

How do we handle cocktail effects of chemicals?

Rie Vinggaard Eigtveds Pakhus 19th March 2015

 $f(x+\Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^{i}}{i!} f^{(i)}(x) = a^{b} + a^{b} +$

DTU Food National Food Institute

Prediction of cocktail effects

Dose addition provides good approximations of observed effects

AR antagonism

Chemicals with no effect individually can give rise to a marked cocktail effect

Hazard Index

$$HI = \sum_{i=1}^{n} \frac{EL_i}{AL_i}$$

- EL: Exposure level
- AL: Acceptable level
- DNEL, TDI, ADI (uncertainty factor included)
- NOAEL, RefV, BMDL

Cut-off for HI is by default 1

Assumptions, guidance and abbreviations:

MRA: Mixture Risk Assessment; HI: An interpretation of the Hazard Index actual value should be based on an expert judgment and uncertainties taken into account; HQ: Hazard Quotient

Mixture Risk Assessment (MRA) step by step proposed by the National Food Institute, Technical University of Denmark

PROBLEM & SCENARIO DEFINITION Is human exposure to the components likely? Co-exposure within a relevant time frame?

CASE: Exposure to a phthalate mixture

D1	U
+	-
-	¥

Phthalate	Estimated exposure from food (97.5 th percentile, µg/kg bw/day)	Acceptab- le level (µg/kg bw/day)	Hazard Ouotient (based on 97.5 th percentiles)
DEHP	9.9	35	0.28
DBP	1	6.7	0.15
DiBP	2.7	420	0.006
BBP	1.3	500	0.003
Total Hazard Index			0.44

 $HI = HQ1 + HQ2 + HQ3 + HQ4 = \frac{exposure1}{AL1} + \frac{exposure2}{AL2} + \frac{exposure3}{AL3} + \frac{exposure4}{AL4}$

CASE: Exposure to a phthalate mixture

DEHP, DBP, DIBP and BBP from various sources	Hazard Index (based on 97.5 th percentiles)
Food	0.44
Articles	0.14
Dust	0.72
Indoor air	0.06
Total Hazard Index	1.36

Tool box for mixture risk assessment

- Tools for **Grouping of chemicals** (OSAR, integrative systems biology, metabolomics)
 - Flow diagram for Hazard Index calculation
 - Software: 'Cocktail Effect Calculator' containing:
 - Module 1: Toxicity and exposure information for important chemicals
 - Module 2: HI calculator Module 3: Mathematical modeling of effects

Take home messages

- Additive effects => cocktail effects can be predicted based on information on single chemicals
- Low doses of many chemicals can have a marked negative effect
- Grouping of chemicals by computational tools & metabolomics
- New methods for identifying problematic compounds in foods and food packaging developed
- Pragmatic approach for risk assessing cocktails developed
- Significant progress, but still many unresolved issues to be addressed

Perspectives Bottleneck: data gap on single chemicals

- Alternative ways of risk assessing chemicals
- Effects caused by 'real-world' mixtures

Development and refinement of the tools for mixture risk assessment

Acknowledgements

- Ministry of Food, Agriculture and Fisheries of Denmark
- Danish Veterinary and Food Administration
- DTU Food
- DTU Systems Biology
- DTU Management
- Brunel University, UK
- University of Alberta, CA
- Environmental Protection Agency, USA
- The Food and Environment Agency, UK
- University of Rennes, FR

Thank you!

Cocktail effects – how much can a person carry?