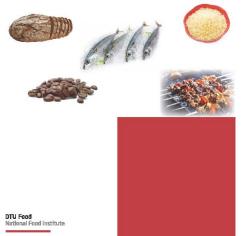


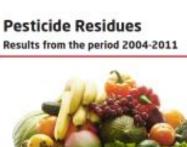
Dietary exposure of the Danish population from contaminants and pesticides

Annette Petersen, Senior Adviser Department of Risk Assessment and Nutritrion

DTU Food National Food Institute

Content


•Only dietary exposure (intake)



쁖

Chemical contaminants 2004-2011

http://www.food.dtu.dk/english/Publications/Food-safety/Chemical-contaminants

National Food Institute, Technical University of Denmark

Exposure = Consumption x Concentration/bodyweight Consumption = how much is eaten Concentration = how much of the substance in the food

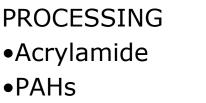
Challenges in exposure

- What is analysed and what do we eat
- Processsing
- Non-detects
 - -Results < reporting limits

National Food Institute, Technical University of Denmark

Risk assessment

- Comparing exposure with the health-based guidance
 - -E.g. Acceptable Daily Intake (ADI) or Tolerable Daily Intake (TDI)
 - -Be as low as possible


Or

- Margin of Exposure (MOE) is calculated
 - Change in effect level is compared with exposure
 - -Be as high as possible
- Endocrine disrupting effects and neurotoxicity not evaluated for all the substances

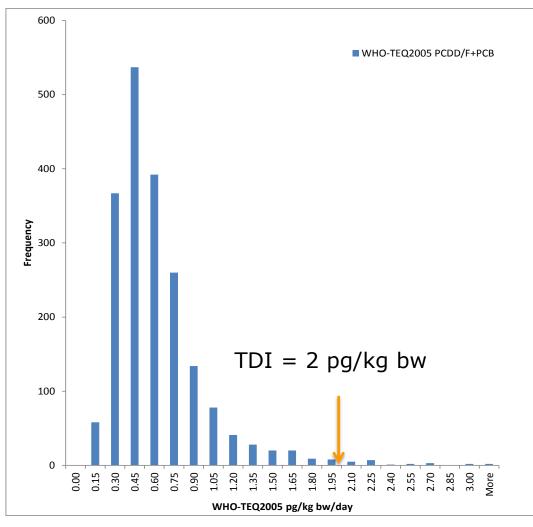
Contaminants – exposure assessment

ENVIRONMENT

- Dioxins and PCB
- Brominated flame retardants (ΣHBCDD)
- Perflourinated compounds (PFOA, PFOS)
- •Organochlorine pesticides, (e.g. DDT, lindane, dieldrin)

NATURAL OCCURING

- Mycotoxins
- DON, HT-2, T-2, Ochratoxin A
- Trace elements
- As, in-organic As, Cd, Pb, Hg
- Nitrate


Contaminants – conclusions

- Dietary exposure should preferably be lowered for:
 - -Cadmium, dioxin and PCB
 - Exposure above health based refer reference values for some consumers
 - -Lead, inorganic arsenic and acrylamide
 - Low MOE

Contaminants – seleceted results: Dioxin and PCB

National Food Institute, Technical University of Denmark

Contaminants – seleceted results: Acrylamide (genotoxic and carcinogenic)

Exposure group	Adults (µg/kg bw/day)	ΜΟΕ	Children (µg/kg bw/day)	ΜΟΕ
Mean	0.19	1947	0.33	545
95 th	0.46	391	0.89	202
percentile				

Contaminants – conclusions

• PAH: Relatively low MOE

- PFOA and PFOS
 - Calculated dietary exposure from fish is low compared to <u>current</u> TDI
 - -Bio-accumulate: Desirable that exposure is lowered

Pesticides

• Analysed samples: 17309

Cumulative: Hazard Index

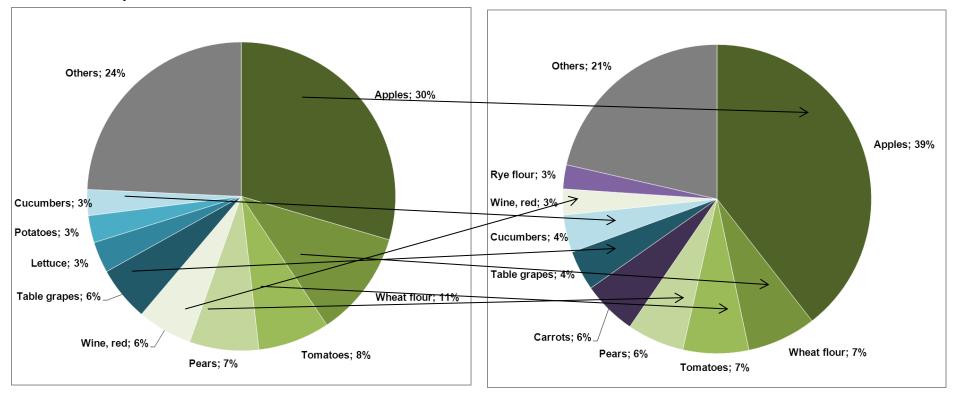
• Hazard Quotient

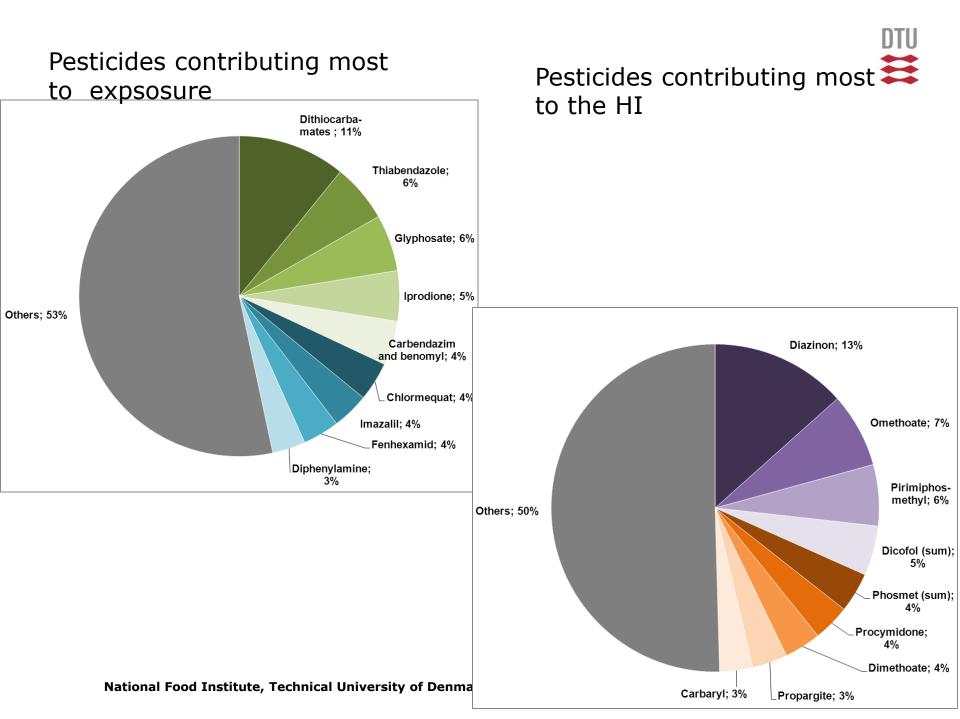
 $Hazard\ Quotient\ (HQ) = \frac{Exposure}{ADI}$

• Hazard index

Hazard Index (HI) = $HQ_1 + HQ_2 + HQ_3 + \dots + HQ_p$

- ADI = Acceptable Daily Intake
- Substances with same effects and dose-addition is assumed – Here: for all pesticides


Exposure - pesticides


	Exposure (µg/kg bw/day)	HI (%)
Adults, average consumption	1.9	18
Children, average consumption	4.5	44
Men, average consumption	1.6	14
Men, average consumption, domestic preferred	0.81	6
Men, high consumption	3.1	29

Commodities contributing most to expsosure

Commodities contributing most to the HI

The future

- How to improve exposure assessment from food:
 - More information about consumption and concentration in food
 - Total diet studies
 - Analyse in food as eaten
 - Probabilistic modelling
- How to improve cumulative exposure
 - More toxicological data to create common assessment groups
- Preferably estimate aggregated cumulative exposure
 - Exposure from all sources