 3 _ I D _ 3 8 9 8 5 - - - - - - - - - - - - - - - - - - - - - - - - - S T - 9 5

E . c o l i _ U M 1 4 6 _ I D _ 5 0 8 8 3 - - - - - - - - - - - - - - - - - - - - - - - - S T - 6 4 3

E . c o l i _ M S _ 1 1 0 - 3 _ I D _ 4 7 2 2 5 - - - - - - - - - - - - - - - - - - - - - S T - 9 5
E . c o l i _ S E 1 5 _ I D _ 1 9 0 5 3 - - - - - - - - - - - - - - - - - - - - - - - - - S T - 1 3 1

E . c o l i _ A P E C _ O 1 _ I D _ 1 6 7 1 8 - - - - - - - - - - - - - - - - - - - - - - S T - 9 5
E . c o l i _ I H E 3 0 3 4 _ I D _ 4 3 6 9 3 - - - - - - - - - - - - - - - - - - - - - - S T - 9 5

E.coli_O83H1_str._NRG_857C_ID_41221----------ST-135
E . c o l i _ M S _ 5 7 - 2 _ I D _ 4 7 2 0 9 - - - - - - - - - - - - - - - - - - - - - - S T - 4 2 0

E . c o l i _ S 8 8 _ I D _ 3 3 3 7 5 - - - - - - - - - - - - - - - - - - - - - - - - - - S T - 9 5

E . c o l i _ U T I 8 9 _ I D _ 1 6 2 5 9 - - - - - - - - - - - - - - - - - - - - - - - - S T - 9 5

E . c o l i _ T A 2 0 6 _ I D _ 3 9 0 8 5 - - - - - - - - - - - - - - - - - - - - - - - - S T - 1 3 8 6

E . c o l i _ T W 0 7 7 9 3 _ I D _ 5 1 1 3 3 - - - - - - - - - - - - - - - - - - - - - - S T - 1 0 4 1

E . c o l i _ R N 5 8 7 1 _ I D _ 4 0 2 7 9 - - - - - - - - - - - - - - - - - - - - - - - S T - 7 2 5

E . c o l i _ N C 1 0 1 _ I D _ 4 7 1 2 1 - - - - - - - - - - - - - - - - - - - - - - - - S T - 9 9 8

E . c o l i _ M S _ 1 6 - 3 _ I D _ 4 7 2 5 9 - - - - - - - - - - - - - - - - - - - - - - S T - 9 7 8

E . c o l i _ 2 3 6 2 - 7 5 _ I D _ 4 0 2 7 5 - - - - - - - - - - - - - - - - - - - - - - S T - 1 9

E . c o l i _ E D 1 a _ I D _ 3 3 4 0 9 - - - - - - - - - - - - - - - - - - - - - - - - - S T - 4 5 2
E . c o l i _ H 2 9 9 _ I D _ 3 8 9 9 1 - - - - - - - - - - - - - - - - - - - - - - - - - S T - 1 1 7

E.col i_O127H6_str ._E234869_ID_32571-- - - - - - - - -ST-15

E . c o l i _ 3 0 0 3 _ I D _ 5 1 1 3 1 - - - - - - - - - - - - - - - - - - - - - - - - - S T - 7 2 5

E . c o l i _ M 6 0 5 _ I D _ 3 9 0 3 9 - - - - - - - - - - - - - - - - - - - - - - - - - S T - 1 8 7 6

E . c o l i _ W V _ 0 6 0 3 2 7 _ I D _ 6 1 4 7 7 - - - - - - - - - - - - - - - - - - - - S T - 3 5

E . c o l i _ 9 . 1 6 4 9 _ I D _ 5 1 1 1 7 - - - - - - - - - - - - - - - - - - - - - - - S T - 9 9 8

Figure 7 Pan genome tree. The tree was created based on the presence or absence of 16,373 HGCs in the 186 E. coli genomes. MLST types are
annotated to the far right of each genome name. The phylotypes are marked with the colors blue (A), red (B1), purple (B2), green (D), and the
Shigella genomes are marked with the color brown. Bootstrap values are annotated at each node as a percentage between 0 and 100. At each
node a black circle indicates a bootstrap value of 100, a grey circle indicates a bootstrap value between 100 and 70 and a red circle indicates a
bootstrap value below 70. The original tree with all bootstrap values can be seen in Additional file 3.
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possibility of sequencing errors accidently “deleting” genes
from a genome, we also present the results for the soft
core in this study.
Another issue, which sets a limit on our ability to in-

terpret the results, is the lack of metadata, or specifically,
the lack of a method for obtaining relevant metadata
in an automated way. The amount of sequence data
available now makes it unfeasible to email the corre-
sponding author for each available genome to obtain
its metadata. The community is aware of the increas-
ing need for metadata and The Genomics Standards
Consortium has suggested the Minimum Information
about a Genome Sequence (MIGS), some of which is
being incorporated into more recent GenBank files
[26].

Pan- and core-genome
The core-genomes of E. coli and Shigella have been
estimated in several studies. Lukjancenko et al. esti-
mated the core-genome in 2010, from 61 genomes,
using a single linkage clustering method and found it
to be 1,472 HGCs if only E. coli was considered [5].
Vieira et al. estimated the core-genome in 2010 from
29 E. coli and Shigella genomes using the orthoMCL al-
gorithm and found the core-genome to consist of 1,957
gene clusters [27]. In 2004 Fukiya et al. examined the
core-genome from 22 E. coli strains using comparative
genomic hybridization and estimated it to consist of ap-
proximately 2,800 shared open reading frames among
all the strains [28]. Willenbrock et al. used high-density
micro arrays to estimate the core-genome of 32 E. coli
and Shigella genomes, and estimated the core-genome
to be around 1,563 genes [29]. Chattopadhyaya et al.
estimated the core-genome to consist of 1,513 genes
among the 14 E. coli strains considered in their study
[30]. Touchon et al. estimated the core-genome in 20
E. coli to be 1,976 genes and the pan-genome to consist
of 11,432 genes. Thus, in previous studies (with fewer
genomes) the size of the core-genome seems to fluctu-
ate between 1,000 and 3,000 genes and generally con-
forms to the expectation that the core-genome would
decrease, as an increased number of strains are ana-
lyzed, which might be an artifact of truncated genes
due to sequencing errors.
In this study we found the soft core-genome to consist

of 3,051 HGCs (Figure 1) for 186 genomes. In contrast to
previous studies, we allowed a soft core-gene to be miss-
ing in up to 5% of all the genomes. If the strict core
(HGC must be found in all genomes) was considered, the
core-genome shrinks to 1,702 HGCs. It fits well within
previous estimations made with the same strict cutoff.
The pan-genome has also been estimated in many stud-

ies and will probably continue to increase as more gen-
omes are sequenced. In one study, the pan-genome of E.

coli has been estimated to be as large as 45,000 gene fam-
ilies [31]. Another study suggests that the bacterial pan-
genome is infinite [9]. Additional E. coli isolates, including
some more distinctly related to those already sequenced,
should be sequenced to obtain a more complete picture of
the E. coli pan-genome.

Gene variation
The joint core-genome diversity plotted in Figure 2
(yellow) has one large top, which suggests that for most
core-genes there is little room for diversity. Several
smaller tops are also observed. We examined some
HGCs that are part of the larger of the smaller tops
(~0.17 substitutions per site). In both cases the HGC
consisted of a gene coding for an enzyme and its iso-
zyme counterpart. As for the case of one of the most
diverse core families, the ABC transporters, the high
diversity is due to different genes coding for proteins
having very similar functions.
The pan-genome diversity plotted in Figure 2 has one

large top and the distribution is much broader, as would
be expected, due to the inclusion of the accessory genes.
No single, officially recognized system for classification

of prokaryotes exists at the present time. The “poly-
phasic approach” is the most popular, and includes
phenotypic, chemotaxonomic and genotypic data [32].
As for the genotypic data, this means that two genomes
have to be 70% similar in order to be considered the
same species. It has been shown that >70% similarity
corresponds to an average nucleotide identity among the
core-genes of >95% [32]. These results are supported by
the median ~0.018 substitutions per site for the joint
core found in this study.
Figure 3 shows that the genes from the Mark Achtman

MLST scheme and the T. Whittam MLST scheme, in gen-
eral, have less diversity than the majority of core HGCs. This
is a bit surprising because the more variation in a gene, the
greater the potential to be able to distinguish different strains.
The Pasteur MLST scheme seems to contain quite di-

verse core-genes, but also contains some which are more
conserved than the average core-genes. This raises the
question of whether or not a selection of more variable
core-genes could be made, which, in turn, could provide
higher resolution. Variability is, of course, not the only
consideration when choosing MLST genes, e.g. an MLST
scheme should not contain genes that are candidates for
horizontal gene transfer, they should not be paralogous,
and they should reflect the true phylogeny as much as
possible. It is beyond the scope of this study to present a
new MLST scheme, but it will be demonstrated how
resolution could improve by choosing more diverse
MLST genes. 7 core HGCs were chosen semi-randomly,
with variation around ~0.03 substitutions per site. Genes
were chosen with variation higher than average, although
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not so high as to include paralogous genes. We found the
corresponding genes in a set of 24 O157:H7 strains,
aligned them and built a phylogenetic tree. Phylogenies
were also inferred using each of the other three MLST
schemes (see Additional file 2). We compared the MLST
phylogenies with a published SNP tree created from these
strains [21]. There is almost no variation found in the
traditional Mark Achtman MLST scheme genes in these
strains. In the alternate MLST scheme tree there is more
variation and in turn more resolution. T. Whittam’s
scheme has the best overall resolution, probably due to
the fact that T. Whittam’s scheme contains twice as many
genes as the other MLST schemes. None of the MLST
phylogenies presents the expected topology. It seems un-
likely that any selection of genes this small will ever be
able to infer a robust phylogeny for an E. coli outbreak.
At this point in time, there is probably no need to chase
after a better MLST scheme, as WGS will probably make
MLST typing obsolete with time. For most scientists,
WGS is already less expensive than MLST typing [33].
WGS is, in general, far more promising, since it enables
the use of entire core-genomes and SNPs (see core-gene
tree discussion).
Barrick et al. [34] documented the mutations fixed in

a specific E. coli strain over 40,000 generations in vitro.
We looked at the genes and their corresponding HGCs
in which these mutations occurred, but found no signifi-
cant trend with regard to the variability of the mutated
genes (data not shown).

Gene function distribution
Most HGCs could not be annotated with a functional
category (~12,000); this corresponds to ~25% of all the
genes.
The annotations of the HGCs are presented in Figure 5.

As expected, the conserved genes are overrepresented in
the “ribosomal” category, and even though there are only
a few HGCs found in the “extracellular” category, they
are exclusively from the variable HGC pool.

Core-gene tree
E. coli as a species contains within it a large diversity of
adaptive paths. This is the result of a highly dynamic
genome, with a constant and frequent flux of insertions
and deletions [7,16]. Touchon et al. shows that the
dynamic genome is compatible with a clonal popula-
tion structure such as E. coli, since most gene acquisi-
tions and losses happen in the exact same locations
(“hotspots”). Hence the phylogenetic signal is still strong
within the core genome even though recombination and
lateral gene transfer is frequent [7].
The concatenated gene tree in Figure 6 demonstrates

this strong phylogenetic signal quite well by the high
fraction of confident nodes (confident nodes having a

bootstrap value above 0.7). The tree also agrees with the
MLST types. None of MLST types are actually split with
the exception of ST-10, ST-11 and ST-93. In the ST-93
clade there is a single strain, which could not be typed
by the in silico MLST algorithm. It is the draft genome
of E. coli 101–1. Perfect matches for all 7 alleles are
found, for the MLST scheme, but the combination is un-
known. Its location within the ST-93 clade is valid
though, since the unknown type is due to a single locus
change (fumC-11 –> fumC-130). E. coli H 2687 with
ST-587 is also a single locus variant of ST-11. ST-10 is
split by ST-1060 and ST-167. Since the two strains of
ST-1060 are sub-strains of K12, which is classified as
ST-10, these fit inside the ST-10 clade. ST-167 is a single
locus variant of ST-10.
All phylogroups (A, B1, B2, C, D, E, and F) also cor-

respond very well with the core-gene tree. Only a few
strains seem to violate the groups. E. coli MS 57 2 is
classified as D, but the tree strongly suggests that it
should belong to the B2 group. Gordon et al. showed
that using the Clermont PCR multiplex method could
lead to erroneous classification of phylotypes [35], in
particular, classifying B2 phylotypes as D phylotypes
were shown to be frequent. They proposed a new
gene target, “ibeA”, which will distinguish most B2
types from D types. E. coli MS 57 2 contains the gene
target ibeA, which confirms its placement within the B2
phylogroup [35].
The tree supports the claim that B2 and F are the an-

cestral groups followed by D and then the sister groups
B1 and A [7,16,36].
The fact that phylotyping and MLST typing fit so

nicely with the core-gene tree, both confirms the highly
clonal nature of E. coli and supports the use of core-
genes to infer the “true” E. coli phylogeny.
To obtain a resolution high enough to be used in short

term epidemiology, researchers have turned to inferring
phylogenies from Single Nucleotide Polymorphism (SNP).
SNP trees have, with much success, been used previously
to describe complex outbreaks in detail [4,37]. However,
to create a SNP tree, a good reference is needed and it is
also frequently necessary to sort out false SNPs. The latter
will always be subject to some controversy, because deter-
mination of a false SNP call will seldom be a completely
objective call.
The creation of a core-gene tree requires no subjective

alterations, which, in turn, also makes them much easier
to automate and replicate than SNP trees. Figure 4 pre-
sents the E clade of the core-gene tree, and demonstrates
the ability to differentiate three American E. coli O157:
H7 outbreaks from each other. This is slightly better
even, than the SNP tree published by Eppinger et. al [21].
In a case where the core-gene tree does not provide

enough resolution, better resolution might be obtained
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by focusing on the more variable genes; in these cases
care should be taken not to focus on paralogous to infer
phylogeny. Whether this is possible is doubtful, and will
require further studies with strains of known origin and
relationship for validation.
Based on many various typing methods, Shigella con-

sistently has been shown to belong within the E. coli spe-
cies [5]. Indeed, within Figure 6, all Shigella species can
be seen to fall within the E. coli clade. How Shigella got
the ‘shiga toxin’ and other pathogenicity genes has two
opposing theories. One theory suggests that all the “Shi-
gella genes” originated from one ancestral plasmid [38].
Another theory suggests that Shigella originated from
three different E. coli species, which, independently of
each other, acquired the “Shigella genes” [39]. Our core-
gene tree (Figure 6) supports the latter theory, which is
not surprising, since the theory was based on trees cre-
ated from housekeeping genes. The core-gene tree fails
to group the Shigella species. Shigella are classified based
on their virulence factors, which are probably poor
phylogenetic targets, and thus does not explain the “true”
relationship between the Shigella species.

Pan-genome tree
The pan-genome tree is based on the absence or pres-
ence of all the HGCs of the pan-genome. It has been
reported by Touchon et al. that gene conversion
events are more likely than point mutations in E. coli.
From this they conclude that the contribution made
by recombination events outweigh site-level mutations
as an evolutionary mechanism [7].
The pan-genome tree differs from the core-gene tree,

because it is focused on those genes that are absent be-
tween the genomes. Since all the core-genes will be
present in all genomes these will not in any way influ-
ence the phylogenetic relationship in this tree.
The pan-genome tree does not have as confident nodes

as the core-gene tree. The deeper nodes are almost all
below 50%. However, the nodes close to the leaves are
quite confident and a majority of these reaches 70-100%.
These results are in agreement with the previously men-

tioned study by Touchon et al. The gene diversity in E. coli
creates a poor phylogenetic signal between distantly related
strains, since the signal is only made up from very few fixed
ancestral insertions. This is due to the high gene flux in
E. coli which causes only closely related strains to share
a significant amount of accessory genes [7].
There are many similarities between the core-gene tree

and the pan-genome tree, but also some obvious differ-
ences. The pan-genome tree does not divide the strains
as nicely into the different phylogroups as the core-gene
tree. The MLST type clades are also more divided than
is the case for the core-gene tree. These results might
not be that surprising, since both phylogroups and

MLST types are based on a small set of core-genes and
the pan-genome tree actually ignores these genes.
The pan-genome tree, due to one single Shigella clade,

supports the “one origin” theory, as opposed to the core-
gene tree, which supports the “three origins” theory of
Shigella. Since the definition of Shigella is based upon a
group of genes which gives it its pathogenic characteris-
tics, it makes perfect sense that the pan-genome tree,
which focuses on gene presence/absence, is able to iso-
late the Shigella genus into one single clade.
This convergence for Shigella has been observed pre-

viously by calculating the “metabolic distance” between
E. coli strains. Vieira et al. suggests that this inconsist-
ency between genetic distance and metabolic distance
is proof that the Shigella metabolic networks have
evolved quickly by genetic drift [27].
Both trees fail to divide the Shigella genus into any

species clades, which further supports the argument that
the taxonomy within Shigella might not be optimal.

Future perspectives
The core-gene tree in this study had a surprising capability
to differentiate between closely related outbreak strains.
However, more resolution might be needed to infer phylo-
genies or detect short-term outbreaks. In these cases, it
might prove useful to put more weight on the variable
regions of the genome. Further studies are needed to de-
cide if this is a meaningful approach.
The results found in this study may lay ground for fur-

ther studies into how we might create a standardized
method for defining E. coli strains. To do this, studies
are needed in which E. coli strains from different out-
breaks and with different degrees of relatedness are
sequenced and compared. Although “Single Nucleotide
Polymorphism” (SNP) analysis was not done in this
study, SNP potentially could be a powerful typing tech-
nique and will need to be included in future studies.
This will, however, make more sense with a dataset that
has been selected for this purpose.
It is becoming more and more apparent that a global

epidemiological detection system is important, and for a
global collaboration to be successful, standards are crucial.

Conclusions
Genes across different E. coli genomes are, in general,
very well conserved. A pan-genome of 16,373 HGCs was
found. A soft core-genome of 3,051 HGCs was found
using a 95% cutoff, meaning that each HGC had to be
found in 95% of the genomes to be considered a “core”
HGC. With no genomes lacking HGC, we reached a
core genome of 1,702 HGCs.
A pan-genome tree was created based on the absence

or presence of genes. This method demonstrated the
convergence of the Shigella lifestyle.
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A core-gene tree was created based on the concate-
nated alignments of the core-genes. The core-gene tree
was able to classify MLST types and phylotypes. We
found that most genes used for MLST typing are less
diverse than the majority of core-genes.
The core-gene tree showed a surprising capability of

distinguishing a set of O157:H7 outbreak strains, and
even seemed to do better than a SNP tree [21] created
from the same strains. Future studies into a global
standard for E. coli typing, should include a core-gene
tree method, possibly combined with resolution im-
provement by focusing on variable genome regions, the
latter is doubtful and remains to be tested.
The use of WGS will make it possible to eliminate, or

at least reduce, the need for several typing steps used in
traditional epidemiology. We are convinced that WGS is
the optimal way forward in studying the phylogeny and
epidemiology of E. coli.

Methods
All genomes analyzed were downloaded from GenBank
at the National Center for Biotechnology Information
(NCBI - http://www.ncbi.nlm.nih.gov/) on the 18th of
April 2011. All draft and complete genomes were down-
loaded; a few were excluded due to content and quality.
Draft genomes with fewer than 104,000 base pairs, and/
or in more than 1,000 contigs were excluded. “Shigella
sp. D9” with Genbank project ID 32507 was also
excluded due to some very odd behavior in our analysis.
We ended up with 171 E. coli and 15 Shigella genomes.
The list of the 186 genomes can be found in Additional
file 7. For each genome we predicted tRNAs with
tRNAscan-SE version 1.23 [40] and rRNAs using rnam-
mer [41] while gene prediction (excluding partial genes)
was done using Prodigal version 2.6 [23]; in silico phylo-
typing was performed using in-house software, based on
the presence or absence, determined by BLAST [42], of
the two genes chuA, and yjaA, as well as the segment
TspE4.C2 (unpublished), as proposed by Clermont et al.
[15], and the MLST typing in silico was done using the
MLST predictor at http://www.genomicepidemiology.
org/ [33]. The same set of tools was also used for all the
annotated genomes in GenBank in order to obtain
consistency in the gene comparisons. The differences
between the annotations made in this study and the
annotated genomes are listed in Additional file 7.

Homolog gene clusters (HGCs)
Genes with similar sequences are likely to have similar
functions and homologous gene clusters (HGCs) are
generated by sequence similarity. In the ideal case, all
occurrences of a specific gene from all the genomes will
cluster exclusively into the same HGC. Using BLAT [43]
all genes from all genomes were aligned against each

other. The settings for BLAT were set to an E-value of at
least 10-5. The MCL software, based on the Markov Clus-
tering Algorithm, developed by van Dongen [44] was then
used to create the HGCs from the BLAT alignments.
This clustering approach has previously been applied

to both Campylobacter [45] and E. coli [27]. The MCL
software also does the clustering in orthoMCL software/
web-service [46] (orthomcl.org).

Estimation of variation within HGCs
Multiple alignments were made for all HGCs using
MUSCLE version 3.8.31 [47]. The multiple alignments
were then used as input to VariScan version 2.0 [48],
which calculated the nucleotide diversity based on the
method suggested by Nei & Li [49]. At the gaps in the
alignments, at least 10% of the members (or at least 2)
had to have non-gap characters in the gap position to be
included in the diversity calculation of the alignment.
The “member cut-off” parameter was also set to 50%
and 90%, we detected virtually no difference in the
diversity distributions (data not shown).

Core- and pan-genome
The core- and pan-genomes were defined by HGCs. The
soft core-genome was defined as all HGCs that had
members in at least 95% of the 186 genomes, equivalent
to at least 177 genomes of the 186 genomes. The strict
core-genome was defined as all HGCs that have mem-
bers in all genomes. The pan-genome was defined as all
HGCs.

Functional annotation
All genes were blasted against the COG database [13],
hits with an E-value > 10-5 were considered significant;
only the best hits (highest bit score) were extracted. The
functional profile of the best hit was then assigned to
the query gene.
HGCs were annotated with the functional profile,

which was dominant between the members of the HGC.
This also included “not in COG”.

Core-gene tree
A core-gene tree was created for all the members of
the Escherichia genus and another one was made for
only E. coli and Shigella. Both are presented in Figure 6.
To create a core-gene tree, all genes not found in all

genomes were removed. A multiple alignment for each
gene was then done using MUSCLE version 3.8.31 [47].
The alignments were then concatenated. 500 resamples
of the alignment were created with Seqboot version 3.67
[50]. Distance matrices were calculated for the initial
alignment as well as for each of the 500 resamples using
dnadist version 3.67 [50]. Trees were then created using
FastME from NCBI [51] and the tree from the original
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alignment was compared to the 500 trees from the
resamples using CompareToBootstrap [52].
FigTree (http://tree.bio.ed.ac.uk/software/figtree/) has

been used to visualize the final core-gene tree. The tree
is unrooted, but has been visually rerooted with FigTree
on the node leading to Clade I.

Pan-genome tree
A phylogenetic tree was created based upon the absence
or presence of all HGCs and a hierarchical clustering
based on calculations of the Manhattan distance between
each HGC. Singletons were ignored. The tree was created
with the R package, as previously described by Snipen &
Ussery [53].

Additional files

Additional file 1: Genes used in MLST schemes. Lists of the three
groups of genes used in the Mark Achtman, Pasteur institute, and T.
Whittam MLST schemes.

Additional file 2: MLST phylogenies of O157:H7. Four phylogenetic
trees inferred from four different MLST schemes. Tree A is inferred from
Mark Achtman’s MLST scheme, tree B is inferred from the Pasteur MLST
scheme, tree C is inferred from T. Whittam’s MLST scheme and tree D is
inferred from the alternative MLST scheme used in this proof of concept
case.

Additional file 3: Core tree with all bootstrap values. The tree was
created from the alignment of each of the 1,278 core genes from the
186 E. coli genomes. MLST types are annotated to the far right of each
genome name. The phylotypes are marked with the colors blue (A), red
(B1), purple (B2), green (D), and the Shigella genomes are marked with
the color brown.

Additional file 4: Pan-genome tree with all bootstrap values. The
tree was created based on the presence or absence of 16,373 HGCs in
the 186 E. coli genomes. MLST types are annotated to the far right of
each genome name. The phylotypes are marked with the colors blue (A),
red (B1), purple (B2), green (D), and the Shigella genomes are marked
with the color brown. Bootstrap values are annotated at each node as a
percentage between 0 and 100.

Additional file 5: Annotation of highly deviating HGCs. Manual
annotation of the 10 HGCs with the highest standard deviation in gene
size. The annotation is based on blasting the gene members against the
nr database, Uniprot and running the sequences through InterProtScan.

Additional file 6: Complete versus draft nucleotide diversity
distributions. The nucleotide diversity distribution is plotted for both the
core-HGCs and the pan-HGCs of the three datasets: complete (red), draft1
(blue), and draft2 (green).

Additional file 7: Table of complete dataset. The table shows
the dataset used for the article. The “GB genes” column indicates the
number of genes annotated in the corresponding GenBank file. The
“Prod genes” column indicates the number of genes that was found with
prodigal for this study.
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Abstract

Background: The advances and decreasing economical cost of whole genome sequencing (WGS), will soon make
this technology available for routine infectious disease epidemiology. In epidemiological studies, outbreak isolates
have very little diversity and require extensive genomic analysis to differentiate and classify isolates. One of the
successfully and broadly used methods is analysis of single nucletide polymorphisms (SNPs). Currently, there are
different tools and methods to identify SNPs including various options and cut-off values. Furthermore, all current
methods require bioinformatic skills. Thus, we lack a standard and simple automatic tool to determine SNPs and
construct phylogenetic tree from WGS data.

Results: Here we introduce snpTree, a server for online-automatic SNPs analysis. This tool is composed of different
SNPs analysis suites, perl and python scripts. snpTree can identify SNPs and construct phylogenetic trees from WGS
as well as from assembled genomes or contigs. WGS data in fastq format are aligned to reference genomes by
BWA while contigs in fasta format are processed by Nucmer. SNPs are concatenated based on position on
reference genome and a tree is constructed from concatenated SNPs using FastTree and a perl script. The online
server was implemented by HTML, Java and python script.
The server was evaluated using four published bacterial WGS data sets (V. cholerae, S. aureus CC398, S.
Typhimurium and M. tuberculosis). The evalution results for the first three cases was consistent and concordant for
both raw reads and assembled genomes. In the latter case the original publication involved extensive filtering of
SNPs, which could not be repeated using snpTree.

Conclusions: The snpTree server is an easy to use option for rapid standardised and automatic SNP analysis in
epidemiological studies also for users with limited bioinformatic experience. The web server is freely accessible at
http://www.cbs.dtu.dk/services/snpTree-1.0/.

Background
The dramatic decrease in cost for whole-genome sequen-
cing (WGS) has made this technology economically feasible
as a routine tool for scientific research, including infectious
disease epidemiology. In addition, WGS has major applica-
tions for health service providers working with infectious

diseases [1] as such to deliver high-resolution genomic
epidemiology as the ultimate typing method for bacteria.
The ideal microbial typing technique should enable dif-

ferentiation of epidemiological unrelated strains and group
epidemiological related (outbreak) strains, [2] and give
information that will help to understand the evolutionary
history of multiple strains within a clonal lineage [1,2].
Although some current technologies are highly informa-
tive like MLST or PFGE, they have limited resolution
when applied to closely related isolates and different meth-
ods often have to be applied in different situations [1,2].
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Especially outbreak isolates normally have very little
diversity and require extensive genomic methods to differ-
entiate and catagorize the isolates [3]. Single nucleotide
polymorphisms (SNPs) also show relatively low mutation
rates and are evolutionarily stable. Moreover, SNPs analy-
sis has successfully been used for determining broad pat-
terns of evolution in many recent studies [4-6].
Currently, There are a number of available non-com-

mercial NGS genotype analysis software such as SOAP2
[7], GATK [8] and SAMtools [9]. Nonetheless, all of the
software require bioinformatic skills, various options,
various setting and they do not have a user friendly
web-interface.
Here we introduce snpTree. A server for online-auto-

matic SNP analysis and SNP tree construction from
sequencing reads as well as from assembled genomes or
contigs. The server is a pipeline which intregrates avaliable
SNPs analysis softwares such as SAMtools [9] and MUM-
mer [10], with customized scripts. The performance of the
server was evaluated with four published bacterial WGS
data set; Vibrio cholerae [3], Staphylococcus aureus CC398
[6], Salmonella Typhimurium [11] and Mycobacterium
tuberculosis [12].

Implementation
The snpTree server was created to handle both WGS data
and assembled genomes to generate a phylogenetic tree
based on SNPs data. The overall process is shown in
Figure 1. For raw reads (Figure 1A), snpTree use an in-
house toolbox (Genobox) for mapping and genotyping
which consists of avaliable programs for next-generation
sequencing analysis such as Burrows-Wheeler Aligner,
BWA [13] and software package for SNPs calling and gen-
otyping, SAMtools [9]. The source code of Genebox is
available at https://github.com/srcbs/GenoBox. For contigs
or assembled genomes (Figure 1B), MUMmer [10] is used
for both reference genome alignment and SNPs identifica-
tion processes.
The web-server contains more than 2,000 completed

reference genomes collected from NCBI Genome data-
base (accessed on April 2012).

SNPs identification from WGS
Prior to mapping raw reads to a proper reference genome,
the sequence data in fastq format are filtered and trimmed
according to the following criteria [14]: (i) reads with N’s
are removed, (ii) if a read matches a minimum of 25 nt of
a sequencing primer/adaptor the reads are trimmed at the
5’ coordinate of match, (iii) the 3’ tail bases are trimmed if
the quality score is less than 20, (iv) the minimum average
quality of the read should be 20 and the read length after
trimming should be at least 20 nt.
Trimmed raw reads are aligned against a reference gen-

ome using BWA [13] with minimum mapping quality

equal to 30 as a default (Figure 1A). BWA is based on an
effective data compression algorithm called Burrows-
Wheeler transform (BWT) that is fast, memory-efficient
and espectially useful for aligning short reads [15].
SNPs calling and filtering are accomplished by SAM-

tools that is a software package for parsing and manipu-
lating alignments in the generic alignment format (SAM/
BAM format) [9]. The snpTree server allows users to set
a couple of parameters to filter SNPs, a minimum cover-
age and a minimum distance between each SNPs
(prune). The default for both cut-offs is set to 10 and
additionally all heterozygous SNPs are filtered because
these are likely mapping errors in haploid chromosomes.
The identifed SNPs are concluded into a VCF file.

SNPs identification from assembled genomes
A pipeline has been developed around the software pack-
age MUMmer version 3.23 [10] (Figure 1B). An applica-
tion named Nucmer, which is part of MUMmer, is used to
align each of de novo assemblies to a reference genome
chosen by the user (default settings). SNPs are then called
from the resulting alignments with another MUMmer
application named “show-snps” (with options “-CIlrT”). A
pruning is then applied, if chosen by the user, and the
SNPs are written into a VCF formatted file for each of the
analyzed genomes.

SNPs tree construction
One VCF formatted file is needed for each Operational
Taxonomic Unit (OTU). The SNPs are then concatenated
into a single alignment by ignoring indels. Including indels
would disturb the position of SNPs in the sigle alignment.
To include indels in any trees, it requires some sensible
way to represent them numerically as distances in an evo-
lutionary space, and there is no any ways to achieve this.
Indels could theoretically be included in a multiple
sequence alignment, since such alignments can handle
gaps but it’s difficult to score them. “Blast-like” gap penal-
ties certainly would not work, since they are optimized for
much larger gaps, e.g. recombination events.
It is important to note that SNPs not found in a VCF file

is interpreted as not being a variation and the correspond-
ing base in the reference is expected. This might not
always be the right choice, because a SNP not found in a
VCF file could be a result of an INDEL. It is expected to
be a rare case and probably won’t disturb the phylogenetic
signal.
The alignment is passed on to Fastree [16], which cre-

ates a maximum likelihood tree from the SNP alignment.

snpTree server output
snpTree server provides an output to users with SNPs
tree figure in SVG format, number of SNPs and other
relevant output files such as (i) SNPs files, which contains
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identified SNPs including indels for each input genome
in VCF format [17], (ii) cancatenated SNPs in newick,
phylip and fasta format, (iii) SNPs annotation files which
give users an overview of nucleotide changes or amino
acid changes from SNPs including which input genomes
contain which SNPs as well as information about synon-
ymous and non-synonymous SNPs (Additional file 1). An
example of output is shown in Figure 2.

Results and discussion
The snpTree was evaluated using raw reads and
assembled genomes from four published bacterial WGS

data sets (V. cholerae [3], S. aureus CC398 [6], S. Typhi-
murium [11] and M. tuberculosis [12]). The evaluation
was considered based on tree topology as well as the
reference genome’s position of identifed SNPs.

Evaluation of tree topology and SNPs position
WGS from published data set were subjected to snpTree
server in order to generate SNP trees. The tree topology
evaluation was based on percentage of concordance. If
the strain in the tree from snpTree server matches
exactly with the tree from published data, it was consid-
ered as an exact match. If the strains were grouped into

Pre-processing 

Reads mapping 
(using BWA) 

Identify SNPs 
(using SAMtools) 

SNPs filtering 
(using SAMtools) 

SNPs tree construction 
(using Fastree) 

Assembled genomes 

Reference genome alignment 
(using Nucmer) 

Identify SNPs 
(using show-snps from MUMmer) 

SNPs filtering 
(using show-snps from MUMmer) 

SNPs tree construction 
(using Fastree) 

Raw reads 
A B

Figure 1 snpTree server implementation. (A) SNP tree construction from raw reads. Pre-processing (shown in blue) filters and trims raw data to
remove low-quality bases. Trimmed raw reads are aligned against a reference genome by BWA with mapping quality equal to 30 as a default. SNPs
calling and filtering process (shown in purple) identifies and filters informative SNPs by SAMtools with a couple of cut-offs, minimum coverage and
minimum distance between each SNP (the default for both cut-offs is 10) and additionally all heterozygote SNPs are filtered. SNPs tree construction step
(shown in orange) transforms from multiple alignments of concatenated SNPs to a phylogenetic tree by using Fastree and a perl script. (B) SNP tree
construction from assembled genomes. Contigs or assembled genome are aligned to a reference genome using Nucmer. The SNPs calling and SNPs
filtering steps are performed by a ‘show-snps’ application from MUMmer. SNPs tree construction step is carried out as the same way as the raw reads.
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the same cluster with published data, it was considered as
a cluster match. In addition, the snpTree server was eval-
uated with assembled genomes or contigs. The raw reads
were assembled prior by de novo assembly using Velvet
1.1.04 [18]. The assembled genomes were processed to
snpTree server to make SNP trees.

V. cholerae data set
The evaluation results are summarized in Table 1. For
the V. cholerae data set, the performance of snpTree
from raw reads (Figure 3) and contigs (Additional file 2)
were accurate in term of exact match and cluster
match. From Figure 3, all of genomes were grouped
into the same clusters as in the original tree. In the
Nepal-1 cluster, there are only 3 genomes that are not
in the same position compared to the original tree.
However, the isolates in Nepal-1 group are highly
homogeneous and there are some synapomorphic SNPs
(genome position that has mutated the new nucleotide
which shared with all descendants) supporting its
unique identities [3].

The percentage of overlapped and non-overlapped
SNPs between published data and snpTree server is illu-
strated in Figure 4A for raw reads and Figure 4B for
assembled genomes. For V. cholera, both raw reads and
contigs (Figure 4), the snpTree server identified SNPs
mostly from the same position in published data (95%

InCoB 2012 5 October 2012

Salmonella-spp-07-022 ATTCCT L007 R1 001.fastq

Salmonella-spp-02-03-002 CAAAAG L007 R1 001.fastq

Salmonella-spp-02-03-008 CAACTA L007 R1 001.fastq
0.844

Salmonella-spp-05-102 ATGAGC L007 R1 001.fastq

Salmonella-spp-BL25 CACCGG L007 R1 001.fastq

Salmonella.sp-B51 2 1 sequence.txt
0.974

0.216

0 0.1 0.2 0.3 0.4
substitutions/site

Total SNPs : 45 SNPs

Average percent of mapped referece genome : 98.9935543333 %

Salmonella-spp-05-102_ATGAGC_L007_R1_001.fastq 98.94874 %

Salmonella-spp-02-03-008_CAACTA_L007_R1_001.fastq 98.98252 %

Salmonella-spp-BL25_CACCGG_L007_R1_001.fastq 98.98674 %

Salmonella.sp-B51_2_1_sequence.txt 99.113026 %

Salmonella-spp-07-022_ATTCCT_L007_R1_001.fastq 98.94571 %

Salmonella-spp-02-03-002_CAAAAG_L007_R1_001.fastq 98.98459 %

Settings:

Option : Paired end reads

Reference genome : Salmonella_enterica_subsp_enterica_serovar_Typhimurium_str_D23580.fna

Minumum Coverage : 10   

Minimum distance between SNPs (prune) : 10 bp

Figure 2 snpTree output. An example of the output from snpTree server using Illumina paired-end reads as input data.

Table 1 Evaluation table
Data set Percentage of concordance

Exact match cluster match

V. cholerae (raw reads) 91 100

V. cholerae (contigs) 85 100

S. aureus CC398 (raw reads) 88 96

S. aureus CC398 (contigs) 87 97
S. typhimurium (raw reads) 61 100

S. typhimurium (contigs) 53 100

M. tuberculosis (raw reads) 58 78

M. tuberculosis (contigs) 25 72

The percentage of concordance from comparing SNP trees from snpTree
server against the four published data set.
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overlapped SNPs). This result supports the consistency
of the tree from snpTree server (Figure 3).

S.aureus CC398 data set
For S. aureus CC398 (Table 1), snpTree produced a tree
with 87 - 88 % concordance for exact match and 96 - 97 %
concordance for cluster match. SNP trees for raw reads
and assembled genomes are shown in Additional file 3
and Additional file 4 respectively. There were 91 and 90 %
overlapping SNPs for raw reads and assembled genomes
(Figure 4). The performance of snpTree on this data set
was slightly less than for the V. cholera data set. The rea-
son is probably that the genomes of 89 S. aureus CC398
isolates came from animals and humans sources from 19
countries and four continents. In addition, there are 4,238
SNPs among them [6]. These isolates are more diverse
than V. cholera isolates. Thus, this diversity makes diffi-
culty for snpTree to capture exactly the same variant as in
original publication. Nevertheless, snpTree can differenti-
ate between isolates from humans and pigs which is very
meaningful to epidemiological studies.

S. Typhimurium data set
The third data set, S. Typhimurium, which consists of 51
Salmonella in which 43 isolates from 14 patients with
multiple recurrences in Blantyre, Malawi and 8 control

typhimurium isolates [11]. Like in the original publica-
tion, both raw reads and contigs data set, the isolates fell
within three distint phylogenetic clusters (Additional file
5 and 6) which gave 100 % concordance for cluster
match (Table 1). On the other hand, the percentage of
concordance for exact match was quite low (53 - 61 %).
It is not possible to evaluate SNPs position for this data
set because of lacking SNPs position data. However, the
number of identified SNPs from snpTree server (1,692
SNPs) was not much different from original data set
(1,463 SNPs). Most of the S. Typhimurium isolates are
highly genetically related as they came from patients who
had recrudescence and/or reinfections. Therefore, this
study requires high-resolution SNPs analysis and inten-
sive phylogenetic tree construction to differentiate these
little variation. In addition, the original tree from this
data set was generated and confirmed using several inde-
pendent approaches, with bootstrap support and clade
credibility marked [11] which snpTree cannot repeat as
using bootstrapping is time-consuming.

M.tuberculosis data set
Another data set that consists of 32 M. tuberculosis out-
break isolates and 4 historical isolates (from the same
region but isolated before the outbreak) with matching
genotype suggesting that the outbreak was clonal [12].

Figure 3 Comparison between phylogenetic trees from published data set (V. cholerae) and snpTree server. These trees (34 WGS from
V. cholerae) shows comparison of tree topology between the trees from original publication (left) and snpTree server (right). The linked lines
indicate exact match for each genome in the tree. According to the tree from published data, the blue lines mean exact match and the red one
represent inexact match.
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The performance of snpTree server on this data set was
inconsistent due to low concordance percentage for exact
match and cluster match (Table 1, Additional file 7 and
8). Moreover, the number of indentified SNPs and match-
ing SNP positions (Figure 3) are very different between
the tree from snpTree server (677 SNPs) and the pub-
lished data (204 SNPs). The original publication deter-
mined transmission dynamics of the outbreak at a higher
resolution by filtering to remove many of SNPs in repeti-
tive regions and those appearing in a single isolate. Thus,

the procedure in the original manuscript is impossible to
repeat and it should be noted that the original filtering
reduced the number of SNP’s from more than 1,000
to 204. This is probably the reason that snpTree were
unable to reproduce the same results as in the original
publication.

Sensitivity and specificity
In order to evaluate the sensitivity and specificity of
SNP calling method, the artificial sequence was created

5 % 27 %95 % |  73 % 5 % 32 %95 % |  68 %

9 % 43 %91 % |  57 % 10 % 42 %90 % |  58 %

68 % 90 %32 % |  10 % 67 % 95 %33 % |  5 %

V.cholerae

S.aureus CC398

M.Tuberculosis

A B

Figure 4 Percentage of identified SNPs. Venn diagram showing the percentage of overlapped and non-overlapped identified SNPs from
snpTree server against original publications in both raw reads (A) and assembled genomes (B). The purple, blue and green circles represent the
percentage of identified SNPs from original publications, raw reads and assemble genomes from snpTree server respectively.
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from a genome of 4,878,012 bp with 1,000 randomly
SNP artificial inserted. The simulated sequence was
aligned to a reference genome and identified SNPs using
SNP idenfication pipeline for assemble genome. SNPs
calling was performed with varied two cut-off values
which are minimum number of bp between SNPs
(prune) and minimum number of bp from a sequence
end (e). The sensitivity and specificity for SNP identifi-
cation were summarized in Table 2.
The sensitivity for prune cut-off (Table 2) was slightly

dropped when increasing number of prune. This is due
to the more number of bp between SNPs (prune) lead-
ing to the high chance to have SNPs between that num-
ber of bp.
Using minimum number of bp from a sequence end

as a varied cut-off, the sensitivity was very high and
stable for all varied values. It is quite rare to have SNPs
occurred in the tails of sequence so this cut-off less
affects to the SNP calling process. The specificity for
both cut-off were very high. It is because the number of
SNP inserted is extreamly low (1,000 SNPs) compared
to the whole genome (4,878,012 bp).
The rapid technological advantages in WGS and

rapidly decreasing cost has made the technology available
for large groups of scientists as well as clinical microbiol-
ogists. It is expected that WGS will very soon find wide-
spread use in clinical and public health microbiology, as
has already been shown [19]. The implementation of
such technologies will however, create a major need for
simple to use bioinformatic tools to make sense of the
data generated. We have here developed snpTree and
evaluated it on four different published datasets. The
concordance of the SNPs tree from raw reads was more

adequate than the one from assembled genomes, which
is not surprising. However, in practice transfering
sequencing reads will be more time-consuming than just
transferring assembled genomes and the tree topology
from these different kind of genomes was only sligthly
different. Therefore, the assembled genomes option in
snpTree server can provide a quicker solution for upload-
ing time-consuming. In order to create informative SNPs
tree, using a closely related reference genome is impor-
tant. Therefore, the selection of a proper reference gen-
ome is crucial. Thus, it is adviced to choose a reference
genome belonging to the same or as closely related a
sub-type as possible to the strain collection under study.
This could for species where this is a available reference
belonging to the same MLST type. In the future a more
generic solution to overcome this obstracle might be to
using high-resolution prediction method such as K-mers
to assign a genuine reference genome.

Conclusions
The advance of WGS and the use of epidemiological
genomics underline the potential of practical application
of WGS for clinical microbiology and emphazies the
importance of biology and evolution in developing reli-
able and accurate genomics tools for clinical use. In
addition, SNP-typing phylogenetic methods can distin-
guish very closely related isolates to a degree not achiev-
able by widely employed sub-genomic typing tools.
snpTree server might be not a perfect tool but it is an
option for easy and rapid standardised and automatic
SNP analysis tool in epidemiological studies. It is also
useful for users with limited bioinformatic experience.

Additional material

Additional file 1: Example of SNP annotation output.

Additional file 2: SNP trees from contigs of V. cholerae data set (left
is the tree from original publication and right is the tree from
snpTree server).

Additional file 3: SNP trees from raw reads of S. aureus CC398 data
set (left is the tree from original publication and right is the tree
from snpTree server).

Additional file 4: SNP trees from contigs of S. aureus CC398 data
set (left is the tree from original publication and right is the tree
from snpTree server).

Additional file 5: SNP trees from raw reads of S. Typhimurium data
set (left is the tree from original publication and right is the tree
from snpTree server).

Additional file 6: SNP trees from contigs of S. Typhimurium data set
(left is the tree from original publication and right is the tree from
snpTree server).

Additional file 7: SNP trees from raw reads of M. tuberculosis data
set (left is the tree from original publication and right is the tree
from snpTree server).

Additional file 8: SNP trees from contigs of M. tuberculosis data set
(left is the tree from original publication and right is the tree from
snpTree server).

Table 2 Sensitivity and specificity
Variable and cut-off value Sensitivity (%) Specificity (%)

Number of bp between SNPs

0 97.8 100

10 97.2 99.99988

25 96.6 99.99975

50 95.8 99.99959

75 94.6 99.99935

100 93.8 99.99918

Number of bp from a sequence end

0 97.8 100

10 97.8 100

25 97.8 100

50 97.8 100

75 97.8 100

100 97.7 100

Evaluation of sensitivity (SN) and specificity (SP) using different settings of
minimum number of bp between SNPs (prune) and minimum number of bp
from a sequence end (e) for SNP detection on a simulated dataset consisting
of a genome of 4,878,012 bp with 1,000 randomly SNP artificial inserted.
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Abstract

Whole genome sequencing (WGS) shows great potential for real-time monitoring and identification of infectious disease
outbreaks. However, rapid and reliable comparison of data generated in multiple laboratories and using multiple
technologies is essential. So far studies have focused on using one technology because each technology has a systematic
bias making integration of data generated from different platforms difficult. We developed two different procedures for
identifying variable sites and inferring phylogenies in WGS data across multiple platforms. The methods were evaluated on
three bacterial data sets and sequenced on three different platforms (Illumina, 454, Ion Torrent). We show that the methods
are able to overcome the systematic biases caused by the sequencers and infer the expected phylogenies. It is concluded
that the cause of the success of these new procedures is due to a validation of all informative sites that are included in the
analysis. The procedures are available as web tools.
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Introduction

Microbial whole-genome sequencing using bench-top sequenc-
ing technologies holds great promises to enhance diagnostic and
public health microbiology [1–3]. Its great value in describing and
improving our understanding of bacterial evolution, outbreaks and
transmission events has been shown in a number of recent studies,
including Staphylococcus aureus [4–6], Vibrio cholera [7], Esch-
erichia coli [8], Mycobacterium tuberculosis [9] and surveillance of
antimicrobial resistance [10]. All of these studies have however,
been done retrospectively, (except [8], which was done prospec-
tively) and conducted using the same technology and performed in
a single laboratory.
For rapid detection of out-breaks involving multiple sites or

even countries it is essential to enable rapid and reliable
comparison of data generated in different laboratories and using
different technologies [1]. Enabling comparison between technol-
ogies is also important for the future comparison of data generated
using novel technologies that are currently under development and
comparison to data already generated using current technologies.
An important step to enable this is to allow for sequencing
platform independent analysis. This is especially relevant for SNP
calling where the currently available sequencing platforms all have
some type of systematic sequencing bias [11–16]. These systematic

biases’ today make it virtually impossible to perform reliable
phylogenetic studies if the data are generated using different
technologies. For research purposes the correct identification of
SNP’s might be solved by sequencing using multiple platforms, but
for infectious disease out-breaks this will neither be practical or
timely feasible. Infectious disease out-breaks are often multistate
and rapid comparison and correct clustering is essential.
Common practice in SNP calling is to use a closely related

reference genome, often a reference genome that has been
sequenced and finished with respect to the study in question.
While this approach is feasible for research purposes it is not
practical in an out-break investigation.
In this study we developed two novel procedures for identifying

variations in whole genome sequencing reads and conducting
phylogenetic analysis of isolates. The procedures were evaluated
on an available data-set where three different platforms had been
used to sequence the same 12 Salmonella Montevideo isolates, as
well as sequencing of selected Salmonella Typhimurium and
Staphylococcus aureus isolates using Illumina and Life Technol-
ogies.
The novel procedures have been made available as web tools at

the following addresses:
Nucleotide Difference (ND) method: http://cge.cbs.dtu.dk/

services/NDtree/.
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Novel SNP procedure: http://cge.cbs.dtu.dk/services/
CSIPhylogeny/.

Materials and Methods

Datasets
Three different datasets were used for evaluation in the present

study, comprising selected Salmonella Montevideo [17], Staphy-
lococcus aureus CC398 [5], and Salmonella Typhimurium DT104
[18] from previous studies.
For S. Montevideo 12 closely related outbreak strains where

sequenced once by US Food and Drug Administration using
Roche Genome sequencer FLX system, Illumina MiSeq and Life
Technologies Ion Torrent and made publicly available (Table S1),
although only the MiSeq data was used in the original study [16].
The raw data were downloaded from the Sequence Read Archive
(SRA). For Staphylococcus aureus CC398, the completely
sequenced and annotated strain SO385 (AM990992.1) as well as
four additional strains were selected from a previously published
study [5] and sequenced twice using both MiSeq and Ion Torrent.
HiSeq was used in the original study for sequencing. All the strains
except for the reference strain were chosen from the same clade,
named IIa1i in the original study. The strains are not epidemi-
ologically related but have all been isolated from Danish Pigs and
are shown to be closely related in the original study. For S.
Typhimurium DT104 the reference strain NCTC 13348
(HF937208.1) and an additional three isolates from the same
outbreak [18] were sequenced twice on both MiSeq and Ion
Torrent.
Genomic DNA (gDNA) was purified from the isolates using the

Easy-DNA extraction kit (Invitrogen) and DNA concentrations
determined using the Qubit dsDNA BR Assay Kit (Invitrogen).
The isolates were sequenced twice on the MiSeq platform
(Illumina) and Ion Torrent PGM (Life Technologies).
For Ion Torrent the isolates were sequenced following the

manufacturer’s protocols for 200 bp gDNA fragment library
preparation (Ion Xpress Plus gDNA and Amplicon Library 96
Preparation), template preparation (Ion OneTouch System), and
sequencing (Ion PGM 200 Sequencing kit) using the 316 chip. For
MiSeq the isolates chromosomal DNA of the isolates was used to
create genomic libraries using the Nextera XT DNA sample
preparation kit (Illumina, cat. No. FC-131-1024) and sequenced
using v2, 26250 bp chemistry on the Illumina MiSeq platform
(Illumina, Inc., San Diego, CA).

Data analysis
The raw data was trimmed and cleaned for adapters using

AdapterRemoval v. 1.1 (https://code.google.com/p/
adapterremoval/) before any analysis was done.
The data were analyzed using an available and published

pipeline for SNP-calling and creation of phylogenetic trees [19], a
recently developed method based on nucleotide differences [18],

as well as a novel procedure for SNP-calling developed in this
study. All three methods requires a reference sequence, these has
been listed in Table 1. All the references applied in this study are
available as complete assemblies from GenBank.

Nucleotide Difference (ND) procedure (Novel). A previ-
ously published procedure [18] was used. In Brief, each read were
mapped to the reference genome. A base was called if Z= (X2Y)/
sqrt(X+Y) was greater than 1.96 corresponding to a p-value of
0.05. Here X is the number of reads X having the most common
nucleotide at that position, and Y the number of reads supporting
other nucleotides. It was further required that X.10*Y. The
number of nucleotide differences in positions called in all
sequences was counted, and a matrix with these counts was given
as input to an UPGMA algorithm implemented in the neighbor
program v. 3.69 (http://evolution.genetics.washington.edu/
phylip.html) in order to construct the tree.

SNP analysis (Novel). Reads were mapped to reference
sequences using BWA v. 0.7.2 [20]. The depth at each mapped
position was calculated using genomeCoverageBed, which is part
of BEDTools v. 2.16.2 [21]. Single nucleotide polymorphisms
(SNPs) were called using mpileup part of SAMTools v. 0.1.18 [22].
SNPs were filtered out if the depth at the SNP position was not at
least 10x or at least 10% of the average depth for the particular
genome mapping. The reason for applying a relative depth filter is
to set different thresholds for sequencing runs that yield very
different amounts of output data (total bases sequenced). SNPs
were filtered out if the mapping quality was below 25 or the SNP
quality was below 30. The quality scores were calculated by BWA
and SAMTools, respectively. The scores are phred-based but can
be converted to probabilistic scores, with the formula 10‘(2Q/10),
where Q is the respective quality score. The probabilistic scores
will represent the probability of a wrong alignment or an incorrect
SNP call, respectively. In each mapping, SNPs were filtered out if
they were called within the vicinity of 10 bp of another SNP
(pruning). A Z-score was calculated for each SNP as described
above for NDtree.
The depth requirements ensure that all positions considered are

covered by a minimum amount of reads. The SNP quality and the
Z-score requirements ensures that all positions considered are also
called with significant confidence with respect to the bases called at
each position.
All genome mappings were then compared and all positions

where SNPs was called in at least one mapping were validated in
all mappings. The validation includes both the depth check and
the Z-score check as for the SNP filtering. Any position that fails
validation is ignored in all mappings.
Maximum Likelihood trees were created using FastTree [23].
snpTree. Analysis was done using the method described by

Leekitcharoenphon et al. [19]. The primary difference between
the snpTree method and the novel SNP analysis is in the filtering
and validation of the SNP positions. Briefly, the snpTree method
calls SNPs using BWA [20], then the default behavior is to filter

Table 1. Reference Genomes.

Ref. genome Distance Size (bp) Accession No.

S. aureus CC398 close 2,872,582 AM990992.1

S. aureus ST228 distant 2,759,835 NC_020533.1

S. DT104 close 4,933,631 HF937208.1

S. Schwarzengrund distant 4,709,075 NC_011094.1

doi:10.1371/journal.pone.0104984.t001
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Table 2. Comparison of the novel SNP procedure, the Nucleotide Difference (ND) method and snpTree.

Method Percent of reference genome covered

S. Montevideo S. DT104 S. aureus

Distant ref. Distant ref. Close ref. Distant ref. Close ref.

snpTree 100.00 100.00 100.00 100.00 100.00

novel SNP 81.40 92.48 99.42 93.05 99.40

ND 34.48 88.60 95.68 63.44 88.00

Informative sites

snpTree 22068 26691 79 20324 699

novel SNP 18 (36) 49 66 107 252

ND 19 (33) 54 66 126 602

Average distance within clusters

snpTree 6353.0 8024.0 8.1 4271.0 69.0

novel SNP 0 (0) 1.0 1.5 1.0 2.0

ND 0 (0) 0.0 0.0 2.0 3.6

doi:10.1371/journal.pone.0104984.t002

Figure 1. Salmonella Montevideo phylogeny (complete dataset). Labels are colored according to isolate. The sequencing platforms applied
are appended to the end of each label. (A) Phylogeny inferred with novel SNP procedure; (B) Phylogeny inferred with the Nucleotide Difference (ND)
method.
doi:10.1371/journal.pone.0104984.g001

SNP Calling across Multiple NGS-Platforms

PLOS ONE | www.plosone.org 3 August 2014 | Volume 9 | Issue 8 | e104984



out SNPs with a depth less than 10 and SNPs found within 10 bps
of each other (pruning). An alignment of the SNPs are then
created by concatenating the SNPs. Positions where no SNPs are
found or where SNPs has been ignored are assumed to be identical
to the base in the reference sequence. A maximum likelihood tree
is created from the alignment.

Results

A comparison of the three different methods is given in Table 2
and Figure 1–4 for the different datasets. The original procedure
(snpTree) was un-able to cluster the same isolates correctly across
the different technologies whereas both of the novel methods gave
improved results.
snpTree does not ignore any positions and is potentially able to

consider 100% of the genome. The novel SNP procedure
considers between 81.40% and 99.42%. The ND method is more
conservative and considers between 34.48% and 95.68%. The
snpTree method was expected to have issues with the references
that were distantly related as also mentioned by the authors of this
method. This is also illustrated in Table 2 by the large amount of
informative SNPs that the method finds compared to the other
methods, when the references are distantly related to the analyzed
isolates. A plot of the number of positions that each isolate causes

to be ignored in the Montevideo analysis (see Figure S1) shows
very clearly that three isolates causes more than half of the ignored
positions. The three isolates were deemed of low quality, removed
from the analysis, and the methods were rerun. The numbers from
the rerun is presented in parentheses in Table 2.

Salmonella Montevideo
Each of the three methods was applied to just the MiSeq data

and compared to the SNP tree published by Allard et al. [17]
(Figures S2, S3, and S4). The novel SNP procedure infers a
phylogeny that agrees with the published one. The ND procedure
infers a tree that almost agrees with the published one, except that
the ‘‘clinical clade’’ is reversed with respect to the most recent
common forefathers. The snpTree method infers a phylogeny that
is very different from the published one and will therefore not be
discussed here (Figure S2).
Figure 1A and 1B presents the phylogeny that was inferred by

applying the entire Montevideo dataset to the novel SNP
procedure and the ND method, respectively. Compared to the
MiSeq only phylogeny it is observed that the phylogeny has lost a
lot of resolution, but in general keeps the same topology, as the
respective phylogenies inferred with the MiSeq data alone.

Figure 2. Salmonella Montevideo phylogeny (low quality sequences removed). Labels are colored according to isolate. The sequencing
platforms applied are appended to the end of each label. (A) Phylogeny inferred with novel SNP procedure; (B) Phylogeny inferred with the
Nucleotide Difference (ND) method.
doi:10.1371/journal.pone.0104984.g002
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Figure 3. Salmonella DT104 phylogeny. Labels are colored according to isolate. The sequencing platforms applied are appended to the end of
each label. If repetitive sequencing has been performed then the label has also been appended either ‘‘1’’ or ‘‘2’’. (A) Phylogeny inferred with snpTree;
(B) Phylogeny inferred with the novel SNP procedure; (C) Phylogeny inferred with the Nucleotide Difference (ND) method.
doi:10.1371/journal.pone.0104984.g003

Figure 4. Staphylococcus aureus phylogeny. Labels are colored according to isolate. The sequencing platforms applied are appended to the end
of each label. If repetitive sequencing has been performed then the label has also been appended either ‘‘1’’ or ‘‘2’’. (A) Phylogeny inferred with
snpTree; (B) Phylogeny inferred with the novel SNP procedure; (C) Phylogeny inferred with the Nucleotide Difference (ND) method.
doi:10.1371/journal.pone.0104984.g004
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Figure 2A and 2B presents the phylogeny that was inferred by
leaving out the three isolates with low quality sequence data. The
topology generally remains the same but much more resolution is
provided in these phylogenies. The increased resolution is
explained by the increase of informative sites, which are doubled
with the novel SNP procedure and also close to doubled with the
ND method.

Salmonella Typhimurium DT104
snpTree seems to have problems differentiating properly

between the sequence of the isolates that are closely related
(Figure 3A), even with a closely related reference. Applying a
distantly related reference a clear clustering of platforms and not
isolates is seen (Figure S5). The ND method and the novel SNP
procedure both cluster the isolates correctly (Figures 3C and 3B).
The two methods create two identical phylogenies regardless of
the distance to the reference used (see Figures S6 and S7 for
phylogenies inferred with a distant reference). The novel SNP
method finds between 1 and 1.5 SNPs on average between
identical isolates. The ND method finds none.

Staphylococcus aureus CC398
Even with a close reference snpTree is not able to cluster the

isolates 2008-60-970-1 and 2007-70-91-4-SPA correctly. These
two isolates are clearly clustered according to sequencing
platform and not their true relationship (Figure 4A), this
clustering into sequencing platform is very clear if the distant
reference is applied (Figure S8). The ND method and the novel
SNP procedure both cluster the isolates correctly (Figure 4B and
4C). The ND method again infers phylogenies that are identical
regardless of the distance to the reference. The novel SNP
procedure infers phylogenies that are almost identical. The
difference is with regard to the exact location of the node that
leads to the M34-B-1_11 cluster. It is interesting that the
phylogenies inferred with close references are so identical to the
ones inferred by the distant references, even though the amount
of informative sites increases so dramatically (see Table 2).
Phylogenies inferred with a distant reference are presented in
Figures S9 and S10.

Discussion

Infectious disease outbreaks often involve isolation of the
causative agent in multiple laboratories within a country or even
from multiple countries. Early detection of out-breaks thus,
often requires rapid comparison of data from different
laboratories. Next-generation sequencing shows great promises
to improve the routine characterization of infectious disease
agents in microbial laboratories and sequencing data are
attractive because they both provide high resolution as well as
a standardized data format (the DNA sequence) that may be
exchanged and compared between laboratories and over time.
A number of different sequencing technologies are however,
available and more are expected to become available in the
future. Thus, the problem with systematic biases in SNP calling
between platforms may be a problem especially when, as often
the cause in outbreak detection, it is necessary to identify
clusters within highly similar strains.
To our knowledge we have provided the first evaluation of

phylogenetic analysis done on bacterial isolates sequenced more
than once and across platforms. The main reason for the
success of the presented methods is in the validation of all the
sites, which are part of the phylogenetic analysis. If a position is
informative then that position must be called with confidence in

all strains, which are part of the analysis. This validation will be
very sensitive to low quality sequences. A single low quality
sequencing run can cause a lot of informative sites to be
ignored. However this would not cause wrong phylogenies but
most likely low resolution phylogenies and the analysis, will as
presented in this study clearly show which sequences to rerun or
leave out and another phylogenetic analysis can quickly be done
without the low quality sequences, since the mapping of read
data to the reference and most of the calculations has already
been done.
The presented procedures may not be perfect in identifying all

single SNPs and variable sites, but for routine epidemiological
typing of infectious disease agents this is less important than the
correct clustering. Further evaluation also under real-time
situations as done by Joensen et al. [24] are warranted, but if
validated the current or modified procedures may greatly enhance
our ability to compare data produced using different sequencing
technologies and also provide further comparability with future
technologies. The same or similar procedures might also be useful
for future large-scale phylogenetic studies on human and other
eukaryotic genomes.

Supporting Information

Figure S1 Ignored genome positions in novel SNP
procedure (Salmonella Montevideo dataset). Each cluster
of three columns represents the amount of genome locations that
are ignored due to the addition of the specific data. Black
represents MiSeq data, grey represents Ion Torrent data, and light
grey represents 454 data.
(PDF)

Figure S2 Salmonella Montevideo phylogeny inferred
by snpTree (MiSeq data only). The colors of the labels in the
figure correspond to the colors used in the main figures.
(PDF)

Figure S3 Salmonella Montevideo phylogeny inferred
by the novel SNP procedure (MiSeq data only). The colors
of the labels in the figure correspond to the colors used in the main
figures.
(PDF)

Figure S4 Salmonella Montevideo phylogeny inferred
by the Nucleotide Difference method (MiSeq data only).
The colors of the labels in the figure correspond to the colors used
in the main figures.
(PDF)

Figure S5 Salmonella DT104 phylogeny inferred with
snpTree (distant reference). Colors have been omitted from
this figure. The sequencing platforms applied are appended to the
end of each label. If repetitive sequencing has been performed
then the label has also been appended either ‘‘1’’ or ‘‘2’’.
(PDF)

Figure S6 Salmonella DT104 phylogeny inferred with
the novel SNP procedure (distant reference). Labels are
colored according to isolate. The sequencing platforms applied are
appended to the end of each label. If repetitive sequencing has
been performed then the label has also been appended either ‘‘1’’
or ‘‘2’’.
(PDF)

Figure S7 Salmonella DT104 phylogeny inferred with
the Nucleotide Difference method (distant reference).
Labels are colored according to isolate. The sequencing platforms
applied are appended to the end of each label. If repetitive
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sequencing has been performed then the label has also been
appended either ‘‘1’’ or ‘‘2’’.
(PDF)

Figure S8 Staphylococcus aureus phylogeny inferred
with snpTree (distant reference). Colors have been omitted
from this figure. The sequencing platforms applied are appended
to the end of each label. If repetitive sequencing has been
performed then the label has also been appended either ‘‘1’’ or
‘‘2’’.
(PDF)

Figure S9 Staphylococcus aureus phylogeny inferred
with the novel SNP procedure (distant reference). Labels
are colored according to isolate. The sequencing platforms applied
are appended to the end of each label. If repetitive sequencing has
been performed then the label has also been appended either ‘‘1’’
or ‘‘2’’.
(PDF)

Figure S10 Staphylococcus aureus phylogeny inferred
with the Nucleotide Difference method (distant refer-
ence). Labels are colored according to isolate. The sequencing
platforms applied are appended to the end of each label. If
repetitive sequencing has been performed then the label has also
been appended either ‘‘1’’ or ‘‘2’’.
(PDF)

Table S1 Dataset overview.
(XLSX)
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Introduction 

Whole genome sequencing (WGS) has become a realistic tool for real-time 

characterization of bacterial outbreaks and diagnostic microbiology, and is likely to 

become the standard procedure in the future [1]. WGS has in a number of recent 

studies been successfully applied for describing outbreaks and transmission events for 

several bacterial species including Escherichia coli (E. coli) [2,3]. In these 

retrospectively investigated cases there were available epidemiological data but in 

order for the technology to be used more routinely there is a need to establish criteria 

for when closely related strains should be considered clonally related.  

 

Escherichia coli can cause large and severe outbreaks [3,4]. The outbreaks cannot 

always be prevented, but their impact can be significantly reduced by rapid detection 

of the source(s). Sequencing technology has reached a level that allows for integration 

of the technology in real-time surveillance [5]. However, without incorporation of 

WGS at the front line in the offices of the medical doctors and epidemiologists, WGS 

will continue to remain a purely reflective research tool. It is essential that WGS, 

along with the proper bioinformatics tools are made available to the people working 

in direct contact with patients. 

 

If tools are to be developed that can alert the authorities to possible emerging 

outbreaks, then it is essential to distinguish as early as possible an “outbreak strain” 

from a “non-outbreak strain”. Traditionally pathogenic E. coli is typed based on one 

or a subset of the following: serotype, Multi Locus Sequence Type (MLST), 

phylotype and Pulse Field Gel Electrophoresis (PFGE). Except for PFGE, all of these 

typing techniques are easily applied in silico from WGS, although presently only 



!

!

proven for MLST [6]. Unfortunately only PFGE provides significant discriminatory 

power to distinguish closely related strains. Furthermore, none of these methods 

provides much phylogenetic information; hence they are poor candidates upon which 

to form the basis of automated outbreak detection. 

 

Phylogenies inferred from Single Nucleotide Polymorphism (SNP) have in numerous 

studies proven to be an effective tool to classify outbreaks of several different 

bacterial organisms, including E. coli [4,7,8]. However, a number of important issues 

remain to be solved to make it feasible for SNP analysis to be applied in routine 

investigations of outbreaks. The primary concern is that the analysis depends on a 

reference sequence, and only sequence that can be aligned to the reference will be part 

of the analysis. The analysis is therefore dependent on a high quality reference 

sequence. For most important pathogens, these high quality reference sequences do 

exist, but the references for SNP analysis need to be standardized, and different 

versions of the references needs to be tracked (versioned) in order to provide 

comparable results across different analysis. Even with good standardized reference 

sequences, different references may yield different SNP calls and therefore potentially 

different results. Most studies are therefore applying reference sequences that are very 

closely related to the isolates being analyzed.  

Another issue is SNP filtering. In most studies, SNPs are filtered out with different 

methods, and using different parameter settings. The filtering is in most cases done to 

filter out SNPs caused by sequencing errors and SNPs found in mobile genetic 

elements. This can be very useful but this process also needs to be standardized. 

SNP analysis has become the method of choice in outbreak studies and while the 

method is useful, there is a lack of alternatives and a lack of benchmark testing to 
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show if SNP analysis really is the best method. Researchers need to also focus on the 

ability of the method to be applied in large scale and high throughput environments. 

SNP analysis has the limitation that most of the implementations applied today will 

require an almost complete re-calculation if new strains are added to the analysis. 

 

We showed in a previous study that concatenated alignment of the core genes could 

also infer the expected phylogenies with significant resolution [9]. The method 

requires no reference genome, although it does require a core genome, which would 

also need to be standardized and versioned. 

 

At present time, almost every WGS outbreak study is published with a different SNP 

method. Studies are needed that evaluate the SNP method, in an environment where 

the method is static, but applied to a variety of outbreaks and also measure the effect 

of the reference and the consequences of choosing different references for the same 

outbreaks. Studies are needed to benchmark alternative methods against the SNP 

method in order to further develop methods that will be feasible for large scale typing. 

 

This study was conducted to evaluate different bioinformatics methodologies for 

analysis of WGS data and classify isolates as either outbreak or non-outbreak strains 

based on whole genome typing, using Escherichia coli as a case study. Using the 

sequences from 10 E. coli outbreaks in comparison to background strains we 

conducted SNP analysis, core gene analysis, average nucleotide identity (ANI) 

analysis, nucleotide difference (ND) analysis, and implemented a new method based 

on k-mers (words of size k). 
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Materials & Methods 

Statens Serum Institut (SSI) is responsible for surveillance of Escerichia coli 

outbreaks in Denmark and provided the majority of the isolates used in this study. 

DTU Food provided the remaining isolates. The isolates were sequenced on the 

Illumina GAIIx genome analyzer or MiSeq. 

A total of 46 strains were sequenced for this study; 25 of the strains were from seven 

different Escherichia coli outbreaks (See Table 1). Three of the 46 strains were not 

actual outbreak strains but sampled from the same individual over 3 years (referred to 

as the “personal” group/cluster in this study). It should be noted that the individual in 

question was not living in one location for the three-year period but lived in several 

countries. Hence the three samples have been taken in Tanzania, Egypt, and Syria. 

For each of the expected clusters/outbreaks, additional strains were chosen which 

were unrelated but similar to the outbreak strains, these are in this study referred to as 

the “sporadic” or “non-outbreak” strains. 

SSI has by using: epidemiological data, serotyping and PFGE defined all the 

outbreaks published with this study, except for the Edema disease outbreak defined by 

DTU Food.  

It is important to note that the sequence obtained from the strain c75-10 in the Salad 

outbreak is of low quality. The isolate has not been removed from the analysis 

because it is an important indicator of how robust the different methods are. 

The isolate c64-12 is in this study classified as part of the “Salad” outbreak, however 

the isolate was found 2 years after the actual outbreak (2012), but suspected by SSI to 

be clonal.!
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Table 1. Outbreak data. *[4]. **[3] 

 

Apart from the strains published with this study, strains from two other studies have 

also been included. 13 strains (+2 sporadic/historic) were included from the French 

O104:H4 outbreak that was connected to a larger German outbreak in 2011 [3]. 18 

strains were included from O157:H7 outbreaks occurring in the United States in 2006. 

The American O157:H7 strains have in this study been defined as two separate 

outbreaks named: “O157 taco” and “O157 spinach”. 

 

The raw data was trimmed and cleaned for adapters using AdapterRemoval v. 1.1 

(https://code.google.com/p/adapterremoval/). 

Two of the methods (SNP and ND) require reference genomes. The reference 

genomes were chosen to be either one of the outbreak strains or another closely 

related strain (See Table S1). All references were draft assemblies except the 

reference used for the outbreaks with serotype O157, where the complete sequence of 

the strain Sakai was employed (acc. nr. NC 002695.1). 

 

De novo assembly (draft assembly) 
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VelvetK (http://bioinformatics.net.au/software.velvetk.shtml) was applied to each set 

of cleaned and trimmed data to estimate the k parameter for the following Velvet 

assembly, which gives a k-mer coverage closest to 20X.  

VelvetOptimiser v. 2.2.5 (http://bioinformatics.net.au/software.velvetoptimiser.shtml) 

was used to test a range of k-parameters for each isolate and choose the optimal 

assembly. The range of k was set to the previously estimated k value +20 and -20. 

With a maximum of k=99 and a minimum of k=15. 

Velvet v. 1.2.07 [10] was used by VelvetOptimiser to do the actual de novo 

assemblies. 

 

SNP analysis 

Trimmed and cleaned reads were mapped to reference sequences using BWA 0.5.9 

[11]. The depth at each mapped position was calculated using genomeCoverageBed, 

which is part of BEDTools v. 2.16.2 [12]. Single Nucleotide Positions (SNPs) was 

called using mpileup part of SAMTools v. 0.1.18 [13]. SNPs were filtered out if the 

depth at the SNP position was not at least 10X or at least 10% of the average depth 

for the particular genome mapping. SNPs were filtered out if the mapping quality was 

below 25 or the SNP quality was below 30. In each mapping, SNPs are filtered out if 

they are called within the vicinity of 10 bp. of another SNP (pruning). A Z-score was 

calculated for each SNP as follows:  

Z = (x-y)/sqrt(x+y) 

Where x is the number of reads supporting the SNP in question and y is the number of 

reads supporting alternate base calls or the reference base. SNPs with a Z-score < 1.96 

(corresponding to a p-value of 0.05) was filtered out. 
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All genome mappings were then compared and all positions where SNPs was called 

in at least one mapping were validated in all mappings. The validation includes both 

the depth check and the z-score check as for the SNP filtering. Any position that fails 

validation is ignored in all mappings. 

Raw data from the American O157 study [4] was not used, the published contigs was 

applied instead. Nucmer was used to align the contigs to a reference and call SNPs. 

The “show-snps” (with options “-CIlrT”) application was used to retrieve the SNPs. 

Both of these applications are part of the software package MUMmer v. 3.23 [14]. 

The SNPs found was filtered using the previously described filters where applicable. 

Maximum Likelihood trees were created using FastTree [15].  

It should be noted that the genetic distance (SNP count) between a pair of isolates in 

the SNP analysis is different than for the distance used in the SNP cluster analysis. In 

the cluster analysis positions found not to be valid in all isolates are ignored, in the 

pair wise distance analysis only positions found not to be valid in the pair of isolates 

are ignored. 

The method has been published [16], implemented as a web server, and is available 

from: 

http://cge.cbs.dtu.dk/services/CSIPhylogeny/. 

 

Core gene analysis 

Prodigal v. 2.60 [17] was applied to each de novo assembly for gene prediction. A set 

of “soft-core genes” was retrieved from a previous study [9]. The soft-core genes was 

BLASTed [18] against the predicted genes of each genome. The genes found in all 

genomes were then aligned using MUSCLE v. 3.8.31 [19] and concatenated. 
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A BLAST hit was considered valid if the identity of the hit was at least 98% and the 

length of the alignment between the hit and the database gene was covering at least 

98%. Thresholds of 80% and 50% were also tested, but produced inferior trees 

compared to the final thresholds used (data not shown). 

DNADist (part of the PHYLIP package [20]) was used to calculate the genetic 

distances from the multiple alignments and FastMe [21] was used to calculate the 

final trees from the distance matrices. 

 

K-mer analysis 

Each isolate was assembled de novo. All possible k-mers of length 35 were found 

from the assemblies. The number of 35-mers shared between each pair of isolates was 

counted. 35-mers matching several positions in an isolate was only counted once. For 

each pair the genetic distance (kmer_dist) was calculated as: 

kmer_dist = 1 - ((s / t1) + (s / t2)) / 2 

Where “s” is the number of shared 35-mers between the two isolates and t1 and t2 are 

the total number of different 35-mers found in each of the two isolates. The distance 

thus represents the average percentage of 35-mers that are different between the two 

isolates. Trees where calculated from the genetic distances using FastME [21].  

K-mers between the lengths of 5 and 500 was considered (See Figure S1 before it was 

decided to use the length of 35. 

 

Nucleotide Difference (ND) analysis 

The reference genome was split into k-mers of length 17 and stored in a hash table. 

Each read with a length of at least 50 was split in to 17-mers overlapping by 16. K-

mers from the read and its reverse complement was mapped until an ungapped 
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alignment with a score of at least 50 was found using a match score of 1 and a 

mismatch score of -3. 

When all reads had been mapped, the significance of the base call at each position 

was evaluates by calculating the number of reads x having the most common 

nucleotide at that position, and the number of reads y supporting other nucleotides. A 

Z-score was calculated as:  

Z = (x-y)/sqrt(x+y) 

The value of 3.29 was used as a threshold for Z corresponding to a p-value of 0.001. 

It was further required that x>10*y. 

Each pair of sequences was compared and the number of nucleotide differences at all 

positions called in all of the strains to be compared was counted. A matrix with these 

numbers was given as input to an UPGMA algorithm implemented in the neighbor 

program (part of the PHYLIP package [20]) in order to construct the tree. 

The method has been published [22],implemented as a web server, and is available at: 

http://cge.cbs.dtu.dk/services/NDtree/. 

 

Average Nucleotide Identity (ANI) 

This method was suggested as an in silico method for DNA-DNA hybridization by 

Goris et al. [23].The method was implemented as described in the study. The method 

provides the percentage of similar DNA between two isolates. The results were 

reversed in order to get a percentage of dissimilarity. These percentages were then 

used as genetic distances and trees were created using FastME [21]. 
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Results 

Clustering 

Phylogenies were inferred using the 5 different methods described in the section 

Materials and Methods. Each expected outbreak cluster was investigated. A cluster 

was considered correct if the outbreak strains formed a monophyletic clade (only 

contained the outbreak strains and no other strains). All methods were able to cluster 

all the outbreaks correctly except for two of the outbreaks (see Table 2).  

The SNP method was able to cluster all the outbreaks correctly assuming the 

reference strain used was closely related (closely related reference sequences for each 

outbreak is specified in Table 2). If a distantly related reference strain were used, then 

the SNP method would still cluster most outbreaks correctly, except one, the “Edema” 

outbreak. The ANI method failed to produce correct clusters for the “Edema” and the 

“O157 spinach” outbreak. 

Table 2. Failed clustering. “+” equals successful clustering and “-“ equals failed clustering. 
Parentheses means only successful if a close reference was employed. Clustering results not indicated 
in this table were all successful. 

 

 

Genetic distance between outbreak and non-outbreak strains 

To assess the ability of the methods to differentiate between outbreak strains and non-

outbreak strains, the genetic distances computed by the methods between the strains 

are measured. For each group of outbreak isolates, the average distance between the 

strains within an outbreak is calculated. The maximum distance between any pair of 

outbreak strains are measured and the minimum distance from any outbreak strain to a 
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non-outbreak strain is found. The results for each of the methods are shown in Figure 

1. The specific numbers that make up Figure 1 can be found in Table S2. 

Only the SNP method produced genetic distances that made it possible to define a 

static threshold differentiating outbreak strains from non-outbreak strains in the 

dataset applied for this study (the area of possible thresholds are marked with a red 

horizontal bar in Figure 1). The limit of the lowest possible threshold is 496 SNPs and 

its defined by the Edema outbreak. The personal cluster will define the lower limit if 

only the averages are considered (461 SNPs). The limit of the upper threshold is 601 

SNPs and is defined by the American O157 outbreaks.  

The results of the ND method are very similar to the ones from the SNP method, 

except for the two American O157 outbreaks that comprises only assembled 

genomes. Ignoring the American O157 outbreaks the range of thresholds would be 

771-1065 nucleotide differences.  

The low quality “Salad” strain c75-10 is causing a large effect in the three methods: 

k-mer, core, and ANI. The maximum distance within the Salad outbreak is 

unexpectedly high, and is in all three methods caused by the c75-10 strain. 

The k-mer method generally finds larger variation within outbreaks than the other 

methods. A static threshold cannot be defined. Investigating each outbreak and the 

corresponding sporadic cases (nearest neighbors) shows that an individual threshold 

for each outbreak can be defined – a dynamic threshold, with the exception of the 

O157 spinach outbreak, which has a single isolate that causes a threshold to fail. This 

is also true for the ND method. 
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Figure 1. Genetic distance between outbreak and background. Green bars indicate variance found 
within each outbreak (dark=average, light=max). Blue bars indicate distance to nearest non-outbreak 
strain. Each blue bar reaching the top expands beyond view. The red bar (horizontal) indicates the 
clonal threshold for the SNP analysis. 
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The core gene method generally finds less variation between outbreak strains and 

non-outbreak strains. A dynamic threshold can be defined for this method, also for the 

O157 spinach outbreak, which caused difficulties for the k-mer method.  

Neither static nor a dynamic threshold can be set for the ANI method. This is not 

surprising due to the difficulties also experienced in the clustering analysis. 

 

Discussion 

In this study 5 different bioinformatics methods were applied to WGS of 77 strains 

including 10 different outbreaks/clusters, of which 25 strains from 7 outbreaks and 21 

sporadic strains were sequenced for this study. The genetic distances obtained from 

the different methods were measured with a focus on differentiating outbreak strains 

from non-outbreak strains in the future enabling this technology to be applied in 

further development of automated outbreak detection using WGS data. 

 

Except for the Personal strains, all outbreaks presented here lasted only a few months. 

No long lasting E. coli outbreaks was included because the majority of E. coli 

outbreaks, even though they can be quite large and have severe implications are 

relatively short. 

 

The current study does not have focus on phylogeny but the ability of the different 

methods to cluster isolates correctly. All the methods applied in this study were able 

to cluster most of the outbreaks correctly. Only two outbreaks were not clustered 

correctly by one of the methods, ANI (see Table 2). The SNP method did also fail to 

cluster the Edema outbreak correctly but only if a distant reference was applied. 
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In general, all methods except ANI managed to make a clear distinction between the 

different outbreaks and the sporadic/background strains in the study, with the 

exception of the O157 spinach outbreak (see Figure 1). O157:H7 does have 

(compared to other serotypes) an unusual homogenous population structure [4] and 

might have to be considered a special case, in clustering analysis.  

 

The most widely used method for analyzing outbreaks is SNP analysis and it has been 

applied in several studies including E. coli [2,3,5]. In previous studies a within 

outbreak variation of up to 74 SNPs has been observed [4]. In this study the SNP 

analysis suggest that E. coli strains with less than 500 SNP differences may be related 

to the same outbreak (Figure 1). The static threshold presented in Figure 1 is very 

specific for this particular dataset. It could be argued that the Personal cluster should 

be left out because it runs over 3 years and therefore is expected to contain more 

diversity than the other outbreaks that only runs over a couple of months. The Edema 

disease outbreak was also of longer duration and if these two clusters are taken out the 

threshold becomes 200 SNPs. The implication of leaving out these two outbreaks is 

even higher on the ND method (if the American O157 outbreaks are ignored), where 

the threshold drops from around 800 down to about 200 differences. Both the SNP 

and the ND method rely on a reference sequence. It is widely accepted that a close 

reference sequence is needed for SNP analysis, which is also confirmed by this study. 

It is hypothesized that using a reference to calculate genetic distances is likely to be 

the reason why these methods provide a larger differentiation between outbreak 

strains and non-outbreak strains. The number of SNPs or nucleotide differences found 

in an isolate using a distant reference is very large and each SNP or nucleotide 

difference is no longer representing a single evolutionary event. A phylogeny inferred 
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between distantly related strains is therefore less reliable, but this effect could explain 

why these methods are able to create more significant differentiations, even though 

another method might provide more correct genetic distances.  

It has previously been described by Touchon et al. [24] that even though E. coli has a 

very dynamic genome, it is only dynamic in certain hotspots and seems to retain a 

stable core, which gives it a clonal nature. It explains the rather low genetic distances 

found, using the core method, between outbreak strains and non-outbreak strains. 

From the results of the Salad outbreak the core method also seems less robust against 

poor sequencing. However, the robustness might be increased by a more sophisticated 

core gene method that have more focus on eliminating sequence errors.  

The k-mer method is also vulnerable to sequencing errors and in general seems to 

calculate higher genetic distances between outbreak strains than the other methods. It 

is believed that the explanation is how the k-mer method uses the entire pan-genome 

and not only the core genome sequence. Furthermore, a good method for sorting out 

sequencing errors has not yet been found for this method. 

The ND method seems to have results relatively comparable to the ones from the k-

mer method for the two American O157 outbreaks. These outbreaks causes much 

more variation within outbreaks than is seen for the outbreaks that comprises only raw 

read data. Less variation would be expected in the O157 outbreaks due to the lower 

variation seen in the SNP analysis. The ND method was initially developed to only 

handle raw read data, and the results suggests that further development of the 

assembled data part of the ND method might improve the method. However, it should 

be noted that the method was able to cluster the outbreaks correctly (See 

supplementary figure S4) 
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The ANI method was developed with focus on species differentiation and not inter-

species differentiation, which explains why it struggles with resolution.  

 

None of the methods applied in this study presented any major weaknesses. This 

confirms, as expected, that the SNP method is a very reliable method but also that 

feasible alternatives can be developed. The SNP method is undoubtedly the most 

mature of the methods presented and in this study also slightly superior to the other 

methods, regarding outbreak and non-outbreak differentiation. However, it is believed 

that both the ND method and the K-mer method can be implemented more effectively 

than a SNP analysis, both due to the programmatic approach but also due to the 

ability of these methods to apply new strains without recalculating all the genetic 

distances between all strains. 

In future large-scale environments both speed and comparability will be extremely 

important and SNP analysis might not be feasible. However, combining a crude fast 

method with a SNP analysis might provide the solution. Alternative methods need to 

be developed and further benchmarking studies is needed to ensure the best methods 

are applied. 
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Supplementary Material 

!
Figure S1: Evaluation of k-mer analysis with different values of k. Phylogenies was created based 
on k-mers for different values of k and the number of correct clusters was plotted. 

! !
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Figure S2: SNP tree. Maximum likelihood phylogeny created using reference strain “Oedem_94_dk” 
from the Edema outbreak. Each color represents a specific outbreak. Yellow: O104 outbreak. Green: 
Father+Son outbreak. Red: Salad outbreak. Blue: Borupgaard. Purple: O157 spinach outbreak. Grey: 
O157 taco outbreak. Light blue: O157. Brown: Sandwich outbreak. Pink: Edema outbreak. Green: 
Personal cluster. 

! !
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Figure S3: K-mer tree. FastME phylogeny inferred from k-mers. Each color represents a specific 
outbreak. Yellow: O104 outbreak. Green: Father+Son outbreak. Red: Salad outbreak. Blue: 
Borupgaard. Purple: O157 spinach outbreak. Grey: O157 taco outbreak. Light blue: O157. Brown: 
Sandwich outbreak. Pink: Edema outbreak. Green: Personal cluster. 
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Figure S4: Nucleotide Difference (ND) tree. UPGMA phylogeny created using reference strain “TY-
2482” from the O104 outbreak. Each color represents a specific outbreak. Yellow: O104 outbreak. 
Green: Father+Son outbreak. Red: Salad outbreak. Blue: Borupgaard. Purple: O157 spinach outbreak. 
Grey: O157 taco outbreak. Light blue: O157. Brown: Sandwich outbreak. Pink: Edema outbreak. 
Green: Personal cluster. 
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Figure S5: Core gene tree. Maximum likelihood phylogeny inferred from the soft-core genome. Each 
color represents a specific outbreak. Yellow: O104 outbreak. Green: Father+Son outbreak. Red: Salad 
outbreak. Blue: Borupgaard. Purple: O157 spinach outbreak. Grey: O157 taco outbreak. Light blue: 
O157. Brown: Sandwich outbreak. Pink: Edema outbreak. Green: Personal cluster. 
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Figure S6: Average Nucleotide Identity (ANI) tree. FastME phylogeny inferred from the average 
nucleotide differences found between all strain pairs. Each color represents a specific outbreak. Yellow: 
O104 outbreak. Green: Father+Son outbreak. Red: Salad outbreak. Blue: Borupgaard. Purple: O157 
spinach outbreak. Grey: O157 taco outbreak. Light blue: O157. Brown: Sandwich outbreak. Pink: 
Edema outbreak. Green: Personal cluster. 
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Table S1: Table of references used in this study. 

Cluster/Out
break 

Referenc
e strain Reference data source 

Edema 
Oedem_9
4_dk Current study 

Borupgaard C 608-06 Current study 
Salad C 74-10 Current study 
Personal C 501-10 Current study 
Father+Son C 521-01 Current study 
O157 C 8-04 Current study 
Sandwich C 39-12 Current study 

O104 TY-2482 

https://github.com/ehec-outbreak-crowdsourced/BGI-data-
analysis/blob/master/strains/TY2482/seqProject/BGI/assemblies
/BGI/Escherichia_coli_TY-2482.chromosome.20110616.fa.gz 

O157 taco 
O157:H7 
str. Sakai RefSeq: NC_002695.1 

O157 
spinach 

O157:H7 
str. Sakai RefSeq: NC_002695.1 

!
! !
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Table S2: Values for the histograms in Figure 1. 

Method 
Edema Borupgaard Salad 

Avg Max Min Avg Max Min Avg Max Min 
SNP 215 496 1146 25 46 11674 84 203 2026 
K-mer 0,0367 0,0447 0,0525 0,0132 0,0182 0,2341 0,0295 0,0565 0,0838 
ND 156 771 1143 3 5 8775 66 164 1065 
Core 0,E+00 0,E+00 4,E-05 5,E-05 1,E-04 2,E-04 0,E+00 0,E+00 6,E-03 
ANI 2 6 2 0,5 2 8 1,35 4 3 

          
          
Method 

O157 Sandwich O104 
Avg Max Min Avg Max Min Avg Max Min 

SNP 16 16 751 2 3 30489 6 12 695 
K-mer 0,0142 0,0142 0,0327 0,0093 0,0146 0,4118 0,0033 0,0053 0,0454 
ND 7 7 22270 2 3 30533 5 10 1459 
Core 9,E-07 6,E-06 2,E-05 5,E-06 1,E-05 7,E-05 3,E-05 4,E-05 3,E-03 
ANI 0,5 1 1 0,5 2 9 0 0 2 

          
          
Method 

Personal Father+Son 
   Avg Max Min Avg Max Min 
   SNP 380 461 19585 40 40 1562 
   K-mer 0,0274 0,0300 0,3204 0,0099 0,0099 0,0677 
   ND 374 417 24769 4 4 1883 
   Core 6,E-06 6,E-06 4,E-05 0,E+00 0,E+00 2,E-03 
   ANI 1,33 3 10 0 0 2 
   

          
          
Method 

O157 taco O157 spinach 
   Avg Max Min Avg Max Min 
   SNP 92 92 601 59 119 601 
   K-mer 0,0159 0,0159 0,0338 0,0253 0,0556 0,0327 
   ND 949 949 1419 1097 1994 1339 
   Core 8,E-06 4,E-05 6,E-05 6,E-06 6,E-06 6,E-05 
   ANI 0,5 1 2 1,04 6 1 
   !

! !



!

!

Table S3: Strain data sequenced for current study (2 pages). 

Outbreak Strain N50 Contigs Location 
Edema 1_oedem 98148 296 Denmark 
Edema 371_oedem 99476 287 Denmark 
Edema 94-696_oedem 110503 273 Denmark 
Edema oedemsyge-45 89727 321 Denmark 
Edema oedemsyge-84 97011 223 Iceland 

     Borupgaard C 596-06 73806 482 Denmark, Borupgaard 
Borupgaard C 597-06 75924 673 Denmark, Borupgaard 
Borupgaard C 598-06 60801 548 Denmark, Borupgaard 
Borupgaard C 608-06 147371 239 Denmark, Borupgaard 

     Salad C 72-10 88562 324 Denmark 
Salad C 73-10 91929 287 Denmark 
Salad C 74-10 103771 285 Denmark 
Salad C 75-10 28149 1046 Denmark 
Salad C 64-12 111799 354 Denmark 

     Personal C 415-10 59634 443 Tanzania 
Personal C 470-10 62291 363 Egypt 
Personal C 501-10 63864 315 Syria 

     Father+Son C 1077-01 100587 643 Denmark 
Father+Son C 521-01 110377 632 Denmark 

     O157 C 131-04 133118 516 Denmark 
O157 C 8-04 156872 403 Denmark 

     Sandwich C 23-12 250736 126 Denmark 
Sandwich C 27-12 214064 131 Denmark 
Sandwich C 39-12 250803 94 Denmark 
Sandwich C 40-12 250601 120 Denmark 

     sporadic C 60-12 109003 325 Denmark 
sporadic oedemsyge-186 96664 316 Unknown 
sporadic SW887/89 2.93 oedem 115337 221 Switzerland 
sporadic VR155 113445 386 Denmark, Hvidovre 
sporadic PK90 87000 370 Unknown 
sporadic B233 92282 320 China 
sporadic MS457 88700 549 Unknown 
sporadic C 48-12 73452 279 Denmark 
sporadic MS455 134190 229 Unknown 
sporadic MS301 175472 364 Unknown 
sporadic MS458 62062 428 Unknown 
sporadic L045 169603 305 China 
sporadic VR145 214324 360 Denmark, Hvidovre 
sporadic VR159 202859 129 Denmark, Hvidovre 
sporadic C 406-10 160258 595 Denmark 
sporadic C 45-09 177395 537 Unknown 
sporadic C 667-10 155704 451 Africa 
sporadic C 668-10 178336 526 Kenya 
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Source Date Serotype Phylotype MLST Virulence 
Pig 1994 O139 D ST-1 Edema disease 
Pig 1994 O139 D ST-1 Edema disease 
Pig 1994 O139 D ST-1 Edema disease 
Pig 1994 O139 D ST-1 Edema disease 
Pig 1994 O139 D ST-1 Edema disease 

      Human 2006 O92:H- A ST-1564 ETEC 
Human 2006 O92:H- A ST-1564 ETEC 
Human 2006 O92:H- A ST-1564 ETEC 
Human 2006 O153:H2 A ST-10 ETEC 

      Human 2010 O6:K15:H16 A ST-4 ETEC 
Human 2010 O6:K15:H16 A ST-4 ETEC 
Human 2010 O6:K15:H16 A ST-4 ETEC 
Human 2010 O6:K15:H16 A ST-4 ETEC 
Human 2012 O6:K15:H16 A ST-4 ETEC 

      Human 1997-2010 O117:K1:H7 B2 ST-504 VTokEPI 
Human 1997-2010 O117:K1:H7 B2 ST-504 VTokEPI 
Human 1997-2010 O117:K1:H7 B2 ST-504 VTokN 

      Human 2001 O146:H21 B1 ST-442 VTEC 
Human 2001 O146:H21 B1 ST-442 VTEC 

      Human 2004 O157:H- D ST-11 VTEC 
Human 2004 O157:H- D ST-11 VTEC 

      Human 2012 O169:H41 D ST-182 ETEC 
Human 2012 O169:H41 D ST-182 ETEC 
Human 2012 O169:H41 D ST-182 ETEC 
Human 2012 O169:H41 D ST-182 ETEC 

      Human 2012 O169:H41 B1 ST-1490 ETEC 
Pig Unknown O139 D ST-1 Edema disease 
Pig 1989 O139 D ST-1 Edema disease 
Human Unknown 

 
D* ST-69 Pyelonephritic 

Human Unknown 
 

A ST-10 
 Human Unknown 

 
A* ST-44 

 Human Unknown 
 

A ST-4 ETEC 
Human 2012 O6:K15:H16 A ST-4 ETEC 
Human Unknown 

 
B2 ST-15 ETEC 

Human Unknown 
 

B2* ST-73 Pyelonephritic 
Calf Unknown 

 
B2 ST-19 EPEC 

Human Unknown 
 

B2* ST-73 
 Human Unknown 

 
B2* ST-73 Cystitis 

Human Unknown 
 

B2* ST-73 Cystitis 
Human 2010 O146:H21 B1 ST-442 VTokEPI 
Human Unknown O146:H21 B1 ST-442 VTokEPI 
Human Unknown O146:H21 B1 ST-442 VTokEPI 
Human Unknown O146:H21 B1 ST-442 VTokN 
! !
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Table S4: Strain data from other studies (2 pages). 

Outbreak Strain Location Source Date Serotype 
O104 11-4404 France Human 2011 O104:H4 
O104 11-4522 France Human 2011 O104:H4 
O104 11-4623 France Human 2011 O104:H4 
O104 11-4632_C1 France, Bordeaux Human 2011 O104:H4 
O104 11-4632_C2 France, Bordeaux Human 2011 O104:H4 
O104 11-4632_C3 France, Bordeaux Human 2011 O104:H4 
O104 11-4632_C4 France, Bordeaux Human 2011 O104:H4 
O104 11-4632_C5 France, Bordeaux Human 2011 O104:H4 
O104 11-5536 France, Bordeaux Human 2011 O104:H4 
O104 11-5537 France, Bordeaux Human 2011 O104:H4 
O104 11-5538 France, Bordeaux Human 2011 O104:H4 
O104 11-3677 Germany Human 2011 O104:H4 
O104 11-3798 Germany Human 2011 O104:H4 
O104 C236-11 Denmark Human 2011 O104:H4 
O104 C227-11_v2 Denmark Human 18/05/11 O104:H4 

      O157 Taco EC4501 US Human Nov-06 O157:H7 
O157 Taco TW14588 US Lettuce 2006 O157:H7 

      O157 Spinach EC4486 US Human 2006 O157:H7 
O157 Spinach EC4401 US Human 2006 O157:H7 
O157 Spinach EC4205 US Bovine 

 
O157:H7 

O157 Spinach TW14359 US Human 
 

O157:H7 
O157 Spinach EC4084 US Human 

 
O157:H7 

O157 Spinach EC4127 US Human 
 

O157:H7 
O157 Spinach EC4191 US Spinach bag 

 
O157:H7 

O157 Spinach EC4076 US Human 
 

O157:H7 
O157 Spinach EC4113 US Spinach bag 

 
O157:H7 

O157 Spinach EC4042 US Human 
 

O157:H7 
O157 Spinach EC4045 US Spinach bag 

 
O157:H7 

O157 Spinach EC4206 US Bovine 
 

O157:H7 
O157 Spinach EC4196 US Bovine 

 
O157:H7 

O157 Spinach EC4115 US Human 
 

O157:H7 
O157 Spinach EC4192 US Human 

 
O157:H7 

O157 Spinach EC4009 US Human 
 

O157:H7 

      sporadic 04-8351 France Human 2004 O104:H4 
sporadic 09-7901 France Human 2009 O104:H4 
!
! !
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Phylotype MLST Virulence 
B1 ST-678 EAHEC 
B1 ST-678 EAHEC 
B1 ST-678 EAHEC 
B1 ST-678 EAHEC 
B1 Unknown EAHEC 
B1 Unknown EAHEC 
B1 Unknown EAHEC 
B1 ST-678 EAHEC 
B1 Unknown EAHEC 
B1 Unknown EAHEC 
B1 ST-678 EAHEC 
B1 ST-678 EAHEC 
B1 ST-678 EAHEC 
B1 Unknown EAHEC 
B1 ST-678 EAHEC 

   E ST-11 EHEC 
E ST-11 EHEC 

   E ST-11 EHEC 
E ST-11 EHEC 
E ST-11 EHEC 
E ST-11 EHEC 
E ST-11 EHEC 
E ST-11 EHEC 
E ST-11 EHEC 
E ST-11 EHEC 
E ST-11 EHEC 
E ST-11 EHEC 
E ST-11 EHEC 
E ST-11 EHEC 
E ST-11 EHEC 
E ST-11 EHEC 
E ST-11* EHEC 
E ST-11 EHEC 

   B1 ST-678 EAHEC 
B1 ST-678 EAHEC 
!


