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Summary 

The long history of application to the dairy industry has established Lactococcus lactis (L. lactis), the 

lactic acid bacterium, as one of the most extensively characterized low GC organisms. The relatively 

simple metabolism of L. lactis has also made it an attractive target for metabolic engineering for the 

production of non-food related chemicals. Moreover, the status of being the first genetically modified 

organism to deliver immunoproteins alive to human has brought L. lactis considerable fame in 

biomedical research. 

Beside the exceptional industrial relevance of L. lactis, it is also an important subject for basic 

research in cellular metabolism because L. lactis exhibits an interesting metabolic shift. Under 

anaerobic conditions, on fast fermentable sugars, L. lactis produces lactate as the primary product, 

known as homolactic fermentation but on slowly fermentable sugars, significant amounts of formate, 

acetate and ethanol are formed, known as mixed-acid fermentation. This shift is termed the mixed-

acid shift. This type of shift between a low-yield and a high-yield metabolism has drawn a lot of 

research focus and has similarly been observed in other bacteria, yeast and even tumor cells.  

Efforts have been put to find out the mechanism regulating the mixed-acid shift as well as to answer 

questions such as why L. lactis prefers such a switch. Until now, some pieces of evidence have been 

reported and several factors and models have been proposed as the keys to regulating the shift, 

including the expression level of certain genes in glycolysis and fermentation pathways, the levels of 

the cofactors NADH, NAD
+
, ATP and ADP, the balance between catabolism and anabolism, etc. 

In this project, we studied the mixed-acid fermentation of L. lactis by (i) examining the roles of the 

enzymes in the mixed-acid fermentation pathway under different growth conditions; (ii) testing the 

predicted effect of the cofactors NADH, NAD
+
  on the mixed-acid shift proposed in previous studies; 

(iii) looking into the connection between amino acid metabolism and the mixed-acid shift; and (iv) 

contrasting the difference regarding the mixed-acid shift between two widely studied laboratory 

strains of L. lactis, MG1363 that shifts significantly and IL1403 that does not shift. 

We have measured the promoter activities of several mixed-acid genes which suggested that the 

regulatory elements governing the transcriptional regulation of the mixed-acid genes in MG1363 and 

IL1403 were different. This led us to performing experimental control analysis of the role of pyruvate 

formate-lyase (PFL) in MG1363 and IL1403. The expression of PFL in MG1363 appeared to be 

optimized for growth rate when growing on maltose whereas overexpressing PFL in IL1403 was 

probably detrimental. 
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The two homologous acetate kinases in MG1363 were also chacterized with respect to the 

transcription and enzyme activities. The isozymes were found to have complementary physiological 

roles that became important in acetate-producing or acetate-assimilating conditions respectively. 

The proposed roles of NADH and NAD
+
 on the mixed-acid shift were tested by perturbation via 

introducing activities of 2,3-butanediol dehydrogenase and supplying extracellular acetoin as an 

oxidizing agent. The additional NAD
+
- regenerating activities allowed a faster growth of MG1363 on 

maltose by shifting ethanol production into acetate production and also stimulated formate and acetate 

production in IL1403. 

Dependance of the mixed-acid fermentation of MG1363 on amino acid availability was observed and 

the impact of individual amino acids could differ significantly. Meanwhile, a computational method 

for combining metabolic flux analysis and elementary mode analysis was developed and applied to 

analyse a case of amino acid metabolism of L. lactis. 
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Dansk resumé 

De mange års anvendelse af mælkesyrebakterien Lactococcus lactis (L. lactis) indenfor 

mejeriindustrien, har været medvirkende til at L. lactis er blevet en af de mest velkarakteriserede 

bakterier. Denne Gram positive bakterie, som har et lavt GC indhold, har en relativt simpel 

metabolisme og er let at modificere genetisk. Dette har gjort den til et attraktivt mål for ”metabolic 

engineering”, bl.a. med henblik på produktion af non-food relaterede kemikalier. Derudover har den 

status som den første genetisk modificerede organisme der i levende form er blevet anvendt til at 

levere immunproteiner til mennesker, og L. lactis er velkendt inden for biomedicinsk forskning. 

Ud over de vigtige roller som er blevet nævnt ovenfor, er L. lactis det også vigtig for grundforskning i 

cellulær metabolisme, bl.a. fordi L. lactis udviser et interessant metabolisk skift, som bevirker en 

ændring i produktdannelse. Let fermenterbare sukre giver anledning til hovedsagelig laktat 

(homolactic), medens sukre der omsættes langsommere giver anledning til andre organiske syrer og 

ethanol i tillæg til laktat (mixed-acid). Denne form for skift mellem en metabolisme med et lavt og et 

højt udbytte er der blevet forsket meget i, ikke kun i L. lactis men også i andre bakterier, gær og endda 

cancerceller. 

Indtil nu har mange beviser blevet rapporteret, og flere faktorer og modeller er blevet foreslået som 

nøglerne til regulering af skift, herunder udtrykket af visse gener i glycolyse og fermentering veje, 

niveauet for cofaktorer NADH, NAD
+
, ATP og ADP, balancen mellem katabolisme og anabolisme, 

etc. 

I dette projekt, vi studerede blandet syre fermentering af L. lactis ved (i) at undersøge de roller 

enzymer i blandet syre gæring vej under forskellige vækstbetingelser; (ii) testning af forudsagte 

virkning af cofaktorer NADH, NAD
+
 på blandede syre skift foreslået i tidligere undersøgelser; (iii) at 

se på sammenhængen mellem aminosyre metabolisme og det blandede syre skift; og (iv) 

kontrasterende forskellen med hensyn til blandet syre skift mellem to vidt studerede 

laboratoriestammer, L. lactis subsp. cremoris MG1363, der skifter betydeligt og L. lactis subsp. lactis 

IL1403, der ikke skifter. 

Vi har målt promotoraktiviteter i flere blandet syre gener, som antydede, at de regulatoriske elementen 

for transkriptionel regulering af det blandede syre gener i MG1363 og IL1403 var anderledes. Dette 

førte os til at udføre eksperimentel kontrol analyse af den rolle, pyruvat format lyase (PFL) i MG1363 

og IL1403. Ekspressionen af PFL i MG1363 syntes at være optimeret til vækst, når de vokser på 

maltose henviser overekspression PFL i IL1403 var sandsynligvis skadelige. 
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De to homologe acetat kinaser i MG1363 blev også chacterized med hensyn til transkription og 

enzymaktiviteter. De isozymer viste sig at have komplementære fysiologiske roller, som fik betydning 

i acetat-producerende eller acetat-assimilere betingelser hhv. 

De foreslåede roller af NADH og NAD
+
 på blandet syre skift blev testet ved perturbation via indføre 

aktiviteter af 2,3-butandiol dehydrogenase og leverer ekstracellulære acetoin som et oxidationsmiddel. 

De yderligere NAD
+
-regenererende aktiviteter have en hurtigere vækst i MG1363 på maltose ved at 

flytte ethanolproduktion i acetat produktion og også stimuleret formiat og acetat produktion i IL1403. 

Afhængighed af det blandede syre gæring af MG1363 på aminosyre tilgængelighed blev observeret 

og virkningen af individuelle aminosyrer kan afvige væsentligt. I mellemtiden var en 

beregningsmetode til at kombinere metabolisk flux analyse og elementær tilstand analyse udviklet og 

anvendt på metabolismen af L. lactis. 
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Outline of the thesis 
 

The thesis comprises seven chapters and three appendices. 

Chapter 1 introduces the background of this study. Beginning with a general review of the industrial 

relevance, characteristics and available tools for research and engineering of lactic acid bacteria, the 

focus then turns to the metabolism of L. lactis, especially the regulation of the glycolytic flux and the 

shift from homolactic to mixed-acid fermentation. The research objectives and strategies are defined 

at the end of the chapter. 

Chapter 2 includes the growth characterization of the two widely studied laboratory strains, MG1363 

and IL1403 as well as the transcriptional activity of the enzymes in the mixed-acid fermentation 

pathways in the two strains.  

Chapter 3 reports the findings of the modulation of the expression of pyruvate formate-lyase and the 

control analysis of it in MG1363.  

Chapter 4 presents the characterization of two genes encoding acetate kinases in MG1363 with 

respect to the transcription structure, enzyme kinetics and their physiological roles. 

Chapter 5 describes the study of the effect of perturbing NADH/NAD
+
 for MG1363 and IL1403 

growing on maltose or glucose respectively. 

Chapter 6 briefly summarizes some results of a bachelor project initiated by this project regarding the 

effect of amino acid availability on the mixed-acid shift and at the same time reports some 

observations from a computational study in which a new method to analyse flux distributions by 

elementary modes was proposed. The derivation, validation and application of the method were 

presented in detail in the publication reprinted in Appendix A. 

Chapter 7 concludes the results of the entire project and discusses some future directions. 

Supplementary information for Chapter 4 and Chapter 5 are attached in Appendix B and Appendix C 

respectively. 
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Chapter 1. Background 

 Lactic acid bacteria 1.1
At the beginning of the twentieth century, the concept of lactic acid bacteria (LAB) gradually emerged 

to describe a group of bacteria with similarities in morphology, metabolism and physiology that 

produces primarily lactic acid during fermentation of carbohydrates and whose first prominent role 

was recognized in milk fermentation [1]. LAB are generally Gram-positive, non-sporulating, non-

respiring, nonmotile, low-GC, in the shape of  rods or cocci [2, 3]. Mostly under the order 

Lactobacillales, LAB include genera Aerococcus, Carnobacterium, Enterococcus, Lactobacillus, 

Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, Vagococcus, 

Weissella, etc. [4, 5]. Figure 1.1 shows the evolutionary relationship between different genera of LAB 

[5].  

 

Figure 1.1. Schematic phylogenetic tree of LAB. 

Reprinted from [5] with permission. 

The habitats of LAB range from plants, milk, meat and other different foods, to the mammalian 

intestine and month [1]. LAB also have diverse relationships with human, such as starter cultures in 

food fermentation [6], probiotics in human gut [7] and pathogens causing fatal diseases [8]. The 

ubiquitous presence of well-adapted LAB in different environments which still maintain central 

similarity, as well as their intimate relationship with human make them an extremely important 

subject in both basic and applied research in microbiology. 
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 Industrial relevance of lactic acid bacteria 1.2

1.2.1 Starter cultures 

LAB have been employed in the production of a wide variety of fermented food products. The ability 

to affect texture, flavour and prolonging shelf-life of the fermented product in combination with many 

years of safe use has led to the establishment of many LAB as workhorses within food fermentation. 

For instance, Lactococcus lactis (L. lactis) is famous for its role in producing dairy products including 

cheese, butter and sour cream [9]. When producing different types of cheese, other LAB species are 

present in the starter cultures used, e.g. Lactobacillus species, Streptococcus thermohilus, 

Leuconostoc mesenteroides and they all tend to have an effect on flavour and texture [10]. Flavour 

compounds of exceptional importance to cheese include various aldehydes, alcohols, carboxylic acids 

and esters, in particular those derived from methionine phenylalanine, threonine and the branched-

chain amino acids (reviewed in [10, 11]). Lactobacillus delbrueckii (Lb. delbrueckii) subsp. 

bulgaricus and Streptococcus thermophilus are the essential bacteria in yogurt cultures [12]. Some 

Lactococcus, Lactobacillus, Pediococcus and Enterococcus species can be used in the preservation of 

fermented meats, fish, vegetables, soy sauce, wine etc. due to their bacteriocin production in addition 

to the acidification of the food (reviewed in [13–15]). Both of the effects can inhibit the growth of 

pathogenic bacteria and help LAB to dominate the microflora of food.  

1.2.2 Probiotics 

In addition to their essential roles in food fermentations, some LAB including some Lactobacillus, 

Enterococcus and Bifidobacterium species can also act as probiotics which exert extra health benefits 

more than the inherent nutrition [16]. They are naturally present in the human gut and together with 

other bacterial species form the so-called ‘microbiome’. They can survive in the acidic environment 

of the stomach and colonize the large intestine where they produce antioxidants that scavenge free 

radicals, antimicrobial compounds that inhibit the growth of intestinal and gastric pathogens and in 

addition occupy the intestinal surface and prevent other bacteria from invading the body [7]. For 

instance, Lb. acidophilus produces compounds called lactocidin, acidolin and acidophilin with a broad 

spectrum activity that targets both Gram-positive and negative bacteria [1]. Reuterin produced by Lb. 

reuteri has been reported to inhibit yeast, fungi, protozoa and bacteria including Salmonella, 

Clostridium, Staphylococcus, Listeria, etc. [1]. A number of LAB species have even been tested as 

live carriers of oral vaccine because of their safe status and mimicry of natural infection [17]. For 

example, recombinant L. lactis expressing tetanus toxin fragment C has been tested to successfully 

induce immune response when orally administered [18]. 

1.2.3 Cell factories 

While the GRAS status of LAB establish their important position in food industry, the relatively 

simple carbon metabolism of LAB further makes them attractive targets for metabolic engineering for 
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production of food ingredients, nutraceuticals and even as cell factories for non-food related 

chemicals (reviewed in [19, 20]). By all means, the most natural product of all LAB is lactic acid. 

About 90% of the 80 000 tonnes of lactic acid produced worldwide were by LAB in year 2000 for 

application to food, pharmaceutical, leather and textile industries and for producing base chemicals 

and polylactic acid, an important precursor of biodegradable plastic [21]. The worldwide demand for 

lactic acid has increased to 130 000 – 150 000 tons in 2007 and 259 000 tons in 2012 [250]. Other 

compounds, for example, alanine, acetaldehyde, low-calorie sugars, vitamins, certain plant 

metabolites and polysaccharides can be produced by L. lactis and some Lactobacillus species 

(reviewed in [6, 20]). Streptococcus thermophilus, Lb. planetarium, Lb. acidophilus and Enterococcus 

faecalis have also been applied to reduce anti-nutritional compounds such as excessive sugars and 

amines [6]. LAB have also become popular hosts for overproduction of recombinant proteins, and this 

is largely due to available food-grade controlled gene expression systems, among which the most 

popular is the nisin controlled gene expression system [22]. For production of biofuels, L. lactis has 

been engineered to produce ethanol with a high yield by introducing genes from Zymomonas mobilis 

[23]. Production of butanol has been achieved in Lb. brevis by introducing the butanol pathway in 

Clostridium acetobutylicum [24]. 2,3-butanediol widely used as feedstock can be produced 

concomitant with a low-calorie sugar mannitol in L. lactis by cofactor engineering [25]. There have 

been many review articles on the metabolic engineering of LAB. Interested readers are referred to [19, 

20, 26, 27]. 

 Some characteristics of lactic acid bacteria 1.3
The exceptional relevance of LAB to food industry, human health and as microbial cell factories calls 

forth tremendous efforts to study their genetics, molecular biology, metabolism and biochemistry in 

order to optimize fermentation yield, to increase the health benefits of products, to better engineer 

LAB for production of other chemicals, as well as to learn the interactions with other bacterial 

communities in gut and the host. In this section, some of the biological knowledge on LAB is 

reviewed. 

1.3.1 Genomics 

Genome sequences 

The genome of a laboratory strain L. lactis subsp. lactis IL1403 was the first completely sequenced 

genome of LAB and was published in 2001 [28]. Since then, more and more LAB have been genome-

sequenced. Until 2009, there were 31 complete genome sequences of LAB [29]. Thanks to the 

popularization of next generation sequencing, up to September 2014, search in the NCBI database 

showed that there are 232 species containing thousands of strains under the order Lactobacillales with 

complete genome sequences. Almost all of them are considered as members of LAB. It is a dramatic 

increase and highlights the growing attention received by LAB from the scientific community as well. 
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The typical size of the genome of LAB ranges from 1.7 Mbp to 3.4 Mbp with the number of genes 

lying between 1,500 to 3,300 and GC content between 35% and 50% [30]. 

Reductive genomes 

From evolutionary genomic analysis, LAB shows a reductive genomic evolution [29, 30]. It has been 

estimated that the common ancestor of Lactobacillales had lost 600 to 1,200 genes but gained less 

than 100 genes since the divergence from class Bacilli [31]. The reduction in genome size was 

probably due to adaptation to environments with rich nutrient availability [29, 32], for instance, from 

plant to milk, which has recently been elegantly demonstrated by subjecting L. lactis isolated from 

plant to adaptive evolution in milk [33]. Another example is the smaller genome sizes and lower GC 

content of Lactobacillus species found in vaginal cavity among all LAB which was suggested to be a 

result of vaginal adaptation [30, 34].  

Pseudogenes 

The genomic reduction is also evidenced by the pervasive presence of pseudogenes (genes that have 

lost their functions during the course of evolution), which in LAB generally are more frequent than in 

other bacteria [4, 29]. This in general has been compensated by enrichment for genes encoding 

transporters for amino acids, sugars, ions, peptides, etc. to take up the nutrients required for growth 

from the rich enviroments instead of synthesizing them de novo [29, 30]. 

Mobile genetic elements 

Plasmids and other mobile genetic elements are also important factors that have shaped the evolution 

of LAB [30], by facilitating horizontal gene transfer. This has enabled many LAB to utilize lactose, 

galactose, oligo-peptide and has also provided them with various phage resistance mechanism, etc. 

(reviewed in [29, 35]). For example, the megaplasmid in a Lb. salivarius strain contains genes for 

bacteriocin production and bile salt hydrolase which make the strain probiotic [36]. Plasmids 

responsible for traits critical for dairy fermentation were also found in a dairy L. lactis strain [37] but 

not present in plant isolates [30]. 

1.3.2 Metabolism 

Fermentation of carbohydrates 

LAB do not have an electron transport chain and thus are unable to perform oxidative phosphorylation 

for ATP synthesis. Instead, LAB rely on substrate-level phosphorylation to generate energy from 

sugars. Sugars are taken up by the phosphoenolpyruvate (PEP)-dependent phosphotransferase system 

(PTS), a common sugar transport system of bacteria in which extracellular sugar is directly 

phosphorylated to become intracellular sugar phosphate by receiving the phosphate group from PEP 

[38]. PTS is also the main system for carbon catabolite repression, a major way of regulating 

carbohydrate metabolism in bacteria, which is discussed in a later subsection. An alternative way of 
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sugar transport is uptake by sugar-specific permeases. The ability to utilize different sugars by 

different species of LAB is reviewed in [39] in great detail. Usually, over 95% of sugar is converted 

into lactic acid by LAB [20]. Generically, there are two fermentation pathways for this in LAB [5]. 

Glycolysis 

The first is glycolysis which is the typical Embden-Meyerhof-Parnas (EMP) pathway in which one 

mole of glucose is oxidized to form two moles of pyruvate concomitant with two moles of ADP 

phosphorylated into two moles of ATP (Figure 1.2). Lactate dehydrogenase (LDH) then reduces the 

two moles of pyruvate into two moles of lactate, balancing the redox. Other sugars such as galactose 

can also be metabolized through glycolysis by conversion into glucose 6-phosphate (G6P) through the 

Leloir pathway or conversion into triosephosphate through the tagatose 6-phosphate pathway (Figure 

1.2) [5]. This pathway has sometimes been called homofermentative pathway in the literature. 

 

Figure 1.2. Fermentation pathways in lactic acid bacteria.  

(A) Homofermentative pathway including tagatose 6-phosphate pathway and Lelior pathway for galactose uptake and 

mixed-acid fermentation. (B) Heterofermentative pathways. PEP, phosphoenolpyruvate; GAP, glyceraldehyde 3-phosphate; 

DHAP, dihydroxyacetone phosphate. Lumped reactions are in dotted lines. Fermentation end products are highlighted. 

Mixed-acid fermentation and flavour compound production 

Under certain environmental conditions, the pyruvate formed in the homofermentative pathway is not 

totally converted to lactate, but goes into the other two branches. The first branch is the formation of 

acetyl-CoA by pyruvate-formate lyase or pyruvate dehydrogenase, followed by acetate and ethanol 

production [40, 41]. When a significant amount of these end products is produced in addition to 

lactate during fermentation, it is called ‘mixed-acid fermentation’. This is also the main subject of 

study in this thesis which is discussed in section 1.5.3. The second is the conversion of pyruvate into 
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α-acetolactate, followed by diacetyl, acetoin and 2,3-butanediol production which are important 

flavour compounds in dairy industry [5]. 

Phosphoketolase pathway 

The second fermentation pathway is the phosphoketolase pathway  (Figure 1.2) [1, 5]. In this pathway, 

glucose 6-phosphate or pentose enters pentose phosphate pathway rather than EMP pathway. 

Xylulose 5-phosphate is then converted by phosphoketolase into glyceraldehyde 3-phosphate (GAP) 

entering glycolysis, and acetyl phosphate from which acetate or ethanol is produced [1, 5, 41]. This 

pathway has also been called heterofermentative/ heterolactic pathway in the literature. 

The fermentation type is an important characteristic of LAB. For instance, Leuconostoc, Oenococcus, 

Weissella, Lb. brevis, Lb. buchneri, Lb. fermentum, and Lb. reuteri are obligatory heterolactic;  Lb. 

acidophilus, Lb. delbrueckii, Lb. helveticus and Lb. salivarius cannot catabolize pentose and are 

obligatory homolactic; many other LAB are facultatively heterolactic [5, 42].  

Carbon catabolite repression 

Most of the bacteria including LAB are known to have the ability to selectively consume carbon 

sources for fastest immediate growth by the carbon catabolite repression (CCR) system (reviewed in 

[43, 44]). The most classical example must be the diauxic growth of Escherichia coli in the presence 

of both glucose and lactose discovered by Monod [45]. In Firmicutes, which consists of many low-GC 

Gram-positive bacteria including LAB and Bacillus, CCR is exerted through the concerted effort of 

the histidine protein (HPr), which is one of the component proteins of PTS and the global regulator 

called catabolite control protein (CcpA) [46].  

When a sugar allowing fast growth such as glucose is present, the glycolytic flux is relatively high 

and so are the levels of ATP and fructose 1,6-bisphosphate (FBP). This activates the HPr 

kinase/phosphorylase which phosphorylates HPr at Ser46 (HPr-Ser-P). HPr-Ser-P on the one hand 

triggers inducer exclusion which inhibits the activities of permeases of other sugars by allosteric 

regulation and on the other hand forms a complex with CcpA which serves as a global transcriptional 

regulator binding to cre sites on DNA to exert transcriptional regulation [46]. In the absence of 

glucose or when the levels of glycolytic intermediates are low, HPr is mostly not Ser46-

phosphorylated for catabolization of carbon sources. In particular, in B. subtilis, induction of specifc 

catabolic operons by glycerol kinase and other substrate-specific regulators containing PTS-regulatory 

domains (PRDs) is prevented by the low level of HPr(His-P) in the presence of glucose. The 

mechanism is visualized in Figure 1.3 (reprinted from [43] with permission).  
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Figure 1.3. Carbon catabolite repression in Firmicutes including lactic acid bacteria.  

EI, enzyme I of PTS; EII, enzyme II of PTS; HPr, histidine protein; HPrK, HPr kinase/phosphorylase; P, phosphate; CcpA, 

catabolite control protein; Glu, glucose; Glu-6-P, glucose 6-phosphate; FBP, fructose 1,6-bisphosphate; PRD, PTS-

regulatory domain; GlpK, glycerol kinase. Reprinted from [43] with permission.  

Nutritional auxotrophy 

As discussed in section 1.3.1, LAB have evolved reductively to adapt to nutritionally rich 

environments. Many of the lost genes encode enzymes that are involved in biosynthetic pathways. 

LAB are thus in general auxotrophic for many nutrients such as some amino acids and vitamins. 

There is however not a clear pattern of the auxotrophy depending on species. Some strains of L. lactis, 

Lb. plantarum, Lb. casei, Lb. helveticus were tested for the amino acid requirements for growth and it 

was found that even different strains under the same species can have different amino acid 

requirements [47]. Recent results from comparative genomics have shown that, for instance, the 

families of Lactobacillaceae and Leuconostocaceae lost the genes for synthesizing serine and glycine; 

Pediococcus pentosaceus, Oenococcus oeni and some Lb. species lost the genes for arginine and 

aromatic amino acid biosynthesis; some genes for biosynthesis of fatty acid were not found in Lb. 

gasseri and Lb. johnsonii [4]. Most of these results, however, have not yet been confirmed by 

physiological characterization. A lot of effort is required to characterize the different nutritional 

requirements of LAB. 

Proteolytic system 

To adapt to nutritionally rich environments, the loss of ability to synthesize nutrients necessary for 

growth usually comes along with gain of ability to take up nutrients from environments quickly [29, 

30]. The proteolytic ability of LAB, especially those adapted to the dairy environment, is a very 

important trait for LAB to prevail. LAB can express cell-envelope proteinases to break down 

extracellular casein, the protein of largest fraction in milk, into peptides primarily ranging from 4 to 
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10 residues which are then taken up by LAB with specific transport systems followed by further 

hydrolysis by peptidases into single amino acids [48]. The characterized proteinases, peptide transport 

systems and peptidases have been extensively reviewed (e.g. [48–50]). 

1.3.3 Stress tolerance 

LAB encounter various stressful conditions when used in food processing, and stress tolerance is 

important to consider if a consistent product quality is to be obtained. The quality of the final products 

may not be assured if the culture dies too early or produces different compounds under stress 

condition. There are several types of stress, including acid, oxidative, osmotic, heat, cold and 

starvation stress [51]. Tolerance to these stresses is also an important phenotype that distinguishes 

different species of LAB. Examples include: Streptococcus is unable to grow at 10 ˚C; Enterococcus 

is able to grow at 45 ˚C but most other species are unable; Aerococcus, Enterococcus and 

Tetrageonococcus are able to grow under significant osmotic stress (6.5% sodium chloride, and up to 

18% for Enterococcus) or at pH as high as 9.6; Aerococcus and Streptococcus are unable to grow at 

pH 4.4 [5]. It should be noted that sometimes the tolerance can differ from strain to strain and 

exceptions can exist. The species-specific phenotypes under various stress conditions of many LAB 

are reviewed in [39] in great detail. The response to stress and its mechanism in LAB are extensively 

reviewed in [51]. 

 Tools for studying lactic acid bacteria 1.4
The advance in science is deeply influenced by the technology available to study it. It is exceptionally 

conspicuous in the course of development of biological science in the last century. Since the 

discovery of the molecular model of DNA by Watson and Crick and the later proposed central dogma 

of molecular biology by Crick in the 1950s, much of the biological research has turned the focus to 

biomolecules and their interactions. Many molecular tools have been developed to manipulate cells. 

The different ‘–omics’ techniques developed in the last two decades also gave birth to the systems 

biology paradigm which studies biology at a system level. A lot of bioinformatics and computational 

tools have thus been developed for this purpose. The study of LAB, as an important branch of 

microbiology, has undergone the same transformation. In this section, the molecular tools, 

computational models and tools for systems biology developed for or applied to LAB are briefly 

reviewed. 

1.4.1 Molecular tools 

Different genetic tools, with applications within strain optimization or basic research, have been 

developed for LAB. Beside the general tools designed for DNA manipulation, there are two important 

tools specifically for modulating gene expression, namely inducible promoters for controlled gene 

expression and synthetic promoter libraries. Many of the tools were first engineered for L. lactis and 

later applied to other LAB. 
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Controlled gene expression systems 

The most influential controlled gene expression system invented for LAB must be the nisin controlled 

gene expression (NICE) system [22, 52]. In this system, the histidine-protein kinase NisK acts as a 

sensor which autophosphorylates in the presence of nisin, a broad spectrum bacteriocin, and the 

phosphate group is transferred to the response regulator NisR which then activates the specific 

promoter which is originally responsible for initiating the transcription of the gene cluster for nisin 

biosynthesis in the nisin-producing L. lactis strain NZ9700 [53]. There are a number of advantages of 

the NICE system. First, nisin is known to be safe so the overexpression of recombinant proteins by 

this system can be considered food-grade [22]. Second, it has a high sensitivity in the sense that only a 

tiny amount of nisin is required for induction (0.1 – 5 ng/ml) which normally does not cause growth 

inhibition to other microorganisms in a starter culture during fermentation [22, 54]. Third, the induced 

expression level is linearly correlated with the level of inducer, namely nisin, in a dynamic range 

which can be more than 1,000-fold [53, 55]. This property enables the study of hierarchical flux 

control by the inductively expressed enzyme, for instance, how the pyruvate distribution is controlled 

by the activity of NADH oxidase in L. lactis [56], the conversion of L. lactis from homolactic to 

homoalanine fermentation [57], high-level production of diacetyl [58]. The NICE system has been 

applied in other LAB such as Streptococci and Enterococci (reviewed in [22]). 

Later another similar system using another bacteriocin sakacin as inducer was developed for Lb. sakei 

and Lb. plantarum [59–61]. There are other attempts to develop other expression systems, e.g. 

expression controlled by zinc availability in L. lactis [62]. The controlled gene expression systems 

naturally existing in or developed for LAB have been reviewed in [54, 63, 64]. 

Synthetic promoter libraries 

A synthetic promoter library (SPL) is a set of promoters with the consensus sequences (e.g. -10 

element and -35 element for bacteria) fixed and sequence of spacers in between randomized (reviewed 

in [65–67]). Such a library of promoters, essentially equivalent to saturation mutagenesis, has been 

shown to be capable of modulating gene expression in a dynamic range of up to thousand-fold [68, 

69]. Traditional approaches usually either knock out a gene or overexpress a gene by a strong 

promoter. In comparison, SPL results in a continuous range of activity which allows the optimization 

of the desired metabolic phenotype as well as the estimation of flux control coefficient in the theory of 

metabolic control which requires only a slight perturbation from the original level of enzyme activity 

[65–67, 69]. 

Several strategies for practical construction of a collection of strains with a SPL have been proposed 

later [70]. One strategy is a single integration of a plasmid with a truncated part of the gene of interest 

following a SPL inserted into the plasmid. A marker for selection will reside in the resultant strains in 

this case. This approach has been applied to study glycolytic flux control in L. lactis [71–73]. Another 
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approach is to remove the marker and the rest of the plasmid by a double-crossover event but then 

there should be a homologous region upstream of the native promoter inserted prior to the SPL in the 

plasmid. These two methods are suitable for modulating the promoter strength of a natively existing 

gene. A third way is to make use of the site specific integration system to directly introduce a 

complete gene of interest following an SPL into the chromosome. For example, a site-specific 

integration system requiring a resolvase-like integrase derived from the temperate lactococcal 

bacteriophage TP901-1 [74–76] has been used together with SPLs in a number of studies on 

glycolytic flux control in L. lactis (e.g. [77, 78]). A fourth way is to express the gene of interest by a 

SPL on a replicating plasmid directly. It has been applied to study, e.g. the dependence of glycolytic 

flux on ATP/ADP level in E. coli and L. lactis [79–81]. The method of SPL has also been used in 

other LAB such as Lb. plantarum [82]. 

Other genetic tools 

In addition to inducible controlled gene expression systems and the method of synthetic promoter 

libraries, other basic genetic tools for DNA manipulation are also indispensable for studying LAB. 

DNA modifications by homologous recombination 

In L. lactis, several plasmids have been created for insertion, deletion or mutation of chromosomal 

DNA by homologous recombination. An earlier one is pINT1 which is non-replicable and was 

derived from the plasmid pWV01 isolated from L. lactis subsp. cremoris Wg2 [83] by removing the 

repA gene [84]. Another plasmid system pGhost also derived from pWV01 is replication-

thermosensitive [85, 86]. The property that the plasmid is replicable below 35˚C but not above eases 

the requirement of high transformation frequency by uncoupling the transformation step and the 

recombination step but the higher temperature required for selection can meanwhile pose other 

disadvantages to the bacteria [87]. Later the pORI series was developed to make use of the two 

systems [87, 88]. Another plasmid, pCS1966 derived from the pBluescript [89], was made to 

manipulate chromosomal DNA [90]. It makes use of the gene oroP encoding an orotate transporter as 

a counterselection tool by adding 5-fluoroorotate, a toxic analogue of orotate. pSEUDO, a derivative 

of pCS1966, was then designed for chromosomal integration into a pseudo gene in L. lactis [91]. The 

similar idea of adding the gene upp encoding uracil phosphoribosyltransferase to the pORI vector for 

counterselection has also been applied to Lb. acidophilus [92, 93]. Systems for integration by 

homologous recombination in other LAB include, for example, integration into a number of LAB 

species with the transposon Tn916 on chromosomes [94], other thermosensitive plasmids in 

Streptococcus thermophilus [95], Lb. helveticus [96], Enterococcus faecalis [97] (reviewed in [98]). 

DNA insertion by site-specific integration 

Site-specific integration is another popular tool for introducing a single copy of gene into the 

chromosome. An obvious example is the system derived from the temperate lactococcal 
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bacteriophage TP901-1 in L. lactis mentioned above [74]. Cre-lox-based system, which has been used 

in many organisms, has recently been used to develop a multiple-gene-deletion system in Lb. 

plantarum [99]. Recently, based on these two systems, a new system for repetitive, marker-free, site-

specific integration has even been developed [100]. In fact, similar site-specific integration systems 

originating from temperate bacteriophage naturally exist in many LAB such as Lactobacillus [101, 

102] and Streptococcus thermophilus [103]. Other examples include the pTRK system developed for 

Lb. acidophilus and Lb. gasseri adapted from the pORI system [104]. 

Random mutagenesis 

Transposition-based mutagenesis is also an effective method for both targeted and random DNA 

disruption. While targeted mutagenesis aims to study the effect of disrupting a specific gene which 

can also be achieved by the aforementioned chromosomal integration, random mutagenesis is an 

elegant method to match genotype to an observed phenotype. Building a genomic library for random 

mutagenesis based on homologous recombination is a feasible way, e.g. [105], but transposons and 

insertion sequences are particular convenient tools for this purpose. For instance, an efficient system 

using lactococcal ISS1 concomitant with pGhost has been developed for L. lactis [106] and applied to 

discover regulators of the operon of cystathionine lyase and cysteine synthase [107], as well as to 

identify a gene important for protein secretion [108]. Transposase IS1223 and its target Pjunc sequence 

have been used for a random mutagenic system in Lb. casei [109] and finding critical genes for the 

growth of Lb. pentosus in olive brine [110]. Systems for insertional mutagenesis were reviewed in 

[98]. Commonly used mobile and other genetic elements among LAB can be found in [35]. 

It should be noted that there are molecular tools for LAB other than the aforementioned, e.g. the 

ssDNA recombineering that has become very popular recently [111]. Some commonly used LAB 

strains for molecular cloning and their characteristics have been summarized in [35].  

1.4.2 Tools and computation models for systems biology  

Different -omics and high-throughput experimental techniques have been applied to the research on 

LAB. They are able to generate data which give a holistic view of cells. Several transcriptional 

regulatory networks, genome-scale metabolic networks of LAB have been reconstructed based on 

these data. Meanwhile, some refined kinetic models of LAB incorporating enzyme kinetics and 

enzyme assay data were also built as bottom-up approaches to study cellular metabolism. 

Transcriptional regulatory networks 

Transcriptional regulatory networks (TRNs) are networks that describe the interactions between genes 

and transcription factors (TFs). It is able to reveal changes at transcriptional level in response to a 

stimulus. The whole set of genes and operon regulated by a particular TF is called a regulon. The 

regulon of a given TF can be found experimentally by first comparing the transcriptomes of the wild-
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type strain and the TF-knockout strain under a condition in which the TF is expressed. The binding of 

the TF to the upstream region of a differentially expressed gene can then be confirmed by other assays. 

Many of the known regulons in LAB were characterized by this method. A more direct but more 

expensive method is to combine chromatin immunoprecipitation (ChIP) and transcriptomic 

techniques which target DNA bound to the TF only (ChIP-chip or ChIP-seq). A general review on the 

construction of TRNs can be found in [112]. 

Many of the regulons of TFs that are common in many LAB have been characterized, such as CcpA 

for global catabolite repression [113, 114], CodY for amino acid metabolism [115–118], CopR for 

copper homeostasis [119, 120], FabT for fatty acid biosynthesis [121] and many others (e.g. [122–

124]). Many evidences of genes regulated by TFs were also reviewed by transcriptomic profiling of 

the same strain in different growth conditions, e.g. changing growth rate [125, 126] , changing 

temperature [127].  

Based on the huge amount of experimental data, several attempts have been made to construct 

regulatory networks for LAB recently. Regulatory network of a Lb. plantarum strain has been 

reconstructed based on correlation of gene expression in more than 70 experimental conditions and 

the binding motifs predicted from it [128]. Although it was not a TRN, it clustered genes into different 

transcription units that were co-expressed. A TRN for L. lactis growing in milk has been 

reconstructed by time-resolved transcriptomic analysis as well [129]. Since the proposal of the 

comparative genomic approach for reconstructing TRNs which is a very powerful tool to make use of 

genome sequences and biological knowledge of closely related species [130], it has been applied to 

reconstruct TRNs for 30 LAB strains with available genome sequences in a single study [131]. The 

results are available on RegPrecise which is a database of both manually curated and automatically 

propagated regulons with detailed description and interactive graphics [132]. The approach has later 

been applied for the reconstruction of a TRN of Enterococcus faecalis [120]. In this study, sub-

networks of the TRN induced by varying copper levels were identified and the authors showed that 

the TRN of Enterococcus faecalis can be refigured to maintain copper homeostasis under genetic 

perturbation. 

Genome-scale metabolic networks 

Thanks to popularization of whole-genome sequencing technologies, genome-scale metabolic 

networks (GSMNs) of a cell containing all the metabolic reactions catalysed by genes with known 

functions that are present in the genome can be reconstructed. Roughly speaking, the reconstruction 

involves an iterative procedure, starting from a drafted list of reactions, to reconcile known 

experimental data with computational feasibility of the generated model. A detailed guide for a high-

quality reconstruction can be found in [133]. A huge and expanding computational toolbox for 

GSMNs, the so-called constraint-based reconstruction and analysis (COBRA) approach, has also been 
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developed (reviewed in [134, 135]). It depends on the quasi-steady-state assumption of metabolism so 

that the kinetic details can be neglected and fluxes can be estimated by solving linear constraints. 

Among the many methods, flux balance analysis (FBA) is one of the most important techniques to 

predict optimal flux distributions [136]. GSMNs which represent the metabolic capability reflected by 

the genome can have several useful functions in systems biology. A very crucial one is the ‘context’ 

provided by GSMNs to understand the content of –omics data. Integrating –omics data (e.g. genome, 

transcriptome, proteome, metabolome) into GSMNs offers a way to link those data to the metabolic 

phenotype (reviewed in [137]). As the embodiment of genotype-phenotype relations, GSMNs can 

guide metabolic engineering by suggesting strategies of gene perturbation (reviewed in [138]) and 

even predict evolution (reviewed in [139]).  

In LAB, the application of GSMNs is becoming more and more popular, too. Since the reconstruction 

of the first GSMN among LAB (L. lactis subsp. lactis IL1403) in 2005 for studying aerobic and 

anaerobic growth [140], models have been constructed for several species of LAB. They include Lb. 

plantarum for studying growth on complex media [141]; Streptococcus thermophilus for comparing 

the amino acid auxotrophy and the capability to produce volatiles with other LAB models  [142]; Lb. 

reuteri to look into the metabolic mechanism of probiotic features [143]; an updated model of L. lactis 

IL1403 for increasing the production of recombinant proteins using dynamic FBA [144]; and L. lactis 

subsp. cremoris MG1363 for analysing the flavour-forming ability [145] (reviewed in [146]). As a 

good example to follow, the practical reconstruction of Lb. plantarum’s model has been described in 

detail [147]. It is believed that ‘metagenome-scale’ models of LAB would be the next step in response 

to metagenomics to push forward the frontiers of the study on microbial communities such as gut 

microbiota [146]. 

Kinetic models 

As opposed to GSMNs, kinetic modelling is a bottom-up approach which includes only a limited 

number (usually dozens) of reactions of interest but the kinetics of each reaction is provided. The 

change in metabolite concentrations depends on fluxes of reactions which in turn depend on 

metabolite concentrations. This forms a dynamical system which can simulate system response to 

dynamic changes and well-established techniques are available for system analysis. Kinetic models 

however usually suffer from the lack of kinetic parameters which can sometimes be unidentifiable 

even through data fitting. 

For LAB, many attempts have been made to model the kinetics of L. lactis’s glycolysis because of its 

intriguing regulation. Kinetics of individual enzymes, in particular those involving the conversion of 

global cofactors NADH/NAD
+
 and ATP/ADP have been studied and modelled because of their high 

relevance to the regulation of glycolytic flux, including lactate dehydrogenase (LDH) [148, 149], 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) [149], pyruvate kinase (PYK) [150, 151], 
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alcohol dehydrogenase [149], acetate kinase [152] etc. The first kinetic model that gathered different 

enzyme kinetic data for L. lactis’s glycolysis was constructed to analyse the effect of different 

metabolic engineering strategies on acetoin and diacetyl formation [153]. It has also been used to 

simulate glucose run-out experiments [154] and later adapted to incorporate the effect of pH level 

[155]. Recently kinetic models for L. lactis and Streptococcus pyogenes taking extracellular 

phosphate concentration into considerations have been built and successfully described the different 

characteristics of the two species [156]. The model of Streptococcus pyogenes has later been shown to 

possess the characteristic of glycolytic oscillation [157].  

Another type of models was constructed by assigning a generic rate equation to each reaction and 

obtaining parameters by fitting time-series data, such as a rational function of substrate and product 

concentrations [158], the generalized mass action [159] and its special case S-system [160]. They are 

quite capable of capturing the kinetic features but usually do not lead to mechanistic insights.  

For these two types of kinetic models, many of the data of metabolite concentrations used for fitting 

were generated from nuclear magnatic resonance (NMR) applied to live cells consuming labelled 

substrates (e.g. [158, 161–163]. Detailed reviews on modelling LAB can be found in [146, 164] 

Metabolic control analysis 

Metabolic control analysis (MCA) aims to study how steady-state fluxes change in response to small 

changes in enzyme activities [165]. One application is the identification of targets for drugs [166] and 

metabolic engineering [167]. The flux control coefficient (FCC) is one of the central objects in MCA 

defined by the rate of fractional change of a steady-state flux with respect to the (infinitesimal) 

fractional change of an enzyme activity. It can be computed given a kinetic model by perturbing the 

Vmax value of an enzyme or determined experimentally by modulating the expression level of an 

enzyme using methods like synthetic promoter libraries described in section 1.4.1. It has been widely 

employed to study the glycolysis of L. lactis which is reviewed and discussed later in section 1.5.1. 

The kinetic model mentioned previously which analysed the engineering strategies for increasing the 

production of acetoin and diacetyl actually used MCA for prediction [153]. A method combining 

MCA and kinetic modelling has also been proposed to predict flux distributions from the proteome in 

L. lactis [168]. 

 Lactococcus lactis 1.5
L. lactis is a species of LAB in the family of streptococcaceae. It is in the shape of cocci and 

mesophilic with maximum growth rate at 30˚C and pH 7.0. L. lactis can be isolated from dairy 

environments or non-dairy environments such as plants [169].  

There are two subspecies under L. lactis, namely subsp. lactis and subsp. cremoris. The subspecies 

were originally differentiated by phenotypic differences which include the ability of subsp. lactis to 
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consume arginine, to grow at higher temperatures or higher salt concentrations [170]. There is one 

biovar in subsp. lactis which can utilize citrate, namely subsp. lactis biovar diacetylactis[170, 171]. 

Two main genome homology groups were also found by nucleotide sequence comparison. They do, 

however, not perfectly match the two phenotypic subspecies [172]. An obvious example is the two 

most widely studied L. lactis laboratory strains, IL1403 and MG1363. IL1403 was derived from L. 

lactis subsp. lactis biovar diacetylactis CNRZ157 (or IL594) by curing the citrate plasmid [171]. It 

has a lactis genotype and a lactis phenotype. In contrast, MG1363, a plamid-free derivative of the 

dairy strain NCDO712 [173], was considered to have a cremoris genotype but a lactis phenotype. 

As one may notice from the review of LAB in the previous sections, among all LAB, L. lactis is one 

of the most studied species and has become a model organism of the group. Much pioneering research 

on LAB was first conducted in L. lactis. One of the reasons is its extreme industrial importance. L. 

lactis is involved in the fermentation of a wide range of dairy products [170], primarily soft and hard 

cheeses. It can also be engineered to become a cell factory for chemicals of different categories, 

including recombinant protein [174], therapeutic proteins, DNA and vaccine antigens [175], flavour 

ingredients [19], nutraceuticals [6] etc. 

Another reason for the huge curiosity aroused by L. lactis is its theoretical importance in cellular 

metabolism because it exhibits very significant metabolic shift from homolactic fermentation to 

mixed-acid fermentation as sugar concentration decreases, termed the mixed-acid shift or switch [40]. 

The control and regulation of the glycolytic flux is also a related and interesting object of study 

because of its intrinsic theoretical value [164] as well as the potential application to industrial 

production by increasing the glycolytic flux. In this section, the glycolysis and pyruvate metabolism 

which includes the well-known shift between fermentation modes in L. lactis and the regulation of 

fluxes in these pathways are reviewed. 

1.5.1 Glycolysis 

The glycolysis of L. lactis comprises the typical EMP pathway with different carbohydrates entering 

at different points. This subsection describes the uptake of glucose and maltose in L. lactis which are 

used extensively in our study. The transcriptional regulation of glycolytic enzymes is also briefly 

reviewed. The roles of glycolytic enzymes and metabolic regulation in determining glycolytic flux are 

reviewed in the next subsection.  

Sugar transport 

Sugars enter cells of L. lactis by either the PEP-dependent PTSs described in section 1.3.2 or sugar-

specific permeases. For glucose uptake, there are two distinct PTSs, mannose PTS and cellobiose PTS, 

and a proton-motive force dependent permease in L. lactis and the kinetic properties of these transport 

systems in MG1363 have been characterized recently [176]. Mannose PTS has a much higher affinity 
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of micro-molar than the permease of milli-molar. PTSs should be responsible for the majority of the 

glucose uptake especially for cells starved for sugar for a period of time [176]. Many other 

monosaccharides like galactose can be transported into L. lactis similarly and enter glycolysis via G6P 

or GAP [177].  

For the disaccharide maltose, the pathway for its uptake and entry into glycolysis is shown in Figure 

1.4. Maltose is taken up into L. lactis cells by an ABC transporter ATP-binding protein [178, 179]. 

Intracellular maltose is split by maltose phosphorylase (MP) into one glucose and one β-glucose 1-

phosphate which is then converted into glucose 6-phosphate by β-phosphoglucomutase (β-PGM) [180, 

181]. Through this and the EMP pathway, one maltose is converted into four pyruvate with the 

formation of four ATP and four NADH from four ADP and four NAD
+
. A gene, predicted to encode 

for an α-glucosidase (or called maltase) which hydrolyzes one unit of maltose into two units of 

glucose, exists in the genome of some L. lactis strains, such as MG1363 [182, 183]. The physiological 

significance of the gene product, however, has not yet been demonstrated. 

 

Figure 1.4. Pathway for maltose uptake in L. lactis.  

The gene for α-glucosidase is only predicted and the function has not been confirmed. 

Transcriptional regulation 

Glycolytic enzymes are in general highly expressed to sustain the huge glycolytic flux in L. lactis. A 

recent study suggested that about 20% of total soluble protein is glycolytic enzymes [184]. Their 

genes are in general located close to the origin of replication for higher expression [177]. 

Transcriptional regulation of the expression of glycolytic genes in L. lactis primarily lies in the carbon 

catabolite repression (CCR) as described in 1.3.2 which has been verified experimentally in L. lactis 

[185]. The HPr protein, at high levels of FBP and ATP which reflect high glycolytic flux, is 

phosphorylated and then forms a complex with CcpA acting as a global regulator binding to the cre 

sites on chromosome. The consensus well-conserved in Gram-positive bacteria for cre binding site is 

TGNNANCGNTNNCA which is roughly palindromic with the central CG base always present [186]. 

A study on CcpA regulon in MG1363 proposed the consensus WGWAARCGYTWWMA which is 

specific for L. lactis [113].  
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The binding of CcpA to cre sites can lead to either activation or repression, depending on the position 

relative to promoters as in the case of Bacillus [187]. When a cre site is upstream of, inside, or 

downstream of the promoter of a gene, transcription is activated, repressed, or aborted accordingly 

[177]. Results also indicated that the interaction between CcpA and the transcription machinery may 

be dependent on the helix side of CcpA binding because strongest repression was observed for cre 

sites that were consecutively separated by around 10.5 bp, equal to a full helical turn of double-

stranded DNA [113]. The expression of a number of glycolytic enzymes was found to be up-regulated 

by CcpA, including PFK, PYK and LDH (the members of the las operon) [188], phosphoglucose 

isomerase (PGI), GAPDH, enolase [186].  

1.5.2 Control of the glycolytic flux 

In the intracellular environment, assuming constant environmental factors, such as pH, temperature, 

viscosity etc., the reaction rate of an enzyme depends on concentrations of the enzyme, substrates, 

products and other effectors modulating the activity. Reaction rates would in turn change metabolite 

concentrations, forming a dynamical system. The metabolic flux of a pathway is the overall 

conversion rate of metabolites by the pathway resulting from the dynamical interactions between all 

metabolic enzymes and metabolites. The aforementioned factors controlling flux can be divided into 

two levels. The first level is the enzyme level, which accounts for changes in fluxes caused by 

changes in gene expression level. It is sometimes called hierarchical regulation in the literature. The 

second level is the metabolic level referring to changes in fluxes which are not caused by altered gene 

expression but by changes in metabolite concentrations and the inherent kinetic properties of enzymes 

such as maximum velocity and substrate affinity. It is called metabolic regulation. Here the distinction 

between ‘control’ and ‘regulation’ suggested in [164] is worth mentioned. The statement that an 

enzyme has ‘control’ on a flux should refer to the phenomenon that change in the enzyme level leads 

to change in the flux but not the direct regulatory mechanism. ‘Regulation’ should refer to the exact 

mechanism causing the change. These two terms have occasionally been used interchangeably though.  

Control by individual enzyme levels 

Control of fluxes by individual enzymes can be quantified by FCCs in MCA (which is defined by the 

rate of fractional change of a steady-state flux with respect to the fractional change of an enzyme 

activity). Finding out the so-called ‘rate-limiting’ step or an enzyme with high flux control that can 

lead to increase in glycolytic flux in L. lactis can have direct industrial relevance, e.g. speeding up the 

production. An earlier study trying to inhibit the activity of GAPDH by the specific inhibitor 

iodoacetate indicated that GAPDH had a high FCC of about 0.9 on glycolytic flux in non-growing 

cells of L. lactis subsp. cremoris Wg2 [189]. Similar results were obtained in another strain 

NCDO2118 with GAPDH having a FCC equal to 0.7 [190]. Later, the control of glycolytic flux by 
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glycolytic enzymes has been extensively studied by Jensen’s group by experimental estimation of 

FCCs in the laboratory strains L. lactis IL1403 and MG1363. The results are summarized in Table 1.1.  

Table 1.1. Summary of experimentally determined FCCs. 

Enzyme FCC at wild-type level Min. fraction of wild-

type enzyme level for 

maximal glycolytic flux 

Definite 

expression level 

for optimality* 

Ref. 

growth rate glycolytic flux lactate flux formate flux 

MG1363 

LDH ≈ 0 ≈ 0 ≈ 0 -1.45 ~ -1.27 < 59% No [191] 

TPI ≈ 0 ≈ 0 ≈ 0 ≈ -0.25 < 40% No [72] 

GAPDH ≈ 0 ≈ 0 ≈ 0 ≈ 0 < 59% No [78] 

PFK ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 100% Slightly [77, 192] 

PYK ≈ 0 ≈ 0 ≈ 0 0.9 ~ 1.1 ≈ 100% Yes [77] 

IL1403 

TPI ≈ 0 ≈ 0 ≈ 0 ≈ 0 < 75% No [72] 

PGM ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 100% Yes [73] 

ENO ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 100% Yes [71] 

*‘Definite expression level for optimality’ refers to a unique maximum of growth rate and glycolytic flux at the wild-type 

enzyme level. See Figure 1.5 for illustration. LDH, lactate dehydrogenase; TPI, triosephosphate isomerase; GAPDH, 

glyceraldehyde 3-phosphate dehydrogenase; PFK, phosphofructokinase; PYK, pyruvate kinase; PGM, phosphoglycerate 

mutase; ENO, enolase. 

Interestingly, usually each individual enzyme appears to have no control on growth rate and glycolytic 

flux at the wild-type enzyme level, including LDH [191], GAPDH [78], phosphofructokinase (PFK), 

PYK [77] and triosephosphate isomerase (TPI) [72] for MG1363; TPI, enolase [71] and 

phosphoglycerate mutase (PGM) [73] for IL1403. Among these enzymes, some are present in the 

wild type in significant excess for attaining maximum glycolytic flux, such as LDH, TPI and GAPDH 

whereas some enzymes appear to be optimally expressed in the wild type for maximum glycolytic 

flux, such as PFK, PYK, PGM and ENO. This means that when the level of any of the latter set of 

enzymes is perturbed slightly, the growth rate and glycolytic flux do decrease no matter for over- or 

under-expression. This property of maximum growth rate and glycolytic flux in the wild type also 

leads to a zero FCC at the wild-type level. Figure 1.5 illustrates the two different scenarios leading to 

zero FCCs in the wild type encountered in the experimental studies of glycolytic flux control by 

glycolytic enzymes. In the literature, nonetheless, the possible consequence and interpretation of this 

observation have not been discussed thoroughly.  
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Figure 1.5. Two different scenarios leading to a zero FCC.  

(a) An enzyme is present in excess and perturbing its level slightly does not change the flux. (b) The level of an enzyme 

allows maximum flux and perturbing the level slightly always decreases the flux. 

The reason for the zero flux control for these several enzymes also remains elusive. One possible 

explanation is that glycolysis is already running at its maximum possible rate or the control is 

distributed over many enzymes [193]. Another conjecture is that the glycolysis is so optimized 

throughout evolution that the true FCCs were not measured due to optimal regulation of protein 

expression which somehow counteracted the effect of modulating an enzyme by reallocating the 

protein expression profile [164]. If this is true, the calculated rate is not the defined partial derivative 

because the concentrations of other enzymes are also functions of the concentration of the perturbed 

enzyme. 

The conflicting results on the role of GAPDH from different studies also highlight the difficulty of 

studying flux control. In an earlier study, nearly full control of glycolytic flux by GAPDH in L. lactis 

Wg2 and NCDO2118 was found [189, 190] but zero control was found in L. lactis MG1363 [78]. One 

possible explanation is the intrinsic difference between the two strains as the GAPDH level was found 

to be two-fold higher in MG1363 compared to Wg2 [78]. Another possibility is the difference in 

experimental methods. GAPDH’s activity in Wg2 was only inhibited but not increased whereas both 

under- and over-expression of GAPDH were included in the study of MG1363. This can lead to 

contradictory estimation of FCCs. 

Hierarchical regulation under different growth conditions 

Another approach used to distinguish between hierarchical regulation and metabolic regulation was 

proposed by Ter Kuile and Westerhoff [194] by estimating coefficients for the two types of regulation. 

This approach is to a certain extent working in a reverse sense to the aforementioned approach which 

estimates the FCC of an enzyme by growing strains with different activities of the enzyme under the 

same condition and then measuring the changes in activities and fluxes. In contrast, the same strain is 

cultured under different growth conditions, for example, in chemostat at different dilution rates [194], 

or different starvation conditions [195]. Then the relative change in enzyme level, measured by 

enzyme assay, is divided by the relative change in fluxes to define the ‘hierarchical regulation 
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coefficient’ (HRC). It is equal to one in the ideal case of pure hierarchical regulation. The ‘metabolic 

regulation coefficient’ (MRC) can then be computed by 1 – HRC to account for the change in fluxes 

not accountable by hierarchical regulation. 

In L. lactis, several studies have been conducted using this approach. For instance, MG1363 has been 

grown in chemostat at a dilution rate of 0.1 h
-1

 at different pH, from 4.7 to 6.6 [196]. It was found that 

when taking the inhibitory effect of pH on enzyme activities into account, metabolic regulation was 

the dominant force controlling glycolytic flux. Also among the hierarchical regulation, post-

transcriptional regulation of gene expression was found to be more prominent than transcriptional 

regulation by comparing change in mRNA transcript level with change in enzyme activity. Recently, 

MG1363 has been grown in chemostat at different dilution rates from 0.15 to 0.6 h
-1

 and 

transcriptomes, proteomes, enzyme activities have been quantified simultaneously [184]. Similar 

conclusions were reached. For dilution rates between 0.15 to 0.5 h
-1

, the changes in flux through most 

enzymes were predominantly caused by metabolic regulation instead of hierarchical regulation except 

for alcohol dehydrogenase (ADH) and possible pyruvate formate lyase (PFL) whose concentrations 

decreased as the dilution rate increased and the flux through mixed-acid fermentation pathway 

decreased. So these two enzymes probably controlled the switch between fermentation modes but not 

the glycolytic flux. Significant hierarchical regulation only occurred during transition from 0.5 to 0.6 

h
-1

 in which the expression of several enzymes were found to have changed, probably due to the effect 

of carbon catabolite repression by the regulatory protein CcpA. Indeed, similar results of the lack of 

significant change in expression of glycolytic enzymes have also been observed in an accelerostat 

study on IL1403 in which the dilution rate increased very slowly from 0.1 to 0.6 h
-1

 to obtain different 

steady states [126]. Only PGM was found to show changes in expression. 

Metabolic regulation 

Metabolic regulation is not easy to discover because it usually involves interactions between an 

enzyme and metabolites other than substrates and products of that enzyme. Extensive in vitro enzyme 

characterization is required to identify possible effector metabolites and experiments for confirmation 

of in vivo regulatory roles can even be more difficult to design. As mentioned above some studies 

indicated that metabolic regulation was the main driving force for flux regulation and meanwhile 

many pieces of knowledge on particular regulatory relationships are available, nonetheless, a clear 

and integrative picture of how different types of metabolic regulation work together to explain most of 

the known experimental results still remains elusive. 

Negative feedback on PTS by FBP and inorganic phosphate 

One example of the metabolic regulation of glycolysis is the regulation of the phosphorylation of HPr 

protein (HPr/HPr-Ser-P) by FBP, ATP and inorganic phosphate (Pi) mentioned previously. Since HPr 

helps sugar uptake through PTS but HPr-Ser-P does not, high level of FBP due to high rate of sugar 
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uptake causing more HPr phosphorylated into HPr-Ser-P eventually slow down the sugar uptake, 

forming a negative feedback loop. This loop may help to stabilize the glycolytic flux, especially 

against sudden change in sugar availability [164]. The question of whether this negative feedback 

loop poses a bottleneck on maximum glycolytic flux, nevertheless, remains unanswered. 

Feedforward on PYK by FBP 

Beside the role in PTS, FBP has also been known to be an activator for PYK [197]. A kinetic study of 

glycolytic intermediates in glucose-pulse experiments using NMR found that FBP level rose to the 

peak during glucose uptake and started to drop after glucose was exhausted and until a certain low 

FBP level, PEP started to accumulate and remained at a high level during glucose starvation [159]. 

The authors proposed that the low FBP level reflecting low supply of glucose could serve as a way to 

preserve high PEP pool by inhibiting PYK which consumes PEP during sugar starvation for future 

rapid sugar uptake through PTS. Others, nonetheless, observed that such an activation relationship 

was also preserved in other organisms including those without PTS and remained conservative about 

the role of this FBP-PYK relation in glycolysis [164]. They suggested another possible role in which 

high FBP level could serve as a signal for PYK to remove the phosphoglycerate compounds in favour 

of a high flux through GAPDH which operated close to thermodynamic equilibrium and was thus 

sensitive to mass action. 

Global cofactors: NADH/NAD
+
 ratio 

Another interesting example is the control of glycolytic flux by cofactors levels NADH/NAD
+
 and 

ATP/ADP. NADH/NAD
+
 ratio was first proposed by Garrigues et al. to be the controlling factor of 

the glycolytic flux (as well as the mixed-acid shift, which is reviewed in section 1.5.4) in a study on L. 

lactis NCDO2118 exponentially growing on three sugars, glucose, galactose and lactose, with 

decreasing glycolytic fluxes [198]. This was based on several observations: (i) in vitro activity of 

GAPDH almost completely inhibited by NADH/NAD
+
 ratio higher than 0.05; (ii) NADH/NAD

+
 ratio 

positively correlated with glycolytic flux and as high as 0.08 on glucose (severe inhibition of GAPDH 

expected); (iii) high pools of metabolites upstream of GAPDH including FBP, GAP and 

dihydroxyacetone phosphate (DHAP) (suggesting the insufficient GAPDH activity to metabolize 

GAP). A later study by the same group on MG1363 found the same correlation between 

NADH/NAD
+
 ratio and glycolytic flux but the factors determining the ratio remained unknown [199].  

Global cofactors: ATP/ADP ratio 

Glycolytic kinetics in non-growing cells of L. lactis had then been studied using in vivo NMR by 

Neves et al. [158]. The kinetic model built in the study fitted with experimental data predicted that 

conversion of PEP into pyruvate by PYK is inhibited by high ATP surplus, i.e. high ATP/ADP ratio, 

which in turn inhibits NAD
+
 regeneration by LDH and bounds the glycolytic flux. This somehow 

provided an explanation for the positive correlation between NADH/NAD
+
 ratio and glycolytic flux 
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observed in other studies [198]. Later NMR study by the same group focusing on the role of NADH 

and NAD
+
 found that GAPDH was able to sustain a flux as high as in the wild-type MG1363 in a 

LDH-knockout strain in which the NADH concentration was 1.5 mM while the inhibitory constant of 

NADH for GAPDH was found to be 0.4 mM [162]. The authors to a certain extent dismissed the 

control by GAPDH and NADH and proposed ATP, ADP and Pi as important regulatory metabolites 

in glycolysis. When interpreting these results, however, one should bear in mind that the cases that in 

vivo NMR studies were dealing with were non-growing L. lactis so it may not be directly applicable 

to the case where L. lactis is exponentially growing. 

To test the in vivo role of ATP/ADP ratio in growing L. lactis, Koebmann et al. decreased the 

intracellular ATP/ADP ratio in MG1363 by expressing ATPase using a synthetic promoter library 

[79]. Surprisingly, for these strains growing exponentially on glucose, the glycolytic flux showed no 

significant change over a large range of ATP/ADP ratio from around 9 in the wild type to around 5 in 

the strain with the highest expression of ATPase. When these strains were in a non-growing state 

(achieved by resuspending cells in media without amino acids and vitamins), however, the glycolytic 

flux increased with ATPase activities until a level close to that in the growing wild type. These 

observations suggested the possibility that glycolysis was already at its maximal rate in the wild type. 

Another possible situation suggested by the authors was that although lowering the ATP/ADP ratio 

might stimulate glycolysis (e.g. by increasing the activities of kinases in the pay-off phase), it might 

eventually reduce the activity of PFK which becomes a bottleneck countering the effect, known as the 

risk of a ‘turbo design’ in which part of the desirable products are invested in the first place as input 

[200]. 

Other factors 

Other sources of metabolic regulation thought to be important for regulating glycolytic flux include 

the inhibition of PYK by Pi [201], inhibition of PFK by PEP [202] and inhibition of GAPDH by 

NADH [198, 199]. Hoefnagel et al. integrated these three inhibitive relation and the activation of 

PYK by FBP in a single kinetic model with all rate equations and parameters adopted from literature 

without fitting [154]. The model succeeded in simulating the observed kinetic behaviour during 

glucose run-out experiments in other studies ([158]) including the rapid increase in PEP and Pi, 

decrease in ATP and slow depletion of FBP. The authors reasoned the following sequence of kinetic 

responses upon glucose depletion: (1) less Pi is retained in G6P, F6P and FBP; (2) Pi increases and 

inhibits PK; (3) PEP inceases due to inhibited PK and no glucose for PTS and thus less pyruvate 

available; (4) Less substrate for LDH and thus NADH accumulates; (5) GAPDH is inhibited by 

NADH.  
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1.5.3 Pyruvate metabolism 

Since L. lactis does not have a complete and functional tricarboxylic acid (TCA) cycle and cannot 

perform oxidative phosphorylation due to the inability to synthesize heme [28, 182], glycolysis as the 

major energy generating pathway must operates at a high speed. Since only a small fraction of the 

sugar metabolized is required for biomass production (usually <10%, e.g. [203]), most of the pyruvate 

flux ends up as fermentation products through different pathways. L. lactis is usually a homolactic 

fermenting LAB. As described in section 1.3.2, there are two branches of pathways producing mixed 

acids and flavour compounds respectively from pyruvate other than homolactic fermentation in L. 

lactis (Figure 1.2A). 

Homolactic fermentation 

In the metabolism of L. lactis, at the pyruvate branch point, lactate is produced via a single reaction 

catalysed by lactate dehydrogenase (LDH). LDH converts pyruvate into lactate and generates NAD
+
 

from NADH at the same time. Several studies on the kinetics of LDH from L. lactis have been 

conducted  [198, 199, 204]. From these studies, the Km for pyruvate and NADH were found to be 1.5 

– 3 mM and around 0.1 mM respectively. Also, FBP was found to be an activator of LDH with a 

micro-molar activation constant. Pi was considered to be an inhibition of LDH [204] but the inhibition 

was confirmed later to be negligible under physiological conditions [198, 199]. 

The expression of LDH is in general very robust as reflected by a fairly constant in vitro specific 

activity under different growth conditions, from strictly anaerobic, microaerobic to aerobic conditions 

[205, 206], or growth on different sugars [207]. LDH also appeared to be in huge excess compared to 

the in vivo flux it had in some studies (e.g. [207, 208]) and was shown to be able to sustain the same 

flux as in the wild type after about 40% reduction of its expression [191] (Table 1.1). 

There are three genes in most genome-sequenced L. lactis strains, as observed from the UniProt 

database (http://www. uniprot.org), annotated as genes for LDH, named as ldh, ldhB and ldhX in both 

MG1363 and IL1403. ldh is the gene lying in the las operon following pfk and pyk and deemed to be 

the canonical gene for the LDH responsible for producing lactate in most cases [177]. The las operan 

has a cre-containing promoter and hence LDH, together with PFK and PYK, is transcriptionally 

activated by CcpA [188]. Whilst the role of ldhX remains unknown, ldbB has been found to be 

transcriptionally inactive when ldh was present and the transcription of ldhB was recovered with a 

significant capability of lactate production in an ldh-knockout strain after adaptive evolution [209]. 

The LDH synthesized from ldhB has later been characterized to have kinetic properties that depend 

heavily on the pH level and are quite different from the canonical LDH, e.g. activation by Pi at low 

pH [210].  
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Mixed-acid fermentation 

Under anaerobic conditions, when the sugar uptake rate is constrained to be slow, for instance, by a 

low dilution rate in chemostat experiment (e.g. [40]), or by growth on slowly fermentable sugars such 

as maltose or galactose (e.g. [211, 212]), a significant fraction of pyruvate flux would be directed to 

the production of formate, acetate and ethanol, termed mixed-acid fermentation (Figure 1.6). The first 

step is the conversion of pyruvate into acetyl-coenzyme A (Ac-CoA) by either pyruvate formate lyase 

(PFL) or pyruvate dehydrogenase complex (PDHc). Ac-CoA can then be converted into acetyl-

phosphate (Ac-P) by phosphotransacetylase (PTA) followed by acetate production by acetate kinase 

(ACK) which produces one ATP. Alternatively, Ac-CoA can be reduced into first acetaldehyde and 

then ethanol by a single enzyme alcohol dehydrogenase (ADH). 

 

Figure 1.6. Mixed-acid fermentation pathway producing formate, acetate and ethanol.  

Products excreted are shaded in green. Enzymes are in bold and italic style. Pi, inorganic phosphate; CoA, coenzymeA; 

PDHc, pyruvate dehydrogenase complex; PFL, pyruvate formate lyase; ADH, alcohol dehydrogenase; PTA, 

phosphotransacetylase; ACK, acetate kinase. 

Of all these enzymes, two possible elementary routes are available for converting pyruvate into end 

products with proper redox balance. The generation of one pyruvate is accompanied by one NADH 

being reduced from NAD
+
. Redox balance can therefore be kept by consuming one pyruvate with 

simultaneous oxidation of one NADH. The first route is one unit of pyruvate converted by PFL into 

Ac-CoA, followed by half of the Ac-CoA entering PTA-ACK pathway to produce acetate and the 

other half forming ethanol via ADH. The formate-acetate-ethanol ratio in this case is 2:1:1, which is 

the most common case observed in many studies under anaerobic conditions. This route generates 0.5 

more ATP per pyruvate being catabolized. The second possible route is the production of one unit of 

CO2 and ethanol by PDHc and ADH but it has not been reported under anaerobic conditions due to 

low level and low activity of PDHc. On the contrary, under aerobic conditions, due to the expression 

of the NADH oxidase (NOX) and its activation by oxygen, PDHc activity coupled with acetate 

production with the aid of NOX for regeneration of NAD
+
 has been observed in different studies [163, 

205, 206].  

Pyruvate formate-lyase 

PFL in L. lactis has been manifested to be extremely vulnerable to exposure to oxygen as in E. coli 

[213]. It has been reported that the Km for pyruvate of PFL in MG1363 was 0.4 mM, lower than that 
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of LDH and PFL was inhibited by triosephosphate pool with inhibitory constant equal to 0.7 mM and 

1 mM for GAP and DHAP respectively [199]. The expression of PFL was usually found to be 

significantly induced for growth under anaerobic conditions at a low dilution rate in chemostat [206, 

208] or on slowly fermentable sugars such as galactose [213].  

The expression of pfl of MG1363, the gene encoding PFL, has been characterized [214]. A 

monocistronic mRNA for pfl was found. There are two sequences upstream of pfl with significant 

homology to the consensus of the global regulator FNR of E. coli which activates the transcription of 

pfl in E. coli anaerobically [215]. One of them even overlaps with the -35 promoter region. The genes 

of two proteins in L. lactis MG1363 homologous to FNR, FlpA and FlpB, were studied [216]. An flpA 

mutant was found to produce significantly more formate when growing on glucose or galactose but 

much less when growing on maltose compared to the wild type whereas no significant effect was 

observed for an flpB mutant and a double mutant. FlpA and FlpB have later been purified for studying 

their binding to DNA in vitro and FlpA was confirmed to recognize FNR site but appeared to work in 

the opposite direction to FNR because opposite to FNR, the binding was abolished by an iron-sulphur 

cluster and restored by exposure to air [217]. A later study on the expression of FlpA and FlpB 

indicated that transcription of flpB was much lower than flpA and was induced under anaerobic 

conditions while the transcription of flpA was not oxygen-responsive but required the presence of both 

FlpA and FlpB. Until now, there is no clear conclusion on the transcriptional regulation of pfl at the 

molecular level. 

Pyruvate dehydrogenase complex 

PDHc, another route for Ac-CoA formation from pyruvate, unlike PFL, produces one CO2 and 

meanwhile generates one NADH from NAD
+
. Kinetic studies on the kinetics of PDHc indicated that it 

was highly sensitive to high NADH/NAD
+
 ratio [218, 219]. 50% and complete inhibition were 

observed at ratios of about 0.033 and 0.135 respectively in the studies, suggesting complete inhibition 

under strict anaerobiosis. 

The expression of PDHc has usually been associated to growth under aerobic conditions [198, 199]. 

Under different growth conditions, however, conflicting results have been reported. PDH activity in 

MG1363 under anaerobic conditions has been found to be absent when growing on lactose [199]; or 

present at low but observable levels when growing either at 0.1 h
-1

 dilution rate or on glucose in batch 

(growth rate up to 0.9 h
-1

) [205, 206]. It has also been found to increase >10-fold with aeration under 

microaerobic condition (air-to-nitrogen ratio from 0 to around 2) at a constant dilution rate of 0.1 h
-1

 

[206] or without significant change in anaerobic, microaerobic or aerobic conditions for batch growth 

on glucose with high growth rates (>0.78 h
-1

 for all three cases) [205]. The well-known requirement of 

lipoate as a cofactor for PDHc is worthwhile to mention because L. lactis and some other LAB such 
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as Enterococcus faecalis lack the ability to synthesize lipoate and thus addition of lipoic acid into the 

growth media is necessary for PDHc activation [220]. 

Phosphotransacetylase, acetate kinase and alcohol dehydrogenase 

For L. lactis’s PTA, ACK and ADH, little kinetic characterization has been performed except a recent 

study on PTA and ACK [221] and a very recent study on ACK isozymes [152]. PTA has been found 

to be inhibited by FBP and diacetyl [221]. In addition to these two compounds, ACK has also been 

found to be inhibited by GAP and PEP at concentrations within physiological ranges [152, 221]. The 

expression of these three enzymes was found to be in generally higher at lower growth rates in growth 

experiments on galactose, maltose or at low dilution rates in chemostat [179, 184, 207, 221]. 

Flavour compound production 

Production of diacetyl, acetoin and 2,3-butanediol (2,3BTD) by L. lactis, all being C4 flavour 

compounds, is very important in food industry. It has been associated with citrate fermentation [222, 

223] as well as aerobic growth on sugars [224, 225]. In this pathway, first α-acetolactate synthase 

(ALS) catalyses the decarboxylation of two pyruvate to form one α-acetolactate, which upon further 

decarboxylation becomes one acetoin. 2,3BTD is produced from acetoin by 2,3BTD dehydrogenase 

(BTDDH). α-Acetolactate also reacts non-enzymatically with oxygen to form diacetyl which can be 

reduced to acetoin by acetoin dehydrogenase (ACETDH). 

 

Figure 1.7. Flavour compound production from pyruvate. 

Products excreted are shaded in green. Enzymes are in bold and italic style. The reaction producing diacetyl from α-

acetolactate is non-enzymatic. ALS, α-acetolactate synthase; ALDC, α-acetolactate decarboxylase; ACETDH, acetoin 

dehydrogenase; BTDDH, 2,3-butanediol dehydrogenase. 

The kinetics of ALS has been characterized for a L. lactis strain and showed strong positive 

cooperativity for pyruvate (Hill coefficient = 2.4) and a very high Km for pyruvate equal to 50 mM 

[219]. Another study on another strain found a similar value of 30 mM [226]. In the study ALDC was 

also tested. Positive cooperativity was again observed with Hill coefficient equal to 1.89. The Km for 

α-acetolactate estimated was 60 mM. For ACETDH and BTDDH, in a L. lactis strain, an enzyme 

capable of catalysing both reactions was isolated and Km for acetoin and diacetyl were estimated to be 

60 μM and 3.6 mM respectively [227]. 
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Beside the precursor of several flavour compounds, α-acetolactate is also a metabolite connecting 

carbon and amino acid metabolism since it is a precursor of the branched-chain amino acids (BCAAs) 

leucine, isoleucine and valine (provided that a particular L. lactis strain is able to synthesize any of 

them). The expression of ALDC was found to be induced by the presence of leucine in media and 

inhibit growth of L. lactis NCDO2118 under valine starvation while disrupting the gene for ALDC 

succeeded in growth recovery under such a condition [228]. ALDC was attributed to the exhaustion of 

intracellular α-acetolactate so that valine could not be synthesized. The regulation of ALDC 

expression has later been investigated at transcriptional and translational levels [229]. 

In many studies, Fluxes through this flavour-producing pathway and acetate production increased 

concomitantly when L. lactis was granted extra ability to grow aerobically by either overexpressing 

NOX [56, 153, 163, 221] or supplementing heme or its precursor such as  protoporphyrin IX for 

respiration [225, 230–232]. The reason for the redirection has not yet been fully elucidated. 

Comparison at the protein level between heme-dependent respiratiory and static conditions found that 

among glycolytic enzymes, the expression of phosphoglycerate mutase (PGM) and one isoform of 

GAPDH decreased markedly during respiration whereas the expression of PDHc and ALS was 

upregulated [233]. This may have some control on the distribution of pyruvate flux. For the case of 

NOX overexpression, the lower Km for NADH of NOX compared to that of LDH and ADH has been 

ascribed to the phenomenon observed [163]. NOX outperforms LDH and ADH regarding NADH 

competition. This is compatible with the observation that other than the flavour-producing pathway, 

only acetate is produced via PDHc, PTA and ACK without formate and much ethanol production. 

PDHc may have high activity due to the expected low NADH/NAD
+
 ratio. Meanwhile, PFL is 

inactivated under aerobic conditions [213]. 

1.5.4 Flux regulation of mixed-acid shift 

The metabolic shift between homolactic fermentation and mixed-acid fermentation is intriguing in the 

sense that L. lactis prefers production of lactate with two ATP generated per glucose to production of 

mixed acids with three ATP generated per glucose. Such a shift from high-yield to low-yield 

metabolism, or equivalently use of energetically inefficient pathway, has been called overflow 

metabolism (usually for bacteria) [234, 235], or ‘crabtree effect’ for yeast and other organisms [236, 

237], or ‘Warburg effect’ for tumor cells [238]. Unravelling the mechanism and the evolutionary 

advantage of this phenomenon is thus a very important biological question. In L. lactis, from the large 

amount of experimental evidence accumulated over the years, different factors and mechanisms have 

been proposed. They are divided into three aspects, protein level, metabolic level and environmental 

conditions. The possible evolutionary advantages are also discussed along the subsection. 
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Protein level 

Elevated expression levels of enzymes in the mixed-acid branch have been reported when L. lactis 

grows at low dilution rates or on slowly fermentable sugars as described in the previous subsection. A 

study comparing the proteomes of L. lactis growing on glucose, growing on maltose and resting on 

maltose also revealed that expression of glycolytic enzymes was in general slightly down-regulated 

(<2-fold) for growth on maltose compared with growth on glucose while proteomes for L. lactis 

growing or resting on maltose were in general very similar  [179].  

Control analysis on different enzymes further emphasized the role of protein expression on the shift. 

PFL level in MG1363 has been modulated and strong control on formate flux was observed for 

growth on galactose (FCC > 1, estimated from the data in the article) but only weak control was found 

for growth on glucose (FCC ≈ 0.26) [239]. Modulation of LDH and PYK levels showed that there are 

a strong negative and positive control of formate flux and acetate flux by LDH and PYK respectively 

(FCCs close to -1 and 1) when growing on glucose [77, 191]. This means decreasing and increasing 

the expression of LDH and PYK respectively did increase the pyruvate flux distributed to mixed-acid 

fermentation. The same directions of control by LDH and PYK remained for growth on maltose, 

however, with much smaller FCCs (around -0.2 and 0.2) [240]. In another study, inhibition of the 

activity of GAPDH of L. lactis growing on lactose to different extents was achieved by adding 

increasing concentrations of iodoacetate [190]. A marked shift from mixed-acid to homolactic 

fermentation accompanied by decreasing growth rates was observed. 

Beyond protein level 

From the above experimental evidence, it is tempting to conclude that the mixed-acid shift is caused 

by the change in gene expression level but this was usually not the conclusion of most studies because 

there are other experimental results in which the shift could not be ascribed to change in gene 

expression level. For example, in the modulation of LDH and PYK levels [77, 191], the flux through 

the two reactions did not change apparently but they changed the formate flux, so it is reasonable to 

hypothesize that the change was caused by interactions between enzymes and metabolite, i.e. events at 

the metabolic level.  

As aforementioned, proteomes for L. lactis growing or resting on maltose were in general very similar 

and no significant change was observed for glycolytic enzymes and enzymes in pyruvate metabolism 

[179]. However, while the growing cells produced mixed acids from maltose, the resting cells were 

found to produce lactate only. The glycolytic flux in resting cells was about 3-fold lower than that in 

growing cells, similar to the case of growth on glucose [79]. This study suggested that the flux 

distribution did not solely depend on the proteome. A similar conclusion has been drawn in the 

aforementioned study which calculated hierarchical and metabolic regulation coefficients by growing 
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MG1363 at different dilution rates [184]. Only the flux of ADH and possibly PFL appeared to be 

regulated by the protein expression level in conditions with different fermentation profiles.  

A final example is a set of shift-up and shift-down experiments [208]. In the shift-up experiment, L. 

lactis MG1363 had been cultured to reach a steady state at a low dilution rate (0.1 h
-1

) which 

produced mixed acid and the dilution rate was then instantaneously elevated to 0.5 h
-1

. Switch to 

homolactic fermentation almost occurred at once, contrary to the hypothetical case of sole dependence 

on gene expression level in which a delayed switch should be observed due to the time required for 

regulation of expression. The shift-down experiment was conducted in a similar fashion but a reverse 

change of dilution rates. Unlike shifting up, in the shift-down experiment a profile of mixed-acid 

fermentation was gradually built up, suggesting the plausible dependence of the switch on gene 

expression. The results indicated the existence of a rapid regulatory mechanism for the switch from 

mixed-acid to homolactic fermentation, which is probably able to sense the glycolytic flux. 

Metabolic level 

LDH activation by FBP 

 In fact, allosteric regulation of the enzymes in pyruvate metabolism of L. lactis has long been 

proposed as a mechanism for the mixed-acid shift. Activation of LDH by FBP has first been proposed 

to regulate the shift since FBP is the only activator of LDH for growth on glucose and FBP level was 

found to be correlated with glycolytic flux [40]. The theory was however turned down convincingly 

by two later studies conducted by Garrigues et al on L. lactis NCDO2118 and MG1363 respectively 

[198, 199]. In these studies, full activation concentrations of LDH by FBP were measured to be 2 – 4 

μM whereas the intracellular FBP concentration measured ranged from 0.3 mM to 118 mM, >50-fold 

higher than the activation concentration even for the case of the lowest FBP level. 

NADH/NAD
+
 ratio 

Garrigues et al, in the same studies, instead proposed another mechanism for the switch which is 

caused by the change in NADH/NAD
+
 ratio  [198, 199]. Since GAPDH was found to be very 

sensitive to NADH/NAD
+
 ratio, triose-phosphate (DHAP and GAP) accumulates when the ratio are 

high. Triose-phosphate then inhibits the activity of PFL and meanwhile LDH has a high activity 

because of high NADH/NAD
+
 ratio, causing homolactic fermentation. When NADH/NAD

+
 ratio is 

low, PFL is therefore not inhibited and the activity of LDH is lower. Combining with the higher 

affinity of PFL for pyruvate, mixed-acid fermentation is achieved. In the studies, positive correlation 

between NADH/NAD
+
 ratio and glycolytic flux was observed. The model can therefore describe the 

homolactic and mixed-acid fermentation occurring at high and low glycolytic flux respectively. The 

inhibition of PFL by DHAP and GAP (first observed in Streptococcus mutans [241]) was confirmed 

in vitro. Their intracellular levels measured for exponentially growing cells in different conditions 



Chapter 1. Background 

30 

also matched the hypothesis: being lower than the inhibitory constants in mixed-acid fermenting cells 

and being significantly higher than the constants in homolactic fermenting cells. This proposed 

mechanism is able to explain the rapid switch from mixed-acid to homolactic fermentation during the 

aforementioned shift-up experiment [208]. 

ATP/ADP surplus 

The role of NADH/NAD
+
 ratio was consistent with experimental evidences. How this ratio depends 

on substrate availability or glycolytic flux, however, was left unexplained. In fact, in the second of the 

two studies mentioned in the last paragraph, Garrigues et al proposed a more generalized theory 

stating that the switch depends on the balance of anabolic demand of ATP which is generated by 

catabolism [199]. It was based on the additional experiments in the study that compared the growth 

and fermentation pattern of L. lactis NCDO 2118 on galactose in media with different amino acid and 

vitamin contents. It was found that with fewer amino acid and vitamin contents, growth and glycolytic 

flux decreased as expected whereas fermentation switched from mixed-acid to homolactic 

unexpectedly. The authors thus proposed that under conditions of catabolic excess (growth on glucose) 

or anabolic limitation (growth in media with fewer amino acid and vitamin contents) in which 

ATP/ADP was predicted to be high, homolactic fermentation prevailed whereas under conditions of 

catabolic limitation and anabolic excess (growth on galactose in rich media), mixed-acid fermentation 

took place to maximize ATP. The concrete link between this theory and NADH/NAD
+
 ratio was 

however not provided. 

The proposed role of ATP/ADP surplus in the mixed-acid shift actually coincides with its role in 

glycolytic flux as discussed in section 1.5.2. The glycolytic flux in resting cells could be stimulated by 

lowering ATP/ADP ratio using ATPase, showing that high ATP/ADP level limited the flux [79]. A 

later study provided evidences supporting this assumed role of ATP/ADP [242]. For resting cells of L. 

lactis fermenting maltose which produced lactate only, reducing ATP/ADP ratio by adding monensin 

or valinomycin (ionophores known to induce ATPase activity) switched the fermentation pattern to 

mixed acids. Inhibition of ADH by the ATP and ADP pool was proposed as the caused since the 

measured level of ATP and ADP in resting cells brought 95% inhibition of ADH activity in vitro. 

Inhibition to a less extent by ATP and ADP was also observed for GAPDH and LDH. 

The authors in the same study also compared growth on maltose with nitrogen limitation or growth 

arrested by chloramphenicol. In either case the decreasing growth rate was negatively correlated to 

increasing homolactic fermentation and the authors claimed that the change in fermentation pattern 

was due to change in growth rate instead of nitrogen content available. We think, however, this can be 

overly interpreted because chloramphenicol has long been known to inhibit bacterial growth by 

specifically inhibiting the assimilation of amino acids and therefore protein synthesis [243]. Thus 
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chloramphenicol addition and nitrogen limitation may actually have very similar effects on 

metabolism. 

There is a final remark about the hypotheses of NADH/NAD
+
 ratio and ATP/ADP surplus. The 

former has experimental support of the proposed mechanism but how it is related to the environment 

to which a cell is subject remains unclear. The latter, namely ATP/ADP surplus, provides a rationale 

of the switch and is also supported by some experimental evidence, but how it is related to the exact 

mechanism like the NADH/NAD
+
 ratio remains unknown. Moreover, there have not yet been 

convincing experiments carried out as a proof of the proposed mechanism. 

Environmental conditions 

The most well-established environmental condition causing the occurrence of the mixed-acid shift is 

the catabolic limitation by either growth on slowly fermentable sugars or low availability of sugars in 

situation such as chemostat at low dilution rates. For growth under these conditions, when other 

anabolic limitations are active, such as less amino acid or vitamin availability as described previously, 

fermentation appears to shift back from mixed-acid to homolactic fermentation.  

Environmental factors other than substrate availability including pH and temperature have also been 

found to influence the fermentation pattern. A study on L. lactis growing on maltose at different pH 

and temperatures revealed that L. lactis became more homolactic at lower pH compared to pH 6.5 and 

at higher temperature compared to 30 ˚C [244]. The authors suggested the inactivation of PFL at low 

pH found in Streptococcus mutans [241] and the increased ATP spent on maintenance at low pH or 

high temperatures as the reasons for the observed shift. 

Evolutionary advantage 

Despite the wealth of the knowledge regarding the metabolic shift (though an integrated consensus of 

the relative importance is still not available), the evolutionary advantage, as an ‘ultimate regulatory 

force’, of switching between a low-yield (homolactic fermentation) and high-yield (mixed-acid 

fermentation) metabolism remains far from clear. An advantage that has been sometimes cited in the 

literature is to inhibit the growth of other organisms by acidification of the environment due to fast 

lactate production but Teusink et al. argued that it may not be valid [164]. They reasoned that ‘cheater’ 

mutants that can grow faster by switching to high-yield metabolism and meanwhile survive the acidic 

environment should have evolved according to this hypothesis but it has never been observed for L. 

lactis. 

Another hypothesis is the tradeoff between protein cost and ATP generation. On the one hand, mixed-

acid fermentation generates one more ATP per hexose catabolized. On the other hand, mixed-acid 

fermentation requires three enzymes to be expressed while homolactic fermentation requires one only. 

Since protein expression also costs ATP and the rate of the cost should increase with growth rate due 



Chapter 1. Background 

32 

to dilution by cell division, different strategies at different growth rates can be a result of growth rate 

optimization considering the ATP gain and protein cost of a pathway. This cannot be confirmed 

without a quantitative model. A very first model addressing this type of shift was the self-replicator 

model consisting of minimal elements for self-replication including one transport protein, ribosome, 

one anabolic pathway and two metabolic pathways, one with lower ATP yield but higher catalytic 

efficiency kcat and one with higher ATP yield but lower kcat [245]. The model did succeed in 

predicting a shift from high-yield metabolism to low-yield metabolism upon the increase of growth 

rate. A later attempt based on a similar rationale employed the genome-scale metabolic network of L. 

lactis IL1403  and applied flux balance analysis (FBA) with the constraints of molecular crowding to 

model the mixed-acid shift successfully [246]. Molecular crowding here refers to explicit 

consideration of the distribution of protein with the total amount being finite over all metabolic 

reactions. Each reaction has a maximum velocity equal to kcat multiplied by the protein concentration 

assigned to that reaction. 

This hypothesis, though logically sound, is yet to be verified experimentally. The very recent study 

mentioned several times previously conducted on MG1363 growing at different dilution rates with the 

aid of multi-omics techniques has been designed to test this hypothesis [184]. It was found that only 

the flux of ADH and possibly PFL was controlled at gene expression level and many other proteins 

appeared to be excessive than the necessary amounts to carry fluxes. This to a certain extent suggested 

that there was not a case in which tight control of gene expression was exerted to satisfy metabolic 

requirement minimally for protein-cost saving. One may however argue that while the excessive 

amount of most enzymes may bring other important evolutionary advantage, the gain from saving the 

cost of one or two enzymes, though little, can become significant in evolutionary sense. For one point 

that can be sure about, nonetheless, this hypothesis cannot explain the existence of a rapid shift 

mechanism because it is not related to the protein expression level. 

 Another evolutionary point of view that can be taken into consideration is the evolutionary game 

theory that has drawn increasing interest in the last decade [247–249]. It advocates defining objective 

function for optimization by considering the interactions between the organism, environment and 

other competing organisms (other players) as in game theory instead of simply maximizing growth 

rate. In this way of thinking, the objective function may no longer be the growth rate defined in 

genome-scale metabolic networks calculated by FBA which is basically an yield optimization but 

could be true rate optimization including the use of metabolically inefficient pathway. Or it is even 

possible to maximize the substrate depletion rate, regardless of the growth yield that such a strategy 

brings, to minimize the growth of other players. 

A final remark about inferring the evolutionary advantage is that athough the same phenomenon of 

the shift of fermentation modes was observed at different condition, one should not simply draw the 
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same conclusion regarding the cause and effect. Under the conditions that L. lactis has long been 

adapted to, it is reasonable to think that the shift represents a way to optimize the growth rate or other 

fitness function. But under other conditions, the observed shift may be an effect of the evolved 

mechanism and advantage of the shift under those conditions may not be found. To properly study the 

evolutionary advantage of the shift, the evolutionary history, habitats and the ecological community of 

L. lactis should be put into considerations together. 

 Objectives and strategies 1.6
In sipte of the many efforts put on investigating the glycolysis and pyruvate metabolism of L. lactis in 

the past, especially about the mixed-acid shift, many elements in the proposed theory regarding the 

shift are required to be elucidated for a more comprehensive picture. Also, the widely studied 

laboratory strain L. lactis subsp. lactis IL1403 was found to remain homolactic even when growing on 

slowly fermentable sugars such as galactose [207]. By studying the fermentation behaviour of the 

strain and comparison with strains able to switch, further insights can be gained.  

In this study, in response to the factors affecting the switching behaviour as reviewed in the previous 

section, namely gene expression level, metabolic level and environmental conditions, we aimed to 

study the mixed-acid fermentation of L. lactis subsp. cremoris MG1363 using the following strategies: 

(i) genetic perturbation, (ii) cofactor perturbation and (iii) growth at varying nutrient availability, in 

terms of amino acids. Growth behaviour on glucose and maltose of MG1363 respectively is usually 

compared and it is occasionally contrasted with IL1403. Maltose is chosen because it was observed to 

cause the most prominent mixed-acid shift in L. lactis MG1363.  

1.6.1 Genetic perturbation 

The roles of some mixed-acid-fermenting enzymes on mixed-acid fermentation remain to be 

elucidated, such as PFL, PTA, ACK and ADH, especially ACK which appears to be encoded by two 

different uncharacterized genes in many L. lactis strains.  

1.7 reports the study of transcriptional activity of these enzymes and the modes of transcriptional 

regulation in the two widely studied laboratory strains, MG1363 and IL1403. The former exhibits 

mixed-acid shift to a large extent while the latter does not. Chapter 3 reports the results of modulation 

of PFL levels in MG1363 and IL1403 and the comparison. In Chapter 3, characterization of the two 

genes encoding ACK in L. lactis MG1363 is presented, including the transcription structure, enzyme 

kinetics and their physiological roles.  

1.6.2 Cofactor perturbation 

The role of NADH/NAD
+
 in anaerobic growth of L. lactis was supported by comparing growth on 

different sugars or in different media [198, 199]. The question, however, that whether it truly controls 
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the pyruvate metabolism, remains unexamined to a large extent. Chapter 5 attempts to study the effect 

of perturbing NADH/NAD
+
 under different conditions. 

1.6.3 Nutrient availability  

The effect of availability of nutrients other than sugars, especially amino acids, on the mixed-acid 

shift has only been studied roughly in [198, 199, 242]. Chapter 6 briefly summarizes some 

experimental findings in this respect from a bachelor project initiated by us and especially a general 

computational method developed and applied to look into the amino acid metabolism in the genome-

scale metabolic network of L. lactis MG1363 [145] which has been pusblished and reprinted in 

Appendix A. 
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Chapter 2. Transcriptional activity of mixed-acid genes 

 Introduction 2.1
Many strains of Lactococcus lactis (L. lactis), including both subsp. cremoris and subsp. lactis, have 

been found to exhibit a metabolic shift from homolactic to mixed-acid fermentation when transiting 

from a fast fermentable sugar to one that is more slowly fermentable. In the former fermentation mode 

lactate is the main product whereas in the latter mode significant amounts of formate, acetate and 

ethanol are also produced. Table 2.1 summarizes the ability to exhibit a shift in fermentation mode for 

different strains that have been studied in the past. Most of the studied strains were found to exhibit 

the shift but two strains, L. lactis subsp. lactis ML8 and the widely studied laboratory strain L. lactis 

subsp. lactis IL1403, appeared to be unable to shift, though there has once been a study reporting the 

mixed-acid fermenting behavior of IL1403 when growing on maltose [1].  

In this study, IL1403 and another extensively studied strain L. lactis subsp. cremoris MG1363, which 

exhibits the mixed-acid shift, were compared with respect to growth physiology, relative 

transcriptional activities of mixed-acid genes and elements of transcription regulation. 

Table 2.1. Phenotype of L. lactis strains regarding shift in fermentation mode. 

Subspecies Strain Shift to mixed-acid fermentation at low sugar uptake rates Ref. 

lactis ML3 Yes [2, 3] 

lactis 7962 Yes [2] 

lactis ML8 No [2] 

cremoris E8 Yes [2] 

cremoris HP Yes [2] 

lactis 65.1 Yes [4, 5] 

lactis NCDO 2118 Yes [6] 

lactis ATCC 19435 Yes [7] 

cremoris* MG1363 Yes [8] 

lactis IL1403 No [9] 

*MG1363 is known to have cremoris genotype but lactis phenotype. 

 Materials and methods 2.2

2.2.1 Bacteria strains and plasmids 

The two L. lactis strains, IL1403 and MG1363, were plasmid-free derivatives of  L. lactis CNRZ157 

(or IL594) [10] and L. lactis NCDO712 [11] respectively. Other L. lactis strains used were derived 

from the two strains. The plasmids pLB65 expressing the T901-1 integrase was used for mediating the 

site-specific integration into the chromosomal attachment site, attB, of pLB85, which contains a 

promoterless gusA reporter gene and a gene encoding erythromycin resistance [12]. E. coli ABLE-K 

(Stratagene) [13] was used for cloning purposes. Primers, plasmids and strains used or constructed in 

this study are listed in Table 2.2, Table 2.3 and Table 2.4 respectively.  
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Table 2.2. Primers used in the study. 

Primer  RS Amplified region Sequence  

3f SpeI 
upstream region of pfl in IL1403 

atcgaactagtTGAGAGAAGATGATGAAGAC 

3r SalI atcgagtcgacTTAATGTTCAAAGATATTTTCCGT 

4f XbaI 
upstream region of adhE in IL1403 

atcgatctagaTGGCTGGACAAATACTGA 

4r PstI atcgactgcagTTAAGCGGCTTTTTTAGTTG 

5f XbaI 
upstream region of eutD in IL1403 

atcgatctagaTTGTTGATACAGATGACGA 

5r PstI atcgactgcagTTACAGTGATTCAAAAAGTTCC 

6f XbaI 
upstream region of ackA1 in IL1403 

atcgatctagaTTTTGCCATTTTCCTAGCTC 

6r PstI atcgactgcagTTATGAACCAGCGTTAACTG 

7f XbaI 
upstream region of ackA2 in IL1403 

atcgatctagaGAGATGTATGTTGACCGA 

7r PstI atcgactgcagTTATTTTAATGACGAGGAGCC 

8f XbaI 
upstream region of pfl in MG1363 

atcgatctagaCCTCAGCAACATTTGTTC 

8r PstI atcgactgcagTTATTTAAAACCATCCCAAGC 

9f SpeI 
upstream region of adhE in MG1363 

atcgaactagtGGTCATATTCCACGCGAT 

9r SalI atcgagtcgacTTATGGAGCGGCTTTTTTAGTT 

10f SpeI 
upstream region of eutD in MG1363 

atcgaactagtAGATATTGAGGAAAGAGGAAG 

10r PstI atcgactgcagTTACAGTGATTCAAAAAGTTCCA 

11f XbaI 
upstream region of ackA1 in MG1363 

atcgatctagaGAGGATTTACTGACAAGTG 

11r PstI atcgactgcagttaTGATGAACCAGCGTTTAC 

12f XbaI 
upstream region of ackA2 in MG1363 

atcgatctagaTGAGATGTATGTTGACCG 

12r PstI atcgactgcagttaTAATGATGAGGAGCCTG 

CSO50 BamHI verify chromosomal integration of pLB85 ggaaggatccCCCATAGTTCATCAGTTATC 

CSO263 / CGCGATCCAGACTGAATG 

Each amplified region includes a short coding sequence (CDS) (20 – 50 bp) from the gene and a stop codon.  

RS, restriction site. 

Table 2.3. Plasmid used or constructed in the study.  

Plasmid Description Antibiotic 

resistance 

pLB65 [12] Containing orf1 expressing phage TP901-1 integrase  Cam 

pLB85 [12] Reporter vector containing a promoterless gusA gene and an attP site for integration 

into attB site on chromosomes in the presence of the TP901-1 integrase 

Amp, Erm 

pLB85-ILpfl pLB85 containing pfl upstream region of IL1403 obtained with primer 3f, 3r 

pLB85-ILadhE pLB85 containing adhE upstream region of IL1403 obtained with primer 4f, 4r 

pLB85-ILeutD pLB85 containing eutD upstream region of IL1403 obtained with primer 5f, 5r 

pLB85-ILackA1 pLB85 containing ackA1 upstream region of IL1403 obtained with primer 6f, 6r 

pLB85-ILackA2 pLB85 containing ackA2 upstream region of IL1403 obtained with primer 7f, 7r 

pLB85-MGpfl pLB85 containing pfl upstream region of MG1363 obtained with primer 8f, 8r 

pLB85-MGadhE pLB85 containing adhE upstream region of MG1363 obtained with primer 9f, 9r 

pLB85-MGeutD pLB85 containing eutD upstream region of MG1363 obtained with primer 10f, 10r 

pLB85-MGackA1 pLB85 containing ackA1 upstream region of MG1363 obtained with primer 11f, 11r 

pLB85-MGackA2 pLB85 containing ackA2 upstream region of MG1363 obtained with primer 12f, 12r 

Cam, chloramphenicol; Amp, ampicillin; Erm, erythromycin. 
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Table 2.4. Strains used or constructed in the study. 

Strain Description 

IL1403 [10] A plasmid-free strain derived from L. lactis subsp. lactis biovar diacetylactis CNRZ157 

SC072 IL1403 containing pLB65 

SC072/ILpfl SCO72 with pLB85-ILpfl integrated  

SC072/ILeutD SCO72 with pLB85-ILeutD integrated 

SC072/ILackA1 SCO72 with pLB85-ILackA1 integrated 

SC072/ILackA2 SCO72 with pLB85-ILackA2 integrated 

SC072/MGpfl SCO72 with pLB85-MGpfl integrated  

SC072/MGeutD SCO72 with pLB85-MGeutD integrated 

SC072/MGackA1 SCO72 with pLB85-MGackA1 integrated 

SC072/MGackA2 SCO72 with pLB85-MGackA2 integrated 

MG1363 [11] A plasmid-free strain derived from L. lactis subsp. cremoris NCDO 712 

LB436 [12] MG1363 containing pLB65 

LB436/ILpfl SCO72 with pLB85-ILpfl integrated  

LB436/ILadhE SCO72 with pLB85-ILadhE integrated  

LB436/ILeutD SCO72 with pLB85-ILeutD integrated 

LB436/ILackA1 SCO72 with pLB85-ILackA1 integrated 

LB436/ILackA2 SCO72 with pLB85-ILackA2 integrated 

LB436/MGpfl SCO72 with pLB85-MGpfl integrated  

LB436/MGadhE SCO72 with pLB85-MGadhE integrated  

LB436/MGeutD SCO72 with pLB85-MGeutD integrated 

LB436/MGackA1 SCO72 with pLB85-MGackA1 integrated 

LB436/MGackA2 SCO72 with pLB85-MGackA2 integrated 

ABLE-K [13] An E. coli strain reducing the copy number of common cloning vectors 

2.2.2 Antibiotics 

When needed ampicillin, erythromycin or chloramphenicol were added at 100, 5 and 5 μg ml
-1

 for L. 

lactis respectively. Tetracycline and kanamycin were applied at 15 and 8 μg ml
-1

 for E. coli ABLE-K. 

2.2.3 Culture media and conditions 

E. coli strains were cultivated aerobically at 28 ˚C in lysogeny broth (LB) [14]. L. lactis was 

cultivated in M17 media or chemically defined SA media [15] at 30 ˚C without aeration, 

supplemented with 0.2% (w/v) glucose. For growth experiments, defined SA medium [15] devoid of 

sodium acetate and supplemented with nucleosides (adenosine, cytidine, guanosine, thymidine, 

uridine and inosine, 20 mg/L),  α-lipoic acid (2 mg/L) and either glucose or maltose (0.2%) were used, 

abbreviated as GluSALN or MalSALN respectively. Growth experiments were conducted in flasks at 

30 ˚C under static conditions with slow stirring. Optical density at 600 nm (OD600) was regularly 

measured. To prepare a preculture, a single colony from an agar plate was inoculated into GluSALN 

or MalSALN media in dilution series. Growth experiments were started by inoculating an 

exponentially growing overnight culture selected from the dilution series into a flask containing the 

same medium, up to OD600 = 0.001 or 0.02 for growth on glucose or maltose respectively. Biological 
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triplicates for each experiment were performed. The previously found cell density equal to 0.36 g (dry 

weight) (gdw) per liter of SALN medium at OD600 = 1 was used for the calculation of specific rates 

[16].  

2.2.4 Quantification of sugar and fermentation products 

High-performance liquid chromatography (HPLC) was employed to measure the concentration of 

glucose, maltose, lactate, formate and acetate in the samples taken during the growth experiments as 

previously described [16]. The biomass yield on sugar 𝑌𝑋 𝑆⁄  (gdw/C6-mol) was estimated by: 

𝑌𝑋 𝑆⁄ =
1

𝑛𝐶6

𝑑𝑋

𝑑𝑆
=

𝑑(𝑋/𝑉)

𝑑(𝑆/𝑉)
=

(𝜌 𝑂𝐷600⁄ )

𝑛𝐶6

𝑑(𝑂𝐷600)

𝑑𝐶
=

0.36

𝑛𝐶6

𝑑(𝑂𝐷600)

𝑑𝐶
 

where S is the substrate (sugar), X is the biomass, V the culture volume, 𝜌 the cell density and C the 

substrate concentration. 𝑛𝐶6
= 1 for glucose and 2 for maltose. It is therefore proportional to the slope 

of OD600 plotted against C6 concentration. Under the assumption of exponential growth (𝑑𝑋 𝑑𝑡⁄ = 𝜇𝑋 

where 𝜇 is the specific growth rate), the specific rate of consumption or production of substrate or 

product, respectively, or simply the substrate or product flux, were calculated as: 

𝑣 =
1

𝑋

𝑑𝑆

𝑑𝑡
= 𝜇

𝑑𝑆

𝑑𝑋
=

𝜇

0.36

𝑑𝐶

𝑑(𝑂𝐷600)
 

2.2.5 DNA techniques 

The method used to isolate the chromosomal DNA from L. lactis was modified from a previous 

method [17]. PCR amplification, restriction, ligation, transformation and plasmid purification from E. 

coli were performed following procedures described in Sambrook and Russell [18] and the description 

from the manufacturer of the enzymes used. Electrocompetent cells of L. lactis were grown in M17 

broth supplemented with 10 g L
-1

 glucose and 10 g L
-1

 glycine and transformed by electroporation as 

described previously [19]. 

2.2.6 Construction of gusA reporter strains 

The promoter containing region upstream a specific gene (≈500-bp) was PCR amplified and inserted 

into plasmid pLB85 and transformed into LB436 which expresses phage TP901-1 integrase as 

described previously [12] to construct strains reporting the promoter activity of mixed-acid genes. For 

SC072 which was derived from IL1403, since the attB site in IL1403 does not perfectly match the 

consensus for high-frequency integration, vectors derived from pLB85 were first transformed into and 

then purified from E. coli. It is noted that ampicillin instead of erythromycin was used as selection 

marker for E. coli transformation to avoid abnormal forms of plasmids observed (possibly multimer). 

L. lactis transformants were selected on GM17 with erythromycin and verified by sequencing using 

primers CSO50 and CSO263 (Table 2.2). 
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2.2.7 Measurement of β-glucuronidase activity 

Exponentially growing culture at OD600=0.6 was quenched on ice and harvested for β-glucuronidase 

assay. The procedure used for measuring β-glucuronidase activities was modified from Miller [20] 

and Israelsen et al. [21].  

 Results 2.3

2.3.1 Growth of MG1363 and IL1403 

Before studying the difference between the two strains, the growth behavior and fermentation pattern 

of the strains should be confirmed. For this purpose, L. lactis MG1363 and IL1403 were cultivated on 

GluSALN or MalSALN media. Sugars were verified to be the limiting substrate for growth by the 

absence of sugar in cultures where growth had ceased. The growth rate and the fermentation pattern 

during exponential growth phase for each experiment were analyzed. Table 2.5 shows the specific 

growth rate and specific rates of consumption of sugars and production of lactate, formate, acetate and 

ethanol. The growth rate of both strains on glucose was indistinguishable from each other, around 

1.15 h
-1

, equivalent to a generation time of 36 minutes. Product formation as revealed by HPLC 

measurements was found to be homolactic, and only 5% (molar) of the pyruvate ended up as 

alternative products (Table 2.6).  

Table 2.5. Specific rate of growth, sugar consumption and product formation. 

 Growth rate (h-1) Specific rate of consumption/production (mmol h-1 gdw-1) 

 Sugar Lactate Formate Acetate Ethanol 

GluSALN       

MG1363 1.15 ± 0.04 25.9 ± 1.6 45.7 ± 1.2 1.8  ± 0.6 2.4 ± 0.2 0.3 ± 0.3 

IL1403 1.15 ± 0.07 24.9 ± 1.6 42.2 ± 0.6 1.6  ± 0.2 1.8 ± 0.2 0.4 ± 0.4 

       

MalSALN       

MG1363 0.61 ± 0.03 8  ± 0.4 12.6 ± 0.8 16.8 ± 1.5 9.6 ± 0.9 5.8 ± 0.8 

IL1403 0.43 ± 0.01 9.8  ± 0.5 34.2 ± 2.4 3.8  ± 0.7 3.7 ± 0.8 0.2 ± 0.2 

Table 2.6. Derived growth statistics.  

 Carbon recovery Formate % Acetate + ethanol % Biomass yield (gdw/ C6-mol) 

GluSALN     

MG1363 92% ± 3% 4% ± 1% 5% ± 1% 44.6 ± 4.2 

IL1403 88% ± 5% 4% ± 1% 5% ± 1% 46.5 ± 5.5 

MalSALN     

MG1363 92% ± 7% 57% ± 2% 55% ± 2% 38.3 ± 2.0 

IL1403 97% ± 6% 10% ± 2% 10% ± 2% 22.1 ± 0.8 

Carbon recovery was calculated as the sum of acetate, ethanol and lactate fluxes divided by the sugar uptake flux in C3-mole. 

Formate percentage was the formate flux divided by the sum of formate and lactate fluxes. Acetate and ethanol percentage 

was the sum of acetate and ethanol fluxes divided by the sum of the two and lactate fluxes. 
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When growing on maltose, however, a notable higher growth rate of MG1363 (0.61 h
-1

) than that of 

IL1403 (0.43 h
-1

) was observed. Calculation of product fluxes indicated very different fermentation 

patterns between the two strains, prominently mixed-acid for MG1363 (≈55% mixed acids) and 

homolactic for IL1403 (10% mixed acids). Especially low in production was ethanol, basically close 

to zero production as in the case of growth on glucose. It is also worth noting that the maltose flux in 

IL1403 is slightly but systematically higher than that in MG1363 (8 replications throughout 1 year) 

(Table 2.5). Another observation is the significantly lower growth yield of IL1403 on maltose. 

2.3.2 Strategy to identify trans- and cis-regulation of transcription 

We aimed to study the regulation of the promoter activities of the mixed-acid genes in both MG1363 

and IL1403. The genes include pfl, eutD, ackA1, ackA2 and adhE, respectivey encoding for pyruvate 

formate-lyase (PFL), phosphotransacetylase (PTA), two acetate kinases (ACKs) and alcohol 

dehydrogenase (ADH). For the activity of promoter of gene G of strain A expressed in strain B, a 

single copy of a 500-bp upstream region of G from strain A followed by the gene gusA, encoding β-

glucuronidase as a reporter, was created on the chromosome of strain B (see Figure 2.1 and 

‘construction of gusA reporter strains’ in the method section  for construction details). 

For each gene, strains were constructed for measuring the promoter activity from MG1363 or IL1403 

expressed in MG1363 or IL1403 respectively (Figure 2.2). The rationale behind this was to identify 

possible trans- and cis-regulatory elements. If the promoter activities of the two promoters are similar 

within a strain but the values differ between the two strains, trans-regulation specific to a strain is 

suggested. In contrast, if the activity of the promoter from a strain remains unchanged when expressed 

in both strains but is persistently different from that of the promoter from the other strain, cis-

regulatory elements on either promoter region subject to regulation in both strains is suggested. 

 

Figure 2.1. Construction for measuring promoter activities. 
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Figure 2.2. Identification of trans- and cis-regulation.  

Compare activity of promoters from the two strains expressed in the two strains respectively.  

PA, promoter activity. 

pfl promoters 

The activities of the pfl promoters of both strains were assayed (Figure 2.3). An obvious observation 

is the 10-fold induction of pfl promoters in all constructs for growth on maltose compared to growth 

on glucose. More interestingly, a surprisingly clear pattern resembling trans-regulation was seen. pfl 

promoters of both strains had very similar activities and they were 3-fold higher when expressed in 

MG1363 than in IL1403. 

 

Figure 2.3. pfl promoter activities. 

eutD promoters 

For eutD promoters, similarly, induction for growth on maltose was observed (Figure 2.4). A sharp 

contrast to the case of pfl is a clear pattern resembling cis-regulation on eutD promoters. The eutD 

promoter of MG1363 always has an activity about 2 times higher than that of IL1403 and the levels 

are similar when expressed in both strains. 
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Figure 2.4. eutD promoter activities. 

Promoter activities of ackA1 and ackA2 

For the two ackA genes, no clear pattern could be observed . For ackA1, only a higher activity on 

maltose compared to glucose (≈2-fold) for all cases could be concluded. For ackA2, more significant 

induction on maltose was observed (≈10-fold). The promoter of IL1403 appeared to be more active 

than that of MG1363 and was particularly active in its original host IL1403.  

 

 

Figure 2.5. ackA1, ackA2 promoter activities. 
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Promoter activities of adhE 

For adhE promoter activity, only the promoter activities in MG1363 as the background were 

measured (Figure 2.6). The induction on maltose was very strong for MG1363’s promoter (75-fold). 

The activity of IL1403’s adhE promoter was two-fold to three-fold higher on maltose than that of 

MG1363’s. 

 

Figure 2.6. adhE promoter activities in MG1363. 

 Discussion 2.4

2.4.1 Homolactic fermentation in IL1403 confirmed 

The growth experiments of IL1403 in MalSALN media supported two observations in Even et al. 

(2001) [9]. First, IL1403 largely remained homolactic even when growing on a slowly fermentable 

sugar (galactose in that study). Second, alcohol dehydrogenase (ADH) was probably not sufficiently 

functional as it was found in the previous study that ADH had an extremely low activity in IL1403 

(10
2
- to 10

3
-fold lower than other fermentation enzymes) and in this study the ethanol production was 

very low, not comparable to the acetate production. In usual mixed-acid fermentation the production 

of the two products should be in the same order of magnitude. 

The lower growth rate and biomass yield (as well as the final OD600, data not shown) of IL1403 

growing on maltose are probably results of decreased glycolytic flux limited by maltose uptake and 

the inability of IL1403 to switch into mixed-acid fermentation to get one more ATP per acetate 

produced. The effect of the lowered ATP production rate can be explained by the simplistic Pirt’s 

equation: 

𝑣𝐴𝑇𝑃 = 𝜇𝑌𝐴𝑇𝑃 𝑋⁄ + 𝑣𝐴𝑇𝑃𝑚 

where 𝑣𝐴𝑇𝑃 is the ATP production rate, 𝜇 the growth rate, 𝑌𝐴𝑇𝑃 𝑋⁄  the ATP required for forming one 

unit of biomass,  𝑣𝐴𝑇𝑃𝑚 the rate of ATP needed for maintenance. Assume a constant maintenance and 

constant ATP requirement for biomass production, the growth rate decreases with the ATP production 
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rate. Then, during exponential growth, 𝑣𝐴𝑇𝑃 is related to the ATP yield 𝑌𝐴𝑇𝑃 𝑆⁄  and the biomass yield 

on substrate 𝑌𝑋 𝑆⁄  as follows: 

𝑣𝐴𝑇𝑃 =
1

𝑋

𝑑(𝐴𝑇𝑃)

𝑑𝑡
=

𝑌𝐴𝑇𝑃 𝑆⁄

𝑋

𝑑𝑆

𝑑𝑡
= 𝑌𝐴𝑇𝑃 𝑆⁄ (𝜇

𝑑𝑆

𝑑𝑋
) = 𝜇

𝑌𝐴𝑇𝑃 𝑆⁄

𝑌𝑋 𝑆⁄
 

Rearranging, we have: 

𝑌𝑋 𝑆⁄ =
𝑌𝐴𝑇𝑃 𝑆⁄

𝑌𝐴𝑇𝑃 𝑋⁄
(1 −

𝑣𝐴𝑇𝑃𝑚

𝑣𝐴𝑇𝑃
) 

Thus the biomass yield decreases with the ATP production rate and increases with the ATP yield on 

substrate. 

Other factors could also contribute to the decreased ATP production in addition to the limited maltose 

uptake rate. (i) In the upstream maltose pathway, if more intracellular maltose is hydrolyzed by α-

glucosidase than by maltose phosphorylase, the outcome is more glucose which needs ATP in order to 

be converted into G6P (Figure 1.4). The ATP yield is then lower than 2 moles per mole of C6. But 

again the activity of α-glucosidase in L. lactis has not been determined. (ii) Compared to the PTS 

converting extracellular glucose to intracellular G6P in a single step, both ABC transporter 

transporting maltose and glucokinase produce extra protons while L. lactis maintains a high 

intracellular pH [22]. The extra protons produced may need to be pumped out of the cell by ATPase, 

using extra ATP. (iii) More ATP may be consumed in the whole cellular program for growth on 

maltose than on glucose, for instance, expression of additional enzymes for maltose assimilation. 

2.4.2 Regulation of promoter activities 

The activities of pfl promoters in different backgrounds suggested regulation by a trans-element in 

either strain. It could be a repressor in IL1403 or an activator in MG1363 not present in the other 

strain. A motif well matching the cre consensus at -114 (relative to the transcription start site) is 

present in both strains but it is not likely to be the reason since there have been in vitro and in vivo 

evidences showing the functionality of CcpA in IL1403 [23, 24]. Another candidate with higher 

possibility is FlpA in MG1363. It has been found to recognize the FNR consensus [25] which 

overlaps with the -35 promoter of pfl for both of the strains and once reported to affect the formate 

production in MG1363 [26]. No homolog of FlpA could be found in IL1403 but there is another FNR-

like protein, RcfA, that however was unable to substitute FlpA in MG1363 [27]. 

For eutD, the regulation of promoter activity was more likely to be governed by cis-elements present 

in the promoter region. They could be sequence motifs matching the consensus of a certain activator 

targeting MG1363’s promoter or a repressor targeting IL1403’s promoter that exists in both strains. 

One possible candidate is a motif roughly matching the cre consensus present on MG1363 
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(TGGGGTCGATATTA), 257 bp upstream of the start codon and 165 bp upstream of a putative TGn 

-10 promoter (TGGTATACT). In IL1403, the corresponding sequence has lost the central CG 

element (TGGGGTTGATATTA) which is essential for CcpA recognition. 

For the two ackA genes, the repression of ackA2 on glucose is expected because it has been found to 

be subject to carbon catabolite repression and a cre consensus 22 bp upstream of the start codon is 

present just after a putative transcription start site [28]. Besides, the quite different activity profiles of 

the two promoters are interesting and worth further studying in the sense that the proteins encoded by 

the two genes (ACK) should be responsible for the same reaction. One hypothetical possible situation 

is that the ACK from ackA1 produces acetate from acetyl-phosphate while that from ackA2 is for the 

reverse direction. It was hypothesized because IL1403 does not exhibit significant mixed-acid 

fermentation, so acetyl-CoA is expected to be insufficient and acetate is one of the precursors. This 

coincides with the higher promoter activity of ackA2 than ackA1 for IL1403 growing on maltose. 

Despite the insights provided by these results, a factor contributing to the expression level of a gene at 

the transcription level not taken into account using the present approach is the possibly varying gene 

dosage along the position of a gene in the genome. All transcriptional fusions were integrated into the 

same site on the chromosome, 18 kbp away from the origin of replication. pfl, for example,  is located 

618 and 657 kbp away from the origin in MG1363 and IL1403 respectively. The actual expression 

level may be different because the closer to the origin a gene is, the higher the expression level one 

can expect [29]. 

For the gene adhE, only the promoter activities in MG1363 were measured as the construction for 

IL1403 was not successful initially. Further attempts have not been made since later the focus had 

been shifted to PFL and ACKs, as reported in Chapter 3 and Chapter 1. 
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Chapter 3. Mixed-acid fermentation controlled by pyruvate-formate lyase 

  Introduction 3.1
L. lactis subsp. cremoris MG1363 and subsp. lactis IL1403 have been confirmed to exhibit different 

extents of mixed-acid fermentation when growing on maltose in SALN media. In MG1363, 60% (in 

molar) of pyruvate ended up in mixed acids (formate, acetate and ethanol) whereas mixed acids 

accounted for only 10% of pyruvate distribution in IL1403 (1.7). Meanwhile, the transcriptional 

activity induced by pfl promoters was found to be 3-fold higher in MG1363 than in IL1403. pfl 

encodes for pyruvate formate-lyase (PFL), an oxygen sensitive enzyme producing formate and acetyl-

CoA from pyruvate, and is the first enzyme of the mixed-acid pathway (see section 1.5.3). The lower 

transcription level of pfl could be a reason for the inability to shift from homolactic to mixed-acid 

fermentation in IL1403 as in the case of MG1363, for which PFL has been found to control the 

mixed-acid shift for growth on galactose [1].  

In this study, to examine the role and functionality of PFL in IL1403, first PFL activities from IL1403 

were introduced into a PFL-knockout strain derived from MG1363. Second, an attempt was made to 

modulate the level of PFL in IL1403. 

 Materials and methods 3.2

3.2.1 Bacteria strains and plasmids 

All L. lactis strains were derived from MG1363 and IL1403. pCS1966 containing genes for 

erythromycin resistance and orotate transport was used for markerless pfl deletion in MG1363 [2]. 

pLB65 and pLB85-derived plasmids (described in section 2.2) were used for inserting a chromosomal 

copy of pfl preceded with a synthetic promoter library (SPL) in MG1363. The thermosensitive 

plasmid pGhost8 containing a gene encoding for tetracycline resistance was used for gusA insertion 

into IL1403’s chromosome [3]. pRC1, non-replicating in L. lactis, was used for integrating synthetic 

promoters upstream of pfl in IL1403 by a single cross-over event [4]. E. coli MC1000 was used for 

cloning pCS1966- and pGhost8-derived plasmids [5]. E. coli ABLE-C (Stratagene) was used for 

cloning pRC1 [6]. Primers, plasmids and strains used or constructed in this study are listed in Table 

3.1, Table 3.2 and Table 3.3 respectively. 
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Table 3.1. Primers used in the study. 

Primer  RS Amplified region / Description Sequence (5’ - 3’) 

CSO834 XbaI pfl upstream  

in MG1363 

ctagtctagaCAAGTGATGTACCAAATGAC 

CSO835 BamHI cgcggatccTTTGAAATCTCCTTTGTTCT 

CSO836 BamHI pfl downstream  

in MG1363 

cgcggatccTTCTTAGTATTAAAAAATATAAAG 

CSO837 XhoI ggtactcgagTGTGATTCACCCCTATTTCT 

CSO852 / 
Verify pfl deletion 

CTTGAATTCTGTTTGCTATTATC 

CSO853 / CTTTGTCAGCATCAATTACTTG 

76f XhoI ≈900 bp upstream region of pfl stop codon 

in IL1403 

actgactcgagGACTGATACTTATGTTGA 

76r HindIII actgaaagcttTAAGAATTAGATGTTTGAAGTATGC 

CSO380 HindIII 
E. coli MG1655’s gusA 

gcatcaagcttaaggttGACCAGTATTATTATC 

CSO381 PstI tcggactgcagAGGAGAGTTGTTGATTCATTG 

77f PstI ≈900 bp downtream region of pfl stop 

codon in IL1403 

actgactgcagAAATTTAATGAATATTCGGTCTGTCAGT 

77r XbaI actgatctagaATACAAGGGGAGAAAGGG 

16f XbaI Synthetic promoter library for pfl, suitable 

for both MG1363 and IL1403 

acgactagttctagaatnnnnnagtttattcttgacannnnnnnnnnnnnntgrtataa

tnnnnTTGTAATTTGAAACAGAAAGAAC 

8f XbaI upstream region of pfl in MG1363 atcgatctagaCCTCAGCAACATTTGTTC 

16r SalI 
Reverse primer for MG1363’s pfl 

actgagtcgacATTAGATATTTGAAGTGTGCATTACTTCTT

CATC 

54r SalI Reverse primer for IL1403’s pfl actgagtcgacAAGAATTAGATGTTTGAAGTATGC 

78r PstI Reverse primer for truncated IL1403’s pfl actgactgcagttaGATATCAAGAACGATTGG 

RS, restriction site. 

 Table 3.2. Plasmid used or constructed in the study.  

Erm, erythromycin; Tet, tetracycline; Cam, chloramphenicol; Amp, ampicillin. 

Plasmid Description Resistance 

pCS1966 [2] A vector containing oroP for orotate transporter as a counterselection tool for deletion. Erm 

pCS1966-pfl pCS1966 containing the upstream and downstream regions of pfl in MG1363 obtained with 

primers CSO834-837. 

Erm 

pGhost8 [3] Thermosensitvie plasmid, non-replicating above 35 ˚C. Tet 

pGhost8-gusA pGhost8 containing the upstream and downstream regions of pfl stop codon in IL1403, 

separated by E. coli’s gusA, PCR amplified with primers 76f, r, CSO380, 381 and 77f, r. 

Tet 

pLB65 [7] Containing orf1 expressing phage TP901-1 integrase  Cam 

pLB85 [7] Reporter vector containing a promoterless gusA gene and an attP site for integration into attB 

site on chromosomes in the presence of the TP901-1 integrase. 

Amp, Erm 

pLB85-SPL-

MGpfl 

pLB85 containing a synthetic promoter library preceding pfl of MG1363 PCR amplified with 

primer 16f, r. 

Amp, Erm 

pLB85-SPL-

ILpfl 

pLB85 containing a synthetic promoter library preceding pfl of IL1403 PCR amplified with 

primer 16f, 54r. 

Amp, Erm 

pLB85-WTP-

MGpfl 

pLB85 containing the wild-type promoter region and pfl of MG1363 PCR amplified with 

primers 8f, 16r 

Amp, Erm 

pRC1 [6] A pBlue-script-derived vector, non-replicating in L. lactis. Erm 

pRC1-SPL-ILpfl pRC1 containing a synthetic library preceding a truncated version of pfl of IL1403  (≈900 bp)  Erm 
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Table 3.3. Strains used or constructed in the study. 

Strain Description 

MG1363 [8] A plasmid-free strain derived from L. lactis subsp. cremoris NCDO 712 

IL1403 [9] A plasmid-free strain derived from L. lactis subsp. lactis biovar diacetylactis CNRZ157 

MG1363Δpfl pfl-knockout derived from MG1363 using pCS1966-pfl 

SC100 MG1363Δpfl containing pLB65 

SC105 a – e Strains with modulated expression of pfl from MG1363 by integration of pLB85-SPL-MGpfl into 

SC100 

SC106 a – e Strains with modulated expression of pfl from IL1403 by integration of pLB85-SPL-ILpfl into SC100 

SC119 A strain with the wild-type promoter region and pfl of MG1363 by integration of pLB85-WTP-MGpfl 

into SC100 

SC183 IL1403 with gusA inserted at pfl downstream, constructed using pGhost8-gusA 

SC193 a – c Strains with synthetic promoters preceding the native pfl in SC183 resulting from integrating pRC1-

SPL-ILpfl into SC183’s chromosome 

MC1000 [5] An E. coli strain used for cloning purposes 

ABLE-K [6] An E. coli strain reducing the copy number of common cloning vectors 

3.2.2 Antibiotics 

When needed, erythromycin, chloramphenicol, tetracycline were added at 5 μg ml
-1

 for L. lactis 

respectively. Erythromycin, tetracycline and kanamycin were applied at 150, 15 and 8 μg ml
-1

 for E. 

coli. 

3.2.3 Gene deletion and insertion 

pfl deletion was achieved by using the plasmid pCS1966 [2]. ≈900-bp regions upstream and 

downstream of the target to be deleted were PCR amplified (using primers CSO834 – 837) and 

inserted into pCS1966. The resulting plasmids were used as previously described [2]. For insertion of 

gusA, the sequence to be inserted was also PCR amplified (using primers CSO380, 381) and cloned in 

between the upstream and downstream regions (amplified using primers 76, 77) in pGhost8 [3]. 

3.2.4 Modulation of pfl expression in L. lactis 

For modulating pfl expression in MG1363, first the native pfl was deleted followed by the 

transformation of pLB65 into the deletion strain, resulting in SC100. The vectors for strain 

construction were pLB85-SPL-MGpfl and pLB85-SPL-ILpfl containing a SPL preceding pfl of 

MG1363 and IL1403 amplified using primers 16f, 16r and 16f, 54r respectively. The vectors were 

directly transformed into SC100. The transformants became the SC105 and SC106 series of strains 

with modulated expression from MG1363 and IL1403 respectively via site-specific integration of the 

vectors at attP, attB sites in the presence of the integrase encoded from pLB65 [7]. For control, 

pLB85-WTP-MGpfl containing the wild-type promoter followed MG1363’s pfl was also prepared. 

Transforming the vector yielded the strain  
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For modulation of pfl in IL1403, the gusA gene was inserted just downstream of pfl and the resultant 

strain was named SC183. For the integration vector, the fragment of a truncated version of pfl with a 

SPL was amplified using primers 16f and 78r. It was digested and inserted into pRC1 to become 

pRC1-SPL-ILpfl. It was then cloned through E. coli ABLE-C which reduced the copy number of 

plasmids to compensate the potential selective disadvantage of strong synthetic promoters. The 

transformants of the purified plasmids become the SC193 series of strains with different expression of 

pfl. 

For the calculation of flux control coefficients (FCCs), a suitable curve 𝑦 = 𝑓(𝑥)  for flux as a 

function of gusA activity was fitted using Matlab® and the FCC was calculated as 𝑥𝑓′(𝑥)/𝑓(𝑥) . 

3.2.5 Others 

For culture media and conditions, quantification of sugars and fermentation products, other DNA 

techniques and measurement of β-glucuronidase activity, readers are referred to section 2.2. 

 Results 3.3

3.3.1 PFLs of MG1363 and IL1403 expressed in MG1363Δpfl  

The PFL of IL1403 (IL-PFL) and the PFL of MG1363 (MG-PFL) were expressed in MG1363Δpfl to 

see if they behaved differently. This was done by integration of a copy of pfl either from MG1363 or 

IL1403 (MG-pfl or IL-pfl) following a SPL into the chromosome of MG1363 through the use of 

pLB85 (Figure 3.1). A control strain with the wild-type promoter region (WTP) followed by MG-pfl 

integrated in the same way was also constructed, called SC119. The library of clones with different 

expression of MG-pfl was called SC105 and the corresponding library of clones for IL-pfl was SC106.  

 

Figure 3.1. MG1363 derivatives with modulated PFL from MG1363 or IL1403. 

‘+1’, transcription start site. The leader sequence is identical to that in MG1363’s pfl. 

The preliminary screening was done by quantifying the formate production in overnight culture of 

these strains (Figure 3.2). The preliminary screening showed that IL-PFL was indeed able to produce 

formate in significant amounts. The profile of formate production of the two libraries was very similar. 

Five strains from each library were selected for further characterization, named SC105a – e and 
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SC106a – e respectively. Growth experiments of these strains on glucose and maltose in SALN media 

were conducted respectively. Growth rate, production formation and gusA activity during exponential 

growth phase were measured (see Table 3.4 for all data). 

 

Figure 3.2. Screening of strains with modulated pfl. 

Libraries of clones with modulated pfl from (a) MG1363 (library SC105) and (b) IL1403 (library 

SC106), respectively. Clones producing different amounts of formate in overnight cultures on 

maltose (in green bars) were selected for further characterization. 

The gusA activity of the chosen strains ranged from 1 to 200 Miller units for growth on glucose and 

from around 10 to 400 Miller units for growth on maltose (Figure 3.3). The activity of all synthetic 

promoters appeared to have increased from 2- to 7-fold on maltose compared to glucose, with the fold 

change decreasing with the activity. The WTP in SC119 showed a 7-fold induction of activity on 

maltose compared to glucose, similar to the results in 1.7 (Figure 2.3). The fluxes of SC119 (Table 3.4) 

are also fairly comparable to the wild type MG1363 (Table 2.5). 

 

Figure 3.3. gusA activity of wild-type promoter and synthetic promoters. 
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Table 3.4. Growth data and gusA activities of SC105, SC106, SC100 and SC119. 

 gusA activity 

(Miller unit) 
Growth rate (h-1) 

Specific rate of consumption/production (mmol h-1 gdw-1) 

 Sugar Lactate Formate Acetate Ethanol 

Glucose SALN       

SC105a 2 ± 0.1  1.01 ± 0.01 23.3 ± 0.4 41 ± 0.6 -0.7 ± 0.3 1.8 ± 0.2 0.3 ± 0.1 

SC105b 21 ± 0.3 1.01 ± 0.01 21.7 ± 0.6 41 ± 1.6 0.3 ± 0.1 2.4 ± 0.1 0.8 ± 0.5 

SC105c 59 ± 1.1 0.98 ± 0.01 21.2 ± 1.1 40 ± 1.0 0.1 ± 0.3 3 ± 0.3 1.1 ± 0.5 

SC105d 68 ± 1.2 0.98 ± 0.01 22.3 ± 0.5 38 ± 0.2 2.4 ± 0.4 2.7 ± 0.2 0.5 ± 0.05 

SC105e 188 ± 3.5 0.94 ± 0.01 20.9 ± 0.5 38 ± 0.3 1.8 ± 0.5 2.9 ± 0.3 0.8 ± 0.1 

SC106a 1 ± 0.1 1.01 ± 0.01 23.3 ± 0.2 41 ± 0.3 -0.7 ± 0.4 2.1 ± 0.4 0.3 ± 0.2 

SC106b 3 ± 0.1 0.98 ± 0.01 23.6 ± 0.1 42 ± 0.2 -0.3 ± 0.4 1.6 ± 0 0.2 ± 0.1 

SC106c 23 ± 0.4 1.00 ± 0.01 23.4 ± 0.5 41 ± 0.2 0.4 ± 0.2 2.4 ± 0.1 0.3 ± 0.1 

SC106d 66 ± 2.0 0.99 ± 0.01 22.2 ± 0.7 39 ± 0.3 2.4 ± 0.5 2.8 ± 0.3 0.8 ± 0.6 

SC106e 202 ± 3.7 0.91 ± 0.01 21.2 ± 0.5 38 ± 0.6 1.8 ± 0.6 2.8 ± 0.1 0.9 ± 0.2 

SC100         N.D. 1.25 ± 0.03 25.0 ± 0.7 46 ± 1.3 -0.4 ± 0.1 1 ± 0.1 0.2 ± 0.1 

SC119 39 ± 2.0 1.02 ± 0.02 23.2 ± 0.8 39 ± 1.1 1.8 ± 0.5 2.2 ± 0.2 N.D. 

Maltose SALN       

SC105a 17 ± 0.4 0.43 ± 0.01 5.8 ± 0.8 20 ± 1.4 1.5   ± 0.2 2.2 ± 0.21 N.D. 

SC105b 82 ± 2.8 0.50 ± 0.01 6.8 ± 0.6 18 ± 1.1 7.5   ± 0.4 5.1 ± 0.28 2.4  ± 0.4 

SC105c 185 ± 1.5 0.54 ± 0.01 7.6 ± 0.5 16 ± 1.2 11    ± 0.7 7.1 ± 0.41 3.8  ± 0.6 

SC105d 227 ± 2.8 0.56 ± 0.01 7.2 ± 0.6 13 ± 0.8 14    ± 0.9 8.8 ± 0.51 4.5  ± 0.7 

SC105e 399 ± 15 0.59 ± 0.01 7.0 ± 0.6 10 ± 0.6 18    ± 1.1 11  ± 0.59 6.5  ± 0.8 

SC106a 7 ± 0.2 0.39 ± 0.01 6.5 ± 0.6 19 ± 1.7 0.5   ± 0.1 1.3 ± 0.12 N.D. 

SC106b 21 ± 1.6 0.41 ± 0.01 6.6 ± 0.5 20 ± 1.2 2.1   ± 0.3 2.2 ± 0.22 0.2  ± 0.5 

SC106c 63 ± 1.9 0.49 ± 0.02 7.4 ± 0.9 20 ± 1.7 5.6   ± 0.5 4.9 ± 0.41 1.2  ± 0.8 

SC106d 203 ± 8.9 0.56 ± 0.01 7.7 ± 0.6 14 ± 0.7 14    ± 0.8 8.6 ± 0.45 4.8  ± 1.3 

SC106e 383 ± 17 0.59 ± 0.01 7.5 ± 0.1 11 ± 0.3 16    ± 0.4 10  ± 0.15 5.4  ± 0.2 

SC100         N.D. 0.40 ± 0.02 7.5 ± 1.0 21 ± 2.3 -0.5  ± 0.1 0.5 ± 0.11 0.2  ± 0 

SC119 282 ± 30 0.62 ± 0.01 8.0 ± 0.3 11 ± 1.0 17.3 ± 0.8 11  ± 1.02 5.9  ± 1.5 

SC100, a pfl-deleted strain; SC105, strains SPL-MG-PFL; SC106, strains with SPL-IL-PFL; SC119, a strain with WTP-MG-

PFL. N.D., not detectable. 

3.3.2 Flux control by pfl expression level 

Formate flux controlled by pfl expression 

How the level of pfl expression controls the growth rate and different fluxes was investigated. An 

obvious question is the effect of pfl expression on formate production. For growth on glucose, the 

formate flux appeared to increase initially with pfl expression but decrease at high expression levels 

(SC105e and SC106e, see Figure 3.4a). The level of pfl expression level in the wild-type MG1363 and 

IL1403 might be estimated from the flux-response curve by comparing the formate fluxes in the wild 

types under the assumption that the formate flux responds to change in pfl expression similarly in 

IL1403. From the similar wild-type flux levels (from Table 2.5), similar pfl expression level was 



Chapter 3. Mixed-acid fermentation controlled by pyruvate-formate lyase 

64 

suggested flux and control coefficients (FCCs) between 0.78 and 0.84 were estimated from curve 

fitting (Figure 3.4a(ii)).    

 

Figure 3.4. Dependence of formate flux on pfl expression. 

SC105 (SPL-MG-PFL) (blue square), SC106 (SPL-IL-PFL) (red diamond), and SC119 (WTP-MG-PFL) (green circle) 

growing on (a) glucose or (b) maltose. (i) Formate flux and the derived (ii) flux control coefficient (FCC) plotted against pfl 

expression level. The fluxes in the wild-type IL1403 and MG1363 were provided for reference. SPL, synthetic promoter 

library; WTP, wild-type pfl promoter in MG1363. 

For growth on maltose, a clear increasing trend of formate flux from 0 to ≈20 mmol h
-1

gdw
-1

 along 

with the increase of pfl expression level was observed (Figure 3.4b(i)). pfl expression in MG1363 and 

IL1403 estimated from the flux values and the flux-response curve was largely different from each 

other (≈340 and ≈40 Miller units respectively). The FCC decreases from 0.85 at the estimated wild-

type IL1403’s level to 0.31 at the estimated wild-type MG1363’s level (Figure 3.4b(ii)). 

Acetate fluxes controlled by PFL 

Similar trends were observed for acetate production. Acetate flux increased initially but reached the 

apparent maximum level at ≈60 Miller units of gusA activity for growth on glucose while it kept 

increasing significantly for growth on maltose (Figure 3.5). The FCCs estimated for the glucose case 

are close to 0 and 0.19 for IL1403 and MG1363 respectively. The corresponding estimation for the 

maltose case is 0.52 and 0.33 respectively. It should be remarked, however, that the estimation is not 

consistent with the estimation from the formate flux data because different pfl expression levels 

reflected by gusA activity were estimated from data of different production fluxes. The issue will be 

discussed in later sections. 
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Figure 3.5. Dependence of acetate flux on pfl expression. 

SC105 (SPL-MG-PFL), SC106 (SPL-IL-PFL), and SC119 (WTP-MG-PFL) growing on (a) glucose or (b) maltose. (i) 

Acetate flux and the derived (ii) FCC plotted against pfl expression level. The fluxes in the wild-type IL1403 and MG1363 

were provided for reference. SPL, synthetic promoter library; WTP, wild-type pfl promoter in MG1363. 

Ethanol fluxes controlled by PFL 

Regarding ethanol production, for growth on glucose, no clear trend could be observed and the 

relative error of estimation of fluxes was large at such low values (Figure 3.6). For growth on maltose, 

an increasing pattern of ethanol flux along with the pfl expression level was observed. The estimated 

curve for FCC decreased from infinity initially because no ethanol production was observed at small 

positive gusA activities. The FCC tends to infinity when the value of the flux function approaches 

zero. 

 

Figure 3.6. Dependence of ethanol flux on pfl expression. 

SC105 (SPL-MG-PFL), SC106 (SPL-IL-PFL), and SC119 (WTP-MG-PFL) growing on (a) glucose or (b) maltose. (i) 

Ethanol flux and the derived (ii) FCC plotted against pfl expression level. The fluxes in the wild-type IL1403 and MG1363 

were provided for reference. SPL, synthetic promoter library; WTP, wild-type pfl promoter in MG1363. 
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Negative control of lactate production by PFL 

In contrast to the generally positive control of the mixed acids by PFL, lactate flux was found to be 

negatively controlled by pfl expression with a very small magnitude of negative FCC in the glucose 

case and a larger magnitude in the maltose case (Figure 3.7). Beside the flux control, it can also be 

seen that the wild-type lactate fluxes were out of the range of those of modulated strains in the 

glucose case. For growth on maltose, it is in particular interesting that the lactate flux of IL1403 (34 

mmolh
-1

gdw
-1

) was almost 2-fold higher than all other strains, including strains with very low gusA 

activities (SC105a, SC106a, 20 mmolh
-1

gdw
-1

) and even the pfl-deletion strain (SC100, 21  

mmolh
-1

gdw
-1

). 

 

Figure 3.7. Dependence of lactate flux on pfl expression. 

SC105 (SPL-MG-PFL), SC106 (SPL-IL-PFL), and SC119 (WTP-MG-PFL) growing on (a) glucose or (b) maltose. (i) 

Lactate flux and the derived (ii) FCC plotted against pfl expression level. The fluxes in the wild-type IL1403 and MG1363 

were provided for reference. SPL, synthetic promoter library; WTP, wild-type pfl promoter in MG1363. 
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Control of glycolytic flux  

The specific consumption rate of glucose roughly decreased with pfl expression with very low FCCs 

ranging from -0.04 to -0.01 (Figure 3.8). The corresponding values for IL1403 and MG1363 are 

apparently above those of modulated strains. For growth on maltose, the maximum glycolytic flux 

(with zero FCC) appeared to occur at an intermediate level of pfl expression, close to the level of 

SC119 which contained WTP-MG-PFL integrated in the attachment site attB. This maximum also 

almost coincides with the flux in MG1363. Consistent to the significantly higher lactate flux in the 

homolactic IL1403, the maltose flux was also substantially higher than all other strains. 

 

Figure 3.8. Dependence of glycolytic flux on pfl expression. 

SC105 (SPL-MG-PFL), SC106 (SPL-IL-PFL), and SC119 (WTP-MG-PFL) growing on (a) glucose or (b) maltose. (i) 

Glycolytic flux and the derived (ii) FCC plotted against pfl expression level. The fluxes in the wild-type IL1403 and 

MG1363 were provided for reference. SPL, synthetic promoter library; WTP, wild-type pfl promoter in MG1363. 

 

  



Chapter 3. Mixed-acid fermentation controlled by pyruvate-formate lyase 

68 

Maximum growth rate near the wild-type pfl level 

For growth on glucose, the growth rate appeared to be quite constant at a level of ≈1 h
-1

 for gusA 

activity ≤ 70 Miller units and then started to drop, resulting in a curve of negative FCC (Figure 3.9). 

This includes the strain SC119 with WTP-MG-PFL. When the strains were grown on maltose, in 

contrast, a significant positive control of growth rate by pfl expression was observed initially and the 

maximum was then attained, also close to the level of SC119 which also had a growth rate very 

similar to the wild-type MG1363 (0.61 h
-1

). The FCC therefore approached zero and became negative 

at higher pfl expression levels, corresponding to decreased growth rates in SC105e and SC106e. The 

growth rate of IL1403 is similar to that of strains with lowest pfl expression (SC105a, SC106a – b). 

 

Figure 3.9. Dependence of growth rate on pfl expression. 

SC105 (SPL-MG-PFL), SC106 (SPL-IL-PFL), and SC119 (WTP-MG-PFL) growing on (a) glucose or (b) maltose. (i) 

Growth rate and the derived (ii) FCC plotted against pfl expression level. The growth rates in the wild-type IL1403 and 

MG1363 were provided for reference. SPL, synthetic promoter library; WTP, wild-type pfl promoter in MG1363. 

3.3.3 Yield on sugars 

We also looked into the biomass and product yield on sugars (Figure 3.10). The patterns are in general 

very similar to the case of fluxes reported above. Here, however, several points not revealed by flux 

comparison are worth noting. First, for growth on glucose, the wild-type MG1363 and IL1403 showed 

higher growth rates, higher lactate fluxes than all other strains but their biomass and lactate yields on 

glucose indeed lied within the range of other strains (Figure 3.10a – b). Second, the biomass and 

lactate yield on glucose did not change significantly. Third, interestingly, SC119 containing WTP-

MG-PFL did not have the highest biomass yield and the highest acetate yield which probably reflects 

the ATP yield although the strain had the apparently highest growth rate. MG1363 also had a slightly 

lower biomass and acetate yields than strains with highest pfl expression. The significance of this 

observation is discussed in the next section. 
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Figure 3.10. Biomass and product yield on sugars. 

The (a) biomass, (b) lactate, (c) formate, (d) acetate and (e) ethanol yield on sugars for SC105 (SPL-MG-PFL) (blue square), 

SC106 (SPL-IL-PFL) (red diamond), SC119 (WTP-MG-PFL) (green circle) and SC100 (pfl deletion) (magenta triangle) 

growing on (i) glucose or (ii) maltose. Yields were calculated as growth rates or product fluxes divided by sugar fluxes in C6 

unit. The corresponding levels of MG1363 and IL1403 are marked by blue and red lines respectively.  

SPL, synthetic promoter library; WTP, wild-type pfl promoter in MG1363. 

3.3.4 Loss of formate-producing ability during the modulation of pfl in IL1403 

To modulate pfl expression in IL1403, the reporter gene gusA following a proper leader sequence was 

inserted immediately after the native pfl in IL1403, resulting in the strain SC183 which produced blue 

spots on agar plates with X-gluc. The fragment from the pfl sequence to the region downstream of pfl 

used for the deletion by double crossover, including the inserted gusA in between, was confirmed to 

be correct by DNA sequencing. Then the plasmid pRC1-SPL-ILpfl was used to modulate pfl by 

integrating a SPL preceding pfl by a single-crossover event. A library of 9 strains, the SC193 series, 

was isolated. Preliminary tests on the formate-producing ability of SC183 and SC193 library, 

nonetheless, showed no formate production in all strains. The full copy of pfl in each strain and 

additionally the wild-type promoter region in SC183 were sequenced but no any mutation could be 

found (data not shown). The strains were therefore not further characterized. The possible reasons 

were discussed in the next section. 
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 Discussion 3.4

3.4.1 Similar behaviour of MG-PFL and IL-PFL when expressed in MG1363 

For testing the functionality of IL-PFL, both MG-PFL and IL-PFL were expressed in MG1363 where 

the native pfl had been deleted. The expression made used of the site-specific integration system at the 

attachment site using pLB85. The reporter gene gusA present on pLB85 could serve as an indicator of 

the expression level of pfl as an alternative to measure PFL activity directly which is not 

straightforward because of the extreme sensitivity of PFL toward oxygen [10]. Results of growth 

characterization indicated that the control of formate flux by both MG-PFL and IL-PFL was very 

similar. The change in growth rate and flux distribution in response to the change in MG-pfl and IL-

pfl expression level were also very much alike. This suggested that IL-PFL should also be able to 

function properly in IL1403 provided that the PFL activating enzyme (PFL-AE) also expresses and 

functions properly in IL1403. 

3.4.2 Flux control by PFL in MG1363 

For growth on glucose, the growth rate, lactate flux and glycolytic flux were all negatively controlled 

by PFL, with very small negative FCCs (-0.04 ~ 0) at the estimated wild-type pfl levels for MG1363 

and IL1403 respectively. Formate and acetate production fluxes meanwhile were positively controlled 

by PFL. The sum of FCCs for a flux by all enzymes is equal to 1 by the summation theorem of FCCs. 

Since previous studies found the FCC for formate flux by LDH and PYK is close to -1 and 1 

respectively [11, 12]. The sum of FCCs of the rest of the reactions should be about 1, which is close to 

the value found for PFL. The sum of FCCs by enzymes other than LDH, PYK and PFL should thus be 

close to zero.  

For growth on maltose, PFL appeared to have negative control on only lactate flux with FCC being 

close to zero (-0.06 ~ -0.04) and -0.6 ~ -0.7 at the estimated pfl levels for IL1403 and MG1363 

respectively. Mixed-acid fluxes were positively controlled by PFL whereas the growth rate and 

glycolytic flux increased initially along pfl expression but decreased at larger levels after the 

maximum. The estimated FCCs were summarized in Table 3.5. 

It should be noted again that the estimation of FCCs is dependent on the choice of fitted curves. In 

this study, general functions (exponential, power, rational, polynomial) were adopted and best fits in 

terms of lowest sum of squared residuals, highest coefficient of determination and fewer parameters 

were chosen. Some variations to the selected curves, however, can still be intuitively possible in some 

cases by looking at the plots. For example, for the formate and ethanol fluxes in the maltose case, 

good fits with more paramters registering maximum values at levels close to SC119 are also plausible. 

Similarly a curve fitting the lactate fluxes for growth on maltose with a minimum point attained at a 

level close to SC119 is another choice. This different selection of curves can lead to the conclusion of 

zero flux control by PFL on formate, ethanol and lactate flux at the wild-type level. More strains from 
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the libraries with gusA activity in the range of the estimated wild-type levels are required to be 

characterized for more accurate estimation. 

Table 3.5. Estimated flux control coefficients (FCCs) at the wild-type pfl level. 

  Glucose Maltose 

  MG136 IL1403 MG1363 IL1403 

Estimated relative pfl 

expression level in wild types 

(gusA activity in Miller unit) 

30 ~ 40 30 ~ 40 270 ~ 290 30 ~ 40 

FCC at the 

estimated 

wild-type 

level 

Growth rate -0.006 ~ -0.001 0.06 ~  0.09 0.08 ~  0.10 

Sugar -0.02 -0.05 ~ -0.10 0.05 ~  0.06 

Lactate -0.03 -0.71 ~ -0.63 -0.06 ~ -0.04 

Formate 0.88 ~ 1.02 0.42 ~  0.48 0.83 ~  0.85 

Acetate 0.19 0.30 ~  0.36 0.49 ~ 0.55 

Ethanol / 0.47 ~  0.53 1.38 ~  1.63 

3.4.3 Rate or yield optimization 

An interesting observation from comparing flux and yield is that optimal growth rate in the wild-type 

MG1363 occurred at a sub-optimal growth yield and a sub-optimal ATP yield on maltose (positively 

correlated to acetate yield, assuming all sugar is converted into pyruvate in glycolysis). Homolactic 

fermentation has a lower ATP yield than mixed-acid fermentation and has been known to be out of 

the prediction by the well-known flux balance analysis (FBA) using genome-scale metabolic model if 

additional capacity constraints on flux were not added [13]. It is because FBA is in principle a method 

of yield optimization which, given the biomass reaction as the objective function, always selects a 

flux distribution with highest biomass yield and may not coincide with the flux distribution 

maximizing the true growth rate [14, 15]. The observation here apparently corresponds to this case, 

even happening in growth on maltose where ATP production rate should be the growth-limiting factor.  

The data of the control strain SC119 with WTP-MG-PFL further supported this observation. SC119 

was constructed in the same way as other strains with SPL-MG-PFL or SPL-IL-PFL. It behaved very 

similarly to the wild-type MG1363 for growth on maltose and had a gusA activity and biomass yield 

lower than SC105e and SC106e but still grew faster. 

3.4.4 Comparison to previous results 

Control of the shift from homolactic to mixed-acid fermentation in MG1363 has been demonstrated 

by Melchiorsen et al. (2002) [1]. In their study, similar pattern of flux control by PFL was observed. 

There are still several points of difference in our study. First, the functionality of IL-PFL was also 

tested and compared to MG-PFL. Second, the construction method was different from the previous 

study. In the previous study, two replicating plasmids expressing pfl with promoters of different 

strength were respectively transformed into MG1363 and a pfl-deleted strain. Multiple copies of pfl 
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were thus present in the constructed strains. In this study, all tested strains were constructed by site-

specific chromosomal integration of pfl with synthetic promoters into SC100, ensuring a single copy 

on the chromosome. This precluded possible phenotypic differences brought by the existence of 

multiple copies of pfl and replicating plasmids. An obvious one is the more cellular resource spent on 

their replication. Third, we attempted to look into the control of different fluxes by estimating the flux 

control coefficients. 

3.4.5 Unsuccessful modulation of pfl in IL1403 

The absence of formate production in SC183 and the SC193 series suggested that PFL in these strains 

were not functional. The obvious possibility of mutation in the coding region and promoter region of 

pfl in SC183 was ruled out by sequencing. The lack of formate production might therefore be the 

result of mutation in PFL-activating enzyme (PFL-AE) which is required for PFL activity or other 

unknown reasons.  

The results suggested that inserting gusA after pfl might be detrimental. Indeed, we also attempted to 

transform pLB85-SPL-ILpfl into IL1403 but no blue colonies on agar plates with X-gluc could be 

seen. A probable effect of inserting gusA into the transcription unit of pfl is increase in the 

transcription of pfl due to the increased mRNA stability of the longer transcript. This is supported by 

the ≈4-fold increase in gusA activity in strain SC119 compared to LB436/MGpfl (Table 2.4) when 

growing on either glucose or maltose (Figure 2.3 in Chapter 2 and Table 3.4). In both strains, the 

transcription of gusA is induced by the pfl promoter in MG1363. The difference lies in that in SC119 

gusA is the second gene in an operon after pfl whereas the gusA in LB436/MGpfl directly follows the 

promoter. 

If this is true, then this implied that significant overexpression of PFL in IL1403 might be lethal. The 

reason for IL1403 unfavorable of overexpressing PFL remains unknown. One possibility is the non-

functionality of alcohol dehydrogenase downstream of PFL causing redox imbalance after PFL 

converts too much of the pyruvate into acetyl-CoA. 

3.4.6 Possible reasons for the low formate production in IL1403 

Different properties of IL-PFL and MG-PFL originating from the difference in the amino acid 

sequences is one of the possible causes for the lower formate production in IL1403. It has however 

been ruled out by the present study. Several other reasons for the low PFL activity in IL1403 are 

possible.  

First, the PFL activating enzyme (PFL-AE) encoded by pflA might not be expressed sufficiently or 

not function properly in IL1403. It has long been known that PFL in E. coli requires activation by 

PFL-AE for catalytic activity [16] to protect PFL from irreversible oxygen cleavage [17]. Similar 

mechanisms activating PFL has been observed in L. lactis [10] and demonstrated in vitro using PFL 
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and PFL-AE from the closely related Streptococcus mutans [18, 19]. A study even showed that 

overexpressing PFL and PFL-AE simultaneously increased the formate-to-lactate ratio significantly in 

Streptococcus bovis [20].  

Second, PFL might be expressed at a lower quantity in IL1403 as suggested by the study on promoter 

activity (Figure 2.3, Chapter 2) and the unsuccessful modulation of PFL in IL1403 suggested a high 

expression of IL1403 was probably unfavourable, unlike the case of MG1363.  

Third, the flux might be controlled by other enzymes or regulated at the metabolic level. For example, 

the bi-functional alcohol dehydrogenase (ADH) in IL1403 might be defective or not expressed, as 

suggested in [21] (significant transcript abundance but low activity) and the close-to-zero ethanol 

production in our data (Table 2.5, Chapter 2). If this is the case, then the low PFL activity could be a 

result of metabolic regulation following the model proposed by Garrigues et al. [22]. Since one 

NADH
+
 is not reduced for each pyruvate converted into acetate through PFL, phosphotransacetylase 

and acetate kinase in the absence of ADH activity, NADH
+
 would accumulate and inhibit 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH). This would cause a large triose-phosphate 

pool which inhibits PFL. In this case, ADH or other NAD
+
-producing enzymes are expected to have 

control on the formate flux. Interestingly, in this sense, the regulation of PFL by triose-phosphate can 

be a vital trait to prevent glycolysis from termination due to lack of NAD
+
 regeneration during acetate 

production. This question can be answered by studying the evolutionary sequences of different 

fermentation enzymes and the regulatory mechanisms. 

It should be noted that these possibilities are not mutually exclusive. Indeed, the first and second cases 

may be the evolutionary consequences of the third if the third is true. 
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 Abstract 4.1
Acetate kinase (ACK) (EC no: 2.7.2.1) interconverts acetyl-phosphate and acetate to either catabolize 

or synthesize acetyl-CoA dependent on the metabolic requirement. Among all ACK entries available 

in UniProt, we found that around 45% are multiple ACKs in some organisms including more than 300 

species but surprisingly, little work has been done to clarify whether this has any significance. In an 

attempt to gain further insight we have studied the two ACKs (AckA1, AckA2) encoded by two 

neighboring genes conserved in Lactococcus lactis (L. lactis) by analyzing protein sequences, 

characterizing transcription structure, determining enzyme characteristics and effect on growth 

physiology. The results show that the two ACKs are most likely individually transcribed. AckA1 has 

a much higher turnover number and AckA2 has a much higher affinity for acetate in vitro. 

Consistently, growth experiments of mutant strains reveal that AckA1 has a higher capacity for 

acetate production which allows faster growth in an environment with high acetate concentration. 

Meanwhile, AckA2 is important for fast acetate-dependent growth at low concentration of acetate. 

The results demonstrate that the two ACKs have complementary physiological roles in L. lactis to 

maintain a robust acetate metabolism for fast growth at different extracellular acetate concentrations. 

The existence of ACK isozymes may reflect a common evolutionary strategy in bacteria in an 

environment with varying concentrations of acetate. 

 Introduction 4.2
There are many examples where products of metabolism are excreted and later re-assimilated by 

organisms, e.g. acetate (OAc) in E. coli [1] and ethanol in yeast [2]. The ability to switch between 

dissimilation and assimilation of the same metabolite is an important trait for maximizing growth in a 

changing environment. The acetate switch is a prominent example of this type of behavior. Acetate is 

one of the main metabolic products, and re-assimilation happens in order to exploit an available 

carbon source for further biomass formation after the primary carbon source has been depleted. A 

general review of the switch in acetate metabolism can be found in Wolfe [3]. 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Brown1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Skoog1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Wolfe1
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Lactococcus lactis (L. lactis) is an important Gram-positive model organism which belongs to the 

group of Lactic Acid Bacteria (LAB) and is widely used in cheese production. In L. lactis, acetate 

may also be excreted or assimilated, depending on the environmental conditions. Figure 

4.1 summarizes the relevant metabolic reactions. Under anaerobic conditions L. lactis produces 

mainly lactate as well as formate, ethanol and acetate. The amounts of formate, ethanol and acetate 

become very significant when growth depends on slowly fermentable sugars like maltose and 

galactose [4]. Acetate can also be a precursor of Ac-CoA which is vital to L. lactis because Ac-CoA is 

a precursor in fatty acid biosynthesis [5], cysteine biosynthesis [6] and peptidoglycan biosynthesis [7], 

etc. Acetate is required for growth when other routes to Ac-CoA are blocked. In L. lactis there are 

three known pathways leading to Ac-CoA, including the pyruvate dehydrogenase complex (PDHc), 

pyruvate formate lyase (PFL) and phosphotransacetylase (PTA) in conjunction with acetate kinase 

(ACK) (Figure 4.1). PDHc is mainly active under aerobic conditions in the presence of the cofactor 

lipoic acid. Under strict anaerobiosis, PDHc was shown to have low activity [8] and growth depends 

on PFL in the absence of acetate [9], [10]. PFL is active only anaerobically due to inactivation by 

oxygen [11]. The PTA-ACK pathway, which converts acetate into Ac-CoA, can support growth when 

PDHc and PFL are both inactive provided that acetate is added to the media. If all the three known 

pathways leading to Ac-CoA are blocked, L. lactis is unable to grow [9]. A gene predicted to encode 

either the AMP-forming Ac-CoA synthetase (ACS) (which is important for Ac-CoA production from 

acetate in E. coli [3]) or acyl-CoA synthetase is also present in some L. lactis strains but no ACS 

activity has been reported. There are no other annotated genes in L. lactis encoding enzymes known to 

catalyze the conversion between Ac-CoA and acetate. 

 

Figure 4.1. Pyruvate and Ac-CoA metabolism. 

Pi: inorganic phosphate. CO2: carbon dioxide. Enzyme names are in bold. LDH: lactate dehydrogenase. PFL: pyruvate 

formate lyase. PHDc: pyruvate dehydrogenase complex. PTA: phosphotransacetylase. ACK: acetate kinase. ADHE: bi-

functional alcohol dehydrogenase. doi:10.1371/journal.pone.0092256.g001 

Interestingly, in all available sequenced genomes of L. lactis, two well conserved neighboring 

homologous genes are predicted to encode ACK. A further search on all available ACK sequences 

shows that in fact >300 species have multiple ACKs, including some other LAB species. The 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Thomas1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Eckhardt1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Fernandez1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Delcour1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-g001
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-g001
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Snoep1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Henriksen1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Melchiorsen1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Melchiorsen2
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prevalence suggests a plausible advantage conferred by multiple ACK genes to L. lactis and other 

bacteria. In the literature, the kinetics and mechanism of ACK have long been a subject of study. The 

kinetics of ACK among different organisms has been characterized, e.g. [12]–[15]. Crystallographic 

studies, site-specific mutagenesis and sequence comparisons have revealed sites important for 

substrate binding and catalysis, e.g. [13], [16]–[19]. Several reaction mechanisms have also been 

proposed [20]–[22]. Despite the massive amount of literature on ACK, surprisingly, little work has 

been done on ACK isozymes which exist in many species, with the exception of one kinetic study in a 

spirochete [23]. 

In the hope of revealing the significance of ACK isozymes, in this study we investigated the two 

ACKs in L. lactis by sequence analysis, characterization of transcription structure, enzyme activity 

and effect on growth physiology. 

 Materials and methods 4.3

4.3.1 Bacterial strains and plasmids 

All the L. lactis strains involved in this study were derived from the plasmid-free laboratory strain L. 

lactis subsp. cremoris MG1363 [24]. For overexpression of ACKs, E. coli strain M15 pREP4 

groESL [25] was used. The plasmid pCS1966 containing genes encoding erythromycin resistance and 

an orotate transporter was used for markerless gene inactivation in L. lactis [26]. The plasmids pLB65, 

harboring a gene encoding a site-specific integrase, and pLB85, containing the gusA reporter gene and 

a gene encoding erythromycin resistance, were used for constructing strains needed for in 

vivo promoter strength assessment [27]. The primers, plasmids and strains used in the study are listed 

in Table B.1,Table B.2 and Table B.3 respectively. 

4.3.2 Antibiotics 

When needed erythromycin was added at 5 μg ml
−1

 for L. lactis. Ampicillin and kanamycin were 

applied at 100 μg ml
−1

 and 25 μg ml
−1

 respectively for E. coli. 

4.3.3 Culture media and growth conditions 

E. coli was grown aerobically at 37°C in Lysogeny Broth (LB). L. lactis strains were cultivated at 

30°C without aeration in M17 broth supplemented with 2 g L
−1

 of glucose or in chemically defined 

SA medium [28] devoid of acetate and supplemented with 2 g L
−1

 of maltose (MSA). L. lactis growth 

experiments were carried out in flasks at 30°C under static conditions with slow stirring and optical 

density at 600 nm (OD600) was measured regularly. As inoculum an over-night exponentially growing 

culture in the same medium was used and the start OD600≈0.02. The growth rate was calculated as the 

average of three replications. The cell density was correlated to the cell mass of L. lactis to be 0.36 g 

(dry weight) per liter of SA medium of OD600 = 1. 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Nakajima1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Miles1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Knorr1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Buss1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Miles2
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Ishikawa1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Gorrell1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Harwood1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Gasson1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Amrein1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Solem1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Brndsted1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256.s001
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256.s001
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256.s002
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256.s002
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256.s003
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256.s003
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Jensen1
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4.3.4 Quantification of maltose and fermentation products 

HPLC was employed to measure the concentration of maltose, lactate, formate and acetate in the 

samples taken during the growth experiments as previously described [29]. 

4.3.5 DNA techniques 

The method used to isolate the chromosomal DNA from L. lactis was modified from a previous 

method [30]. PCR amplification, restriction, ligation, transformation and plasmid purification from E. 

coli were performed following procedures described in Sambrook et al.[31] and the description from 

the manufacturer of the enzymes used. Electrocompetent cells of L. lactis were grown in M17 broth 

supplemented with 10 g L
−1

 glucose and 10 g L
−1

glycine and transformed by electroporation as 

described previously [32]. 

4.3.6 Gene inactivation 

Gene inactivation was achieved by deleting the whole gene or part of the gene containing the 

necessary active sites using the plasmid pCS1966 [26]. ≈800-bp regions upstream and downstream of 

the target to be deleted were PCR amplified and inserted into pCS1966. The resulting plasmids were 

used as previously described [26]. 

4.3.7 Construction of gusA reporter strains 

The promoter containing region upstream a specific gene was PCR amplified and inserted into 

plasmid pLB85 and transformed into the desired L. lactis strain expressing phage TP901-1 integrase 

as described previously [27]. Transformants were selected on GM17 with erythromycin and verified 

by sequencing using primers CSO50 and CSO263 (Table B.1). 

4.3.8 Rapid amplification of cDNA ends (RACE) 

For RNA isolation, cells of MG1363 were harvested from an exponentially growing SA culture 

supplemented with 2 g L
−1

 glucose or maltose, with 2 μg ml
−1

 of lipoic acid and nucleosides. Cells 

were then resuspended in 200 μl Solution I (0.3 M sucrose and 0.01 M NaAc, pH 4.8) and 200 μl 

preheated Solution II (2% SDS and 0.01 M NaAc, pH 4.8). 400 μl phenol/acetate (phenol equilibrated 

with 100 mM NaAc, pH 4.8) was added and the mixture was disrupted by glass beads (106-μm 

diameter; Sigma, Prod. No. G4649) using a FastPrep (MP Biomedicals, Santa Ana, USA). The 

resulting lysate was centrifuged and the water phase was extracted by phenol/acetate two times and 

finally by phenol/acetate mixed with chloroform in a 1:1 ratio. RNA was precipitated by ethanol and 

dissolved in DEPC-treated water. RACE was performed using the SMARTer™ RACE cDNA 

Amplification Kit (Clontech) according to the instructions of the manufacturer. 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Andersen1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Johansen1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Sambrook1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Holo1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Solem1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Solem1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Brndsted1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256.s001
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256.s001
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4.3.9 Overproduction of L. lactis ACK in E. coli 

The two ACK genes (ackA1, ackA2) from MG1363 were PCR amplified using primers 71f, 71r and 

62f, 62r respectively. After digestion with BglII, SalI and BamHI, SalI respectively, the fragments 

were inserted into the vector pQE30 (Qiagen) digested with the same enzymes and subsequently 

introduced into the E. coli strain M15 pREP4groESL [25]. The strains were grown and His-tagged 

ACKs were produced via IPTG induction and purification on a Ni-NTA resin (Qiagen) according to 

the manufacturer's instruction. Purified protein was gel-filtrated on a PD-10 column (GE Healthcare) 

thereby transferring it to Solution A (50 mM Tris-HCl pH 7.5, 100 mM NaCl, 10% glycerol). Protein 

concentration was determined using Bradford Reagent (Sigma, Prod. No. B6916) and a protein 

standard (200 mg ml
−1

 BSA, Sigma, Prod. No. P5369), following the protocol provided by the 

manufacturer. The molecular weight of the protein was estimated by gel filtration using a HiPrep™ 

16/60 Sephacryl™ S-300 High Resolution column (GE Healthcare) and a Gel Filtration Standard 

(BioRad, Cat. No. 151-1901). The mobile phase used was 0.05 M sodium phosphate, 0.15 M NaCl, 

pH 7.0 and the flow rate was 0.2 ml min
−1

. Proteins were detected using the Ultimate 3000 Diode 

Array Detector (Dionex) at 280 nm. 

4.3.10 Measurement of ACK activities 

ACK activities were measured on either purified proteins or in cell extracts. Cell extracts were 

obtained by harvesting exponentially growing cells which were then resuspended in extract 

buffer [29] and disrupted by glass beads (106-μm diameter; Sigma, Prod. No. G4649) using a 

FastPrep (MP Biomedicals, Santa Ana, USA). The master buffer used for the assay was adapted from 

Goel et al. [33]: 100 mM HEPES, 50 mM NaCl, 400 mM potassium glutamate, 1 mM potassium 

phosphate and 10× diluted metal ions present in SA medium, adjusted to pH 7.5 with potassium 

hydroxide. For the production of acetate from Ac-P, the same assay mix was used as in Goel et 

al. [33]: master buffer, 5 mM MgSO4, 2 mM D-glucose, 0.4 mM NAD
+
, 8.5 U ml

−1
 hexokinase, 12.7 

U ml
−1

 D-glucose 6-phosphate dehydrogenase, with varying amounts of ADP and Ac-P. For 

measurements of Vmax in cell extracts, 3 mM ADP and 2 mM Ac-P were used. For the reverse 

direction, the assay mix was modified from a previous article [34]: master buffer, 4.2 mM MgCl2, 1.7 

mM phosphoenolpyruvate, 0.24 mM NADH, 9 U ml
−1

 pyruvate kinase, 12 U ml
−1

 lactate 

dehydrogenase, with varying amounts of ATP and potassium acetate. For measurement of Vmax in cell 

extracts, 4 mM ATP and 200 mM acetate were used. The enzyme activities were determined by 

monitoring OD340 corresponding to the concentration of NADH using the Infinite® M1000 PRO 

microplate reader (TECAN) and the accompanying software Magellan. The 96-well microplates used 

were purchased from Greiner Bio-one (Cat. No. 655901). 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Amrein1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Andersen1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Goel1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Goel1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Andersch1
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4.3.11 Measurement of β-glucuronidase activity 

The procedure used for measuring β-glucuronidase activities was modified from Miller [35]and 

Israelsen et al. [36]. 

4.3.12 Sequence analysis 

Protein sequences were obtained from UniProt (http://www.uniprot.org/). Nucleotide sequences were 

downloaded from GenBank (http://www.ncbi.nlm.nih.gov/genbank/). Multiple alignments and 

phylogenetic construction were performed using MUSCLE [37] in CLC Main Workbench 

(http://www.clcbio.com/products/clc-main-workbench/). Phylogenies were visualized in FigTree 

(http://tree.bio.ed.ac.uk/software/figtree/). RNA secondary structure was predicted using Vienna RNA 

Web Services [38]. 

 Results 4.4

4.4.1 Homologous sequences of AckA1 and AckA2 in L. lactis MG1363 

Protein sequences of the two ACKs in MG1363, AckA1 and AckA2 encoded by ackA1 and 

ackA2 respectively, are homologous with an identity of 68%. Alignment to ACKs from Salmonella 

typhimurium and Methanosarcina thermophila (M. thermophila) whose structures are known [16], [17] 

(Figure B.1) showed conservation of active site, substrate, nucleotide triphosphate and metal binding 

sites except one residue in an ATP binding site (V331 of AckA1 and I331 of AckA2 respectively) 

which is also not conserved among other organisms. It is thus difficult to predict differences in 

enzymatic properties based on sequences alone. 

4.4.2 Multiple ackA genes existing in L. lactis and many other species 

To understand the evolutionary relationship between the ACKs from Lactococcus and other closely 

related LAB, a search for species with multiple acetate kinases was initiated. Under the 

genus Lactococcus, there are a total of 15 strains of three species, ten L. lactis, four L. garvieae and 

one L. raffinolactis. Interestingly, all Lactococcus strains except L. raffinolactis harbor two 

homologous ACK genes. For Streptococcus which is closest to Lactococcus, in contrast, among more 

than 500 strains with available ACK sequences, only 16 of them have two or more ACKs. It is 

however not a distinctive feature for Lactococcus but in fact a very general phenomenon in bacteria. 

Among the 11,100 entries predicted to encode ACKs in Uniprot, around 5,000 of them are not the 

unique gene for ACK in an organism. These multiple ACK genes exist in 2,242 strains from 320 

species under 135 genera. Interested readers are referred to Appendix AB.2 for the complete list and 

the criteria for distinguishing multiple ACKs. 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Miller1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Israelsen1
http://www.uniprot.org/
http://www.ncbi.nlm.nih.gov/genbank/
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Edgar1
http://www.clcbio.com/products/clc-main-workbench/
http://tree.bio.ed.ac.uk/software/figtree/
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Gruber1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256.s004
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256.s004
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4.4.3 Two types of ACK conserved in Lactococcus 

A multiple alignment including sequences from all Lactococcus, several Streptococcus and 

Lactobacillus representatives with the experimentally studied species as outgroup was performed to 

construct a phylogeny (Figure 4.2). From the phylogeny, it became clear that, except for L. 

raffinolactis, one ACK in each Lactococcus strain forms a monophyly and the other ACK in each 

strain forms another (filled triangles in Figure 4.2). A multiple alignment indicating the conserved 

differences of amino acid sequences between the two types of ACK in all Lactococcus strains is also 

shown in Fig. S2. For Streptococcus and Lactobacillus, similar but more complex relationships could 

be observed. For example, a S. urinalis strain has two ACKs more similar to ACKs in other species 

than to each other. One of the three ACKs of Lb. sakei also has a larger divergence with the other two 

ACKs than with the ACKs from bacteria in other phyla. 

From the alignment of the two types of ACK in L. lactis with ACKs of known 

structure [16],[17], [39] (Figure B.2), it was observed that some important residues conserved within 

each type of ACK were different between the two types, e.g. position 331 (relative to MG1363's 

AckA1) in an ATP binding site and position 287–291 including a deletion on a helix containing an 

ATP binding site. 

 

Figure 4.2. Phylogeny of acetate kinases from Lactococcus, Streptococcus and other species. 

One ACK from each L. lactis and L. garvieae strain forms a monophyletic group and the other ACK forms another (filled 

triangles). A triangle represents a cluster of sequences lumped in one line and the number in the bracket is the size of the 

cluster. doi:10.1371/journal.pone.0092256.g002 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-g002
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-g002
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-g002
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-g002
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256.s006
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Buss1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Chittori1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Buss2
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256.s006
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256.s006
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4.4.4 Predicted transcription terminator between the two ACK genes in  

L. lactis 

In all L. lactis strains, the genes for the two ACKs are neighbors of each other. In MG1363, the gene 

upstream was annotated as ackA1 and the other as ackA2. To see if they form an operon, the 

intergenic RNA secondary structure was predicted using ViennaRNA Web Services [38]. A stem-loop 

structure followed by a poly-U sequence which is a potential transcription terminator located 8 bp 

downstream of the stop codon of ackA1 was predicted (Figure 4.3). The prediction is conserved for 

all sequenced L. lactis. 

 

Figure 4.3. Nucleotide sequence upstream of ackA1 and ackA2. 

TSS: putative transcription start site. Putative −35 and extended −10 element are underlined. Shaded nucleotides in 

−10 element: TGn motif. cre site responsible for carbon catabolite repression is dotted underscored. Bracket pairs 

represent the base pairing in the predicted stem-loop structure which is conserved among all L. lactis strains. 

doi:10.1371/journal.pone.0092256.g003 

4.4.5 Distinct transcription start sites for ackA1 and ackA2 

A 5′-end RACE was conducted on RNA samples from MG1363 growing on glucose and maltose 

respectively to locate the transcription start site (TSS) of the two ackA genes. For each gene, an 

individual TSS was identified and putative −35 element and extended −10 element containing a TGn 

motif [40] were proposed (Figure 4.3). We were unable to demonstrate the existence of an additional 

transcript containing both ackA2 and ackA1 although this should have been possible for the RACE 

approach used. 

4.4.6 Distinct transcription units and activities 

Reporter fusions were constructed as a quantitative approach to examine the transcription activity 

of ackA1 and ackA2. Five resulting strains with fragments A–E (Figure 4.4a) respectively fused 

transcriptionally to gusA were grown on MSA medium and the β-glucuronidase activities were 

determined (Figure 4.4b). 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Gruber1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-g003
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-g003
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Browning1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-g003
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-g003
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-g004
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-g004
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-g004
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-g004
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Figure 4.4. Transcription activities of ackA genes. 

(A) Fragments used for transcriptional fusion. Numbers on arrows refer to primers in Table B.1. PP: putative promoter. UR1s: 

≈500 bp upstream of ackA1. UR1e: ≈50 bp after the start codon of ackA1. UR2s: ≈500 bp upstream of ackA2. UR2e: ≈50 bp 

after the start codon of ackA2. T: position just after the predicted terminator. (B) The β-glucuronidase activities induced by 

the corresponding fragments. bg: background activity from the control strain without any promoter upstream of gusA. Error 

bars are equal to standard deviations of measurements on three replications. doi:10.1371/journal.pone.0092256.g004 

Fragment A including the putative promoter (PP) of ackA1 resulted in the highest activity of 5 Miller 

units. Fragment B includes both the PPs of ackA1 and ackA2 whereas fragment C includes only the 

PP of ackA2. They resulted in very similar activities (≈2 Miller units). This shows that the PP 

of ackA1 had negligible effect on the transcription of ackA2. Fragment D and E, starting at the same 5′ 

end of fragment B and C respectively and both ending just after the predicted terminator but before 

the PP of ackA2, resulted in activities indistinguishable from the background activity (‘bg’ in Figure 

4.4b). This demonstrates that the predicted terminator is effective and that the transcription 

of ackA2 is governed by its own promoter. 

4.4.7 Huge differences in kcat and Km for acetate 

The molecular weights of the His-tagged ACKs were estimated to be 100 kDa for AckA1 and 84 kDa 

for AckA2 using gel filtration, close to a double of the monomer (43 kDa). Both proteins are 

concluded to be homodimeric. ACK activities of the enzymes were measured (Figure B.3). Both 

AckA1 and AckA2 were active in both directions. kcat and Km for all four substrates were estimated 

(Table 4.1). Two exceptional differences between AckA1 and AckA2 were first the much higher 

kcat of AckA1 in both directions (8-fold higher for acetate production and 4-fold higher for the reverse) 

and second the much lower apparent Km for acetate of AckA2 (1.87 mM) compared to that of AckA1 

(22.07 mM). 

  

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256.s001
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256.s001
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-g004
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-g004
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-g004
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256.s007
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256.s007


Chapter 4. Acetate kinase isozymes confer robustness in acetate metabolism 

84 

Table 4.1. Estimated Km and kcat for AckA1 and AckA2. 

 AckA1 AckA2 

Km (mM) Ac-P 0.35 (0.02) 0.086 (0.02) 

ADP 0.94 (0.09) 1.15 (0.12) 

OAc 22.07 (1.05) 1.87 (0.29) 

ATP 0.086 (0.0078) 0.21 (0.12) 

kcat (s
-1) OAc Ac-P 3234 (221) 394 (27) 

Ac-POAc 1033 (98) 282 (28) 

Ac-P: acetyl-phosphate. OAc: acetate. Values in bracket represent the standard 

error of estimation from ≥20 data points. doi:10.1371/journal.pone.0092256.t001 

4.4.8 Additive cell extract activities of mutant strains 

To study the physiological roles of the two ACKs in L. lactis, three mutant strains, MG1363ΔackA1, 

MG1363ΔackA2 and MG1363ΔackA1ΔackA2, were constructed by inactivating ackA1, ackA2 and 

both respectively. Vmax of ACK in MG1363 and the three mutant strains growing on MSA media were 

measured (Figure 4.5a). MG1363 showed the highest activity, followed by MG1363ΔackA2 and then 

MG1363ΔackA1. MG1363ΔackA1ΔackA2 had the lowest activity. An interesting observation was the 

additivity of the activities. When subtracting the activity in MG1363ΔackA1ΔackA2 (which 

represents the background activity) from the activities in the other three strains, the sum of the 

activities in MG1363ΔackA1 and MG1363ΔackA2 was approximately equal to the activity in 

MG1363. The implication is discussed below. 

To verify the much lower Km for acetate of AckA2, Vmax was also determined in the presence of 1 

mM acetate (Figure 4.5b). MG1363ΔackA1 did show a higher activity than MG1363ΔackA2. This is 

opposite to what was observed under normal assay conditions with 200 mM acetate and agrees with 

the differences in the Km. 

4.4.9 Slower acetate production by MG1363ΔackA1 at a high extracellular acetate 

concentration 

To test whether the two ACKs performed differently in vivo, growth experiments of MG1363, 

MG1363ΔackA1, MG1363ΔackA2 and MG1363ΔackA1ΔackA2 were conducted on MSA media with 

or without 50 mM acetate. Figure 4.6 shows representative growth curves of the four strains and the 

average growth rates. In all experiments the wild type and single-deletion strains were able to grow up 

to an OD600≈1 where the HPLC analysis showed that the sugar had been consumed (data not shown). 

The double deletion strain MG1363ΔackA1ΔackA2stopped growing at a much lower cell density of 

OD600≈0.1. When acetate was absent, MG1363 and the two single deletion strains grew with similar 

growth rates about 0.45 h
−1

. With 50 mM acetate present in the media, MG1363ΔackA1 had a 

significantly reduced growth rate of 0.38 h
−1

, equal to a 20% reduction compared to MG1363 and 

MG1363ΔackA2 (0.49 h
−1

). 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-g005
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-g005
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-g005
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-g005
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-g006
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-g006
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Figure 4.5. ACK activites in crude extracts of MG1363 and derived ackA deletion strains. 

(A) Activities under normal assay conditions with 200 mM acetate. When subtracting the activity in 

MG1363ΔackA1ΔackA2 (which represents background activity) from the activities in the other three strains, the sum of the 

activities in MG1363ΔackA1and MG1363ΔackA2 was approximately equal to the activity in MG1363. (B) Activities of 

MG1363ΔackA1 and MG1363ΔackA2 in the presence of 1 mM or 200 mM of acetate (OAc). Error bars are equal to 

standard deviations of measurements on three replications. doi:10.1371/journal.pone.0092256.g005 

 

Figure 4.6. Representative growth curves and growth rates of MG1363 and derived ackA deletion strains. 

Growth with (A) 0 mM and (B) 50 mM acetate. Only data obtained 5 hours after the start of the experiments are plotted for 

better visualization. (C) Table showing the legend and average growth rates. Values in brackets represent standard deviations 

of three replications. doi:10.1371/journal.pone.0092256.g006 

The product formation from the three growing strains was also measured (Table 4.2). In the absence 

of acetate, the distribution of fermentation products was very similar for all three strains. Since 

MG1363ΔackA1ΔackA2 was unable to grow and produce acetate after OD600≈0.1, the acetate 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-t002
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-t002
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production in MG1363ΔackA1 and MG1363ΔackA2 can be attributed to AckA2 and AckA1 

respectively. This implies that both individual ACKs were able to sustain a flux equal to that in the 

wild type where both ACKs were present. In the presence of 50 mM acetate, however, the reduced 

acetate production rate concomitant with the reduced growth rate (Figure 4.6c), formate production 

rate and maltose uptake rate in MG1363ΔackA1 reveals that the flux entering the mixed acid branch 

decreased while the lactate flux remained unchanged (Table 4.2). This indicates that AckA2 alone in 

MG1363ΔackA1 was unable to maintain the same flux as in MG1363 and MG1363ΔackA2where 

AckA1 was present. It can thus be concluded that AckA1 performed better than AckA2 in acetate 

production in the presence of a high concentration of acetate (50 mM) in the media. 

Table 4.2. Average specific rates of consumption of maltose, production of lactate, formate and acetate of MG1363, 

MG1363ΔackA1 and MG1363ΔackA2 at 0 or 50 mM of extracellular acetate. 

 

Specific rate of consumption/production (mmol h-1 gdw-1) 

MSA, 0 mM OAc MSA, 50 mM OAc 

maltose lactate formate acetate maltose lactate formate acetate 

MG1363 7.9 (0.5) 20.6 (1.5) 12.5 (0.9) 7.5 (0.8) 8.3 (0.6) 20.1 (1.6) 14.0 (1.4) 7.9 (0.9) 

MG1363ΔackA1 8.0 (0.5) 19.9 (1.4) 12.7 (1.0) 8.0 (0.4) 7.2 (0.5) 19.0 (1.8) 8.9 (1.0) 5.1 (1.0) 

MG1363ΔackA2 7.3 (0.6) 18.8 (1.1) 12.5 (1.2) 7.4 (0.4) 8.0 (0.6) 18.0 (1.1) 14.3 (1.2) 7.7 (0.7) 

OAc: acetate. Values in brackets represent standard deviations of three replications. doi:10.1371/journal.pone.0092256.t002 

4.4.10 Slower acetate uptake by MG1363ΔackA2Δpfl at low acetate concentrations 

An acetate-assimilating growth condition was created by excluding lipoic acid from the medium and 

knocking out PFL in the ackA deletion strains. The PFL-deleted strains, MG1363Δpfl, 

MG1363ΔackA1Δpfl, MG1363ΔackA2Δpfl and MG1363ΔackA1ΔackA2Δpfl, were grown in MSA 

media supplemented with acetate. Figure 4.7 shows the growth in media supplemented with no acetate, 

8 mM, 12 mM and 50 mM acetate respectively. When acetate was absent, all four strains stopped 

growing at OD600≈0.1 (Figure 4.7a), showing that the cells depended on acetate for growth beyond this 

point. When acetate was added to the media, further growth could be seen for all strains except 

MG1363ΔackA1ΔackA2Δpfl. A clear transition occurred between OD600 = 0.2 and 0.3, after which 

growth depends on acetate. The final OD600 was around 0.6 where HPLC analysis indicated that all 

maltose had been consumed. 

Very slow acetate-dependent growth was observed for MG1363ΔackA2Δpfl at 8 or 12 mM of 

extracellular acetate, >10-fold slower than MG1363ΔackA1-Δpfl and MG1363Δpfl (Figure 4.7b, 

c). MG1363ΔackA1Δpfl also grew even faster than MG1363Δpfl at these acetate concentrations. 

When the acetate concentration increased to 50 mM, however, the growth rates were similar for all 

three strains (0.22–0.23 h
−1

, Figure 4.7d). 

 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-g006
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Figure 4.7. Representative growth curves of MG1363Δpfl and derived ackA-pfl deletion strains. 

Growth with (A) 0 mM, (B) 8 mM, (C) 12 mM and (D) 50 mM acetate. Only data obtained 5 hours after the start of the 

experiments are plotted for better visualization. (E) Table showing the legend and average growth rates. Values in brackets 

represent standard deviations of three replications. doi:10.1371/journal.pone.0092256.g007 

The consumption of acetate was also quantified (Table 4.3). The acetate uptake rate of 

MG1363ΔackA1Δpfl was significantly higher than that of MG1363Δpfl (2–3 fold) and 

MG1363ΔackA2Δpfl (>6 fold) at 8 or 12 mM extracellular acetate. They were nonetheless 

indistinguishable at 50 mM extracellular acetate. Since MG1363ΔackA1ΔackA2Δpfl did not show 

acetate-dependent growth, the acetate uptake in MG1363ΔackA1Δpfl and MG1363ΔackA2Δpfl could 

be attributed to the presence of AckA2 and AckA1 respectively. It can thus be concluded that at a high 

acetate concentration (50 mM), both individual ACKs were able to take up acetate as fast as in 

MG1363Δpfl whereas at low acetate concentrations (≤12 mM), AckA2 has a significant higher 

capability for acetate uptake than AckA1. 

Table 4.3. Average specific rates of consumption of maltose, acetate and production of lactate of MG1363Δpfl, 

MG1363ΔackA1Δpfl and MG1363ΔackA2Δpfl. 

 

Specific consumption/production rate (mmol h-1 gdw-1) 

8 mM OAc  12 mM OAc  50 mM OAc 

maltose lactate acetate  maltose lactate acetate  maltose lactate acetate 

MG1363Δpfl 1.3 (0.1) 2.8 (0.2) 0.02 (0.003)  2.7 (0.3) 8.1 (1.0) 0.16 (0.02)  7.1 (0.4) 28 (1) 2.5 (0.5) 

MG1363ΔackA1Δpfl 2.1 (0.2) 5.5 (0.7) 0.06 (0.02)  3.7 (0.3) 12.1 (1.0) 0.27 (0.02)  6.8 (0.2) 27 (1) 2.6 (0.4) 

MG1363ΔackA2Δpfl 0.2 (0.03) 0.54 (0.09) N.D.  0.3 (0.05) 0.8 (0.4) 0.04 (0.01)  6.7 (0.3) 27 (1) 2.6 (0.5) 

Formate production was not detectable in all cases. Values in brackets represent standard deviations of three replications. 

N.D.: not detectable. doi:10.1371/journal.pone.0092256.t003 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-t003
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-t003
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 Discussion 4.5

4.5.1 Prevalence of multiple ACKs in bacteria 

ACK sequence data from Uniprot revealed that the existence of multiple ACKs is a very common 

phenomenon in bacteria which is interesting and emphasizes its possible importance. Unfortunately, 

there are few studies on ACK isozymes in the literature except for a spirochete [23]. We believed that 

the importance of ACK isozymes on acetate metabolism is being neglected while the acetate 

metabolism in bacteria is still a subject under active research, for instances, current generation 

of Geobacter sulfurreducens's growth on acetate [41] and acetate dependency of the 

probiotic Lactobacillus johnsonii [42]. Interestingly, the strains used in the two studies also have 

multiple ACKs. Knowledge on ACK isozymes in these organisms may provide insights into these 

studies and their applications. The current study attempts to fill the gap by studying the two ACKs in L. 

lactis at different levels. 

4.5.2 ackA1 and ackA2 in L. lactis probably resulted from gene duplication 

Protein sequence analysis revealed the conserved differences between the two ACKs found 

in Lactococcus. This brought an insight into the potential evolutionary advantage of having ACK 

isozymes. From the simple phylogenetic analysis, the two ackA genes may have resulted from a 

duplication event in a common ancestor of Lactococcus which had already been differentiated 

from Streptococcus. To prove this point, however, a more formal phylogenetic analysis is required. 

4.5.3 AckA1 and AckA2 in MG1363 being isozymes rather than subunits 

With respect to the expression of ackA1 and ackA2, our results suggest that the two genes are 

transcribed individually rather than in an operon. This is actually consistent with the Northern Blot 

results in Lopez de Felipe and Gaudu (2009) [43] where a transcript of around 1 kb was found 

for ackA1. Interestingly, in their study, ackA1 was assumed to encode one subunit of ACK in L. lactis. 

This question may be worth asking because the two ACKs are in fact homologous to each other. 

In the current study, nevertheless, the state of being isozymes rather than subunits of one ACK for the 

two ackA gene products was assumed for several reasons. First, we found that the individual His-

tagged enzymes could catalyze the reaction in both directions. Second, the ackA mutant strains could 

produce as well as utilize acetate. Third, the crude extracts from ackA mutant strains showed additive 

activities ( 211 3 6 3
max

21 3 6 3
max

11 3 6 3
max

1 3 6 3
max

a ckAa ckAMGa ckAMGa ckAMGMG VVVV   ). If a hetero-oligomeric form of ACK with 

different kinetic properties exists, the additivity is less likely to hold. Fourth, most of the ACKs 

reported in the literature appear to be homodimeric [16], [17],[22], [44]–[47]. Finally, we have data 

analogous to those in Fig. 4b showing that when growing on glucose, the promoter activity 

of ackA2 was 10-fold lower than that of ackA1 and was close to the value of background activity 

(unpublished results). This is consistent with the cre site identified 6 bp downstream of the ackA2's 

TSS (Fig. 3) which is subject to carbon catabolite repression [48]. In light of this huge difference 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Harwood1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Meng1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Hertzberger1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-LopezdeFelipe1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Buss1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Chittori1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Gorrell1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Kahane1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Bowman1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-g004
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone-0092256-g003
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Zomer1
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between the transcriptional activities, it is unlikely that the two gene products 

from ackA1 and ackA2 form one protein complex. However, the possibility that hetero-oligomeric 

ACK exists cannot be entirely ruled out. 

4.5.4 Possible different roles suggested by enzyme kinetics 

From the His-tagged purified enzymes, AckA1 was shown to have much higher turnover number 

kcat than AckA2 whereas AckA2 has a higher affinity towards acetate. The apparent Km is the lowest 

of all the reported ACKs where Km for acetate usually is notoriously high (the highest being 300 mM 

in E. coli [13]). The kinetic properties of the two ACKs thus suggest a possible complementary role in 

metabolism. For the effect of His-tagging on enzymes, we have looked into the 3D structure of the 

ACK from M. thermophile (PDB ID: 1TUY) [22] which is homologus to AckA1 and AckA2 in L. 

lactis. The first few residues from the N-terminus are outside the catalytic core. Together with the 

consistency between the assays on purified enzymes and crude extracts, we believed that the His-tag is 

unlikely to interfere with the reaction. 

4.5.5 Physiological roles of ACK reported in literature 

Among the ACKs reported previously, some were found to have ATP production as their primary 

physiological role while some are more likely to be responsible for acetate activation. For instance, the 

ACK in Lactobacillus sanfranciscensis was suggested to take the role of ATP formation [13]. The 

ACKs in Bacillus subtilis were shown to be non-essential for growth on acetate and meanwhile 

important for excretion of excess carbohydrate by producing acetate [49]. 

With respect to examples of acetate activation, in Corynebacterium glutamicum, ACK activities were 

proven to be necessary for growth on acetate [50]. Another interesting case is M. thermophile which is 

acetotrophic. The Km for acetate of the ACK from M. thermophilewas found to be 22 mM [18]. Site-

directed mutagenesis in the same study revealed that only a single-residue mutation could cause a 10-

fold lower Km for acetate concomitant with a 6-fold reduction in kcat. This striking similarity between 

the pair of ACKs in M. thermophile (wild-type and mutated) and the pair of ACKs in L. lactis (AckA1 

and AckA2) leaves a possible hint for how AckA1 and AckA2 differentiated and specialized. The 

author suggested that the sacrifice of a low Km in return for a high kcat conferred the advantage of more 

rapid acetate uptake to Methanosarcina species in an environment with a high acetate 

concentration [18]. 

These are only a few examples among many different studies. It must be noted that despite the 

particular functions of ACK demonstrated in the mentioned studies, one should not exclude other 

possibilities. The physiological role might be dependent on the nutrients available and complementary 

to other enzymes like the AMP-forming ACS in bacteria. For example, in E. coli, a number of studies 

on ACK-deficient mutants showed that PTA-ACK is the primary pathway for acetate production, 

e.g. [51], [52]. Other studies found that it is important for growth on high acetate concentration (≥25 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Knorr1
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mM) whereas growth on low acetate concentration (≤2.5 mM) depends on ACS [1], [53] (reviewed 

in [3]). This example of PTA-ACK complementary to ACS in E. coli also resembles AckA1 and 

AckA2 in the sense that ACS has a much lower Km for acetate (0.2 mM) and lower Vmax [53]. The 

difference lies in the irreversibility of ACS in E. coli and the dependence of AckA2 on PTA to 

produce Ac-CoA in L. lactis. A final example is a spirochete with two ACKs [23]. They had a lower 

Km for Ac-P and acetate respectively. The authors mentioned the possibility of the two ACKs being 

specialized in different directions respectively. 

4.5.6 Growth on maltose as a test of the physiological roles in L. lactis 

To find out whether the two ACKs have different physiological roles, mutant strains were constructed 

and their response to acetate during growth was examined. In our growth experiments, maltose was 

chosen as the carbon source because for MG1363 growing on maltose, a more significant amount of 

formate, acetate and ethanol is produced than on glucose [54]. Via growth on maltose the capacity of 

the two ACKs to bear a high flux from glycolysis can be tested. Another reason is the much lower 

ATP/ADP ratio in L. lactis when growing on maltose than on glucose. The ATP/ADP ratio in 

MG1363 was around 9 when growing on glucose [55] and was around 4 when growing on 

maltose [56]. The lower ATP/ADP ratio provided a more stringent condition for acetate uptake in the 

mutant strains. 

4.5.7 Complementary roles in acetate metabolism 

Our results show that under favorable conditions either one of the ACKs is sufficient for the dual 

function of acetate production and uptake. In an environment where the concentrations of acetate, 

lipoic acid (activating PDHc) and oxygen (inactivating PFL) are varying, nonetheless, AckA1 and 

AckA2 have their own advantages and complement each other to allow fast growth at different 

extracellular acetate concentrations. In an environment with high acetate concentration (50 mM), 

AckA1 showed its superior capability of acetate production. This is consistent with the kinetic 

properties in vitro. The much higher affinity for acetate of AckA2 probably led to a larger effect of 

product inhibition by extracellular acetate diffused into the cells. In contrast, in a dynamic 

environment where PFL and PDHc are inactive, e.g. containing oxygen and without lipoic acid, our 

results from the growth experiments of PFL and ACK defective strains show that AckA2 is important 

for acetate uptake when the acetate source is scarce (≤12 mM). The lower growth yield compared to 

PFL-effective strains (OD600 = 0.6 vs 1) was probably a result of loss of the ATP generated from 

acetate production combined with additional ATP consumed for acetate uptake. 

Another possible function of the two ACKs that should not be overlooked is the emergent properties 

of combining the isozymes. A possibility is thus a switch to fine-tune the direction and rate of the 

reaction in response to the cellular requirement by altering the expression of the two ackA genes. It 

would be interesting to look into the regulation of the expression ofackA1 and ackA2 to examine this 

hypothesis. 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256#pone.0092256-Brown1
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4.5.8 PTA-ACK as the only pathway interconverting Ac-CoA and acetate in L. lactis 

The inability of MG1363ΔackA1ΔackA2 and MG1363ΔackA1ΔackA2Δpfl to grow on MSA media 

suggests the absence of other pathways involved in the interconversion between Ac-CoA and acetate. 

For MG1363ΔackA1ΔackA2, the only known pathway left for catabolizing Ac-CoA is the NAD
+
-

generating bi-functional alcohol dehydrogenase (ADHE) because of the lack of ACKs. The redox 

imbalance could lead to the accumulation of toxic intermediate metabolites such as acetaldehyde 

which prevents growth. For MG1363ΔackA1ΔackA2Δpfl, no acetate was assimilated to form Ac-CoA 

to satisfy anabolic requirements. If other pathways for either direction exist, one of the strains should 

be able to grow. Thus, these results further emphasize the importance of AckA1 and AckA2 in the 

acetate metabolism of L. lactis. For the initial growth up to OD600≈0.1 of the two strains, it was found 

to be caused by the small amounts of lipoic acid present as impurity in the amino acids composing the 

media which could activate PDHc. Adding lipoic acid to these cultures indeed allowed growth beyond 

OD600 = 0.1 and growth experiments in media with reduced amounts of amino acids showed that these 

strains stopped growing at a lower OD600 whereas the wild-type MG1363 was unaffected (data not 

shown). This indicated the presence of small amounts of lipoic acid in the amino acid stock which 

caused the initial growth of MG1363ΔackA1ΔackA2 and MG1363ΔackA1ΔackA2Δpfl. 

 Conclusions 4.6
In conclusion, the present study demonstrated the different and yet complementary roles of the two 

acetate kinases in L. lactis MG1363 with one being specialized in acetate production and the other in 

acetate uptake. It was observed from the sequence and phylogenetic analysis, supported with 

transcriptional analysis and the enzyme kinetics, and finally confirmed by the different growth 

behavior of mutant strains harboring only ackA1 and ackA2 respectively. The findings can be of great 

significance in bacterial metabolism in light of the fact that more than 300 species of organisms 

actually have multiple ACKs. Evolution to multiple ACKs specialized in complementary functions 

may be a common strategy in bacteria in response to the dual nature of acetate which can be an 

essential substrate but also an inhibitor for growth depending on environmental conditions. 
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Chapter 5. Influence of NADH/NAD+ on mixed-acid fermentation 

 Introduction 5.1
The cofactor ratio NADH/NAD

+
 has been proposed as a key determinant of the switch between 

homolactic fermentation and mixed-acid fermentation in L. lactis [1, 2]. In these two early studies, a 

higher NADH/NAD
+
 ratio and higher triosephosphate pool, especially glyceraldehyde 3-phosphate 

(GAP), were observed at higher glycolytic fluxes. Together with the findings by in vitro enzyme assay 

that pyruvate formate-lyase (PFL) was inhibited by GAP and that glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) was very sensitive to high NADH/NAD
+
 ratio, the authors of the two 

studies established the model in which a high NADH/NAD
+
 ratio accompanying a high glycolytic 

flux activates lactate dehydrogenase (LDH), inhibits GAPDH and thus cause a high GAP pool which 

in turn inhibits PFL, resulting in homolactic fermentation. Mixed-acid fermentation was proposed to 

take place conversely when the glycolytic flux is low. 

This mechanism, however, was only concluded from the difference in measured metabolite 

concentrations and enzyme activities. The question of whether change in the NADH/NAD
+
 ratio 

would in fact cause any change in the fermentation mode of L. lactis remains to be tested in vivo. 

There have been attempts to perturb the redox state by introducing NADH oxidase (NOX) activities 

[3–6]. Growth in these cases, nonetheless, had to be aerobic for NOX to be active while the pyruvate 

metabolism of L. lactis changes significantly under aerobic conditions compared with anaerobic 

conditions, e.g. no formate production due to PFL inactivated by oxygen [7], flavour compound 

production [8, 9].  

In this study, we tested the proposed roles of NADH/NAD
+
 on the shift of fermentation modes in L. 

lactis growing on maltose by introducing enzyme activities to perturb the ratio anaerobically. Formate 

dehydrogenase (FDH) which produces CO2 and NADH from formate and NAD
+
 has recently been 

introduced into L. lactis MG1363 [10]. It was found that flux towards mixed-acid fermentation 

decreased and the ethanol-to-acetate ratio increased. Here the enzyme, 2,3-butanediol dehydrogenase 

(23BDH), was introduced for NAD
+
 regeneration by converting acetoin supplemented in the media 

into 2,3-butanediol (23BD) (Figure 5.1). 

In the ideal case, a system for studying the effect of cofactors perturbation should be isolated from the 

rest of the metabolism except the exchange of cofactors. Here, under anaerobic conditions, 

overexpressing 23BDH can be a good approximation of an ideal system based on the following 

observations: (i) the flavour compounds diacetyl, acetoin and 23BD are generally not produced or 

produced at very low amounts under anaerobic or microaerobic conditions [8, 9, 11]; (ii) acetolactate 

synthase (ALS) has very low activity in non-aerated conditions [8, 11]; acetolactate decarboxylase 

(ALDC) favors the acetoin-forming direction (ΔrG˚ estimated to be -1.7 or -1  kcal/mol in MetaCyc 

[12]) and requires the fixation of CO2 for the acetoin-consuming direction; (iii) diacetyl formation 
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from α-acetolactate requires oxygen; and (iv) diacetyl reductase (DAR) is irreversible. Under 

anaerobic conditions, therefore, since the flux going into the flavour-forming pathway is absent or 

negligible and meanwhile acetoin from the medium is unlikely to induce fluxes in reverse directions 

affecting the upstream metabolism, the overexpression of 23BDH with provided extracellular acetoin 

can be considered to reasonably approximate an ideal system to perturb NADH/NAD
+
 under 

anaerobic conditions. 

 

Figure 5.1. Introducing NAD+-regenerating enzyme activities. 

Reactions in color refer to introduced activities to regenerate NAD+. Reactions in grey are thought to have low or no activity 

under anaerobic conditions. Enzyme or pathway names are in round rectangles. The stoichiometry from glucose to pyruvate, 

and from pyruvate to α-acetolactate is 1 to 2 and 2 to 1 respectively, with all other reactions being 1 to 1. LDH, lactate 

dehydrogenase; PDHc, pyruvate dehydrogenase complex; PFL, pyruvate formate-lyase; ADH, bi-functional alcohol 

dehydrogenase; PTA, phosphotransacetylase; ACK, acetate kinase; ALS, acetolactate synthase; ALDC, acetolactate 

decarboxylase; DAR, diacetyl reductase; 23BDH, 2,3-butanediol dehydrogenase. The reaction producing diacetyl from α-

acetolactate is non-enzymatic. 

 Materials and methods 5.2

5.2.1 Bacteria strains and plasmids 

All L. lactis strains were derived from MG1363 and IL1403. For introducing 23BDH activities, 

pCS4701 and pCS4639, each containing a synthetic codon-optimized operon consisting of budC/dar 

(encoding diacetyl/acetoin reductase, accession no. AF098800) from Klebsiella pneumonia and 

budC/bdh (encoding L-23BDH, accession no. AB009078) from Brevibacterium 

saccharolyticum ordered from GenScript following a synthetic promoter (kindly provided by 

Christian Solem), were used. Plasmids and strains used or constructed in this study are listed in Table 

5.1 and Table 5.2 respectively. 
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Table 5.1. Plasmid used in the study.  

Plasmid Description 

pCI372 [13] Shuttle vector between E. coli and L. lactis; chloramphenicol resistence 

pCS4639 pCI372 derivatives, each carrying a synthetic promoter followed by a synthetic codon-optimized 

operon consisting of budC/dar (encoding diacetyl/acetoin reductase, accession no. AF098800) from 

Klebsiella pneumonia and budC/bdh (encoding L-23BDH, accession no. AB009078) 

from Brevibacterium saccharolyticum  ordered from GenScript; chloramphenicol resistence 

pCS4701 

Table 5.2. Strains used or constructed in the study. 

Strain Description 

Parent strain  

MG1363 [14] A plasmid-free strain derived from L. lactis subsp. cremoris NCDO 712 

IL1403 [15] A plasmid-free strain derived from L. lactis subsp. lactis biovar diacetylactis CNRZ157 

MG/SP1-bdh MG1363 transformed with pCS4701; Camr 

MG/SP2--bdh MG1363 transformed with pCS4639; Camr 

IL/SP1-bdh IL1403 transformed with pCS4701; Camr 

Camr, chloramphenicol resistence 

5.2.2 Culture media and conditions 

L. lactis was cultivated in M17 media or chemically defined SA media [16] at 30 ˚C without aeration, 

supplemented with 0.2% (w/v) glucose (GM17). When needed chloramphenicol were added at 5 μg 

ml
-1

 for L. lactis respectively. For growth experiments, defined SA media devoid of sodium acetate 

and supplemented with nucleosides (adenosine, cytidine, guanosine, thymidine, uridine and inosine, 

20 mg/L),  α-lipoic acid (2 mg/L) and either glucose or maltose (0.2%) were used, abbreviated as 

GluSALN or MalSALN respectively. To enable the detection of acetoin consumption and 23BD 

production by HPLC, in some cases, the buffer MOPS used in normal SALN media was replaced by 

1.9% β-glycerophosphate (BPG), which is applied in the M17 media.  The resultant medium is 

denoted by SALN(BPG) medium. Growth experiments were conducted in flasks at 30 ˚C under static 

conditions with slow stirring. Optical density at 600 nm (OD600) was regularly measured. To prepare a 

preculture, a single colony from an agar plate was inoculated into GluSALN or MalSALN media in 

dilution series. Growth experiments were started by inoculating an exponentially growing overnight 

culture selected from the dilution series into a flask containing the same medium, up to OD600 = 0.001 

or 0.02 for growth on glucose or maltose respectively. Biological triplicates for each experiment were 

performed. The cell density equal to 0.36 g (dry weight) (gdw) per liter of SALN medium at OD600 = 

1 was used for the calculation of specific rates.  

5.2.3 Quantification of sugar and fermentation products 

High-performance liquid chromatography (HPLC) was employed to measure the concentration of 

glucose, maltose, lactate, formate, acetate, ethanol, acetoin and 23BD in the samples taken during the 
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growth experiments as previously described [17]. Specific rates of consumption/production for mid-

exponential growth phase (OD600 ≈ 0.4 – 0.6) were calculated Carbon recovery was calculated as the 

sum of acetate, ethanol and lactate fluxes divided by sugar uptake flux in C3-mole. 

5.2.4 Extraction and quantification of NADH and NAD+ 

Growing culture of L. lactis in the mid-exponential phase (OD600=0.4) was quenched by liquid 

nitrogen and stored at -20 ˚C.  Extraction and quantification of nicotinamide adenine dinucleotides 

were performed using the kit NAD/NADH-Glo™ Assay (Promega) following the instruction of the 

provided manual. NAD
+
 and NADH were extracted by heating in acidic and basic solutions 

respectively. They were then individually quantified by a luciferase assay perform on 96-well white 

microplates (Greiner Bio-one, cat. no. 655904) using the Infinite® M1000 PRO microplate reader 

(TECAN). Intracellular concentrations were estimated by assuming that 1 g (dry weight) of cells 

corresponded to 1.67 ml of intracellular volume [18]. 

5.2.5 DNA techniques 

Electrocompetent cells of L. lactis were grown in M17 broth supplemented with 10 g L
-1

 glucose and 

10 g L
-1

 glycine and transformed by electroporation as described previously [19]. 

5.2.6 Measurement of 2,3-butanediol dehydrogenase activity 

Exponentially growing culture at OD600=0.6 was quenched on ice and harvested, then resuspended in 

extract buffer [17] and disrupted by glass beads (106-μm diameter; Sigma, Prod. No. G4649) using a 

FastPrep (MP Biomedicals, Santa Ana, USA). The master buffer used for the assay was adapted from 

Goel et al. [20]: 100 mM HEPES, 50 mM NaCl, 400 mM potassium glutamate, 1 mM potassium 

phosphate and 10× diluted metal ions present in SA medium, adjusted to pH 7.5 with potassium 

hydroxide. The reaction mix included the master buffer, 5 mM acetoin and 0.25 mM NADH. The 

enzyme activities were determined by monitoring OD340 corresponding to the concentration of NADH 

using the Infinite® M1000 PRO microplate reader (TECAN) and the accompanying software 

Magellan. The 96-well microplates used were purchased from Greiner Bio-one (Cat. No. 655901). 

Protein concentration was determined using Bradford Reagent (Sigma, Prod. No. B6916) and a 

protein standard (200 mg ml
−1

 BSA, Sigma, Prod. No. P5369), following the protocol provided by the 

manufacturer. 

 Results 5.3

5.3.1 Introduction of 2,3-butanediol dehydrogenase activity 

To introduce 23BDH activity, the vector pCS4701 containing a gene encoding 23BDH following a 

synthetic promoter was transformed into MG1363 and IL1403 respectively. The resultant strains 

derived from MG1363 and IL1403 were called MG/SP1-bdh and IL/SP1-bdh respectively.  
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As a preliminary test, the fermentation products of MG1363, MG/SP1-bdh, IL1403 and IL/SP1-bdh in 

overnight cultures in MalSALN media were quantified (Figure 5.2). For MG/SP1-bdh, the 

fermentation pattern was very similar to that of the wild-type MG1363. When the substrate of 23BDH, 

acetoin, was added into the medium, however, substantial increase in acetate (from 5.3 to 8.3 mM) 

and decrease in ethanol (from 4.6 to 1.9 mM) were observed. The formate produced was also reduced 

(from 11.5 to 10 mM). For IL/SP1-bdh, while in the absence of acetoin, it behaved similarly, 

interestingly, the formate production increased substantially (from  1.4 to 3.8 mM) and the effect for 

acetate was even more pronounced (from 0.8 to 4 mM). 

 

Figure 5.2. Products in overnight cultures in MalSALN media with/without acetoin. 

(a) Lactate concentrations and (b) formate, acetate and ethanol concentrations.  

5.3.2 Faster growth of MG/SP1-bdh in the presence of acetoin in the media 

To further investigate the effect of 23BDH activity and the presence of acetoin in media on the 

fermentation pattern, growth experiments of MG1363 and MG/SP1-bdh were conducted in MalSALN 

media with 0, 5 mM (MG/SP1-bdh only) or 20 mM acetoin. Interestingly, the growth rate of 

MG/SP1-bdh increased from 0.61 h
-1

, a value close to the wild-type MG1363, to 0.67 h
-1

 and 0.72 h
-1

 

as extracellular acetoin increased from 0 to 5 mM and 20 mM respectively (Figure 5.3a). Meanwhile, 

20 mM acetoin present in the medium appeared to inhibit the growth of MG1363 slightly.  

The specific maltose consumption rates of MG/SP1-bdh were in all cases lower than MG1363 

growing in the medium with no acetoin (Figure 5.3b). Since the growth rates of MG/SP1-bdh are 

higher, the biomass yields (= growth rate / maltose flux) on maltose of MG/SP1-bdh were higher than 

those of MG1363. 

5.3.3 Flux directed towards acetate production 

When growing on media with acetoin, MG/SP1-bdh exhibited significant redirection of pyruvate flux 

compared to MG1363. For MG1363, the fermentation shifted to a more homolactic one in the 

presence of 20 mM action. For MG/SP1-bdh, no substantial change in lactate and formate production 

was observed for growth with zero or 5 mM acetoin (Figure 5.3c, d). At 20 mM acetoin, while the 

formate flux dropped similarly, the lactate production in MG/SP1-bdh also decreased in contrast to 
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the increase in MG1363. The most pronounced effect was observed in acetate production, which 

significantly increased with acetoin concentration in MG/SP1-bdh (Figure 5.3e). The case of 20 mM 

is in particular interesting because the acetate flux (15 mmolh
-1

gdw
-1

) was much larger than the 

formate flux (6 mmolh
-1

gdw
-1

). This situation seldom happened in anaerobic conditions. Meanwhile, 

ethanol production was reduced significantly to virtually zero production at 20 mM acetoin (Figure 

5.3f). The complete data are shown in Table C.1 and Table C.2 in Appendix C. 

 

Figure 5.3. Growth rates, fluxes of MG1363 and MG/SP1-bdh growing in MalSALN. 

(a) Growth rates, specific rates of (b) maltose consumption, (c) lactate, (d) formate, (e) acetate and (f) ethanol production of 

MG1363 and MG/SP1-bdh growing in MalSALN with no acetoin, 5 mM (MG/SP1-bdh) or 20 mM acetoin were shown. 

5.3.4 No change in growth rate in media devoid of lipoic acid 

MG1363 and MG/SP1-bdh were also cultivated in MalSAN media which was devoid of lipoic acid, 

the essential cofactor of pyruvate dehydrogenase complex (PDHc) at acetoin concentrations of 0, 10 

and 20 mM (Table 5.3). Interestingly, the growth rate of MG/SP1-bdh was constantly about 0.6 h
-1

 

along the increase of acetoin concentrations. While the change in fermentation pattern in the presence 

of acetoin was in general similar to the growth in MalSALN, the decreases in formate production 

(from 16 to 11 or 12 mmolh
-1

gdw
-1

) and increases in acetate production (from 9 to 10 or 11 mmolh
-

1
gdw

-1
) at higher acetoin concentrations were less pronounced. An obvious difference is the acetate 
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flux being lower than the formate flux in all cases contrary to the case of MG/SP1-bdh growing in 

MalSALN with 20 mM acetoin. 

Table 5.3. MG1363 and MG/SP1-bdh growing in MalSAN with or without acetoin. 

Strain 
Acetoin 

added 

Growth  

rate (h-1) 

Specific rate of sugar consumption and product formation (mmolh-1gdw-1) 

Maltose Lactate Formate Acetate Ethanol 

MG1363 0 0.60 8.2 13 19 10 10.5 

20 mM 0.47 7.0 17 6 4 1.9 

MG/SP1-bdh 0 0.58 8.0 14 16 9 8.1 

10 mM 0.56 ± 0.01 7.2 ± 0.4 10 ± 0.4 11 ± 0.3 10 ± 0.1 0.3 ± 0.1 

20 mM 0.59 ± 0.01 7.4 ± 0.1 10 ± 0.4 12 ± 0.3 11 ± 0.1 0.2 ± 0.2 

5.3.5 Unexpected lower carbon recovery in MG/SP1-bdh at ≥ 10mM acetoin 

When checking the carbon balance in the growth experiments, it was found that only 80% of carbon 

was recovered from the product for MG/SP1-bdh growing on MalSALN with 20 mM acetoin. For 

growth on MalSAN with 10 or 20 mM acetoin, the recovery even reduced to 70%. The recovery was 

significantly lower than that of other conditions (≥ 90%), which was generally observed in previous 

experiments.  

5.3.6 Growth of MG1363, MG/SP2-bdh and MG/SP1-bdh in MalSALN(BGP)  

In light of the uncharacterized effect of ≥ 10mM acetoin which deviated the carbon balance very 

significantly, in the subsequent experiments, only 5 mM acetoin was applied to the media in which 

the carbon recovery remained at a high level (Table C.2). To more clearly quantify the effect of the 

NAD
+
-regenerating activity brought by 23BDH, the strain MG/SP2--bdh, which is MG1363 

transformed with pCS4639 containing a weaker promoter than that in pCS4701, was also 

characterized. Finally, to allow the quantification of acetoin and 2,3-butanediol by HPLC, the buffer 

MOPS used in normal SALN media was replaced by 1.9% β-glycerophosphate which acts as buffer in 

the M17 medium. 

The results of growth in MalSALN(BPG) were in general similar to those in MalSALN except the 

overall lower growth rates (Figure 5.4). MG/SP2--bdh and MG/SP1-bdh, when supplemented with 5 

mM acetoin, grew slightly faster than the wild-type MG1363 albeit they had lower maltose uptake 

fluxes ( Table 5.4).  
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Figure 5.4. Growth rates in MalSALN or MalSALN(BGP) media. 

Growth of MG/SP1-bdh was not tested in MalSALN 

 Table 5.4. Specific rates of MG1363, MG/SP2--bdh and MG/SP1-bdh growing in MalSALN(BGP). 

Acetoin 

added 
Strain Growth rate (h-1) 

Specific rate of sugar consumption/product formation (mmolh-1gdw-1) 

Maltose Lactate Formate Acetate Ethanol 

0 MG1363 0.46 7.3 10 17.5 9.6 6.6 

MG/SP2--bdh 0.45 7.1 11 16.3 9.1 6.4 

MG/SP1-bdh 0.44 7.0 12 16.2 9.2 5.5 

5 mM MG1363 0.39 ± 0.004 7.8 ± 0.3 17 ± 0.4 9.2 ± 0.3 6.6 ± 0.1 2.3 ± 0.2 

MG/SP2--bdh 0.47 ± 0.006 6.8 ± 0.1 13 ± 0.3 14.7 ± 0.9 10.0 ± 0.1 4.3 ± 0.1 

MG/SP1-bdh 0.49 ± 0.002 7.0 ± 0.1 10 ± 0.2 16.4 ± 0.7 11.7 ± 0.2 3.6 ± 0.2 

Acetate and ethanol production significantly increased and decreased respectively while the formate 

flux was reduced slightly and no significant change in lactate flux was observed when comparing 

MG/SP2--bdh and MG/SP1-bdh growing at 5 mM acetoin to MG1363 growing without acetoin 

( Table 5.4). The changes in growth rate, acetate and ethanol production were found to be correlated 

with the in vitro activity of 23BDH in the strains and so were the increases in acetoin consumption 

and 23BD production (Figure 5.5). No production of diacetyl was observed. 

 

Figure 5.5. Fluxes of MG1361, MG/SP2--bdh and MG/SP1-bdh plotted against 23BDH activity. 

(a) Growth rate, (b) acetate, ethanol, (c) acetoin (uptake) and 2,3-butanediol (23BD) fluxes plotted 

against the specific activity of 23BDH measured in MG/SP2--bdh and MG/SP1-bdh. MG1363 growing 

without acetoin was assumed to have zero activity. 
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Here we compared to MG1363 growing without acetoin and assigned a zero specific 23BDH activity 

to this case because no acetoin was added to the medium and no acetoin was detectable while 23BD 

was produced at a very low rate of 0.3 mmolh
-1

gdw
-1

, compared to the pyruvate flux of 29 mmolh
-

1
gdw

-1
. It is also because in the ideal case, 23BDH acts as an isolated system exchanging only NADH 

and NAD
+
 with the rest of the metabolism in the presence of acetoin or 23BD, so there would be no 

activity in the absence of any substrates. Furthermore, although for MG1363 growing at 5 mM acetoin, 

a very low 23BDH activity concomitant with acetoin consumption and 23BD production at rates 

lower than MG/SP2--bdh and MG/SP1-bdh were measured (see Table C.5 in Appendix C for the 

data), the case appeared to be not a good reference that was comparable with others because it grew 

substantially slower and deviated to a more homolactic mode of fermentation in the presence of 5 mM 

extracellular acetoin. More discussion can be found below in ‘Unexpected effect of extracellular 

acetoin’.   

5.3.7 Slower growth of MG/SP2-bdh and MG/SP1-bdh on glucose 

The three strains were also cultivated on glucose under the same conditions. Similar to the case of 

maltose, when supplied with 5 mM acetoin, MG/SP2--bdh and MG/SP1-bdh had slightly lower 

glycolytic fluxes and significantly more acetate production compared to MG1363 which similarly 

appeared to be more homolactic in the presence of 5 mM acetoin (Table 5.5). Moreover, MG/SP1-bdh 

consumed acetoin and produced 23BD at highest rates to which MG/SP2--bdh was second (Table C.5 

in Appendix C).  

Table 5.5. Specific rates of MG1363, MG/SP2--bdh and MG/SP1-bdh growing in GluSALN(BGP). 

Acetoin 

added 
Strain Growth rate (h-1) 

Specific rate of sugar consumption/product formation (mmolh-1gdw-1) 

Glucose Lactate Formate Acetate Ethanol 

0 MG1363 0.99 24.8 45.0 2.1 1.7 -0.22 

MG/SP2--bdh 0.98 24.0 47.2 2.3 2.0  0.83 

MG/SP1-bdh 0.97 25.4 45.6 2.1 1.9 -0.33 

5 mM MG1363 0.98 ± 0.01 24.5 ± 0.6 46.3 ± 1.1 1.1 ± 0.1 1.0 ± 0.2  0.5 ± 0.6 

MG/SP2--bdh 0.95 ± 0.00 23.5 ± 0.5 39.7 ± 0.8 0.6 ± 0.1 3.1 ± 0.1 -0.3 ± 0.5 

MG/SP1-bdh 0.95 ± 0.00 23.3 ± 0.3 37.3 ± 0.9 0.4 ± 0.2 5.1 ± 0.2  0.1 ± 0.2 

Despit the resemblance, several distinctive features of interest could also been observed. First, 

MG/SP2--bdh and MG/SP1-bdh grew slower than MG1363 when extracellular acetoin was present 

(Table 5.5). Second, lactate flux decreased whereas ethanol production remained indefinite. For each 

replicate of the same experimental conditions, either production or consumption of ethanol at a very 

low rate might be measured. This indeed appeared to be a feature commonly observed for growth on 

glucose in our experimental setup (e.g. Table 2.5 in Chapter 2). Third, the production of formate by 

MG/SP2--bdh and MG/SP1-bdh was lower than that of MG1363 growing at 5 mM acetoin. More 

interestingly, it was much less than the production of acetate.  
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5.3.8 Increased NADH/NAD+ ratio 

Concentrations of NADH and NAD
+
 of cultures in MalSALN(BGP) and GluSALN(BGP) were 

quantified. The NADH/NAD
+
 ratio measured in MG1363 growing on glucose or maltose was 

comparable to previous studies (e.g. [2]) and was higher on glucose than on maltose (Table 5.6). For 

MG/SP2--bdh and MG/SP1-bdh, surprisingly, their measured NADH/NAD
+
 ratios were higher than 

that of MG1363. The increase was most significant for growth on maltose, from 0.06 in MG1363 to 

0.26 in MG/SP2--bdh and 0.37 in MG/SP1-bdh, whereas the increase in the ratio of MG/SP2--bdh 

and MG/SP1-bdh compared to MG1363 growing on maltose without acetoin was much smaller. For 

growth on maltose, the concentrations of both NADH and NAD
+
 increased in MG/SP1-bdh and 

MG/SP2-bdh whereas for growth on glucose, NAD
+
 concentration showed no significiant change.  

 Discussion 5.4

5.4.1 Strategy to perturb NADH/NAD+ 

In this study, 23BDH together with acetoin added to media was proposed as an approximation for an 

ideal system which perturbs the NADH/NAD
+
 ratio by converting NADH into NAD

+
 and is isolated 

from the rest of the metabolism. While under aerobic conditions NOX is a good choice, under 

anaerobic conditions the construction of such a system is not straightforward because of the 

complexity of the metabolic network. The design of the present system was based on the knowledge 

on L. lactis to try to find a reaction with low activity whose substrate and product can both be easily 

transported into and out of the cells.  

Table 5.6. Measurements of NADH/NAD+ ratio and their intracellular concentrations. 

 0 mM acetoin 5 mM acetoin 

 

MG1363 MG/SP2--bdh MG/SP1-bdh MG1363 MG/SP2--bdh MG/SP1-bdh 

MalSALN (BGP) 

NADH (mM) 0.08  0.09  0.13  0.02 ± 0.01 0.13 ± 0.03 0.20 ± 0.04 

NAD+ (mM) 1.01  0.88  0.92  0.33 ± 0.06 0.51 ± 0.07 0.55 ± 0.03 

NAD(H) pool (mM) 1.09  0.96  1.04  0.35 ± 0.07 0.64 ± 0.10 0.76 ± 0.07 

NADH/NAD+ 0.08 0.10 0.14 0.06 ± 0.02 0.26 ± 0.05 0.37 ± 0.06 
       

GluSALN (BGP) 

NADH (mM) 

Not determined 

0.19 ± 0.03 0.19 ± 0.01 0.28 ± 0.05 

NAD+ (mM) 0.91 ± 0.07 0.80 ± 0.03 0.88 ± 0.09 

NAD(H) pool (mM) 1.11 ± 0.10 0.99 ± 0.03 1.16 ± 0.14 

NADH/NAD+ 0.21 ± 0.02 0.24 ± 0.01 0.31 ± 0.03 

NAD(H) pool is the sum of the concentrations of NADH and NAD+. 

Characterization of growth and fermentation pattern and quantification of NADH/NAD
+
 ratio showed 

that the growth of MG/SP2--bdh and MG/SP1-bdh which contain plasmids expressing 23BDH was 
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similar to MG1363 in the absence of acetoin but significantly different in the presence of acetoin. This 

indicated that the difference originated from the conversion of acetoin into 23BD by the 23BDH 

activity expressed in MG/SP2--bdh and MG/SP1-bdh. This is strongly supported by the similar 

measured rates of acetoin consumption and 23BD production. In this sense, the introduced system can 

answer the question of the effect of NADH/NAD
+
 ratio on fermentation modes to a certain extent 

except a disadvantage described below. 

5.4.2 Unexpected effect of extracellular acetoin on MG1363 

From experimental data regarding MG1363, the presence of acetoin in media appeared to turn the 

fermentation mode into more homolactic and even with carbon lost probably to other pathways at a 

higher acetoin concentration of 20 mM. This to a certain extent confused the interpretation of the 

results. A hypothesis that can explain the phenomenon and fit the data is that acetoin inhibits the 

activity of PFL. The formate production of MG1363 in either MalSALN(BGP) or GluSALN(BGP) 

was 2-fold lower in the presence of 5 mM acetoin present. In fact, we observed that for MG/SP2--bdh 

and MG/SP1-bdh growing in MalSALN(BGP) with 5 mM acetoin, the formate production rate 

increased in the early exponential phase (OD600 = 0.15 – 0.3) and became fairly constant in the 

reported mid-exponential phase (OD600 = 0.35 – 0.6) along with the decrease of acetoin concentration 

in the media (data not shown). Meanwhile, the consumption rate of sugar, production rate of lactate 

and acetate remained constant over the entire range.  

This hypothesis can explain the slower growth of MG1363 in the presence of acetoin because the 

acetate production and thus ATP production rate were limited by the supply of acetyl-CoA by PFL. 

The exact effect of acetoin requires further investigation. For the system to work in a more elegent 

way, for example, acetoin can be added at a lower amount (say 1 mM) and growth is characterized at 

a lower cell density or weaker synthetic promoters can be used so that acetoin is consumed slow but 

steadily. Chemostat can also be used in which the acetoin concentration can be finetuned to a low 

level enough for full activity. 

5.4.3 PDHc activity in anaerobic conditions 

Another side observation of the study is the suspected activity of pyruvate dehydrogenase complex 

(PDHc) which oxidases pyruvate into acetyl-CoA. In the literature, PDHc was proposed to be inactive 

anaerobically due to the high NADH/NAD
+
 ratio [21] and was found to have low or no expression 

anaerobically [2, 8, 11]. In our results, PDHc activity was suggested by the larger acetate flux than 

formate flux when MG/SP1-bdh grew in MalSALN with 20 mM acetoin and GluSALN(BPG) with 5 

mM acetoin. In contrast, the acetate flux was lower and very close to the formate flux for the slower 

growth of MG/SP1-bdh in MalSAN without α-lipoic acid, an essential cofactor for PDHc activity that 

L. lactis is auxotrophic for. This further supported that PDHc was indeed active under such conditions. 

These cases with acetate production probably supported by PDHc activity can be interpreted as an 
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altermative acetate-producing capacity brought by PDHc when PFL was not available, very much 

alike the case of aerobic growth where PFL was inactivated by oxygen, PDHc was found to be active 

and acetate was produced [11]. The magnitude of the PDHc activity observed in this study has rarely 

been reported in the literature. 

5.4.4 Shift towards acetate production in MG1363 and additionally formate production in 

IL1403 

From different sets of experiments, it is clear that in MG1363, additional NAD
+
-regenerating 

activities brought by 23BDH had a positive control on acetate production flux. For growth on maltose, 

the flux was redirected from ethanol production and allowed faster growth. This corresponds well to 

the recent results which found an increased ethanol-to-acetate ratio and meanwhile a slower growth 

rate when introducing FDH activity into MG1363 to produce NADH from NAD
+
 by oxidizing 

formate into CO2 [10]. The effect on formate production, however, could not be concluded because it 

coincided with the apparent inhibitory effect of acetoin on formate production. 

For growth on glucose, the increase in acetate production was redirected from lactate production. The 

decrement in formate flux in MG/SP2--bdh and MG/SP1-bdh can be savely considered as an effect of 

the additional NAD
+
-regenerating activity because the formate flux of MG1363 growing with 5 mM 

acetoin which did not consume acetoin was even higher than that of MG/SP2--bdh and MG/SP1-bdh 

which consumed acetoin down to 4 mM and 3 mM respectively (data not shown). Consequently, the 

inhibitory effect of acetoin on formate production had to be less significant in MG/SP2--bdh and 

MG/SP1-bdh than MG1363. The effect should thus originate from the additional NAD
+
-regenerating 

activity.  

The mechanism of the redirection of flux from ethanol production in the maltose case or from lactate 

in the glucose case is not clear. It might be simply the competition of NADH between lactate 

dehydrogenase (LDH), alcohol dehydrogenase (ADH) and 23BDH. For the inhibition of formate 

production on glucose, one possible explanation is the higher NADH/NAD
+
 ratio. By the model 

proposed in [1, 2], this would inhibit GAPDH and cause a higher GAP pool, which inhibits PFL, to 

accumulate for maintaining a high glycolytic flux. 

From the test of IL1403 and IL/SP1-bdh in overnight culture, however, a more than two-fold increase 

of both formate and acetate were observed in the presence of extracellular acetoin. This suggested that 

acetoin may not be inhibitory to the mixed-acid fermentation pathway in IL1403 as in MG1363. 

Moreover, the more mixed-acid fermentation pattern in IL1403 caused by the additional NAD
+
-

regenerating activity to a certain extent confirm one of the conjecture made in Chapter 3 of why 

IL1403 remains homolactic even at low glycolytic flux. However, more efforts are required to 

characterize IL1403 and IL/SP1-bdh for more concrete conclusions. 
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5.4.5 Counterintuitive NADH/NAD+ ratio 

Among all the results, the most confusing one is the higher NADH/NAD
+
 ratio measured. Intuitively, 

introducing a reaction that acts in the direction of NAD
+
 production should lower the NADH/NAD

+
 

ratio. From the flux data, it seems that the reason is the additional NAD
+
-producing flux by 23BDH 

could not compensate the decrease in the other NAD
+
-producing flux (summarized in Table 5.7). This 

might involve some very interesting kinetic behavior which can be studied through kinetic modeling, 

for example, oscillation of the system. This might also help to explain why PDHc appeared to be 

active under a high NADH/NAD
+
 ratio. The worst possibility is that the quantification procedure was 

problematic and thus caused large systematic errors in all experiments. 

Table 5.7. Estimated net production of NADH from glycolysis and fermentation. 

Strain 
Flux through pathway/enzyme (mmolh-1gdw-1) Net NADH production* 

(mmolh-1gdw-1) Glycolysis (C6-mol) LDH PDHc ADH 23BDH 

GluSALN(BGP) 

MG1363 24.8 45.0 0 -0.22 0 5.0 

MG/SP1-bdh 23.3 37.3 4.7 0.1  6.7 7.1 
       

MalSALN(BGP) 

MG1363 14.6 10 0 6.6 0.3 5.7 

MG/SP1-bdh 14.0 10 0 3.6 4.0 6.8 

* Production = 2 × glycolysis + PDHc; consumption = LDH + 2 × ADH + 23BDH. 23BDH, 2,3-butanediol 

dehydrogenase; ADH, alcohol dehydrogenase; PDHc, pyruvate dehydrogenase complex. 
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Chapter 6. Amino acid metabolism and fermentation modes 

 Introduction 6.1
In addition to the gene expression level and cofactor level, the nutrient availability has once been 

shown to be one of the factors influencing the fermentation modes. Garrigues et al. observed that for L. 

lactis growing on the same carbon source galactose, the richer the medium was, the faster the growth 

rate was and unexpectedly the more mixed-acid the fermentation became [1]. This disproved the 

hypothesis that the extent of mixed-acid fermentation is simply negatively correlated to the growth 

rate. Moreover from these experimental results, the authos proposed the theory that the mixed-acid 

switch depends on the balance between catabolism and anabolism. When the catabolic flux is the 

growth-limiting factor for reasons such as growth on slowly fermentable sugars like galactose, mixed 

acids are produced for ATP maximization by acetate production whereas when other anabolic 

requirements such as amino acid (AA) biosynthesis are limiting for growth, homolactic fermentation 

prevails. 

In our previous study, the same pattern was observed for L. lactis MG1363 growing on maltose in the 

define SA medium omitting certain AAs [2]. Some of the results are summerized in  

Table 6.1. Different AAs could have very different effects on both growth rate and mixed-acid 

fermentation.  

In this study, we attempted to explore this aspect from the computational perspective by using the 

recently published genome-scale metabolic network for MG1363 and a set of experimental data from 

that publication [3]. Elementry flux modes (EFMs) were chosen as the tool for metabolic pathway 

analysis [4] because they represent all the minimal functional units in a metabolic network which may 

reveal unexpected connections between different metabolic activities.  

Table 6.1. Selected results about the impact of amino acid  

availability on mixed-acid fermentation1. 

Medium 2 Growth rate (h-1) Formate % 3 

SALN 0.65 56% 

SALN ÷ cysteine 0.64 45% 

SALN ÷ phenylalanine 0.59 36% 

SALN ÷ alanine 0.58 52% 

SALN ÷ lysine 0.55 45% 

SALN ÷ threonine 0.43 30% 

1 Adapted from [2]. 

2 0.2% maltose, SA medium supplemented with α-lipoic acid and  nucleosides (SALN). 

3 Formate percentage was calculated as:  fluxformate / (fluxformate + fluxlactate) 
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 Results and discussion 6.2

6.2.1 Computational method developed 

A decomposition method termed ‘minimal branching decomposition’ (MBD) was developed to 

interpret a flux distribution in terms of a set of EFMs with an overall minimum number of branching 

pathways with respect to a given set of metabolites. By choosing amino acids as the set of metabolites 

with minimum branching pathways involving them, the computational method was applied to a flux 

distribution estimated from the experimental data of MG1363 exhibiting significant mixed-acid 

fermentation  [3]. This may reveal the distribution of the amino acid fluxes into different metabolic 

activities including catabolism as well as biomass formation.  

The computational method, as a method of representing flux distributions by EFMs that is applicable 

to general metabolic networks, has been published. Please see Appendix A for the full paper which 

includes the derivation, validation and application of the method to the amino acid metabolism of L. 

lactis MG1363 and other metabolic models.  

6.2.2 Amino acid utilization and mixed-acid fermentation 

Here more discussion is presented regarding the relationship between amino acid metabolism and 

mixed-acid fermentation in addition to the results presented in the article in Appendix A. Table 6.2 

shows the rates of production of fermentation products and consumption of glucose and amino acids 

of the estimated flux distribution and the EFMs decomposing it. The redox balance and ATP 

production from the module of glycolysis and fermentation pathways were also calculated.  

Lactate production was only involved in two of the EFMs which were redox-balanced in the module 

of glycolysis and fermentation pathways. In all other modes acetate and formate were produced. An 

interesting observation is that the module of glycolysis and fermentation in the overall flux 

distribution was indeed redox-unbalanced with net production in NADH. Flahaut et al. has ascribed 

this to the production of flavour compounds from amino acids which oxidized NADH and shared the 

role of alcohol dehydrogenase to allow more acetate production [3].  

In our resolution of the flux distribution by EFMs, the same could be observed. EFM 5, 6 and 13 in 

Table 6.2 together accounted for 80% of the net NADH produced in glycolysis. In these modes, 50% 

or less carbon from glucose uptake ended up in acetate production. All or most of the rest of carbon 

entered into the amino acid metabolism and participated in flavour compound production together 

with the amino acids assimilated in these EFMs, glycine, threonine and methionine. The flavour 

compounds produced in these three modes accounted for 60% of all flavour compound production. 

These NAD
+
-regenerating pathways in additional to fermentation contributed to around 10% of the 

ATP and acetate production. In the sugar-uptake-limited case being analysed (chemostat at dilution 

rate of 0.05h
-1

), this 10% contribution is expected to be quite important for growth. This finding also 



Chapter 6. Amino acid metabolism and fermentation modes 

110 

supports the finding in Chapter 5 which suggested additional NAD
+
-regenerating activities switched 

the metabolism towards acetate production. 

Another interesting observation is that even though the overall carbon recovery was lower than 100% 

indicating some glucose ended up in products or biomass other than lactate, formate, acetate and 

ethanol, EFMs with recovery higher than 100% might actually be active. In EFM 7 and 14, though at 

small fluxes, formate and acetate were directly produced from cysteine and serine. 

The above analysis provided hints for the possible connection of amino acid metabolism and the 

mixed-acid fermentation, in particular acetate production. The flux distribution being analyzed, 

however, is only one of the infinitely many possible solutions of the flux space constrained by 

exchange fluxes. A more comprehensive framework considering the whole feasible flux space and 

EFMs simultaneously should allow more systematic assessment of the significance of the 

decomposition by EFMs. 
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Table 6.2. Production and uptake fluxes of the estimated flux distribution and its decomposition by EFMs.  
a Four EFMs with ≤ 0.1% of the sum of fluxes of the flux distribution were not shown. 

b NADH production from glycolysis was equal to the flux of GAPDH. 

c NADH consumption by fermentation modes was calculated as the sum of flux through LDH and 2 × flux through ADH. 

d ATP production was calculated as the sum of fluxes through PGK, PYK and ACK subtracted by the flux through PFK. 

e Carbon recovery was calculated as the sum of production of lactate, acetate and ethanol divided by the consumption of glucose. 

f Carbon recovery equal to inifinity implies fermentation products produced from carbon sources other than glucose. 

Substrate/ Product 

Flux (mmolh-1gdw-1) 

Flux 

distrib. 

EFMa 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Production Lactate 0.606         0.365  0.2     

Formate 2.305 0.235 0.0065 0.863 0.8817 0.04 0.07 0.01 0.0068 0.042 0.0014  0.005 0.106 0.01 0.035 

Acetate 1.213 0.120 0.0043 0.449 0.4439 0.04 0.03 0.01 0.0046 0.037 0.0011  0.002 0.046 0.01 0.016 

Ethanol 0.994 0.115 0.0022 0.414 0.4370    0.0014  0.0003  0.002 0.009  0.014 

Uptake Glucose 1.523 0.135 0.0029 0.445 0.4591 0.04 0.05  0.0024 0.192 0.0008 0.1 0.002 0.054  0.021 

 Ala 0.039 0.006 0.0002 0.012     0.0015 0.010 0.0002     0.008 

 Arg 0.009 0.003 0.0001 0.006             

 Asp 0.008  0.0002 0.008             

 Cys 0.031 0.004 0.0001 0.007           0.01 0.010 

 Glu 0.046 0.013 0.0005 0.026 0.0004    0.0004 0.003 0.00004     0.002 

 Gly 0.046 0.004 0.0002 0.008   0.03          

 His 0.004 0.001 0.0000 0.002             

 Ile 0.018 0.006 0.0002 0.012             

 Leu 0.049 0.018 0.0004 0.028 0.0016            

 Lys 0.018 0.004 0.0001 0.008 0.0004    0.0004 0.003 0.00004     0.002 

 Met 0.005 0.001 0.0001 0.003          0.001   

 Phe 0.008 0.003 0.0001 0.005             

 Ser 0.085 0.010 0.0022 0.019    0.01 0.0044 0.043 0.0006      

 Thr 0.062 0.005 0.0002 0.009 0.0098 0.04           

 Val 0.016 0.005 0.0002 0.010             

                  

Glycolysis + fermentation pathways: 

 

NADH productionb 2.9 0.2 0.0047 0.87 0.89 0.08 0.10 0 0.003 0.37 0.0009 0.2 0.005 0.11 0 0.03 

NADH consumptionc 2.6 0.2 0.0045 0.83 0.87  0.03 0 0.003 0.37 0.0005 0.2 0.005 0.02 0 0.03 

NADH net 

production 
0.3 0 0.0002 0.04 0.02 0.08 0.07 0 0.000 0.00 0.0004 0 0 0.09 0 0.00 

ATP productiond 4.1 0.3 0.0082 1.29 1.32 0.12 0.13 0.01 0.006 0.39 0.0015 0.2 0.007 0.15 0.01 0.03 

ATP production % 100% 8% 0% 32% 33% 3% 3% 0% 0% 10% 0% 6% 0% 4% 0% 1% 

Carbon recoverye 92% 87% 113% 97% 96% 50% 33% ∞f 124% 104% 78% 100% 100% 51% ∞f 74% 
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Chapter 7. Conclusion and future directions 

 Conclusion 7.1
In the present study, efforts have been made to investigate the switch between homolactic 

fermentation and  mixed-acid fermentation influenced by three aspects of metabolism, namely the 

level of gene expression in the pathway for mixed-acid fermentation, the level of the cofactor 

NADH/NAD
+
 and the availability of amino acids as nutrients. 

7.1.1 Different promoter activities of mixed-acid genes 

At the level of gene expression, the promoter activities of the genes in the pathway branch that 

produces formate, acetate and ethanol were compared between the two important laboratory strains 

MG1363 and IL1403 which differ from each other with respect to the mixed-acid switch. The results 

suggested that different types of regulatory elements governed the transcriptional regulation of 

different genes in the two strains, including the obvious indication of trans-regulation on pyruvate 

formate-lyase (PFL) and cis-regulation on phosphotransacetylase (PTA), as well as the more 

unobvious regulation pattern for the two genes encoding for acetate kinase (ACK).  

7.1.2 Contrl on mixed-acid fermentation by pyruvate formate-lyase 

The difference observed in the promoter activity of PFL between the two strains led to the attempt to 

modulating the expression of PFL in both MG1363 and IL1403. For MG1363, consistent with results 

from the literature, PFL was found to have control on the mixed-acid switch. In particular, 

complementary to the previous control analysis which implied the existence of one or more  reactions 

positively controlling the formate flux in the wild-type MG1363 growing on glucose, we estimated a 

control coefficient close to one by PFL on the formate flux at the wild-type PFL level for growth on 

glucose. For IL1403, however, the modulation was not successful and this suggested that a high 

expression of PFL might be lethal. Overexpressing PFL is thus probably not the first step to take to 

restore a mixed-acid-fermenting phenotype of IL1403. 

7.1.3 Complementary roles of acetate kinase isozymes 

Meanwhile, the interesting observation that one of the genes for ACK was the only gene having a 

higher promoter activity in IL1403 than in MG1363 gave rise to the conjecture that the two genes for 

ACK might play different roles in acetate metabolism. We then characterized the two genes in 

MG1363. We found different kinetic properties of the two ACKs encoded by the two genes and their 

complementary roles for acetate production and uptake under different conditions. It was also 

observed that the existence of acetate kinase isozymes was very common among bacteria. 
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7.1.4 Acetate production induced by additional NAD+-regenerating activities 

At the level of metabolic regulation, we tested the proposed roles of the cofactors NADH and NAD
+
 

on the mixed-acid switch by introducing an enzyme activity to approximate an ideal isolated system 

that only oxidized NADH from the metabolism to NAD
+
 anaerobically. The construction partially 

restored the mixed-acid fermenting ability in IL1403 as reflected by a substantial increase in formate 

and acetate production. For MG1363, no any positive effect on formate production was observed but 

significant increase in acetate and decrease in ethanol were observed. An interesting observation was 

the apparent high flux through pyruvate dehydrogenase complex which has not been reported in the 

literature. 

7.1.5 Connection between amino acid metabolism and fermentation modes 

The extent of the mixed-acid fermentation of MG1363 was found to depend on amino acid 

availability and individual amino acids could have largly different impact. Meanwhile, a 

computational method for combining metabolic flux analysis and elementary mode analysis was 

developed and applied to a flux distribution estimated from experimental data. Elementary modes 

connecting amino acid metabolism and fermentation modes were observed. 

 Future directions 7.2
Based on the results from the current studies, many interesting questions are worth futher research. 

They are described below. 

7.2.1 Identify transcriptional regulators and cis-regulatory elements 

In Chapter 2, trans-regulatory elements for the transcriptional regulation of pfl, probably activators for 

growth on maltose or repressors for growth on glucose were suggested to exist. The exact genetic 

element responsible for this observation can be identified through random mutagenesis using existing 

tools such as insertional sequence ISS1 for L. lactis and subsequent screening for the loss of reporter 

activity on maltose or gain on glucose. 

Moreover, cis-regulatory elements regulating the transcription of eutD, the gene for 

phosphotransacetylase, were also expected to exist and the mutated cre site upstream of eutD in 

IL1403 was proposed as a candidate. It can be tested by restoring the cre site in IL1403. 

7.2.2 Restore the phenotype of mixed-acid fermentation for IL1403 

In Chapter 3, the modulation of PFL in IL1403 turned out to be unsuccessful while in Chapter 5 the 

formate- and acetate- producing ability of IL1403 was increased. Further efforts can be made to 

restore the mixed-acid-fermenting phenotype of IL1403. 
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7.2.3 Characterize acetate-dependent growth of IL1403 

In Chapter 4 only the ACK isozymes of MG1363 were studied though the study was originally 

motivated by a stronger induction of the promoter of one of the ACKs in IL1403 whose ortholog in 

MG1363 was later found to be specialized in acetate uptake. It would be interesting to compare the 

acetate-dependent growth of IL1403 to that of MG1363 and see whether the effect in IL1403 is even 

more pronounced. 

7.2.4 Model the perturbation of NADH/NAD+ ratio 

In Chapter 5, introducing an NADH-consuming enzyme unexpectedly resulted in increase in the 

measured NADH/NAD
+
 ratio. If the trend of the measurement is correct, very interesting kinetic 

behaviour may be involved in this situation. Kinetic modeling would be a powerful tool to make sense 

of the observation. 

7.2.5 Study the effect of another important cofactors, ATP/ADP ratio 

Beside NADH/NAD
+
, in the literature, the ATP/ADP ratio has also been proposed to be an important 

factor of the mixed-acid switch. It would be interesting to perturb the ATP/ADP ratio by introducing 

ATPase activities as in previous studies. 

7.2.6 Comprehensive computational analysis on the connection between amino acid 

metabolism and fermentation modes 

For a more in-depth understanding of the relationship between amino acid metabolism and 

fermentation modes, a more comprehensive computational analysis using genome-scale models and 

elementary modes can be performed. The experimental data of growth in media with different amino 

acid compositions, together with other availabile –omics data such as gene-expression data can be 

integrated for identifying active subnetworks. Such analysis is expected to shed light on some 

unobvious pathways or hidden regulation between the two subsystems. 
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Appendix A Estimating biological elementary flux modes that 

decompose a flux distribution by the minimal branching property 
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A.1 Abstract 
Motivation: Elementary flux mode (EFM) is a useful tool in constraint-based modeling of metabolic 

networks. The property that every flux distribution can be decomposed as a weighted sum of EFMs 

allows certain applications of EFMs to studying flux distributions. The existence of biologically 

infeasible EFMs and the non-uniqueness of the decomposition, however, undermine the applicability 

of such methods. Efforts have been made to find biologically feasible EFMs by incorporating 

information from transcriptional regulation and thermodynamics. Yet, no attempt has been made to 

distinguish biologically feasible EFMs by considering their graphical properties. A previous study on 

the transcriptional regulation of metabolic genes found that distinct branches at a branch point 

metabolite usually belong to distinct metabolic pathways. This suggests an intuitive property of 

biologically feasible EFMs, i.e. minimal branching.  

Results: We developed the concept of minimal branching EFM and derived the minimal branching 

decomposition (MBD) to decompose flux distributions. Testing in the core Escherichia coli metabolic 

network indicated that MBD can distinguish branches at branch points and greatly reduced the 

solution space in which the decomposition is often unique. An experimental flux distribution from a 

previous study on mouse cardiomyocyte was decomposed using MBD. Comparison with 

decomposition by a minimum number of EFMs showed that MBD found EFMs more consistent with 

established biological knowledge, which facilitates interpretation. Comparison of the methods applied 

to a complex flux distribution in Lactococcus lactis similarly showed the advantages of MBD. The 

minimal branching EFM concept underlying MBD should be useful in other applications. 

A.2 Introduction 
Metabolic networks consisting of biochemical reactions and compounds in a cell have proven to be an 

extremely useful in silico tool to study cellular metabolism (Edwards and Palsson, 1999; Oberhardt et 

al., 2009; Price et al., 2004). The structure of a metabolic network is reflected in the stoichiometric 

matrix S, and the state of the network is embodied in the flux distribution (FD) v, which is a vector 
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containing all reaction rates in the network. Based on the well-established quasi-steady-state 

assumption, v can be constrained in a polyhedral cone ( 0Sv , lbub vvv  ) and studied using a 

series of so-called constraint-based reconstruction and analysis (COBRA) methods (Lewis et al., 

2012). 

One of the approaches of theoretical importance and application value is the elementary flux mode 

(EFM) analysis (Schuster and Hilgetag, 1994). An EFM is a FD with a minimal number of active 

reactions that together satisfy the steady-state condition. It is thus a minimal metabolic pathway in a 

metabolic network. EFMs have been successfully applied to examine network structures, explore 

newmetabolic pathways, suggest rational strain design, etc. (reviewed in Trinh et al., 2009; 

Zanghellini et al., 2013). 

Another property of EFMs useful for studying FDs is that every FD v is a non-negative sum of EFMs: 

 



K

k

kk

1

ev    (1)  

where Kee 1 are all EFMs of the network, and k  is the corresponding weight coefficient. This 

decomposition of FDs from EFMs or extreme pathways (another type of pathways with a similar 

definition) has been investigated and applied to certain biological studies by choosing particular 

decompositions [reviewed in Chan and Ji (2011)]. The usefulness of these methods, however, is 

limited for two main reasons. First, the practical computation of the decomposition requires the set of 

all EFMs a priori, which is usually not available in large-scale networks owing to combinatorial 

explosion. This computational issue can be overcome in two ways, either by sampling EFMs 

(Machado et al., 2012; Tabe-Bordbar and Marashi, 2013) or by finding EFMs with particular 

properties to solve for the decomposition without requiring the entire set of EFMs (Chan and Ji, 2011; 

de Figueiredo et al., 2009; Ip et al., 2011; Pey and Planes, 2014; Rezola et al., 2011). The second 

limitation is the non-uniqueness of decomposition and its dependence on the choice of algorithms or 

optimization objective (Zanghellini et al., 2013). The ambiguity severely weakens the biological 

significance of decomposition. Poolman et al. (2004) has proposed a method to obtain unique 

decompositions by combining EFMs with variable weights into compound modes with unique 

weights. Another method for unique decompositions is the minimization of the sum of squares of 

weights (Schwartz and Kanehisa, 2005, 2006), but the resulting decomposition can be dependent on 

how EFMs are scaled. 

The usefulness of EFMs can be enhanced by finding biologically feasible EFMs. Attempts have been 

made to incorporate transcriptional regulatory information to enumerate biologically feasible EFMs 

(Jungreuthmayer et al., 2013) and to rule out thermodynamically infeasible EFMs (Jol et al., 2012). 
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These approaches integrating information other than stoichiometry did give promising results. The 

information, for instance, metabolomics data and transcriptomics data, however, is not always 

available. Surprisingly, all the proposedmethods to find EFMs or to choose decomposition have 

notmade full use of their graphical properties, which should be intuitively important for interpreting 

EFMs. An earlier study on the co-regulation of metabolic pathways found that transcriptional 

regulation tends to favor linear metabolic flow by co-expressing only distinct branches at metabolic 

branch points (Ihmels et al., 2004). This means, in Figure A.1 where ‘A’ is a hypothetical branch point 

metabolite, the genes for the linear pair of reactions ‘R1’ and ‘R3’, or the pair ‘R2’ and ‘R4’, are more 

likely to be co-expressed than ‘R3’, ‘R4’ and ‘R5’, which are distinct branches. When decomposing a 

FD containing ‘R1’ to ‘R4’, two EFMs containing pair ‘R1’and ‘R3’ and pair ‘R2’ and ‘R4’ are thus a 

more preferable choice than one EFM containing all ‘R1’ to ‘R4’, as there are probably two distinct 

pathways. This suggests the rationale of minimizing branching pathways to choose EFMs that are 

more likely to be biologically feasible. This rationale is also expected to allow clearer interpretation of 

the roles of the chosen EFMs because they are expected to contain fewer distinct pathways. We 

believed that such EFMs can have wide applicability. As the first attempt based on this rationale, in 

this article, a new optimization objective called minimal branching decomposition (MBD) is proposed 

to identify more biologically relevant EFMs to decompose FDs using stoichiometric information 

alone. 

 

Figure A.1. The graphical meaning of NPik.  

A is a metabolite in the network. If EFM 1 contains all five reactions, then NPA1 = 2 × 3 = 6, 

equal to the number of all locally different paths passing through A. 

A.3  Methods 

A.3.1 Optimization objective 

The goal is to derive an optimization objective for finding K 1  to compute an MBD composed of 

EFMs with as few branching pathways as possible. Given the set of all EFM contained in the matrix 

Kn
jkK e  ReeE ][][ 1  and the stoichiometric matrix 

nm
ijS  RS ][  in a metabolic network 

with m metabolites and n reactions, assume that the FD to be decomposed is 
n

jv Rv  ][ . 

First, define the consumption matrix ][ ijCC  and the production matrix ][ ijPP  for metabolites:  
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In other words, if 1ijC , then metabolite i is consumed by reaction j and if 1ijP , then metabolite i 

is produced by reaction j. Based on C and P, compute the number of paths 
Km

ikNP  RNP ][  

passing through metabolite i in EFM k: 
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where 1jk  if 0jke  and 0jk  if 0jke . ikNP  is in fact the number of reactions consuming 

metabolite i multiplied by the number of reactions producing metabolite i in EFM k. It is thus the 

number of locally different paths passing through metabolite i. Figure A.1 illustrates an example. NP 

is used for distinguishing EFMs which deviate from linear flow through branch point metabolites. 

Perfectly linear EFMs would have 1ikNP  for all metabolites and EFMs with more branching flow 

would have higher ikNP . The minimum use of EFMs with high ikNP  therefore defines the 

optimization objective to obtain an MBD. Hence, the objective coefficient kc  for EFM k is expressed 

as the following sum: 

 



m

i

ikik NPwc
1

 (4) 

where iw  is the weight for metabolite i. It is manually assigned to account for the relative importance 

of a metabolite as a branch point metabolite. The simplest way for assigning weights to metabolites is 

to just assign 1 for all weights meaning that there is no bias toward the branching of any metabolite in 

an EFM. In practice, biological knowledge is required to choose suitable weights to obtain better 

decomposition. For example, for pyruvate which is a true branch point metabolite involved in 

different metabolic pathways, a decomposition by EFMs with different fates of pyruvate, for instance, 

one going into the anaerobic fermentation and the other going into the TCA cycle, is preferred to a 

decomposition by all EFMs involving both the fermentation and the TCA cycle. In this case, 

branching of pyruvate within an EFM is strongly undesired so the weight can be set to be much higher 

than 1. In contrast, cofactors like ATP/ADP are global cellular currencies and their distinct linear flow 

may not be biologically relevant. Low or zero weights can be assigned to them. The weighting also 

depends on the particular purpose of application. For example, if one focuses on comparing the 

glycolysis and the pentose phosphate pathway, a high weight can then be assigned to glucose 6-

phosphate, which is a branch point of the two pathways. 
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A.3.2 Minimal branching decomposition 

Having derived the objective, an MBD can be obtained by solving the following mixed integer linear 

programming problem (MILP): 

 
 

K

k

k

m

i

ikiNPw
1 1

min   (5) 

 subject to j

K

k

kjk ve 
1

  for Nj ,,1  (6) 

 kk  0  for Kk ,,1  (7) 

  1,0k  for Kk ,,1  (8) 

Objective (5) minimizes the use of EFMs with higher numbers of non-linear pathways being active at 

branch point metabolites. Equation (6) is the constraint for decomposition. Constraint (7) is the on/off 

switch for an EFM. If 0k , EFM k is switched off. If 1k , EFM k is switched on. In the problem 

stated here, two assumptions without loss of generality are made on the EFM matrix  jkeE  for 

simpler presentation. First, E is calculated from a stoichiometric matrix consisting of irreversible 

reactions only. It can be achieved by dividing each reversible reaction into two irreversible reactions 

with stoichiometry negative to each other. This avoids negative fluxes and additional constraints on 

reversible EFMs. Second, all EFMs are assumed to be scaled to have maximum weights not greater 

than 1 ( 1k ). One way for scaling is to multiply each ke  by }0{min  jkjkj
j

k eevr . Another 

method used in Wiback et al. (2003) is scaling to an uptake reaction by multiplying each ke  by 

kk evr ,uptakeuptake / .  

It is noted that the ‘no cancellation’ property of decomposition by EFMs (Llaneras and Picó, 2010) 

ensures that if for a reaction j, 0jv , then all EFMs with 0jke  must have 0k . It facilitates 

optimization by first selecting EFMs able to have non-zero weights for a FD, called ‘contributable 

EFMs’ and defined by }0  if  0|{  jjkkCONTRI veeE , out of E which is usually intractable for 

larger networks (Klamt and Stelling, 2002; Trinh et al., 2009). 

A.3.3 Enumeration of alternative optima 

One of the major drawbacks of interpreting decomposition by EFMs is the non-uniqueness. Despite 

the use of certain optimization objectives, for instance, a minimum number of EFMs as in Wiback et 

al. (2003), the number of alternative optimal solutions can still be large. The performance of MBD 

regarding the uniqueness of decomposition was examined by enumerating alternative optima. The R-

th alternative optimal MBD was calculated by adding the following constraint to the model: 
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where ][ 1
r
K

r
r  b  is the binary integer solution of the r-th alternative optimal MBD found. 

Suboptimal solutions can also be found. 

A.3.4 Other decompositions for comparison  

MBD was compared with decomposition by a minimum number of EFMs (MinEFMD) and random 

decomposition (RD). MinEFMD was calculated by replacing eq. (5) with   for all k. RD was sampled 

as follows: 

Initialization:  {}D . 

Step 1: find contributable EFMs  }0  if  0|{  jjkkCONTRI veeE . 

Step 2: randomly choose an ke  from }{ keDD  . 

Step 3: krevv   where }0{min  jkjkj
j

eevr . 

Step 4: if  0v  , terminate and  D  is a decomposition. Else, go to step 1. 

A.3.5 Implementations 

EFMs were calculated using efmtool (Terzer and Stelling, 2008) and optimization models were solved 

by Gurobi 5.5
®
 via the COBRA toolbox in MATLAB

®
 in which all other calculations were performed. 

The MATLAB script file is available in the Supplementary Material (section A.8). The desktop 

computer used had a 3.1 GHz quad-core CPU and 16 GB of RAM.  

A.4 Results 
MBD was tested on randomly sampled FDs in the core Escherichia coli metabolic network as a 

validation of the method (Orth et al., 2010). It was then applied to a FD determined by isotopomer 

distributions reported previously for the cardiomyocyte in perfused mouse heart (Vo and Palsson, 

2006) and to a FD estimated from a dataset of metabolite assimilation and excretion in the recently 

published genome-scale metabolic network of Lactococcus lactis (Flahaut et al., 2013). In the latter 

two cases, FDs were not sampled because they were estimated from experimental data. 

A.4.1 Core E. coli metabolic network 

The core E. coli metabolic network (Orth et al., 2010) with 95 reactions and 72 metabolites simplified 

from the iAF1260 genome-scale network of E. coli  (Feist et al., 2007) includes glycolysis, TCA cycle, 

oxidative phosphorylation, pentose phosphate pathway and a biomass reaction, alongside with a set of 

transcriptional regulatory rules that can be readily implemented. Three different tests were performed 

to examine (i) the ability to separate fluxes at branch point metabolites; (ii) the performance in a 
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simulated case consistent with regulatory rules and (iii) the issue of multiple optimal decompositions. 

As the set of all possible FDs has infinitely many solutions, random sampling based on the hit-and-run 

method (Almaas et al., 2004) was applied to sample FDs for the tests. Table A.1 summarizes the 

results. More details can be found in Supplementary Material (section A.8). 

Table A.1. Summary of test results in the core E. coli metabolic network. 

Test Result 

1. Separation of combined fluxes at branch points.  

83 cases in scenario 1 (Figure A.2a), 

94 cases in scenario 2 (Figure A.2b) 

Correct recovery rate 

Scenario 1  

MBD: 100% 

RD: 7.5% 

Scenario 2  

MBD: 94% 

RD: 1% 

2. Coupling of glyoxylate cycle and acetate uptake implied by 

the regulatory rules in the presence of fructose and acetate 

(Figure A.2c). 

No EFMs with simultaneous fructose 

uptake and glyoxylate cycle activity  

MBD: 100% 

MinEFMD : 0% 

RD: 1% 

3. Uniqueness of decompositions. Enumeration of alternative 

MBDs and MinEFMDs 

MBD: 2,000 FDs tested. 

45% unique; 95% ≤ 8 optima. 

MinEFMD: 20 FDs tested. 

100% ≥ 1,000 optima 

RD: random decomposition. 

Separation of fluxes at branch points   

To check that the proposed method has the desired ability to choose EFMs of distinct branches at 

branch points, two scenarios were tested (Figure A.2a). First, two of the consuming reactions (C1, C2) 

of a branch point were chosen. Two sets of FDs, one with vC1 ≠ 0, vC2 = 0 and vice versa, were 

sampled and summed up as the set of FDs being tested. The second scenario is more difficult in which 

metabolites have two producing reactions (P1, P2) individually and coupled to C1 and C2 

respectively (Figure A.2b). FDs were sampled and summed up as complex FDs for testing. In both 

scenarios, FDs were decomposed into EFMs to check whether the distinct branches were correctly 

associated in the chosen EFMs. In this test, the available carbon sources were set to be fructose and 

acetate to allow more branch points while their simultaneous uptake does not conflict the given 

regulatory rules. As this test aimed to assess the basic ability of MBD, the weight iw  was set to 1 for 

the branch point being tested and 0 for the rest of metabolites. All metabolites were balanced during 

the calculation of EFMs. 19 500 EFMs were calculated. 
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Figure A.2. Testing the ability of MBD to separate fluxes at branch points.  

(a) Scenario 1 in test 1: separation of two individual consuming reactions. (b) Scenario 2 in test 1: correct separation of two 

pairs of coupled producing and consuming reactions. (c) Test 2: a simulated case of glyoxylate cycle coupled to acetate 

uptake implied by regulatory rules. 

There are 11 branch points in the first scenario. In each case, 10 FDs were randomly sampled and then 

subjected to MBD. In all, 1000 RDs were obtained for each FD as comparison. In all cases, no EFMs 

in an MBD use two consuming reactions simultaneously whereas it is true for only 7.5% of the RDs 

overall. In scenario 2, six branch points with two or more producing and consuming reactions were 

identified and 94 combinations were tested. For each combination, 10 FDs for each of the four 

producing and consuming pairs were sampled and combined as shown in Figure A.2b. MBDs for the 

resultant FDs were then calculated. In 94% of the MBDs for near 2000 FDs, all EFMs involve the 

correct reaction pairs whereas only 1% of the RDs is correct. These results confirmed that the 

proposed MBD is capable of separating fluxes at branch point metabolites. 

Coupling of glyoxylate cycle and acetate uptake  

The given regulatory rules of the core E. coli network imply that the glyoxylate cycle is active only if 

acetate is being consumed. Thus, in the presence of fructose and acetate, the system can consume both 

substrates with the glyoxylate cycle used primarily for acetate metabolism. Similar experiments and 

results have been reported in yeast (dos Santos et al., 2003).  To test whether MBD can distinguish the 

acetate-induced glyoxylate cycle from the TCA cycle, two sets of FDs were sampled, one without 

acetate uptake and glyoxylate cycle activity and the other without fructose uptake (Figure A.3c). One 

FD from each set was summed to form a complex FD which was subject to MBD. 1iw  for all 

metabolites except the obvious branch point Acetyl-CoA  with 1000iw . MinEFMDs and RDs 

were also computed for comparison. 

In all 200 FDs tested, no EFMs in any MBDs have simultaneous fructose uptake and glyoxylate cycle 

activity whereas all MinEFMDs do. Only 1.5% of MBDs use one EFM cometabolizing fructose and 
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acetate whereas all MinEFMDs do. For RDs, >99% have neither properties. This example 

demonstrated the unique capability of MBD to distinguish individually regulated pathways in a 

realistic system setting with underlying regulatory rules. 

Uniqueness of MBDs  

To investigate the uniqueness of MBDs, 2000 FDs with glucose as carbon source were sampled. 

Alternative optimal MBDs and MinEFMDs were enumerated. To obtain a smaller set of EFMs for 

easier optimization, several cofactors and small metabolites were unbalanced when calculating EFMs. 

It is noted that though EFMs resulting from unbalancing cofactors can still properly decompose any 

FDs, they cannot reflect the subtle interdependence between different metabolic pathways. More 

discussion can be found in the Supplementary Material (section A.8). 

MBD has a satisfactory performance regarding uniqueness. There are 45% of FDs that have a unique 

MBD and 95% of the FDs have no more than eight multiple MBDs. To compare the results with 

MinEFMDs, we randomly picked 20 FDs and enumerated the alternative MinEFMDs. All FDs turned 

out to have ≥1000 different MinEFMDs. As the minimum number of EFMs required for 

decomposition is much smaller than the number of contributable EFMs, e.g. dozens out of hundreds 

or thousands, there are virtually countless MinEFMDs. The number of multiple MBDs is extremely 

small in this sense. The results suggested that MBD is effective in identifying a small subset of 

decompositions by EFMs with fewer branching pathways which are suitable for understanding the 

FDs. 

A.4.2 Mouse myocardial metabolic network 

To demonstrate that the proposed method indeed yield a more intuitive and biologically relevant 

decomposition, MBD was applied to a FD of mouse cardiomyocyte estimated from isotopomer 

labeling experiments performed in perfused mouse hearts (Vo and Palsson, 2006). The model and the 

FD are available as the supplementary information in that publication. The mouse myocardial 

metabolic network consists of 240 metabolites and 257 reactions compartmentalized into cytoplasm, 

mitochondrion and extracellular space. There are 99 active reactions in the FD (Figure A.3). Glucose 

and oleate (a fatty acid) were available as carbon sources. Lactate, pyruvate and the ketone bodies 

acetoacetate and 3-hydroxybutanoate were excreted. A small amount of citrate and succinate were 

also produced. 
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Figure A.3. Reactions with non-zero fluxes in the mouse myocardial metabolic network. 

Intermediate steps of glycolysis are omitted. Water involved in reactions is not shown. All abbreviations of reactions and 

metabolites are the same as in the original network. Colored version is available in Supplementary Material. 

The primary function of cardiomyocyte is energy production for heart contraction. It is represented by 

the reaction ‘DMatp’ hydrolyzing ATP in the network. By decomposing the FD into a set of EFMs, 

different pathways for energy production and other cellular activities can be revealed. All metabolites 

were balanced for EFM calculation. In all, 1236 EFMs were computed. Optimality could not be 

proved after 24 h in the initial trial to find an MBD using a uniform weight. We then attempted to put 

emphasis on the obvious branch point of glucose and fatty acid oxidation, acetyl-CoA, by giving a 

weight of 1000 to it and 1 to other metabolites. An optimal MBD comprising 14 EFMs was obtained 

and was proved to be unique. EFMs in the MBD can be divided into four types. The first is three 

EFMs of fatty acid oxidation that produce CO2 and ketone bodies. The second is nine EFMs 

producing CO2 and different organic acids from glucose. The third is an EFM consuming glucose and 

oleate and producing citrate, β-hydroxybutyrate (BHB) and CO2. In this EFM, it is unambiguous that 

BHB is produced from oleate because pyruvate dehydrogenase, the only reaction in the FD converting 

pyruvate into acetyl-CoA, is not included in this EFM and acetyl-CoA is the precursor of BHB. The 

fourth type is an isolated cycle between citrulline and ornithine. The difference between EFMs lies in 

the products and the different cellular activities or pathways, including the malate-aspartate shuttle, 

pseudoketogenesis and an apparent glutamate-glutamine futile cycle.  
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We examined whether finding decomposition after removing EFMs with simultaneous oleate and 

glucose uptake is possible. No solution could be found, showing that at least one such EFM is 

required in any decomposition. To see whether this necessary interdependence of glucose and fatty 

acid oxidation originated from the balance of cofactors, we tried to find MBDs using sets of EFMs 

calculated from unbalancing some cofactors and small metabolites. When unbalancing NAD
+
 and 

NADH, an MBD without any EFM using both carbon sources simultaneously was found, whereas 

unbalancing other metabolites such as ATP, ADP, H
+
 or Pi did not give the desired result. This 

suggested that glucose and fatty acid oxidation interacted to have a balanced use of NADH/NAD
+
. 

This kind of comparison between MBDs obtained from balanced and partially balanced EFMs can 

provide insights into the interdependence of pathways. 

For comparison, MinEFMDs and RDs were computed. There were 35 optimal MinEFMDs, each with 

13 EFMs. To have a fair comparison, nine suboptimal MBDs were enumerated. Comparing the three 

types of decomposition can distinguish several properties of an MBD (Table A.2). First, only one 

EFM in each MBD consumes glucose and oleate simultaneously. As one is hexose and the other is 

fatty acid, their uses lie in different pathways and thus a good decomposition should avoid using 

EFMs consuming both. In all MinEFMDs, however, at least five such EFMs were used. 

Table A.2. Comparison of MBD, MinEFMD and random decomposition for the mouse myocardial flux distribution. 

Property MBD MinEFMD RD 

1. Number of EFMs 14 13 14 

2. Number of multiple optima 1 (unique) 35 -- 

3. Maximum number of products in EFMs 2 3 or 4 ≥ 3 (88.8%)  

4. Number of EFMs with simultaneous glucose and oleate uptake 1* ≥ 5 ≥ 5 (99.5%) 

5. No EFMs producing ketone bodies from glucose True True for 8.6% True for 6.4% 

6. No EFMs involving oleate uptake and malonyl-CoA simultaneously True None of the solutions True for 0.1% 

*Our results showed that at least one EFM consuming both carbon sources is required for decomposition. RD: random 

decomposition. 

Second, most EFMs in the MBDs excrete at most one organic acid or ketone body except two EFMs 

that excrete two whereas all MinEFMDs use several EFMs producing three or four products 

simultaneously. Such decompositions are more difficult to interpret because the sole effect of 

producing a certain compound alone (e.g. role in ATP production) might not be observed by looking 

at individual EFMs. EFMs excreting more metabolites are also expectably longer which might be 

more difficult to visualize. Another relevant advantage of MBD is that because an MBD would in 

general use EFMs that produce as few compounds as possible, if coproduction is observed in an EFM 

in an MBD solution, it may suggest the possibility that the production of the compounds is coupled 

under the particular condition where the FD is measured. 
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Third, the EFMs used in the MBDs appear to be more consistent with the regulation of metabolic 

pathways. For instance, ketogenesis by which ketone bodies are produced is known to be associated 

with fatty acid oxidation rather than glycolysis. In MBDs, no EFMs producing ketone bodies from 

glucose are present but 19 of 35 MinEFMDs contain at least one of these EFMs. Another example is 

malonyl-CoA (’malcoa’ in Fig. 3). Production of malonyl-CoA is a known mechanism leading to the 

repression of fatty acid oxidation by glucose by inhibiting the transfer of fatty acyl moieties into 

mitochondria in cardiac muscle (Depre et al., 1999). Use of EFMs that do not couple fatty acid 

oxidation and the cycle between malonyl-CoA and acetyl-CoA is thus a more rational choice. In the 

MBD, no EFMs simultaneously use oleate and involve malonyl-CoA whereas all MinEFMDs do. The 

same comparison was also performed between MBDs and MinEFMDs obtained from EFMs 

unbalancing NAD
+
 and NADH. All properties still hold (see Supplementary Material in section A.8). 

From the comparison, MBD is shown to have several properties of biological relevance that are 

possessed by only a tiny portion of MinEFMDs. We argue that the more biologically relevant 

decomposition by MBD does not occur by chance but rather by the minimization of the use of EFMs 

with branching pathways. The reasons are 2-fold.  First, from the consideration of the network 

structure alone, naturally occurring metabolic pathways tend to prefer linearity to branching at branch 

point metabolites as suggested in Ihmels et al. (2004) based on their observation on data from ≥1000 

experimental conditions.  Second, the flux of a certain reaction is the sum of the fluxes of different 

pathways containing that particular reaction. As different pathways have different fluxes, minimizing 

the use of those ‘hybrid’ EFMs would force the use of EFMs representing the true pathways to fit the 

flux values rather than a combination of ‘hybrid’ EFMs which is also able to fit the values of fluxes 

with a similar number of EFMs. 

A.4.3 Lactococcus lactis genome-scale metabolic network 

Lactococcus lactis (L. lactis) is a model organism in the group of lactic acid bacteria and has an 

important role in cheese production. L. lactis is in general auxotrophic for several amino acids (AAs) 

(Jensen and Hammer, 1993) and grows on complex media. It also produces compounds involved in 

flavour formation (Ayad et al., 1999). From the recently published genome-scale metabolic network 

of L. lactis subsp. cremoris MG1363 which specifies many flavour-forming pathways (Flahaut et al., 

2013), a FD with a complex profile of substrate consumption and production can be obtained and can 

thus test the applicability of MBD. The FD was simulated by FBA using the measured 

consumption/production rates of glucose, lactate, formate, acetate, ethanol and different AAs in a 

chemostat experiment at dilution rate 0.05 h
-1

 as constraints. The subnetwork spanned by the 

simulated FD contains 294 metabolites and 280 reactions, including 26 uptake and 13 excretion 

reactions. In all, 518 EFMs were computed when balancing all the metabolites. 
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A unique MBD of 11 EFMs was computed. Nine other suboptimal MBDs, 10 MinEFMDs and 10
4
 

RDs were obtained for comparison. First, we focused on two properties, the number of exchange 

reactions and the length of the EFMs. They can reflect the interpretability and visualizability of the 

EFMs. Figure A.4 shows their distribution in the three types of decompositions. MBD in general used 

shorter EFMs with lower numbers of uptake and excretion reactions whereas MinEFMD and RD 

performed similarly. This indicates that MBD is easier for interpretation and visualization. 

Second, we looked into the organization of individual pathways. An interesting observation pertains 

to the fermentation mode. L. lactis has been well known for its shift between homolactic fermentation 

producing only lactate and mixed-acid fermentation that produces formate, acetate and ethanol in 

addition depending on the glucose uptake rate (Thomas et al., 1979). The two modes are regulated 

differently. The reactions responsible for lactate, formate, acetate and ethanol production are lactate 

dehydrogenase (LDH), pyruvate-formate lyase (PFL), acetate kinase (ACK) and alcohol 

dehydrogenase (ADH) respectively. No MBDs contain EFMs involving concurrent use of LDH and 

PFL, ACK or ADH, while 97% of RDs and all but 1 MinEFMDs do. 

 

Figure A.4. (a) Number of  uptake reactions, (b) number of excretion reactions and (c) length of 

EFMs in MBD, MinEFMD and random decomposition.  

The L. lactis network also models detailed AA metabolism including pathways for AA 

interconversion and tRNA biosynthesis. According to a recently reconstructed transcriptional 

regulatory network of L. lactis (Ravcheev et al., 2013) available in RegPrecise database (Novichkov 

et al., 2010), they belong to different regulons and meanwhile they coincide at many metabolites. It is 

relevant to check how MBD performs regarding these branch points. In the current MBD, however, 
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the EFM matrix used to calculate MBD includes the biomass reaction, forcing many pathways to 

participate in one EFM to produce biomass. This is also the reason for the small size of the EFM set.  

To cope with this, in a new round of MBD calculation, the biomass reaction was split into several 

reactions producing individual biomass components, including DNA, RNA, proteins, lipid, 

peptidoglycan, etc. This then resulted in 32 962 EFMs. A weight equal to 1000 was assigned to 

branch points in AA metabolism (Table A.3), and 1 to other metabolites. Most branch points are AAs 

acting as precursors for tRNA, other biomass components or flavour compounds. Cysteine and serine 

as an exception contribute to the pyruvate pool. Other branch points include 2-oxobutanoate (2OBUT), 

a precursor for a flavour compound where the fluxes from threonine and cystathionine meet; ribose 5-

phosphate (R5P), synthesized from the pentose phosphate pathway or the ribose produced from 

methionine and phosphoribosyl pyrophosphate (PRPP), synthesized from R5P, used for producing 

either tryptophan or NAD
+
. 

Table A.3.  AA branch points in the flux distribution in L. lactis network. 

Branch point Flow from Flow towards 
% with no EFM of  >1 branches 

MBD RD 

Ala Ala[e], pyruvate Ala-tRNAa, D-alaninea 100% 13% 

Cys Cys[e] Cys-tRNAa, L-cysth, 

pyruvate, CoAa 

80% 0 

Met Met[e] Met-tRNAa, L-cysth. 100% 1% 

Gly Gly[e] Gly-tRNAa, Thr 100% 0.1% 

Thr Thr[e], Gly Thr-tRNAa, 2OBUT 100% 0 

Ser Ser[e] Ser-tRNAa, pyruvate 0 0.8% 

Val Val[e] Val-tRNAa, 2H3MB[e]b 100% 1.4% 

Glu Glu[e] Glu-tRNAa, D-glutamatea 100% 14% 

Leu Leu[e] Leu-tRNAa, 2HXIC[e]b 0 0 

Lys Lys[e] Lys-tRNAa, uAGLa 100% 14% 

2OBUT Thr, L-cysth 2H3MP[e]b 100% 50% 

R5P ribose, RU5P PRPP 100% 0.4% 

PRPP R5P Trp-tRNAa, NAD+ a 100% 6% 

Notes. [e], extracellular; L-cysth, L-cystathionine; 2OBUT, 2-oxobutanoate; 2H3MB, 2-hydroxy-

3-methylbutanoate; 2H3MP, 2-hydroxy-3-methylpentanoate; 2HXIC, L-2-hydroxyisocaproate; 

uAGL, UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-L-lysine; R5P, ribose 5-phosphate; RU5P, 

ribulose 5-phosphate; PRPP, phosphoribosyl pyrophosphate. 

abiomass precursors. 

bflavour compounds. 

 Convergence to optimality seemed impractical and five suboptimal MBDs were obtained. The best 

one has an optimality gap of 22% after 24 h of calculation. For MinEFMD, no solution using less 

EFMs than RD could be found so only RD was considered. 
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Comparing the original MBDs with the current ones, differences can be observed. First, the present 

MBDs consist of eight more EFMs than the original. Second, EFMs are shorter in the present MBDs. 

These changes are expectable because smaller parts of metabolism are sufficient for producing 

individual biomass components at steady state while more EFMs are required when each EFM covers 

a smaller part. We also looked into the ATP turnover: in the original MBDs, ATP consumption is 

perfectly distributed to growth requirement in five EFMs and non-growth-associated maintenance in 

the other six EFMs. In the current MBDs, however, only 70% of ATP maintenance is consumed in 

EFMs independent of synthesis of biomass components. This may be the result of suboptimality. 

Alternatively, this suggests that simultaneous clear roles in both ATP consumption and AA branch 

points are impossible. However, as an advantage of the current MBDs, the ATP consumption by 

synthesizing each biomass components can be reflected. tRNA and nucleotide synthesis consume 

>80% of the ATP. 

 Regarding AA branch points, MBD successfully chose separate EFMs representing the production of 

biomass components and flavour compounds. Table A.3 compares the five MBDs and 10
4
 RDs. All 

tRNAs are produced in three EFMs and other amino-acid-consuming reactions are in other EFMs, 

except for the cases of serine and leucine. For example, beside tRNA charging in three EFMs, 

cysteine participates in the reaction of phosphopantothenate-cysteine ligase for biosynthesis of 

coenzyme A in another EFM, goes into the pyruvate pool by cysteine desulfhydrase in three other 

EFMs, and produces cystathionine (for producing a flavour compound) in one EFM. Taking glycine 

and threonine as another example, beside tRNA charging of the two AAs in three EFMs, threonine is 

converted into 2OBUT by threonine deaminase for flavour compound production in four other EFMs, 

of which threonine is taken up from the medium in three of the EFMs and is converted from glycine 

by threonine aldolase in the other one. In most cases, RD failed to have such properties. More details 

can be found in Supplementary Material (section A.8). 

For leucine, we found that in all EFMs, tRNA charging was coupled to the production of a flavour 

compound, thus inseparable. For serine, if EFMs with only one serine-consuming reaction are used, 

EFMs branching at either threonine or cysteine must be used. It was observed that all three AAs had 

one consuming reaction producing NH4. We thus suspected that branches were not separated due to 

NH4 balance. When finding MBD from EFMs with NH4 unbalanced, indeed the issue was resolved. 

From this and the previous examples, an interesting observation is that the FDs can be represented by 

most EFMs of individual pathways together with a few necessary EFMs coupling the pathways. It 

may suggest that while a large part of the metabolism can be interpreted as the sum of individual 

pathways, at least a small part must be ascribed to cooperation between pathways. 
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A.5 Conclusion 
MBD to decompose a FD into a set of EFMs was derived. The EFMs contain as few branching 

pathways as possible. MBD advances the analysis of FD by decomposition into EFMs in three aspects. 

First, it originates from the consideration of the branching structure in metabolic network based on 

experimental evidence which is a novel attempt. Second, MBD results in more biologically relevant 

EFMs leading to clearer interpretation. Third, MBD showed good performance regarding uniqueness. 

It diminishes the ambiguity of decomposition. 

The minimal branching EFM concept underlying MBD can be useful in further applications, e.g. 

identifying metabolic pathways for engineering by acting as an estimate for biologically feasible 

EFMs.  Scaling up the method to genome-scale networks is necessary for practical applicability. In 

conclusion, MBD is able to bring useful insights when analyzing FDs. Combining information from 

e.g. transcriptional regulation and thermodynamics, wider application of EFMs can be anticipated. 
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A.8 Supplementary Material 

A.8.1 Contributable EFMs 

The whole set of EFMs E or at least the subset called ‘contributable EFMs’ Econtri (EFMs able to have 

non-zero weights for a particular flux distribution) needs to be calculated before MBD or other 

optimization objectives can be applied to choose a particular subset of EFMs to reconstruct a flux 

distribution. In the article, contributable EFMs with respect to a flux distribution v is defined as: 

   00  s.t.  |  jkjkCONTRI evjeE  

EFMs in E but not in Econtri can have only zero weight to v whereas those in Econtri are always possible 

to have non-zero weight to v because of the ‘no cancellation’ property. Concretely, it means that 

because each reversible reaction is split into two irreversible reactions, fluxes in all EFMs must be 

positive ( 0jke ) so from the equation of decomposition: 





K

k

jkkj ev
1

  

Thus 0jv  implies that 0k  whenever 0jke . Econtri can also be found given the whole set E by 

deleting the columns with  0jke  but 0jv  for each j. Or alternatively, let  00 | 
jj vv SSS  where 

0jvS  and 0jvS  contain the columns of reactions with non-zero and zero fluxes respectively. Then a 

more practical way is to calculate Econtri directly from the submatrix 
0jvS . In summary: 

• E can recover any flux distributions satisfying lbub vvvSv   ,0  but not always tractable 

• Econtri is defined for a given flux distribution v and is more likely tractable or can be found from 

E if E is known.  

• Econtri in general cannot recover all flux distributions in the network defined by S but can recover 

all flux distributions in the subnetwork defined by 0jvS  

A.8.2 Decompositions by EFMs with unbalanced metabolites 

EFMs resulting from unbalancing cofactors cannot reflect the subtle inter-dependence between 

different metabolic pathways but they can still properly decompose any FDs because of the following:  

Let 
nm

unbal

bal 







 R

S
SS  be the stoichiometric matrix where nm

bal
bRS  and nmm

unbal
b  )(RS  are 

the stoichiometric matrices of balanced and unbalanced metabolites respectively.  

Denote the EFM matrix derived from balS  by: 

  Kn
Kbalbalbalbal

 ReeeE ,2,1,  . 
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Note that a flux distribution v satisfying 0Sv  also satisfies 0vS bal . This implies balEv  where 

 K 21  is the weight vector of EFM.  

The imbalance of unbalanced metabolites in the k-th EFM, mathematically equal to the vector 

)( ,kbalkunbal eS   actually reflects the net production/ consumption of unbalanced metabolites of that 

EFM in the flux distribution which is always cancelled out by other EFMs in the decomposition. 

Occasionally, it can bring insights into the different roles of the pathways regarding the 

production/consumption of the unbalanced metabolites which are overall balanced in the flux 

distribution. 

A.8.3 Test of uniqueness of MBDs 

To obtain a smaller set of EFMs for easier optimization, several cofactors and small metabolites were 

not required to be balanced when calculating EFMs, including ATP and ADP, acetyl-coenzyme A and 

coenzyme A, NADH and NAD
+
, NADPH and NADP

+
, O2, CO2, H2O, H

+
, NH4 and inorganic 

phosphate. In this setting, many branches balancing cofactors are excluded and not accounted by 

MBD. 10
5
 EFMs were computed. For each flux distribution, contributable EFMs were selected by 

ruling out EFMs with 0jke  but 0jv . A summary about the tests on the two sets of flux 

distributions is shown in Table A.4. The number of alternative MBDs and the time required for 

computing the first MBD solution are plotted in Figure A.5. 

Table A.4. Summary about the tests of uniqueness of MBDs. 

Carbon source Glucose 

Samples decomposed 2000 

Weight iw  1 for all metabolites 

Contributable EFMs in each flux distribution 159 (sd = 27) 

EFMs in MBD for each flux distribution 36 

Flux distributions with unique MBD 898 (45%) 

Alternative MinEFMDs for 20 tested FDs ≥1000 

sd, standard deviation. 
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Figure A.5. (a) Number of multiple MBDs and (b) time required for computing the first MBD 

for FDs randomly sampled from the core E. coli metabolic network. 

A.8.4 Mouse myocardial metabolic network 

 

Figure A.6. Reactions with non-zero fluxes in the mouse myocardial metabolic network (color). 

Intermediate steps of glycolysis are omitted. Water involved in reactions is not shown. All abbreviations of reactions and 

metabolites are the same as in the original network. 
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As described in the article, we also performed analysis of MBD and MinEFMD using the set of EFMs 

resulted from unbalancing NADH and NAD
+
. Table A.5 summarizes the results. >20,000 alternative 

MinEFMDs were found whereas the MBD is unique. Figure A.7 shows the unique MBD and a 

randomly selected MinEFMD. 

Table A.5. Comparison of the properties of MBD and MinEFMD for the mouse myocardial flux distribution 

calculated from the EFM matrix in which NADH and NAD+ are left unbalanced. 

Property MBD MinEFMD 

1. Number of EFMs in the solution 16 16 

2. Number of multiple optima 1 (unique) >20,000 

3. Number of products excreted in EFMs All EFMs produce 1 product 

except one EFM producing 2 

83% of solutions contain  

≥ 2 EFMs producing 2 – 3 

4. No EFMs catabolizing glucose and oleate 

simultaneously 

True True for 0.005% of solutions 

5. No EFMs producing ketone bodies from glucose True True for 0.1% of the solutions 

6. No EFMs catabolizing oleate and involving 

malonyl-CoA simultaneously 

True True for 4.3% of the solutions 

7. Satisfying any two of the property 3 – 5 True None of the solutions 
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Figure A.7. Two sets of 16 EFMs composing (a) the unique MBD and (b) a randomly selected MinEFMD calculated 

from EFMs in which NADH and NAD+ are left unbalanced. 

Each thumbnail shows the reactions of an EFM. Two EFMs containing only the transport reactions for water are not shown. 

Abbreviations correspond to the pathways or compounds produced. FAO: fatty acid oxidation. GLS: glycolysis. TCA: 

tricarboxylic acid cycle. OxPhos: oxidative phosphorylation. MalCoa: involvement of malonyl-CoA. KG: ketogenesis. PKG: 

pesudoketogenesis. GGFC: glutamate-glutamine futile cycle. MAS: malate-aspartate shuttle. CitrOrnCyc: citrulline-ornithine 

cycle. LAC, PYR, SUCC, CIT, AcAc, BHB: production of lactate, pyruvate, succinate, citrate, acetoacetate and 3-

hydroxybutanoate respectively. 
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A.8.5 Lactococcus lactis’s metabolic network 

In the second round of MBD calculation to study the amino acid metabolism in Lactococcus lactis, 

the biomass reaction was separated several reactions producing individual components. They are 

listed in Table A.6 put at the end of this document. 

Figure A.8 shows the branch points in the amino acid metabolism. Figure A.9 shows the best MBD 

obtained and Figure A.10 shows a randomly selected EFM from a randomly selected random 

decomposition. The most obvious difference is that in the MBD, all tRNA charging reactions do not 

mix with reactions in other branches except for leucine and serine. For leucine, tRNA charging is 

necessarily coupled to a flavour compound production and for serine branches are not separated due 

to NH4 balance as explained in the article. In non-tRNA-charging EFMs, amino acids are further 

metabolized to produce other biomass components or flavour compounds. For example, in 

peptidoglycan synthesis, starting from fructose 6-phosphate, alanine, glutamate and lysine are 

involved in turn. For cysteine, it can participate in the reaction of phosphopantothenatecysteine ligase 

for biosynthesis of coenzyme A from pantothenate; go into the pyruvate pool by cysteine 

desulfhydrase; and produces cystathionine with another substrate O-acetyl-L-homoserine produced 

from methionine to finally produce a flavour compound. For glycine, it can be converted to threonine 

which is used to produce the same flavour compound. There are also three branch points which are 

not amino acids but are involved in the amino acid metabolism, including 2-oxobutanoate (2OBUT), a 

precursor for a flavour compound where the fluxes from threonine and cystathionine meet; ribose 5-

phosphate (R5P), synthesized from the pentose phosphate pathway or the ribose produced from 

methionine; phosphoribosyl pyrophosphate (PRPP), synthesized from R5P and used for producing 

either tryptophan or NAD
+
. From Figure A.9, it can be seen how different parts of the amino acid 

metabolism and the different branches of branch points were included in different EFMs whereas in a 

general random decomposition, many EFMs similar to Figure A.10 containing many branches of 

branch points co-exist. 
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Figure A.8. Branch points in the amino acid metabolism in the flux distribution in the L. lactis metabolic network.  

Extracellular metabolites are in blue. Biomass components are in green. Circled metabolites are the branch points in the 

amino acid metabolism which were given a high weight for the calculation of MBD. Some reactions are lumped for 

simplicity. All abbreviations follow the original publication of the L. lactis metabolic network (Flahaut,N. a L. et al. (2013) 

Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of flavour formation. Appl. 

Microbiol. Biotechnol., 97, 8729–39). 
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Figure A.9. MBD with high weights on amino acid branch point.  

Each thumbnail shows the active reactions in the amino acid metabolism of an EFM. Only EFMs with distinct active 

reactions in the amino acid metabolism are shown.
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Figure A.10. A randomly selected EFM from a randomly selected random decomposition of the flux distribution in 

the L. lactis metabolic network. 
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Table A.6. Splitting the biomass reaction into groups of metabolites 

metabolite stoichiometry group  metabolite stoichiometry group 

2chdeacp[c] -0.00365 phospholipid  trnamet[c] 0.08402 tRNA 

2cocdacp[c] -0.05359 phospholipid  trnaphe[c] 0.16804 tRNA 

2ctdeacp[c] -0.00061 phospholipid  trnapro[c] 0.180643 tRNA 

acp[c] 0.1218 phospholipid  trnaser[c] 0.247859 tRNA 

cpocdacp[c] -0.01583 phospholipid  trnathr[c] 0.277266 tRNA 

hdeacp[c] -0.03593 phospholipid  trnatrp[c] 0.033608 tRNA 

ocdacp[c] -0.00122 phospholipid  trnatyr[c] 0.12603 tRNA 

tdeacp[c] -0.01096 phospholipid  trnaval[c] 0.306673 tRNA 

glyc3p[c] -0.3359 phospholipid  trptrna[c] -0.03361 tRNA 

glyc[c] 0.0138 phospholipid  tyrtrna[c] -0.12603 tRNA 

alatrna[c] -0.36549 tRNA  valtrna[c] -0.30667 tRNA 

argtrna[c] -0.17644 tRNA  adp[c] 41.22259 nucleotide 

asntrna[c] -0.19745 tRNA  atp[c] -41.3081 nucleotide 

asptrna[c] -0.19745 tRNA  cmp[c] 0.275 nucleotide 

cystrna[c] -0.20585 tRNA  ctp[c] -0.3408 nucleotide 

glntrna[c] -0.23106 tRNA  datp[c] -0.02368 nucleotide 

glutrna[c] -0.23106 tRNA  dctp[c] -0.01332 nucleotide 

glytrna[c] -0.24786 tRNA  dgtp[c] -0.01332 nucleotide 

histrna[c] -0.07562 tRNA  dttp[c] -0.02368 nucleotide 

iletrna[c] -0.24366 tRNA  gdp[c] 8.402 nucleotide 

leutrna[c] -0.36969 tRNA  gtp[c] -8.50728 nucleotide 

lystrna[c] -0.23656 tRNA  h2o[c] -49.6253 nucleotide 

mettrna[c] -0.08402 tRNA  h[c] 49.76409 nucleotide 

phetrna[c] -0.16804 tRNA  pi[c] 49.68549 nucleotide 

protrna[c] -0.18064 tRNA  ppi[c] 0.678 nucleotide 

sertrna[c] -0.24786 tRNA  udp[c] 0.2103 nucleotide 

thrtrna[c] -0.27727 tRNA  ump[c] 0.0064 nucleotide 

trnaala[c] 0.365487 tRNA  utp[c] -0.07238 nucleotide 

trnaarg[c] 0.176442 tRNA  dtdp6dm[c] -0.0064 nucleotide sugar 1 

trnaasn[c] 0.197447 tRNA  dtdp[c] 0.0064 nucleotide sugar 1 

trnaasp[c] 0.197447 tRNA  udcpdp[c] -0.0002 nucleotide sugar 2 

trnacys[c] 0.205849 tRNA  udpg[c] -0.0633 nucleotide sugar 2 

trnagln[c] 0.231055 tRNA  udpgal[c] -0.1534 nucleotide sugar 2 

trnaglu[c] 0.231055 tRNA  PG[c] -0.119 peptidoglycan 

trnagly[c] 0.247859 tRNA  ala-D[c] -0.09 D-alanine 

trnahis[c] 0.075618 tRNA  coa[c] -0.0002 coenzyme A 

trnaile[c] 0.243658 tRNA  nad[c] -0.002 NAD+ 

trnaleu[c] 0.369688 tRNA  thf[c] -1.00E-05 tetrahydrofolate 

trnalys[c] 0.236556 tRNA  thmpp[c] -1.00E-05 Thiamine diphosphate 

All abbreviations follow the original model. (Flahaut,N. a L. et al. (2013) Genome-scale metabolic model for Lactococcus 

lactis MG1363 and its application to the analysis of flavour formation. Appl. Microbiol. Biotechnol., 97, 8729–39.) 
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A.8.6 Matlab script 

The matlab script for MBD together with a data file containing examples can be downloaded at 

Bioinformatics online: 

http://bioinformatics.oxfordjournals.org/ 

or 

https://github.com/shjchan/MinBranchDecomp 

 

 

http://bioinformatics.oxfordjournals.org/
https://github.com/shjchan/MinBranchDecomp
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Appendix B Supplementary Material for Chapter 4 

B.1. Supplementary tables 

Table B.1. Primers used in the study in Chapter 4. 

Primer 
Restriction 

site 
Amplified region/ Description Sequence 

DNA deletion 

56f BamHI 
ackA1 core upstream 

gacaggatccGGAGGATTTACTGACAAGTG 

56r PstI tactgctgcagCAATGCCGGCAGCATTTG 

57f PstI 
ackA1 core downstream 

tactgctgcagCACCTCTTGCTGGAGTG 

57r XhoI gtttactcgagCTAACGTGTTCTTCGTTGTTG 

59f / Verify ackA1 core deletion with 57r CAAATGCTGCCGGCATTG 

60f BamHI 
ackA2 core upstream 

gacaggatccGATGTATGTTGACCGCATTC 

60r XhoI gtttactcgagAAACGTTGGCCGGATTATG 

61f XhoI 
ackA2 core downstream 

gtttactcgagGCGATTGAAGGTGGTAAATC 

61r KpnI tagaggtaccCAACAGATCAATTTGCTCATG 

63f / Verify ackA2 core deletion with 61r CTTTACATAATCCGGCCAAC 

CSO834 XbaI 
pfl upstream 

ctagtctagaCAAGTGATGTACCAAATGAC 

CSO835 BamHI cgcggatccTTTGAAATCTCCTTTGTTCT 

CSO836 BamHI 
pfl downstream 

cgcggatccTTCTTAGTATTAAAAAATATAAAG 

CSO837 XhoI ggtactcgagTGTGATTCACCCCTATTTCT 

CSO852 / 
Verify pfl deletion 

CTTGAATTCTGTTTGCTATTATC 

CSO853 / CTTTGTCAGCATCAATTACTTG 

His-tagging 

71f BglII 
ackA1 gene for His-tagging 

actgaagatctACCAAAACATTAGCAGTAAACGCTGGTTCATC 

71r SalI actgagtcgacTTATTTTTTAAGTGCCTCAACGTC 

62f BamHI 
ackA2 gene for His-tagging 

gacaggatccGAAAAAACGCTCGCTGTCAAT 

62r SalI tacagtcgacTTATTTAGCCGCTTCGACATC 

Construction of gusA reporter strains 

11f XbaI 

436-bp ackA1 upstream and 36-bp 

CDS with a stop codon 

atcgatctagaGAGGATTTACTGACAAGTG 

11r PstI atcgactgcagttaTGATGAACCAGCGTTTAC 

12f XbaI 444-bp ackA2 upstream and 45-bp 

CDS with a stop codon 

atcgatctagaTGAGATGTATGTTGACCG 

12r PstI atcgactgcagttaTAATGATGAGGAGCCTG 

75r SalI 

Anti-sense to ackA genes; priming 

the predicted transcription terminator 

of ackA1 and excluding the putative 

promoter of ackA2 

actgagtcgacTTCCTACAACTTTGTATCTTGCTGTCAT 

CSO50 BamHI Verify chromosomal integration of 

pLB85 

ggaaggatccCCCATAGTTCATCAGTTATC 

CSO263 / CGCGATCCAGACTGAATG 

RACE 

72r / 5’-RACE for ackA1 CCAGCAAGAGGTGTGAAGCCCAT 

73r / 5’-RACE for ackA2 CGAAAACAGCGACCGCAAGTGCAT 

doi:10.1371/journal.pone.0092256.s001 
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Table B.2. Plasmid used in Chapter 4. 

Plasmid Description 

pCS1966 Contain oroP for orotate transporter as counterselection tool for deletion; Ermr [26] 

pCS1966-

ackA1core 

pCS1966 containing the upstream and downstream regions of the core part of ackA1 obtained with 

primer pairs 56-57; Ermr 

pCS1966-

ackA2core 

pCS1966 containing the upstream and downstream regions of the core part of ackA2 obtained with 

primer pairs 60-61; Ermr 

pCS1966-pfl pCS1966 containing the upstream and downstream regions of pfl obtained with primers  CSO834-

837; Ermr 

pLB65 Contain orf1 expressing phage TP901-1 integrase; Camr [27] 

pLB85 Reporter vector containing gusA reporter; Ermr, Ampr [27] 

pLB85-ackA1 pLB85 containing fragment A obtained with primer pair 11 (including 36-bp CDS and 436-bp 

upstream region of ackA1); Ermr, Ampr 

pLB85-ackA12 pLB85 containing fragment B obtained with primers 11f, 12r (including 36-bp CDS and the promoter 

region of ackA2 as well as the CDS and 436-bp upstream region of ackA1); Ermr, Ampr 

pLB85-ackA2 pLB85 containing fragment C obtained with primer pair 12 (45-bp CDS and 444-bp upstream region 

of ackA2); Ermr, Ampr 

pLB85-ackA1term pLB85 containing fragment D obtained with primers 11f, 75r (fragment B excluding the region 

immediately after the predicted transcription terminator of ackA1); Ermr, Ampr 

pLB85-ackA2term pLB85 containing fragment E obtained with primers 12f, 75r (fragment C excluding the region 

immediately after the predicted transcription terminator of ackA1); Ermr, Ampr 

pQE30 Commercial vector (Qiagen) used for N-terminal His-tagging; Ampr 

pQE30-ackA1 pQE30 containing the gene ackA1 amplified using primer pair 71; Ampr 

pQE30-ackA2 pQE30 containing the gene ackA2 amplified using primer pair 62; Ampr 

Ermr, Camr and Ampr stand for erythromycin, chloramphenicol and ampicillin resistance respectively. CDS: coding 

sequence. doi:10.1371/journal.pone.0092256.s002 

Table B.3. Strains used in Chapter 4. 

Strain Description 

MG1363 A plasmid-free strain derived from L. lactis subsp. cremoris NCDO 712 [24] 

MG1363Δpfl MG1363 with pfl deleted using pCS1966-pfl 

MG1363ΔackA1 MG1363 with the core part of ackA1 deleted using pCS1966-ackA1core 

MG1363ΔackA2 MG1363 with the core part of ackA2 deleted using pCS1966-ackA2core 

MG1363ΔackA12 MG1363ΔackA1 with the core parts of ackA2 deleted using pCS1966-ackA1core 

MG1363ΔackA1Δpfl MG1363ΔackA1 with pfl deleted using pCS1966-pfl 

MG1363ΔackA2Δpfl MG1363ΔackA2 with pfl deleted using pCS1966-pfl 

MG1363ΔackA12Δpfl MG1363ΔackA12 with pfl deleted using pCS1966-pfl 

LB436 MG1363 containing pLB65 

LB436/blank LB436 with pLB85 integrated into the TP901-1 attachment site 

LB436/ackA1 LB436 with pLB85-ackA1 integrated into the TP901-1 attachment site 

LB436/ackA12 LB436 with pLB85-ackA12 integrated into the TP901-1 attachment site 

LB436/ackA2 LB436 with pLB85-ackA2 integrated into the TP901-1 attachment site 

LB436/ackA1term LB436 with pLB85-ackA1term integrated into the TP901-1 attachment site 

LB436/ackA2term LB436 with pLB85-ackA2term integrated into the TP901-1 attachment site 

M15 pREP4 groESL An E. coli strain for protein overexpression [25] 

SC136 M15 pREP4 groESL containing pQE30-ackA1 

SC137 M15 pREP4 groESL containing pQE30-ackA2 

doi:10.1371/journal.pone.0092256.s004 
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B.2. ACK entries in Uniprot 
The data for counting the number of species with multiple ACKs from the 11,112 ACK entries in 

Uniprot is too large to be put in the thesis. Interested readers please download the .xlsx file from PLoS 

ONE website: 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256 

B.3. Supplementary figures 

 

Figure B.1. Multiple alignment of AckA1, AckA2 and ACKs from Salmonella typhimurium and Methanosarcina 

thermophila. 

Structures identified in previous crystallographic studies* are annotated. doi:10.1371/journal.pone.0092256.s005 

*Buss KA, Ingram-Smith C, Ferry JG, Sanders DA, Hasson MS (1997) Crystallization of acetate kinase 

from Methanosarcina thermophila and prediction of its fold. Protein Sci 6: 2659–2662 doi:10.1002/pro.5560061222. 

*Chittori S, Savithri HS, Murthy MRN (2012) Structural and mechanistic investigations on Salmonella typhimurium acetate 

kinase (AckA): identification of a putative ligand binding pocket at the dimeric interface. BMC Struct Biol 12: 24 

doi:10.1186/1472-6807-12-24. 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092256
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Figure B.2. Multiple alignment of all lactococcal ACKs. 

Residues conserved with each type of ACK but different between the two types are annotated. 

doi:10.1371/journal.pone.0092256.s006 
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Figure B.3. Activities of purified acetate kinases.  

(a) AckA1 and (b) AckA2 converting acetate (OAc) into acetyl-phosphate (Ac-P) at different levels of (i) acetate and 

(ii) ATP and, converting acetyl-phosphate into acetate at different levels of (iii) Ac-P and (iv) ADP, respectively. 

doi:10.1371/journal.pone.0092256.s007 
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Table C.1. MG1363 and MG/SP1-bdh growing in MalSALN with or without acetoin. 

Strain 
Acetoin 

added  

Growth  

rate (h-1) 

Specific rate of sugar consumption and product formation  

(mmol h-1gdw-1) 

Maltose Lactate Formate Acetate Ethanol 

MG1363 0 0.60 ± 0.01 7.7  ± 0.1  11.7  ± 0.2  16.6  ± 0.4  9.6  ± 0.7  6.4  ± 0.7  

20 mM 0.54 ± 0.01 6.4  ± 0.4  17.0  ± 1.2  5.8  ± 0.2  4.9  ± 0.1  1.4  ± 0.1  

MG/SP1-bdh 0 0.61 ± 0.01 7.0  ± 0.1  11.1  ± 0.2  15.9  ± 0.6  9.5  ± 0.1  5.9  ± 0.2  

5 mM 0.67 ± 0.01 7.5  ± 0.02  11.8  ± 0.3  16.5  ± 0.5  12.4  ± 0.3  4.0  ± 0.5  

20 mM 0.72 ± 0.01 6.9  ± 0.1  7.6  ± 0.1  5.5  ± 0.2  14.9  ± 0.1  -0.4  ± 0.6  

Table C.2. Product yield, carbon recovery and biomass yield for growth in MalSALN. 

Strain 
Acetoin 

added  

Product yield on sugar a Carbon 

recoveryb 

Biomass yield 

(gdw / C6-mol) Lactate Formate Acetate  Ethanol 

MG1363 0 38% ± 0% 54% ± 1% 31% ± 2% 21% ± 2% 90% ± 4% 38.8  ± 0.7  

20 mM 23% ± 2% 23% ± 2% 19% ± 1% 6% ± 0% 91% ± 3% 42.0  ± 2.8  

MG/SP1-bdh 0 57% ± 2% 57% ± 2% 34% ± 0% 21% ± 1% 95% ± 1% 43.7  ± 0.9  

5 mM 55% ± 2% 55% ± 2% 41% ± 1% 13% ± 2% 94% ± 4% 44.7  ± 0.5  

20 mM 20% ± 1% 20% ± 1% 54% ± 1% -1% ± 2% 80% ± 1% 51.9  ± 1.4  

a Yield was calculated in terms of C3-mol ( = product flux / maltose flux / 4). 

b Carbon recovery was the sum of lactate, ethanol and acetate yield on sugar. 

Table C.3. Product yield, carbon recovery and biomass yield for growth in MalSALN(BGP). 

Acetoin 

added 
Strain 

Product yield on sugar a Carbon 

recovery b 

Biomass yield 

(gdw / C6-mol) Lactate Formate Acetate Ethanol 

0 MG1363 35% 60% 33% 23% 90.0% 31.3 

MG/SP2--bdh 38% 57% 32% 22% 90.0% 31.4 

MG/SP1-bdh 41% 58% 33% 20% 90.0% 31.4 

5 mM MG1363 55 ± 3 % 30 ± 2 % 22 ± 1 %   8 ± 1 % 84 ± 6 % 25.3 ± 0.7 

MG/SP2--bdh 47 ± 1 % 53 ± 3 %   37 ± 0.1 %   16 ± 0.3 % 99 ± 1 % 34.1 ± 0.8 

MG/SP1-bdh 36 ± 1 % 58 ± 2 %   42 ± 0.2 % 13 ± 1 % 90 ± 1 % 34.7 ± 0.7 

a Yield was calculated in terms of C3-mol ( = product flux / maltose flux / 4). 

b Carbon recovery was the sum of lactate, ethanol and acetate yield on sugar. 

  



Appendix C Supplementary Material for Chapter 5 

151 

Table C.4. Product yield, carbon recovery and biomass yield for growth in GluSALN(BGP). 

Acetoin 

added 
Strain 

Product yield on sugar a Carbon 

recovery b 

Biomass yield 

(gdw / C6-mol) 
Lactate Formate Acetate Ethanol 

0 MG1363 90.7% 4.2% 3.3% 0.0% 94% 39.8 

MG/SP2--bdh 98.2% 4.7% 4.2% 1.7% 104% 40.8 

MG/SP1-bdh 89.7% 4.2% 3.8% 0.0% 93% 38.0 

5 mM MG1363 95 ± 4 % 2.2 ± 0.3 %   2.1 ± 0.4 % 1.0 ± 1.3 % 98 ± 6 % 40.1 ± 1 

MG/SP2--bdh 85 ± 0 % 1.2 ± 0.2 %   6.5 ± 0.4 % -0.6 ± 1.1 % 91 ± 2 % 40.4 ± 0.7 

MG/SP1-bdh 80 ± 2 % 1.0 ± 0.4 % 10.9 ± 0.4 %  0.3 ± 0.5 % 91 ± 3 % 40.7 ± 0.5 

a Yield was calculated in terms of C3-mol ( = product flux / glucose flux / 2). 

b Carbon recovery was the sum of lactate, ethanol and acetate yield on sugar. 

 

Table C.5. 23BDH activities and rates of acetoin consumption and 23BD production in SALN(BGP). 

Acetoin in 

medium 
Strain 

23BDH activity in MalSALN(BGP) 

(μmolmin-1mg protein-1) 

Specific rate (mmolh-1gdw-1)a
  

MalSALN(BGP) GluSALN(BGP) 

Acetoin  23BD Acetoin  23BD 

0 MG1363 N.D. 0 0.3 0 0.0 

MG/SP2--bdh N.D. 0 0.3 0 0.2 

MG/SP1-bdh N.D. 0 0.3 0 0.5 

5 mM MG1363 0.07 ± 0.02 1.8 ± 0.2 1.9 ± 0.2 -0.7 ± 0.9 0.1 ± 0.1 

MG/SP2--bdh 0.50 ± 0.05 3.0 ± 0.6 2.8 ± 0.3  4.8 ± 0.1 3.2 ± 0.1 

MG/SP1-bdh 2.67 ± 0.08 4.1 ± 0.5 4.0 ± 0.3  8.8 ± 0.4 6.7 ± 0.9 

N.D., not determined. 23BDH, 2,3-butanediol dehydrogenase; 23BD, 2,3-butanediol. 

a positive values for acetoin and 23BD for consumption and production respectively. 
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